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Abstract 

Understanding the levels of metabolic dysregulation in different disease settings is 
vital for the safe and effective incorporation of metabolism-targeted therapeutics in 
the clinic. Using transcriptomic data from 10,704 tumor and normal samples from 
The Cancer Genome Atlas, across 26 disease sites, we developed a novel 
bioinformatics pipeline that distinguishes tumor from normal tissues, based on 
differential gene expression for 114 metabolic pathways.  This pathway 
dysregulation was confirmed in separate patient populations, further demonstrating 
the robustness of this approach. A bootstrapping simulation was then applied to 
assess whether these alterations were biologically meaningful, rather than expected 
by chance.  We provide distinct examples of the types of analysis that can be 
accomplished with this tool to understand cancer specific metabolic dysregulation, 
highlighting novel pathways of interest in both common and rare disease sites. 
Utilizing a pathway mapping approach to understand patterns of metabolic flux, 
differential drug sensitivity, can accurately be predicted. Further, the identification 
of Master Metabolic Transcriptional Regulators, whose expression was highly 
correlated with pathway gene expression, explains why metabolic differences exist 
in different disease sites. We demonstrate these also have the ability to segregate 
patient populations and predict responders to different metabolism-targeted 
therapeutics. 

 
Introduction 

 

Despite waning interest in how metabolism influences cancer, recent efforts 
have brought a renewed awareness of cancer as a metabolic disorder1-4.  While the 
field was first introduced to cancer as a glycolytic disease, often described as the 
Warburg Effect5, modern advancements and technologies have pointed to other 
metabolic dependencies, such as fatty acid metabolism in Prostate Cancer6.  These 
recent investigations have led to the inclusion of metabolic reprogramming as a new 
hallmark of malignant transformation7.  However, the extent to which all metabolic 
genes and pathways are expressed by cancers of different origins, and how they 
differ from one another, is largely underexplored.  Even more pressingly, how these 
metabolic pathways and genes differ from the non-malignant, normal human tissues 
has yet to be determined.  Few papers exist that attempt to explain differences in 
cancer and normal that can be leveraged to understand metabolic reprogramming, 
based on genomic perturbation8-11.  While some innate differences between tumor 
tissues and normal are addressed, the focus is typically on common mechanisms 
and metabolic gene dysregulation that exist pan-cancer, rather than those changes 
that exist in an individual tumor type at the transcriptomic level, and how these 
affect existing chemotherapeutic treatment8,10,11. Others look at this concept solely 
from the metabolomics angle, in a single disease site9. These studies, while 
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informative, create a gap in which we question if there are targetable metabolic 
pathways unique to a single disease site, or globally dysregulated. Additionally, we 
can question whether there is a way to distinguish those patients that will respond 
to these metabolic-targeted therapies, based on their distorted metabolism.  
 Scientific consortiums like The Cancer Genome Atlas (TCGA)12 encourage 
comprehensive genomics approaches in large numbers of patients with many 
different cancer types, as well as their matched normal tissues.  These data allow the 
opportunity to address whether metabolic genes differ between normal and 
malignant conditions across diverse tissues of origin.  While metabolomics, the 
systemic study of the small molecules utilized and left behind during essential 
cellular processes13, is the most comprehensive way to understand the metabolic 
composition of a cell at a given time, the technique is still in its infancy14.  
Conversely, abundant and readily available transcriptomic data exist for a large 
number of patients in many types of cancer.  Such data sets provide the opportunity 
to investigate the variety of mechanisms cancers utilize to control metabolic enzyme 
expression in order to achieve metabolic reprogramming, including feedback and 
crosstalk between metabolite pools and transcription15-16.  

Recently, transcriptomics data in conjunction with current biochemical 
understanding have been exploited to construct genome-scale metabolic 
workflows17.  For instance, the metabolic output in E.coli was successfully predicted 
using transcriptomic data, in which over half of the metabolic outputs from greater 
than 450 different reactions within the organism were correctly modeled18-21.  Many 
different algorithms exist that attempt to extrapolate metabolic output from 
transcriptomic inputs in model organisms, with varying accuracy and sensitivity22-

23.  Nevertheless, extrapolating metabolic changes from transcriptomics is not 
without its challenges, as stoichiometric relationships and kinetic information must 
be assumed in many cases18.  Recently, evidence for a high level of significant 
correlation between gene expression and metabolite levels was revealed in a 
detailed look at breast cancer RNA-sequencing and unbiased metabolomics13. 

An additional challenge to understanding metabolic reprogramming in 
cancer, lies in determining the genetic and epigenetic changes that control the 
metabolic phenotypes.  To this end, we suggest that elucidating expression and 
alteration of Master Metabolic Transcriptional Regulators (MMTRs) may provide 
novel understanding of why metabolism differs in varying tissues and provide new 
targets for the treatment of tumors.  Susumu Ohno first recognized master 
transcriptional regulators in the developmental field in the 1970s24, using the term 
to describe transcription factors that regulate sets of genes that determine 
developmental fate.  Master regulators (MRs) have been implicated in a variety of 
disease states25-27 and with several genomic alterations28-29.  More recently, MRs 
have become interesting as biomarkers of disease30-31 and also as pharmacological 
targets32, with the intention that targeting the MR would also modulate the 
downstream targets. 

Master regulators have also been shown to exert regulatory control over 
specific metabolic pathways.  One example is the sterol regulatory element binding 
proteins (SREBPs) that control lipid metabolism.  This family of genes is highly 
associated with the expression of genes and enzymes involved in cholesterol, fatty 
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acid, triacylglycerol and phospholipid synthesis33.  Transgenic and knockout mice 
have further elucidated the effect of these master regulators on lipid metabolism, 
showing that the unique regulation and activation properties of each of the three 
SREBP isoforms facilitate homeostatic regulation of lipid metabolism34-35.  However, 
a more nuanced understanding of unique metabolic dependencies, or weaknesses, 
in specific cancer types, subtypes, or even tissues of origin, may provide novel 
therapeutic targets that have better potential for lower toxicity than traditional 
chemotherapeutics.  A recent example is the recognition that cancers that are 
deficient in the methylthioadenosine phosphorylase (MTAP) enzyme are highly 
susceptible to inhibition of methionine adenosyl transferase 2A (MAT2A) resulting 
in reduced function of protein methyltransferase 5 (PRMT5)36.  Metabolic therapies 
provide an attractive approach in the clinic, as it has not only evaded drug 
resistance thus far, but has also been shown to prevent multi-drug resistance in 
tumors37. Determining responders to these metabolic therapies, however, provides 
a challenge. There are currently no studies determining the master transcriptional 
metabolic regulators (MMTR) of specific metabolic pathways, which may serve as 
drivers of metabolic phenotypes. These would also provide new insights into ways 
to therapeutically leverage metabolic dependencies and segregate patient 
populations in terms of response to metabolic-targeted therapeutics.  

The aim of this study was to comprehensively assess which metabolic 
pathways have altered transcriptional profiles in 26 different cancer types as 
compared to their matched normal tissues.  This information was then utilized to 
identify those pathways that were uniquely altered in malignancies from specific 
tissues of origin or those that were commonly altered across all cancer types, as well 
as those metabolic pathways that were most altered in specific molecular subtypes 
that exist within a cancer type.  Here we demonstrate that we have the ability to not 
only segregate different disease sites and different molecular subtypes of the same 
disease, but also to predict response to metabolism-targeted therapy. This selective 
drug sensitivity is further explained by MMTRs we identified for the individual 
pathways.  This represents a means of identifying a mechanism by which these 
metabolic pathways become distorted in malignancy and to offer novel targets for 
intervention.   
 
Results 

 
Pan-cancer screen for transcriptional metabolic dysregulation 

To screen for transcriptional metabolic dysregulation, we used RNA-
sequencing data from 26 different types of cancer with matched normal samples 
from TCGA12 (Fig 1A, Supplementary Table 1) using a custom analysis pipeline as 
depicted in Figure 1.  Magnitude of metabolic dysregulation was calculated by first 
determining a list of Differentially Expressed Genes (DEGs), which includes log fold 
changes and adjusted p-values, comparing tumor tissues with normal matched 
samples and assigning scores based on 114 metabolic pathways sourced from The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 38.  Adjusted p-value magnitude 
is affected by sample size, which varies across data sets.  To account for how such 
variation would affect the metabolic pathway score, each was divided by the square 
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root of n (the sample size) for each disease site.  Bootstrapping methods were then 
used to determine which pathways were significantly dysregulated (red) or non-
significantly dysregulated (gray) (Fig 1B).  The metabolic dysregulation scores (Fig 
1C) were then confirmed in separate patient populations for prostate39, lung 
adenocarcinoma40, and breast carcinoma41 (Supplementary Figure 1). Pathway 
scores in validation cohorts were significantly correlated to those generated in 
TCGA cohorts from the same disease sites, demonstrating the robustness of the 
pipeline. To determine if there were patterns within the classes of metabolic 
dysregulation, individual pathway scores were segregated into major classes of 
metabolism (Fig 1D). MMTRs were then determined for individual pathways, such 
as the Pentose Glucuronate Interconversion Pathway (Fig 1E), as a means of 
elucidating the drivers of unique metabolic phenotypes that exist in cancers of 
different origins.   

The 114 individual metabolic pathways were subsequently condensed into 
ten major categories of metabolism based on KEGG classifications (Fig 2A).  After 
bootstrapping, pathways in each classification were then further broken down by 
the number of cancers for which they were dysregulated (Fig 2B). Additionally, we 
identified unique pathways, which were altered in just one disease site (Fig 2C). For 
example, Prostate cancer (PRAD) had two pathways uniquely dysregulated 
(Polyamine Biosynthesis and Nicotinamide Adenine Dinucleotide Biosynthesis). 
Further, analysis of pathways within the major metabolic categories revealed 
patterns of dysregulation reflective of known common metabolic reprogramming in 
cancer.  For example, within the carbohydrate metabolism category we found 
patterns consistent with the Warburg Effect, such as dysregulation of glycolysis and 
gluconeogenesis (Fig 2D), to varying degrees in all cancer types.  While these results 
support those found in the literature, the method also allowed for novel 
observations regarding metabolic disruption across the 26 types of cancer 
examined.   

One such finding is the common, but not universal, dysregulation of the 
Pentose and Glucuronate Interconversion Pathway (Fig 2D), which is significantly 
altered in 20 cancer types.  Due to its high degree of dysregulation, this pathway has 
been studied in some cancer types, including LIHC42-43. However, little has been 
done to study this pathway in SARC, where we find it is most strongly dysregulated. 
Meanwhile in only six types of cancer (Uterine Corpus Endometrial Carcinoma 
(UCEC), Bladder Urothelial Carcinoma (BLAD), Cervical and Endocervical cancers 
(CESC), Skin Cutaneous Melanoma (SKMC), Kidney Renal Papillary Cell Carcinoma 
(KIRP), and Glioblastoma Multiforme (GBM)) the Pentose Glucuronate 
Interconversion Pathway was not significantly dysregulated.  Conversely, some 
pathways were only dysregulated in a single type of cancer.  For instance, the 
Polyamine Biosynthetic Pathway was only significantly dysregulated in prostate 
cancer (PRAD), suggesting unique dependencies of certain cancers (Figure 2E).   

In addition, within specific metabolic categories, hierarchical clustering 
highlighted disease sites with distinct levels of dysregulation.  An example of this is 
the disruption of Lipid metabolism in Skin Cutaneous Melanoma (SKCM), whose 
level and pattern of dysregulation among pathways within this category caused this 
disease site to segregate separately from others (Fig 2F). SKCM is one of the least 
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metabolically dysregulated cancer types, in terms of the number of significantly 
dysregulated pathways (Fig 1B). As shown in Figure 1C, among the 26 cancer types, 
the median number of significantly dysregulated pathways is 58 out of the 114, 
while for SKCM there are only 30.  
 
Pathways dysregulated across multiple cancer subtypes 

 The Pentose Glucuronate Interconversion pathway clusters closely with the 
Glycolysis and Gluconeogenesis pathways that are significantly dysregulated in all 
cancer types (Fig 2B).  This pathway is involved in the interconversions of 
monosaccharide pentose and glucuronates, which are the salts or esters of 
glucuronic acid41.  While it is known that this pathway is frequently dysregulated in 
hepatocellular carcinoma, little is known about the dysregulation of this pathway in 
the context of other disease sites42-43.  As is shown in the heatmap of carbohydrate 
metabolic pathways, many cancer types highly dysregulate this pathway, while only 
a few do not (Fig 2B).  To better understand the expression changes within the 
Pentose Glucuronate Interconversion pathway, the 35 individual genes that make 
up the pathway were examined in detail across cancer types (Figure 3A-B).  This 
approach demonstrated that there are two distinct groups of cancer sites, those that 
significantly up-regulate many of the genes within this pathway, and conversely 
those that down-regulate a majority of genes within this pathway.   
 Consistent with what has previously been reported in LIHC, our analysis 
found this disease site to be among the cancers with the most significantly 
dysregulated genes, nearly all of which are down-regulated (23 out of 35).  In 
addition we made the novel observations that SARC, Kidney Chromophobe (KICH), 
Cholangiocarcinoma (CHOL), and Colon Adenocarcinoma (COAD), also have a high 
degree of down-regulation within the Pentose Glucuronate Interconversion 
pathway but the magnitude of down-regulation exceeds that of LIHC.  Conversely, 
the lung cancer subtypes, lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC), up-regulate the greatest number of genes within the pathway, 
though the magnitude of upregulation is far greater in LUSC.  While it has been 
reported that intermediate metabolites of the Pentose Glucuronate Interconversion 
pathway are increased in LUAD44, the transcriptional upregulation of 20 of the 35 
genes within this pathway are unknown.  Previous literature has also pointed to the 
dysregulation of this pathway in LUSC but failed to further explore how this 
pathway was transcriptionally disrupted45.   
 Modeling the metabolic pathways by placing the significantly dysregulated 
genes within the context of the metabolic circuit, may predict which metabolites will 
be most readily affected and in what direction.  For example, comparing the Pentose 
Glucuronate Interconversion pathway models in LUAD (Fig 3C) and LIHC (Sup Fig 
2), reveal two different metabolic pictures.  A large number of the genes within the 
pathway, that are upregulated in LUAD, but downregulated in LIHC, contribute to 
the generation of UDP-D-Glucuronate from β-D-Glucuronoside and D-Glucuronate-1 
phosphate. Therefore, the expression levels of these enzymes predicts for relatively 
high levels of UDP-D-Glucuronate in LUAD, but low levels in LIHC.  This finding is 
highly consistent with previous metabolomics studies in LUAD, which have asserted 
that there is an increased level of UDP-D-Glucuronate, in particular, in cancer 
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tissues, as compared to matched normal44, as well as the literature regarding a 
global down regulation of metabolites within the Pentose Glucuronate 
Interconversion Pathway in LIHC46. 
 

Pathways uniquely dysregulated within a single cancer subtype 

 This metabolic pipeline can also elucidate pathways that are uniquely 
dysregulated in a specific cancer type.  An example of this is the unique disruption of 
the Polyamine Biosynthetic Pathway in PRAD (Fig 2E, Fig 4A).  Polyamines are 
small, positively charged molecules with a multitude of functions, impacting almost 
every aspect of cell survival47.  While this pathway is important in every cancer, the 
unique dysregulation of this pathway in PRAD is of particular interest because flux 
through the biosynthetic pathway is already extremely high in normal prostate due 
to the high rate of secretion of acetylated polyamines to the prostatic lumen48.  Not 
only does PRAD have the highest number of significantly upregulated (as compared 
to normal prostate) genes among the 13 assigned to this pathway (Fig 4B), they also 
show the greatest magnitude of change, which is reflected in the large Euclidean 
distance observed in the unsupervised hierarchical clustering (Fig 4A). 
 Modeling of the polyamine metabolic circuit clearly demonstrates an 
increase in polyamine biosynthesis and catabolism in PRAD (Fig 4C).  This is 
reflected in increased expression of both rate limiting enzymes in the biosynthetic 
pathway (ODC1 and AMD1), as well as significant increases in the catabolic enzymes 
SAT1, PAOX and SMOX.  The pathway is further enhanced by upregulation of MAT2A 
and down regulation of the inhibitory subunit MAT2B, predicting for enhanced SAM 
production feeding into AMD1 as well as greatly increased expression of the 
polyamine synthases, SRM and SMS.  These findings are consistent with the well-
documented increased level of polyamines, acetylated polyamines, and other 
metabolites within the Polyamine Biosynthetic pathway in prostate cancer, all of 
which can be predicted by the modeling approach49-50.  Conversely, in KICH, the two 
rate limiting enzymes ODC1 and AMD1 are significantly down regulated, suggesting 
reduced levels of polyamines (Fig 4A, Sup Fig 3).  Additionally, there is an increase 
in SAT1, which leads to acetylation of the polyamines, but a decrease in PAOX, which 
leads to decreased back conversion of acetylated polyamines to un-acetylated 
polyamines.  All of these transcriptional changes, taken together, lead to the 
depletion of polyamines in the cancer state, as compared to the normal tissues. This 
broad upregulation of the Polyamine Biosynthetic Pathway in PRAD would suggest a 
unique dependence on its function, as compared to other disease sites, providing 
rationale for pharmacological intervention.  

The drug N1, N11-bis(ethyl)norspermine (BENSpm), an SAT1 stabilizer that 
increases polyamine acetylation, was utilized to understand whether prostate 
cancer cell lines could more selectively be targeted by further destabilization of 
polyamine biosynthesis. When comparing the sensitivity of seven cell lines, two 
prostate cancer (DU145 and PC-3), two kidney cancer (ACHN and 786-O), and three 
breast cancer cell lines (MDA-MB-231, HS578T and MCF7) (Fig 5A, 5B), the prostate 
cancer lines were the most sensitive to BENSpm treatment compared to any other 
cell line.  
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 Master Metabolic Transcriptional Regulators (MMTRs) may explain these 
differences in polyamine biosynthesis metabolism dysregulation between cancer 
types.  When analyzing the overall pathway scores, the two most highly 
dysregulated cancer types are PRAD and KICH (Fig 4A).  As previously 
demonstrated, when directionality is taken into account, these pathways are largely 
dysregulated in opposite directions (Fig 4A).  Utilizing iRegulon51, which pairs 
motifs and ChIP-Seq tracks to determine transcription factors that control the 
expression of gene networks, a list of master transcriptional regulators of the 
polyamine biosynthetic pathway was constructed (Sup Fig 4).  We then correlated 
expression of MMTRs with the expression of each of the individual genes in the 
Polyamine Biosynthetic Pathway in both PRAD and KICH cohorts (Fig 5C).  
Distinct patterns of correlation emerged in PRAD, where a majority of the MMTRs 
were significantly correlated, either positively or negatively, with Polyamine 
Biosynthetic genes. Comparisons of the cumulative distribution frequencies of 
correlations between MMTRs and all genes in the genome (black) with correlations 
of these MMTRs with polyamine biosynthetic genes only (red) show that polyamine 
gene correlations are statistically significant when considering global expression 
patterns, demonstrated by a shift in the distributions (Fig 5D).  Conversely, KICH 
lacks a strong pattern of correlation between MMTRs and Polyamine Biosynthetic 
genes (Fig 5E).  This finding was confirmed by cumulative distribution analysis, 
where there was no significant relationship between MMTR and Polyamine 
Biosynthetic gene expression observed when considering global transcriptional 
patterns (Fig 5F).  The top four MMTRs(BCL3, GMEB2, GTF2B, and ZNF513), with 
the strongest collective positive correlation, are important for regulation of 
polyamine biosynthetic genes, as evidenced by an iRegulon network, which 
demonstrates these 4 MMTRs are collectively predicted to regulate 10/13 of the 
genes from the pathway (Sup Fig 4).  Thus, the metabolic analysis pipeline can 
accurately provide possible novel targets of pharmacologic intervention. Further, 
this information combined with master regulator analysis, can be a useful tool 
providing new insights into drivers of metabolic reprogramming across and within 
cancer sites.   
 
BRCA Subtype Metabolic Reprogramming 

BRCA is one of the most metabolically dysregulated cancer types, in terms of 
the sum of pathway scores (Fig 1C).  Analysis of all BRCA cases reveals a large level 
of dysregulation of Carbohydrate, Lipid, and Amino Acid Metabolism, in roughly 
equal proportions (Fig 6A).   Additionally, the top dysregulated pathways seem to be 
a mix of these larger categories, encompassing pathways from each major category 
(Fig 6B).  Importantly, BRCA consists of 4 major molecular subtypes with distinct 
treatments and outcomes for patients: Luminal A, Luminal B, HER2 and Basal52.  
This, therefore, lead us to question whether these 4 major subtypes had distinct 
transcriptional metabolic profiles.   

Using the PAM5053, 54, a set of 50 genes whose differential expression is 
utilized to classify BRCA, all patients were assigned to one of the four subtypes.  
Patients were first randomly clustered based on the expression of all metabolic 
genes (Fig 6C).  Basal-like tumors (black), clustered out very distinctly from the 
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Luminal A (yellow), Luminal B (blue), and HER2 expressing (red) counterparts, 
indicating a strong shift of metabolic phenotype in these patients.  While not as 
distinct, smaller clusters did form for each of the other molecular subtypes.  Each 
molecular subtype was then compared to the normal tissues, and DEG lists for each 
independent cluster was utilized to determine which of the 114 pathways were 
significantly dysregulated.  This analysis revealed a total of 89 dysregulated 
pathways, some of which were missed entirely by an analysis of the BRCA pooled 
data.  Pathways like Tyrosine Metabolism and Retinol Metabolism, as well as 
Glycolysis and Gluconeogenesis are dysregulated across all subtypes, but to a 
different degree (Fig 6D), as indicated by the different scores for each individual 
pathway among the four molecular subtypes. While many pathways were 
dysregulated across all subtypes, there were distinct pathways present in each 
subtype of the disease.  For example, in Basal-like tumors, the most aggressive form 
of BRCA, the Terpenoid Backbone Biosynthetic Pathway, Homocysteine 
Biosynthesis and the Citric Acid Cycle are uniquely dysregulated, amongst others 
(Fig 6E).  Meanwhile, in Luminal A tumors, the subtype with the most favorable 
prognosis, we found that alpha-Linoleic Acid Metabolism, Taurine and Hypotaurine 
Metabolism and Cyclooxygenase Arachidonic Acid Metabolism were uniquely 
dysregulated (Fig 6F).  Further, this dysregulation of unique metabolic pathways in 
molecular breast subtypes would suggest a potential differential sensitivity to 
therapeutic intervention.  

The drug Metformin, a first generation biguanide that decreases glucose 
metabolism through the Citric Acid Cycle55, was utilized to understand whether 
basal breast cancer cell lines could more selectively be targeted. When comparing 
the sensitivity of eight cell lines, two prostate cancer (DU145 and PC-3), two kidney 
cancer (ACHN and 786-O), two luminal breast cancer cell lines (MCF7 and T47D) 
and two basal breast cancer cell lines (MDA-MB-231 and HS578T) (Fig 6G), we did 
in fact see increased sensitivity of basal breast cancer cell lines to Metformin, as 
compared to any other cell line. Additionally, because Homocysteine Biosynthesis is 
specifically dysregulated in the basal like subtype, we utilized the drug 
Sulfasalazine, an Xc cysteine-glutamate transport inhibitor that decreases 
intracellular homocysteine pools56, to understand whether basal breast cancer cell 
lines could more selectively be targeted by destabilization of the Homocysteine 
Cycle. When comparing the sensitivity of eight cell lines, two prostate cancer 
(DU145 and PC-3), two kidney cancer (ACHN and 786-O), two luminal breast cancer 
cell lines (MCF7 and T47D) and two basal breast cancer cell lines (MDA-MB-231 and 
HS578T) (Fig 6H), we did in fact see increased sensitivity of basal breast cancer cell 
lines to Sulfasalazine, as compared to the luminal breast cancer cell lines. 
Interestingly, prostate cancer cell lines were even more sensitive, which is a finding 
consistent with the fact that our analysis identifies PRAD as one of two disease sites 
with significantly dysregulated Homocysteine Biosynthesis (Fig 2E). It is also 
notable that this pathway was not detected as dysregulated in the BRCA cohort, but 
it is dysregulated specifically in the basal like subtype.  

 
Using the genes from both the unique and overlapping pathways, MMTRs of 

both the uniquely dysregulated pathways in each subtype (Fig 7A (Basal), 7B 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/295733doi: bioRxiv preprint 

https://doi.org/10.1101/295733
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Luminal A)), as well as the MMTRs of those pathways dysregulated across all of the 
subtypes, were identified.  The top 5 MMTRs in Basal-Like unique pathways 
(SREBF1, ESRRG, ESRRA, RFX2, and SREBF2) differ from those found to be 
associated with the Luminal A unique pathways (IRF8, OVOL1, THAP1, GATA1, and 
TFAP2C).  Additionally, those MMTRs associated with pathways dysregulated across 
all subtypes were different from those unique to the Basal-like and Luminal A 
(HNF4A, ESRRA, HNF4G, RARA, and EP300), with the exception of one (ESRRA), 
which has been linked to all types of BRCA57.  Further, the expression levels of these 
MMTRs cluster out patients based on the subtype of BRCA with which they are 
associated (Fig 7C), where Basal patients are indicated in black and Luminal A 
patients are indicated in yellow. The distinct metabolic profiles and ability of 
MMTRs to accurately distinguish normal Breast Cells from Luminal A and Basal 
were further confirmed using RNA-sequencing data from 27 different cell lines58. 
First, with the exception of one luminal cell line (JM225CWM), the expression of 
metabolic genes excellently segregated the luminal, basal and normal breast cell 
lines (Fig 7D). Secondly, when we clustered the cell lines based on expression levels 
of the MMTRs of the metabolic pathways uniquely dysregulated in patient samples 
from Luminal-A subtypes and Basal-like subtypes, they also segregated the cell lines 
by subtype.  These MMTRs offer new explanations for the differences in metabolic 
reprogramming between different subtypes of BRCA.  In total, these findings suggest 
that the metabolic pipeline has utility in revealing novel understanding with regards 
to metabolic reprogramming not only across cancers of different tissue origin, but 
also within heterogeneous cancer populations. 
 

 

 

Discussion 

The present study applies an analytical pipeline utilizing transcriptomic 
information to characterize changes in metabolic pathways associated with cancer.  
The approach successfully profiled significant metabolic reprogramming in 26 
cancer types, revealing both common and unique patterns of disruption.  
Additionally, this pipeline successfully profiles the metabolic vulnerabilities that 
distinguish molecular subtypes within the same disease site. These metabolic 
vulnerabilities represent points of therapeutic leverage in each of these disease sites 
or subtypes of disease. Furthermore, cancer specific expression patterns are linked 
to the identification of metabolic master transcriptional regulators (MMTRs), which 
provide putative mechanistic insight into observed metabolic profiles.  MMTRs 
associated with target expression, genetic drivers and clinically relevant molecular 
signatures in cancer cohorts, suggesting them as key regulators of metabolic 
reprogramming in cancer. Additionally, MMTRs can be used as a predictive 
biomarker of metabolism-targeting drug response, as well as a means of segregating 
molecular subtypes within a disease site (Fig 7).  

While metabolite levels are the final output, and therefore the most sensitive 
gauge of metabolic activity, there is a lack of pan-metabolic data across disease sites.  
Due to the dynamic nature of connected metabolomics and transcriptomic changes, 
generating models of metabolism based on transcriptomics is complex.  To better 
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understand metabolic flux across types of cancer and even among sub-types within 
a particular cancer type, more unbiased metabolomics studies need to be conducted 
to more fully appreciate the role of metabolic reprogramming in cancer initiation, 
progression, and prognosis59. 

A transcriptomic metabolic view of TCGA12 data, where metabolic pathways 
scores are generated, yields insights that cannot be acquired through differentially 
expressed genes analysis.  This pipeline expands on DEG analysis alone by not only 
looking at the magnitude of the changes that occur in a particular gene, but also, 
how meaningful that change is to the disease site.  Combining the log fold-change 
and the adjusted p-value into a single score allows us to scale the importance of 
each gene expression change within metabolic pathways. The bootstrapping 
approach accounts for background changes in a way that identifies patterns that 
would be expected simply by chance, allowing for the elucidation of relevant 
transcriptional metabolic changes. This is an important aspect of our pipeline, as it 
helps to account for the varying degree of tumor associated transcriptional drift 
across cancer types, as well as for tissue procurement error and/or contaminating 
cell types that may be associated with cohort samples at tissue specific rates. 
Furthermore, mapping these genes, with their direction and magnitude of change 
(up or downregulation) onto the pathway allows for determination of patterns that 
indicate a convergence of effect on key metabolites.   

A high degree of correlation between population pools from different 
transcriptomics platforms (RNA-sequencing vs. microarrays) further demonstrates 
the robustness of this approach (Supp Fig 1). These datasets implicate many of the 
same pathways as being highly dysregulated in PRAD39, LUAD40 and BRCA41 as 
compared to the normal matched tissues, and to largely the same relative 
magnitudes (Supp Fig 1).  This confirmation in 3 separate populations of patients on 
a different transcriptomic platform reveals we are highlighting biologically relevant 
metabolic pathway dysregulation, and our scoring approach is highly robust. 

An important test of the validity of the metabolic pathway scores generated 
from this approach is to model metabolic circuits, predict expected alterations in 
metabolite pools, and compare that with published studies that examine those 
metabolites. For example, in Figure 3, we explore the Pentose Glucuronate 
Intercoversion pathway, the dysregulation of which is well-known and almost 
exclusively studied in LIHC42,43.  However, we suggest there are cancers that 
dysregulate this pathway to an even greater degree, including LUAD, in which we 
find significant upregulation of many genes within the pathway.  Unbiased 
metabolomics studies comparing LUAD with normal lung tissue identified 
significant elevation of UDP-D-Glucuronate44, which is the predicted result of the 
changes in expression level of enzymes in this pathway.  As shown in Figure 3C the 
significant gene expression changes in LUAD patient samples would be expected to 
divert metabolites towards the production of UDP-D-Glucuronate.  This metabolite 
is responsible for the downstream production of UDP-Glucose and a-D-glucose-1P, 
which feed into several other pathways, fueling polysaccharide biosynthesis and 
glucosiduronide production60.  The connection to these pathways are relevant to the 
disease because they support a high rate of nucleic acid synthesis, and provide 
NADPH for both the synthesis of fatty acids and cell survival under stress 
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conditions.61,62 Interestingly, LUSC upregulates this pathway more so than LUAD in 
regards to magnitude of transcriptional change.  However, little metabolomic data 
exists in the context of this disease site.  Nevertheless, our metabolic pathways 
scores implicate this pathway as being at least equally important in lung squamous 
cell carcinoma and adenocarcinoma. 

Perhaps not surprisingly, we found some metabolic pathways that are 
dysregulated in most or all types of cancer, such as the glycolytic and 
gluconeogenesis pathways, as well as pathways that have a highly restricted pattern 
of dysregulation like polyamine metabolism in prostate cancer (Fig 4A).  The global 
upregulation of genes within the pathway (Fig 4C) involved both the generation of 
acetylated polyamines and flux through biosynthesis utilizing ornithine and s-
adenosylmethionine to eventually produce spermine and spermidine.  It is well-
established that this pathway is highly active in normal prostate, due to high rates of 
secretion of acetylated polyamines into prostatic fluid, and further enhanced in 
prostate cancer.47,48.  The nearly complete upregulation of the biosynthetic and 
catabolic enzymes in PRAD is striking, and the idea of increased metabolic flux is 
supported by metabolomics49.  Additionally, the therapeutic targeting of this 
pathway with BENSpm is highly effective and selective, highlighting the utility of the 
metabolic pipeline to determine metabolic pathways of interest for pharmacologic 
intervention. Differences in metabolic pathway dysregulation and therapeutic 
targeting may be attributed to the identification of MMTRs.  We identified a set of 
MMTRs for the genes in the polyamine metabolic pathway whose expression highly 
and positively correlated with the significant upregulation of those genes.  In 
contrast, the polyamine pathway is down regulated in KICH and exhibited weaker 
and non-significant correlations between expression of MMTRs and the genes 
within the pathway.  Further, association of MMTRs with common cancer type 
specific mutations may indicate differences in metabolic reprogramming in specific 
patient populations based upon co-occurrence or mutual exclusivity.  For example, 
TMPRSS2-ERG fusion in PRAD, which is one of the most frequently occurring 
mutations, is mutually exclusive with GTF2B overexpression, a highly enriched 
MMTR.  Interestingly, there is a significant amount of overlap amongst ERG and 
GTF2B binding sites, and in PRAD ChIP-sequencing data, ERG peaks have been 
identified in three of the polyamine genes, potentially explaining their mutual 
exclusion.  (Supp Fig 4) This therefore highlights the potential for different genetic 
drivers of disease to cooperate with altered expression of MMTRs in order to drive 
specific patterns of metabolic reprogramming.   

Also of interest was the identification of subsets of patients within breast 
cancer that exhibit very different patterns of metabolic reprograming.  
Understanding the metabolic profiles of different molecular subtypes is important in 
disease sites like BRCA, where the different subtypes have distinct treatment 
regimens and outcomes (Fig 6).  Pooled analysis, treating all subtypes as one cohort 
leads to an understanding of BRCA as a whole (Fig 6A, 6B), but fails to capture the 
subtypes that are driving the overall analysis.  For example, the Basal-Like subtype, 
as defined by the PAM5053,54 and also known as Triple Negative Breast Cancer 
(TNBC), clusters very well based on metabolic genes and exhibits more highly 
dysregulated metabolic pathways (Fig 6C).  We effectively targeted this metabolic 
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difference with drugs that target the Citric Acid Cycle (i.e. Metformin) (Fig 6G), and 
drugs that target the Homocysteine Biosynthetic Pathway (i.e. Sulfasalazine)(Fig 
6H). We found that, in both cases, the basal-like cell lines are more sensitive than the 
Luminal A like cell lines, in agreement with the fact that these pathways were 
uniquely dysregulated in the basal-like patient data. This again highlights the ability 
of the metabolic pipeline to emphasize metabolic pathways of interest that 
distinguish molecular subtypes within a single cancer, and provides selective 
therapeutic targets. The identification of MMTRs driving the differences in 
metabolic dysregulation between the luminal A and basal subtypes results in 
distinct clustering of the Basal and Luminal A subtypes when looking at the 
expression of those MMTRs (Fig 7).  This, therefore, offers novel opportunities to 
understand how and why metabolic pathways differ between tissues sites and 
molecular subtypes, and offers new potential targets.   

Overall, we provide a novel approach to utilizing transcriptomic data to 
identify metabolic dysregulation. While it is clear that metabolic regulation occurs 
to a great extent at the post-transcriptional and even post-translational levels, this 
transcriptome based approach provides novel insights. These insights and 
transcriptomic analyses will need to be combined with proteomic and metabolomics 
data to develop a comprehensive picture of metabolic dysregulation in cancer. 
Nevertheless, the high level of correlation observed between studies in separate 
cohorts of patients with the same disease, and the metabolomics support we have in 
some pathways give us confidence that this method is highly informative pan-
cancer.  This analytical pipeline can be applied to any transcriptome wide data to 
infer patterns of metabolic reprogramming, in any disease settings.   
 

Methods 

Pan-Cancer Differentially Expressed Gene Analysis 

The results published here are in whole based upon data generated by The Cancer 
Genome Atlas (TCGA)12 Research Network: http://cancergenome.nih.gov/.  
Firehose63, a web portal site that has been developed by the Broad Institute, aiming 
to deliver automated analyses of the TCGA data to general users, was utilized to 
download the preprocessed, Level 3, RSEM transcriptomic data.  Gene expression 
data were analyzed using Bioconductor 3.1 (http://bioconductor.org)64, running on 
R 3.1.3.  RNA-sequencing RSEM counts were processed to remove genes lacking 
expression in more than 80% of samples.  To identify differentially expressed genes, 
primary tumor samples (samples ending in “.01”) were compared to their matched 
normal tissues (samples ending in “.11”), in their respective tissues.  Scale 
normalization and moderated student t tests were performed using empirical Bayes 
statistics in the “Limma”65 package.  The resulting P values were adjusted for 
multiple testing using the false discovery rate (FDR) Benjamini and Hochberg 
corrections method.   
 
Code Availability 

Code is available upon request to the corresponding author.  
 
Pathway Score  
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Gene and pathway scores were calculated in R 3.1.3.  Differentially expressed gene 
lists for each cancer site were used to assign individual gene scores.  Gene scores 
were designated by taking the absolute value of the logFC multiplied by the –
log(adjusted P value): 
   Gene Score = |logFC*-log(adj.P.val)| 
Metabolic pathways were then downloaded from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG)38 were downloaded.  Genes from each of the 114 pathways 
are reported in the Supplement (Supplementary Table 2).  Pathway scores were 
then calculated by summing the gene scores for all genes within each of the 
pathways and dividing by the square root of the sample size for that particular 
tissue, to account for sample size effects in different cancer sites: 
   Pathway Score = Σ(Gene Scores)/√n 
All pathway scores were then exported into a table, to determine statistical 
significance of each score (Supplementary Table 3).  Pathways were clustered into 
10 major categories based upon KEGG classifications. 
 
Bootstrapping for Pathway Score Statistical Significance 

Bootstrapping66 is a technique based on random sampling with replacement.  Using 
R 3.1.3, pathway scores were randomly generated 100,000 times per pathway, 
based on the number of genes in the pathway, and plotted into a distribution.  The 
scores for each of those pathways were then plotted against the distribution and a P 
value was calculated based on where that score lies within the distribution of scores 
(Supplementary Figure 5).  Using all p-values, the pathway score table 
(Supplementary Table 4), was adjusted to only include those scores that were 
considered to be statistically significant.  All other values were replaced with “0” 
(Supplementary Table 5).   
 
Pathway Scores Heatmap 

Bootstrapped pathway scores were utilized to create pathway score heatmaps in R 
3.1.3, constructed using the “Gplots” and “Heatmap.2” packages in R.  Data was 
scaled and Euclidian distances and hierarchical clustering were applied using the 
“h.clust” function.  All 0 values (non-significant pathway scores) are represented as 
gray.  For specific pathway heatmaps, at the gene level, fold change values from the  
initial Limma output for each cancer type, was utilized.  Data was scaled using a min 
to max calculation: 

(m - min(m))/(max(m)-min(m)) 
Once again Euclidian distances and hierarchical clustering was applied.  Heatmaps 
of the significantly differentially expressed genes are represented by blue (negative) 
or red (positive), and non-significantly differentially expressed genes are 
represented as gray.   
 
Pathway Maps 

Pathway maps were generated using Cytoscape67 software, and specifically the 
VizMapper functions.  Pathway maps were based on existing pathway maps in 
KEGG38.  Limma output for differentially expressed gene analysis was utilized to 
direct shading of genes within the pathway: red (positive fold change, statistically 
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significant), blue (negative fold change, statistically significant), or gray (non-
statistically significant), for individual cancer sites.   
 

Dose Response Cell Viability 

PC3 and DU145 cells were obtained from ATCC [Manassas CA].  MDA-MB-231 cells 
were provided by Dr. John Ebos, Ph.D.  [Department of Cancer Genetics, Genomics 
and Development, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, 
NY].  786-O and ACHN cells were provided by Dr. Eric Kauffman, M.D.  [Department 
of Medicine, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY].  
HS578T cells were provided by Dr. Mikhail Nikiforov, Ph.D.  [Department of Cell 
Stress Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY].  
MCF7 and T47D cells were provided by Dr. Katerina Gurova, M.D., Ph.D.  
[Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center 
(RPCCC), Buffalo, NY].  All prostate cancer cells (DU145 and PC3) were maintained 
in RPMI 1640 medium supplemented with 10% FBS, and 1% antibiotics.  Other cells 
were maintained in DMEM with 10% FBS and 1% antibiotics.  Metformin and 
Sulfasalazine were obtained from Sigma and N1, N11-bis(ethyl)norspermine 
(BENSpm) was purchased from Synthesis Med Chem [Shanghai, China].  Cells were 
seeded in 96-well plates at 3000 cells/well on day 0.  They then underwent either 
48 hours (BENSpm and Sulfasalazine) or 72 hours (Metformin) of treatment.  
Resazurin (Sigma) was then added to each well and allowed to incubate for 2 hours 
at 37oC.  The plates were then read on a spectrophotometer by excitation at 570 nM 
and reading of the fluorescence at 600 nM.  Dose-response curves were then plotted 
using Prism GraphPad 7. 
 

Master Metabolic Transcriptional Regulator Analysis 

In order to characterize regulatory networks, we used iRegulon51, a Java add-on in 
Cytoscape, to identify MMTRs.  In this approach, we use a large collection of 
transcription factor (TF) motifs (9713 motifs for 1191 TFs) and a large collection of 
ChIP-seq tracks (1120 tracks for 246 TFs).  This method relies on a ranking-and-
recovery system where all genes of the human genome (hg19) are scored by a motif 
discovery step integrating the clustering of binding sites within cis-regulatory 
modules (CRMs), the potential conservation of CRMs across 10 vertebrate genomes, 
and the potential distal location of CRMs upstream or downstream of the 
transcription start site (TSS+/−10 kb).  The recovery step calculates the TF 
enrichment for each set of genes, input for each of the individual analyses, leading to 
the prediction of the TFs and their putative direct target genes which exist in the 
input lists.  This method optimizes the association of TFs to motifs using both direct 
annotations and predictions of TF orthologs and motif similarity. 

MMTR Correlation Analysis 

Correlation values between MMTRs and all expressed genes were derived in R 3.1.3, 
constructed using the “cor” function across all patients in both TCGA-PRAD and 
KICH cohorts. The empirical cumulative distribution function for each complete 
MMTR correlation profile (background) was determined via the “ecdf” function, and 
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similarly for the MMTR correlation profiles against Polyamine Biosynthetic genes 
only. Significant shift in distributions between MMTR/background and 
MMTR/Polyamine Biosynthetic gene correlations was assessed by Kolmogorov-
Smirnov test.  
 
Common Mutation Analysis 

Using cBioPortal (http://www.cbioportal.org), patients in the PRAD cohort were 
queried for either co-occurent relationships or mutually exclusive relationships 
between the list of most commonly occurring mutations in PRAD and the 4 MMTRs 
in question.  CBioPortal is a publically available database, which based on all of the 
genomic data available for PRAD constructs a list of the most commonly occurring 
mutations.  Additionally, it calculates the significance of co-occurrence or mutual 
exclusivity, based upon the Mutual Exclusivity Modules (MEMo)65.  MEMo is a 
method that searches and identifies modules based upon: (1) genes recurrently 
altered across a set of tumor samples; (2) genes known to or likely to participate in 
the same biological process; and (3) alteration events within the modules are 
mutually exclusive.  Using this information, it then integrates multiple data types 
and maps genomic alterations to biological pathways and uses a statistical model 
that predicts the number of alterations both per gene and per sample.   
 
GTF2B and ERG Binding Site Overlap 

ChIP-Sequencing BED files were downloaded from the Cistrome database66, 
corresponding with 3 different studies.  To confirm overlap between GTF2B and 
ERG: K562 Erythroblast ; Bone Marrow Untreated from the Martens JH, et al.  
(2012)67 study and GTF2B K562 Erythroblast ; Bone Marrow Untreated from the 
Pope BD, et al.  (2014)68 study were downloaded.  GenomicRange was then used to 
determine the overlap between these peaks in the same line.  Then, to determine 
ERG peaks in Polyamine Biosynthetic genes in prostate cancer cell lines specifically, 
the VCaP; Epithelium; Prostate ERG non-treated data from Sharma NL, et al.  
(2014)69 was downloaded and imported into the Interactive Genome Viewer (IGV)70 

to visualize peaks in these genes.  GTF2B ChIP-sequencing data was not available for 
GTF2B in prostate cancer.   
 

PAM50 BRCA Analysis 

The PAM50 is a method that has been previously described in the literature53,54.  
The PAM50 classification of tumors within the TCGA cohort was obtained54.  This 
classification was then used to stratify patients into 4 major groups: Basal-Like, 
HER2-expressing, Luminal A, and Luminal B.  Any patients with no classification 
within this file were removed from the analyses and all data was preprocessed as 
outlined in the Pan-Cancer Differentially Expressed Gene Analysis section.  Post-
normalization, all tumors still included underwent unsupervised clustering based 
on the expression of all metabolic genes within the cohort.  Additionally, 
comparisons of patients within each cohort were then made with normal tissues to 
obtain Pathway Scores, as previously described, for each of the patient cohorts.  
MMTR analysis was then performed to determine MMTRs of uniquely dysregulated 
pathways within the Basal-Like and Luminal A subtypes.  Patients from each of 
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those subtypes then underwent unsupervised hierarchical clustering based on the 
gene expression of those MMTRs of uniquely dysregulated pathways. 
 
BRCA Cell Line Analysis 

RNA-sequencing data was obtained for 27 different normal breast, luminal breast 
cancer and basal breast cancer cell lines58.   All data was preprocessed as outlined in 
the Pan-Cancer Differentially Expressed Gene Analysis section.  Post-normalization, 
all tumors still included underwent unsupervised clustering based on the 
expression of all metabolic genes within the cohort.  Additionally, comparisons of 
the cell lines from each of those subtypes then underwent unsupervised hierarchical 
clustering based on the gene expression of those MMTRs of uniquely dysregulated 
pathways, from the patient data. 
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Figure 1. Transcriptional Metabolic Pathway Analysis Methods Pipeline (A) 26 cohorts of tumor 

samples, including two pooled sets (COADREAD and LUNG) from The Cancer Genome Atlas (TCGA), with 

matched Normal Samples, were utilized to determine the transcriptional metabolic profiles specific to 

each type of cancer, as compared to their normal. (B) Pathway scores ((ΣlogFC*-log(adj.p.val))/√n), for 

114 Metabolic Pathways from KEGG, were then calculated based on the results of Differential Expressed 

Gene (DEG) analysis using Limma to compare tumors to matched normal. Pathways are then 

bootstrapped for significance, to determine which pathways are highly dysregulated as compared to 

chance. Those pathways are then plotted in a heatmap, with the type of cancer as the X-axis and the 

114 pathways as the y-axis. Pathways that are non-significant are gray and a gradient from white to red 

for those pathways significantly dysregulated and the intensity of red indicating the magnitude of 

dysregulation. (C) Significant pathway scores are then summed to determine with of the types of 

cancers are most metabolically dysregulated at the transcriptional level. (D) The pathways were then 

sorted into each of the 10 major metabolic pathway subtypes defined by KEGG and later underwent (E) 

Master Regulator Analysis via iRegulon. 

Figure 2. Ascertaining Pathways of interest by looking at major types of metabolic pathways (A) 114 

Metabolic KEGG Pathways broke down into 10 major metabolic types of pathways. This allowed for the 

identification of (B) pathways that were statistically significantly altered in a variety of cancers and (C) 

the number of uniquely dysregulated pathways in specific tumor types.  Each of these major metabolic 

categories was then broken down into individual heatmaps of bootstrapped pathway scores where gray 

are non-significant altered pathways and the gradient of red represents the magnitude of dysregulation 

in each of the pathways across the cancer cohorts. (D) In Carbohydrate Metabolism, a pathway largely 

altered across all tumor types, like Pentose and Glucuronate Interconversions, is highlighted. (E) Within 

Amino Acid Metabolism the Polyamine Biosynthetic Pathway is highlighted as an example of cancer type 

specific dysregulation. (F) Subcutaneous Melanoma (SKCM) was identified as the cancer type with the 

highest degree of dysregulation, based on Euclidian distance, within a subset of the KEGG pathways in 

the Lipid Metabolism category.  

Figure 3. The Pentose Glucuronate Interconversion Pathway is dysregulated across all types of cancer 

but to a different extent and in different directions (A) Heatmap of fold changes, showing the direction 

of transcriptional change in tumor over normal for each individual gene within the Pentose Glucuronate 

Interconversion Pathway, across all cancer types. (B) Radar plot demonstrating the number of 

statistically significant up-regulated (red) and down-regulated (blue) genes within a pathway, for each of 

the indicated cancers. (C) Model of the Pentose Glucuronate Interconversion Pathway in LUAD, which 

has the largest number of statistically significant up-regulated genes. Pathway displays genes (triangles) 

shaded by direction (red and blue, up and down, respectively) and significance and sized by fold change 

differences. Pathways also include metabolite outputs (green rectangles) and connected pathways 

(yellow ellipse).  

Figure 4. The Polyamine Biosynthetic Pathway is highly specifically dysregulated in Prostate Cancer (A) 

Heatmap of fold changes, showing the direction of transcriptional change in tumor over normal for each 

individual gene within the Polyamine Biosynthetic Pathway, across all cancer types. (B) Radar plot 

demonstrating the number of statistically significant up-regulated (red) and down-regulated (blue) 
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genes within a pathway, for each of the indicated cancers. (C) Model of the Polyamine Biosynthetic 

Pathway in PRAD, which has the largest number of statistically significant up-regulated genes. Pathway 

displays genes (triangles) shaded by direction (red and blue, up and down, respectively) and significance 

and sized by fold change differences. Pathways also include metabolite outputs (green rectangles). 

Figure 5. Targeting Polyamine Biosynthesis is highly effective in Prostate Cancer and Master Metabolic 

Transcription Regulators (MMTRs) may explain why (A) Dose response curves show prostate cancer cell 

lines (PC3 and DU145) are most sensitive to SAT1 activation by BENSpm, as compared to kidney cancer 

cell lines (ACHN and 786-O) and breast cancer cell lines (MCF7, MDA-MB-231, and HS578T). (B) This is 

confirmed by calculation of IC50s. (C) Prostate Cancer (PRAD) heatmap of correlations between Master 

Metabolic Transcription Regulators (x-axis) and the Polyamine Biosynthetic Genes (y-axis) with the 

intensity representing strength of correlation (blue is negative, red is positive)and (D) Cumulative 

Distribution frequencies showing MMTR correlation with every gene in the genome, with red dots 

indicating the correlations with Polyamine Biosynthetic genes, show a distinct pattern and high level of 

statistically significant correlation values between MMTRs and Polyamine Biosynthetic genes. P-values 

for all MMTRs and Polyamine genes are reported in the table, with significant associations highlighted in 

red (E) Kidney Chromophobe (KICH) heatmap of correlations between Master Metabolic Transcription 

Regulators (x-axis) and the Polyamine Biosynthetic Genes (y-axis) with the intensity representing 

strength of correlation (blue is negative, red is positive)and (F) Cumulative Distribution frequencies 

showing MMTR correlation with every gene in the genome, with red dots indicating the correlations 

with Polyamine Biosynthetic genes, show an random pattern and non-statistically significant correlation 

values between MMTRs and Polyamine Biosynthetic genes. P-values for all MMTRs and Polyamine genes 

are reported in the table, with significant associations highlighted in red 

Figure 6. Metabolic dysregulation distinguishes BRCA molecular subtypes and defines therapeutic 

sensitivity (A) Breakdown of 62 significantly dysregulated metabolic pathways in the BRCA pooled data. 

There is a roughly equal dysregulation of amino acid, carbohydrate and lipid associated pathways. (B) 

The top pathways dysregulated in BRCA come from a wide variety of major categories, like nucleotides 

and lipids. However, the two most dysregulated pathways in BRCA are a vitamin-associated pathway, 

Retinol Metabolism, and an amino acid pathway, Tyrosine Metabolism. (C) Unsupervised clustering of 

BRCA patients, who were classified based upon the PAM50, on all metabolic genes, reveals a tight 

cluster of the Basal-like subtype (black), which are highly metabolically dysregulated as explained by the 

magnitude of dysregulation, as displayed in the heatmap. While Luminal A (yellow), Luminal B (blue) and 

HER2-expressing (red), did not cluster as tightly, there are still recognizable groups of these patients.  (D) 

The Top 5 pathways that overlapped between all 4 subtypes of patients are shown here. While these 

pathways are highly dysregulated in all 4 subtypes, they vary to different extents and are almost always 

highest in the Basal-like cells. (E) After metabolic pathway scoring, pathways unique to the Basal-like, 

most aggressive, and (F) Luminal A most indolent, patients were isolated and plotted.  The top 5 unique 

pathways for each of the subtypes are shown.  (G) Targeting the Citric Acid Cycle with Metformin 

revealed increased sensitivity in Basal-like cells, as compared to Luminal A cells, as emphasized by the 

IC50 values.  (H) Targeting the Homocysteine Biosynthetic Pathway with Sulfasalazine revealed 
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increased sensitivity in Basal-like cells, as compared to Luminal A cells, as emphasized by the IC50 

values. 

Figure 7. Master Metabolic Transcriptional Regulators (MMTRs) distinguish BRCA molecular subtypes, 

and BRCA cell lines  (A) MMTR analysis of the pathways unique to Basal-like patients revealed a network 

of 14 MMTRs, the 5 most highly enriched are shown here. (B) MMTR analysis of the pathways unique to 

Luminal A patients revealed a network of 15 MMTRs, the 5 most highly enriched are shown here. (C) 

Unsupervised clustering of Luminal A(yellow) and Basal-Like(black) patients on the expression levels of 

all MMTRs of their unique pathways create separate clusters of patients. (D) Unsupervised clustering of 

27 normal breast (green), basal breast cancer (black) and luminal breast cancer (yellow) patients on all 

metabolic genes reveals a tight cluster of each of the distinct cell line types. (E) Unsupervised clustering 

of normal (green), luminal (yellow) and basal-like(black) cell lines on the expression levels of all MMTRs 

of their unique pathways create separate clusters. 
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