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Abstract

Understanding the levels of metabolic dysregulation in different disease settings is
vital for the safe and effective incorporation of metabolism-targeted therapeutics in
the clinic. Using transcriptomic data from 10,704 tumor and normal samples from
The Cancer Genome Atlas, across 26 disease sites, we developed a novel
bioinformatics pipeline that distinguishes tumor from normal tissues, based on
differential gene expression for 114 metabolic pathways. This pathway
dysregulation was confirmed in separate patient populations, further demonstrating
the robustness of this approach. A bootstrapping simulation was then applied to
assess whether these alterations were biologically meaningful, rather than expected
by chance. We provide distinct examples of the types of analysis that can be
accomplished with this tool to understand cancer specific metabolic dysregulation,
highlighting novel pathways of interest in both common and rare disease sites.
Utilizing a pathway mapping approach to understand patterns of metabolic flux,
differential drug sensitivity, can accurately be predicted. Further, the identification
of Master Metabolic Transcriptional Regulators, whose expression was highly
correlated with pathway gene expression, explains why metabolic differences exist
in different disease sites. We demonstrate these also have the ability to segregate
patient populations and predict responders to different metabolism-targeted
therapeutics.

Introduction

Despite waning interest in how metabolism influences cancer, recent efforts
have brought a renewed awareness of cancer as a metabolic disorder-4. While the
field was first introduced to cancer as a glycolytic disease, often described as the
Warburg Effect5, modern advancements and technologies have pointed to other
metabolic dependencies, such as fatty acid metabolism in Prostate Cancer®. These
recent investigations have led to the inclusion of metabolic reprogramming as a new
hallmark of malignant transformation’. However, the extent to which all metabolic
genes and pathways are expressed by cancers of different origins, and how they
differ from one another, is largely underexplored. Even more pressingly, how these
metabolic pathways and genes differ from the non-malignant, normal human tissues
has yet to be determined. Few papers exist that attempt to explain differences in
cancer and normal that can be leveraged to understand metabolic reprogramming,
based on genomic perturbation®-11. While some innate differences between tumor
tissues and normal are addressed, the focus is typically on common mechanisms
and metabolic gene dysregulation that exist pan-cancer, rather than those changes
that exist in an individual tumor type at the transcriptomic level, and how these
affect existing chemotherapeutic treatment810.11, Others look at this concept solely
from the metabolomics angle, in a single disease site®. These studies, while
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informative, create a gap in which we question if there are targetable metabolic
pathways unique to a single disease site, or globally dysregulated. Additionally, we
can question whether there is a way to distinguish those patients that will respond
to these metabolic-targeted therapies, based on their distorted metabolism.

Scientific consortiums like The Cancer Genome Atlas (TCGA)'? encourage
comprehensive genomics approaches in large numbers of patients with many
different cancer types, as well as their matched normal tissues. These data allow the
opportunity to address whether metabolic genes differ between normal and
malignant conditions across diverse tissues of origin. While metabolomics, the
systemic study of the small molecules utilized and left behind during essential
cellular processes??, is the most comprehensive way to understand the metabolic
composition of a cell at a given time, the technique is still in its infancy1.
Conversely, abundant and readily available transcriptomic data exist for a large
number of patients in many types of cancer. Such data sets provide the opportunity
to investigate the variety of mechanisms cancers utilize to control metabolic enzyme
expression in order to achieve metabolic reprogramming, including feedback and
crosstalk between metabolite pools and transcription?>-16,

Recently, transcriptomics data in conjunction with current biochemical
understanding have been exploited to construct genome-scale metabolic
workflows!’. For instance, the metabolic output in E.coli was successfully predicted
using transcriptomic data, in which over half of the metabolic outputs from greater
than 450 different reactions within the organism were correctly modeled'8-21. Many
different algorithms exist that attempt to extrapolate metabolic output from
transcriptomic inputs in model organisms, with varying accuracy and sensitivity%2
23, Nevertheless, extrapolating metabolic changes from transcriptomics is not
without its challenges, as stoichiometric relationships and kinetic information must
be assumed in many cases'8. Recently, evidence for a high level of significant
correlation between gene expression and metabolite levels was revealed in a
detailed look at breast cancer RNA-sequencing and unbiased metabolomics?3.

An additional challenge to understanding metabolic reprogramming in
cancer, lies in determining the genetic and epigenetic changes that control the
metabolic phenotypes. To this end, we suggest that elucidating expression and
alteration of Master Metabolic Transcriptional Regulators (MMTRs) may provide
novel understanding of why metabolism differs in varying tissues and provide new
targets for the treatment of tumors. Susumu Ohno first recognized master
transcriptional regulators in the developmental field in the 1970s%4, using the term
to describe transcription factors that regulate sets of genes that determine
developmental fate. Master regulators (MRs) have been implicated in a variety of
disease states25-27 and with several genomic alterations28-2°. More recently, MRs
have become interesting as biomarkers of disease3°-3! and also as pharmacological
targets32, with the intention that targeting the MR would also modulate the
downstream targets.

Master regulators have also been shown to exert regulatory control over
specific metabolic pathways. One example is the sterol regulatory element binding
proteins (SREBPs) that control lipid metabolism. This family of genes is highly
associated with the expression of genes and enzymes involved in cholesterol, fatty
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acid, triacylglycerol and phospholipid synthesis33. Transgenic and knockout mice
have further elucidated the effect of these master regulators on lipid metabolism,
showing that the unique regulation and activation properties of each of the three
SREBP isoforms facilitate homeostatic regulation of lipid metabolism34-3>, However,
a more nuanced understanding of unique metabolic dependencies, or weaknesses,
in specific cancer types, subtypes, or even tissues of origin, may provide novel
therapeutic targets that have better potential for lower toxicity than traditional
chemotherapeutics. A recent example is the recognition that cancers that are
deficient in the methylthioadenosine phosphorylase (MTAP) enzyme are highly
susceptible to inhibition of methionine adenosyl transferase 2A (MAT2A) resulting
in reduced function of protein methyltransferase 5 (PRMT5)3¢. Metabolic therapies
provide an attractive approach in the clinic, as it has not only evaded drug
resistance thus far, but has also been shown to prevent multi-drug resistance in
tumors?’. Determining responders to these metabolic therapies, however, provides
a challenge. There are currently no studies determining the master transcriptional
metabolic regulators (MMTR) of specific metabolic pathways, which may serve as
drivers of metabolic phenotypes. These would also provide new insights into ways
to therapeutically leverage metabolic dependencies and segregate patient
populations in terms of response to metabolic-targeted therapeutics.

The aim of this study was to comprehensively assess which metabolic
pathways have altered transcriptional profiles in 26 different cancer types as
compared to their matched normal tissues. This information was then utilized to
identify those pathways that were uniquely altered in malignancies from specific
tissues of origin or those that were commonly altered across all cancer types, as well
as those metabolic pathways that were most altered in specific molecular subtypes
that exist within a cancer type. Here we demonstrate that we have the ability to not
only segregate different disease sites and different molecular subtypes of the same
disease, but also to predict response to metabolism-targeted therapy. This selective
drug sensitivity is further explained by MMTRs we identified for the individual
pathways. This represents a means of identifying a mechanism by which these
metabolic pathways become distorted in malignancy and to offer novel targets for
intervention.

Results

Pan-cancer screen for transcriptional metabolic dysregulation

To screen for transcriptional metabolic dysregulation, we used RNA-
sequencing data from 26 different types of cancer with matched normal samples
from TCGA12 (Fig 1A, Supplementary Table 1) using a custom analysis pipeline as
depicted in Figure 1. Magnitude of metabolic dysregulation was calculated by first
determining a list of Differentially Expressed Genes (DEGs), which includes log fold
changes and adjusted p-values, comparing tumor tissues with normal matched
samples and assigning scores based on 114 metabolic pathways sourced from The
Kyoto Encyclopedia of Genes and Genomes (KEGG) 38. Adjusted p-value magnitude
is affected by sample size, which varies across data sets. To account for how such
variation would affect the metabolic pathway score, each was divided by the square
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root of n (the sample size) for each disease site. Bootstrapping methods were then
used to determine which pathways were significantly dysregulated (red) or non-
significantly dysregulated (gray) (Fig 1B). The metabolic dysregulation scores (Fig
1C) were then confirmed in separate patient populations for prostate3?, lung
adenocarcinoma?’, and breast carcinoma*! (Supplementary Figure 1). Pathway
scores in validation cohorts were significantly correlated to those generated in
TCGA cohorts from the same disease sites, demonstrating the robustness of the
pipeline. To determine if there were patterns within the classes of metabolic
dysregulation, individual pathway scores were segregated into major classes of
metabolism (Fig 1D). MMTRs were then determined for individual pathways, such
as the Pentose Glucuronate Interconversion Pathway (Fig 1E), as a means of
elucidating the drivers of unique metabolic phenotypes that exist in cancers of
different origins.

The 114 individual metabolic pathways were subsequently condensed into
ten major categories of metabolism based on KEGG classifications (Fig 2A). After
bootstrapping, pathways in each classification were then further broken down by
the number of cancers for which they were dysregulated (Fig 2B). Additionally, we
identified unique pathways, which were altered in just one disease site (Fig 2C). For
example, Prostate cancer (PRAD) had two pathways uniquely dysregulated
(Polyamine Biosynthesis and Nicotinamide Adenine Dinucleotide Biosynthesis).
Further, analysis of pathways within the major metabolic categories revealed
patterns of dysregulation reflective of known common metabolic reprogramming in
cancer. For example, within the carbohydrate metabolism category we found
patterns consistent with the Warburg Effect, such as dysregulation of glycolysis and
gluconeogenesis (Fig 2D), to varying degrees in all cancer types. While these results
support those found in the literature, the method also allowed for novel
observations regarding metabolic disruption across the 26 types of cancer
examined.

One such finding is the common, but not universal, dysregulation of the
Pentose and Glucuronate Interconversion Pathway (Fig 2D), which is significantly
altered in 20 cancer types. Due to its high degree of dysregulation, this pathway has
been studied in some cancer types, including LIHC*%-43, However, little has been
done to study this pathway in SARC, where we find it is most strongly dysregulated.
Meanwhile in only six types of cancer (Uterine Corpus Endometrial Carcinoma
(UCEC), Bladder Urothelial Carcinoma (BLAD), Cervical and Endocervical cancers
(CESC), Skin Cutaneous Melanoma (SKMC(), Kidney Renal Papillary Cell Carcinoma
(KIRP), and Glioblastoma Multiforme (GBM)) the Pentose Glucuronate
Interconversion Pathway was not significantly dysregulated. Conversely, some
pathways were only dysregulated in a single type of cancer. For instance, the
Polyamine Biosynthetic Pathway was only significantly dysregulated in prostate
cancer (PRAD), suggesting unique dependencies of certain cancers (Figure 2E).

In addition, within specific metabolic categories, hierarchical clustering
highlighted disease sites with distinct levels of dysregulation. An example of this is
the disruption of Lipid metabolism in Skin Cutaneous Melanoma (SKCM), whose
level and pattern of dysregulation among pathways within this category caused this
disease site to segregate separately from others (Fig 2F). SKCM is one of the least
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metabolically dysregulated cancer types, in terms of the number of significantly
dysregulated pathways (Fig 1B). As shown in Figure 1C, among the 26 cancer types,
the median number of significantly dysregulated pathways is 58 out of the 114,
while for SKCM there are only 30.

Pathways dysregulated across multiple cancer subtypes

The Pentose Glucuronate Interconversion pathway clusters closely with the
Glycolysis and Gluconeogenesis pathways that are significantly dysregulated in all
cancer types (Fig 2B). This pathway is involved in the interconversions of
monosaccharide pentose and glucuronates, which are the salts or esters of
glucuronic acid#l. While it is known that this pathway is frequently dysregulated in
hepatocellular carcinoma, little is known about the dysregulation of this pathway in
the context of other disease sites*2-43, As is shown in the heatmap of carbohydrate
metabolic pathways, many cancer types highly dysregulate this pathway, while only
a few do not (Fig 2B). To better understand the expression changes within the
Pentose Glucuronate Interconversion pathway, the 35 individual genes that make
up the pathway were examined in detail across cancer types (Figure 3A-B). This
approach demonstrated that there are two distinct groups of cancer sites, those that
significantly up-regulate many of the genes within this pathway, and conversely
those that down-regulate a majority of genes within this pathway.

Consistent with what has previously been reported in LIHC, our analysis
found this disease site to be among the cancers with the most significantly
dysregulated genes, nearly all of which are down-regulated (23 out of 35). In
addition we made the novel observations that SARC, Kidney Chromophobe (KICH),
Cholangiocarcinoma (CHOL), and Colon Adenocarcinoma (COAD), also have a high
degree of down-regulation within the Pentose Glucuronate Interconversion
pathway but the magnitude of down-regulation exceeds that of LIHC. Conversely,
the lung cancer subtypes, lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC), up-regulate the greatest number of genes within the pathway,
though the magnitude of upregulation is far greater in LUSC. While it has been
reported that intermediate metabolites of the Pentose Glucuronate Interconversion
pathway are increased in LUAD#4, the transcriptional upregulation of 20 of the 35
genes within this pathway are unknown. Previous literature has also pointed to the
dysregulation of this pathway in LUSC but failed to further explore how this
pathway was transcriptionally disrupted?>.

Modeling the metabolic pathways by placing the significantly dysregulated
genes within the context of the metabolic circuit, may predict which metabolites will
be most readily affected and in what direction. For example, comparing the Pentose
Glucuronate Interconversion pathway models in LUAD (Fig 3C) and LIHC (Sup Fig
2), reveal two different metabolic pictures. A large number of the genes within the
pathway, that are upregulated in LUAD, but downregulated in LIHC, contribute to
the generation of UDP-D-Glucuronate from (3-D-Glucuronoside and D-Glucuronate-1
phosphate. Therefore, the expression levels of these enzymes predicts for relatively
high levels of UDP-D-Glucuronate in LUAD, but low levels in LIHC. This finding is
highly consistent with previous metabolomics studies in LUAD, which have asserted
that there is an increased level of UDP-D-Glucuronate, in particular, in cancer
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tissues, as compared to matched normal#4, as well as the literature regarding a
global down regulation of metabolites within the Pentose Glucuronate
Interconversion Pathway in LIHC4®.

Pathways uniquely dysregulated within a single cancer subtype

This metabolic pipeline can also elucidate pathways that are uniquely
dysregulated in a specific cancer type. An example of this is the unique disruption of
the Polyamine Biosynthetic Pathway in PRAD (Fig 2E, Fig 4A). Polyamines are
small, positively charged molecules with a multitude of functions, impacting almost
every aspect of cell survival4’. While this pathway is important in every cancer, the
unique dysregulation of this pathway in PRAD is of particular interest because flux
through the biosynthetic pathway is already extremely high in normal prostate due
to the high rate of secretion of acetylated polyamines to the prostatic lumen*8. Not
only does PRAD have the highest number of significantly upregulated (as compared
to normal prostate) genes among the 13 assigned to this pathway (Fig 4B), they also
show the greatest magnitude of change, which is reflected in the large Euclidean
distance observed in the unsupervised hierarchical clustering (Fig 4A).

Modeling of the polyamine metabolic circuit clearly demonstrates an
increase in polyamine biosynthesis and catabolism in PRAD (Fig 4C). This is
reflected in increased expression of both rate limiting enzymes in the biosynthetic
pathway (ODC1 and AMD1), as well as significant increases in the catabolic enzymes
SAT1, PAOX and SMOX. The pathway is further enhanced by upregulation of MAT2A
and down regulation of the inhibitory subunit MATZB, predicting for enhanced SAM
production feeding into AMD1 as well as greatly increased expression of the
polyamine synthases, SRM and SMS. These findings are consistent with the well-
documented increased level of polyamines, acetylated polyamines, and other
metabolites within the Polyamine Biosynthetic pathway in prostate cancer, all of
which can be predicted by the modeling approach#?->%. Conversely, in KICH, the two
rate limiting enzymes ODC1 and AMD]1 are significantly down regulated, suggesting
reduced levels of polyamines (Fig 44, Sup Fig 3). Additionally, there is an increase
in SAT1, which leads to acetylation of the polyamines, but a decrease in PAOX, which
leads to decreased back conversion of acetylated polyamines to un-acetylated
polyamines. All of these transcriptional changes, taken together, lead to the
depletion of polyamines in the cancer state, as compared to the normal tissues. This
broad upregulation of the Polyamine Biosynthetic Pathway in PRAD would suggest a
unique dependence on its function, as compared to other disease sites, providing
rationale for pharmacological intervention.

The drug N1, Nii-bis(ethyl)norspermine (BENSpm), an SAT1 stabilizer that
increases polyamine acetylation, was utilized to understand whether prostate
cancer cell lines could more selectively be targeted by further destabilization of
polyamine biosynthesis. When comparing the sensitivity of seven cell lines, two
prostate cancer (DU145 and PC-3), two kidney cancer (ACHN and 786-0), and three
breast cancer cell lines (MDA-MB-231, HS578T and MCF7) (Fig 5A, 5B), the prostate
cancer lines were the most sensitive to BENSpm treatment compared to any other
cell line.
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Master Metabolic Transcriptional Regulators (MMTRs) may explain these
differences in polyamine biosynthesis metabolism dysregulation between cancer
types. When analyzing the overall pathway scores, the two most highly
dysregulated cancer types are PRAD and KICH (Fig 4A). As previously
demonstrated, when directionality is taken into account, these pathways are largely
dysregulated in opposite directions (Fig 4A). Utilizing iRegulon®?, which pairs
motifs and ChIP-Seq tracks to determine transcription factors that control the
expression of gene networks, a list of master transcriptional regulators of the
polyamine biosynthetic pathway was constructed (Sup Fig 4). We then correlated
expression of MMTRs with the expression of each of the individual genes in the
Polyamine Biosynthetic Pathway in both PRAD and KICH cohorts (Fig 5C).

Distinct patterns of correlation emerged in PRAD, where a majority of the MMTRs
were significantly correlated, either positively or negatively, with Polyamine
Biosynthetic genes. Comparisons of the cumulative distribution frequencies of
correlations between MMTRs and all genes in the genome (black) with correlations
of these MMTRs with polyamine biosynthetic genes only (red) show that polyamine
gene correlations are statistically significant when considering global expression
patterns, demonstrated by a shift in the distributions (Fig 5D). Conversely, KICH
lacks a strong pattern of correlation between MMTRs and Polyamine Biosynthetic
genes (Fig 5E). This finding was confirmed by cumulative distribution analysis,
where there was no significant relationship between MMTR and Polyamine
Biosynthetic gene expression observed when considering global transcriptional
patterns (Fig 5F). The top four MMTRs(BCL3, GMEB2, GTF2B, and ZNF513), with
the strongest collective positive correlation, are important for regulation of
polyamine biosynthetic genes, as evidenced by an iRegulon network, which
demonstrates these 4 MMTRs are collectively predicted to regulate 10/13 of the
genes from the pathway (Sup Fig 4). Thus, the metabolic analysis pipeline can
accurately provide possible novel targets of pharmacologic intervention. Further,
this information combined with master regulator analysis, can be a useful tool
providing new insights into drivers of metabolic reprogramming across and within
cancer sites.

BRCA Subtype Metabolic Reprogramming

BRCA is one of the most metabolically dysregulated cancer types, in terms of
the sum of pathway scores (Fig 1C). Analysis of all BRCA cases reveals a large level
of dysregulation of Carbohydrate, Lipid, and Amino Acid Metabolism, in roughly
equal proportions (Fig 6A). Additionally, the top dysregulated pathways seem to be
a mix of these larger categories, encompassing pathways from each major category
(Fig 6B). Importantly, BRCA consists of 4 major molecular subtypes with distinct
treatments and outcomes for patients: Luminal A, Luminal B, HER2 and Basal>2.
This, therefore, lead us to question whether these 4 major subtypes had distinct
transcriptional metabolic profiles.

Using the PAM5053.54, a set of 50 genes whose differential expression is
utilized to classify BRCA, all patients were assigned to one of the four subtypes.
Patients were first randomly clustered based on the expression of all metabolic
genes (Fig 6C). Basal-like tumors (black), clustered out very distinctly from the
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Luminal A (yellow), Luminal B (blue), and HER2 expressing (red) counterparts,
indicating a strong shift of metabolic phenotype in these patients. While not as
distinct, smaller clusters did form for each of the other molecular subtypes. Each
molecular subtype was then compared to the normal tissues, and DEG lists for each
independent cluster was utilized to determine which of the 114 pathways were
significantly dysregulated. This analysis revealed a total of 89 dysregulated
pathways, some of which were missed entirely by an analysis of the BRCA pooled
data. Pathways like Tyrosine Metabolism and Retinol Metabolism, as well as
Glycolysis and Gluconeogenesis are dysregulated across all subtypes, but to a
different degree (Fig 6D), as indicated by the different scores for each individual
pathway among the four molecular subtypes. While many pathways were
dysregulated across all subtypes, there were distinct pathways present in each
subtype of the disease. For example, in Basal-like tumors, the most aggressive form
of BRCA, the Terpenoid Backbone Biosynthetic Pathway, Homocysteine
Biosynthesis and the Citric Acid Cycle are uniquely dysregulated, amongst others
(Fig 6E). Meanwhile, in Luminal A tumors, the subtype with the most favorable
prognosis, we found that alpha-Linoleic Acid Metabolism, Taurine and Hypotaurine
Metabolism and Cyclooxygenase Arachidonic Acid Metabolism were uniquely
dysregulated (Fig 6F). Further, this dysregulation of unique metabolic pathways in
molecular breast subtypes would suggest a potential differential sensitivity to
therapeutic intervention.

The drug Metformin, a first generation biguanide that decreases glucose
metabolism through the Citric Acid Cycle55, was utilized to understand whether
basal breast cancer cell lines could more selectively be targeted. When comparing
the sensitivity of eight cell lines, two prostate cancer (DU145 and PC-3), two kidney
cancer (ACHN and 786-0), two luminal breast cancer cell lines (MCF7 and T47D)
and two basal breast cancer cell lines (MDA-MB-231 and HS578T) (Fig 6G), we did
in fact see increased sensitivity of basal breast cancer cell lines to Metformin, as
compared to any other cell line. Additionally, because Homocysteine Biosynthesis is
specifically dysregulated in the basal like subtype, we utilized the drug
Sulfasalazine, an Xc cysteine-glutamate transport inhibitor that decreases
intracellular homocysteine pools®6, to understand whether basal breast cancer cell
lines could more selectively be targeted by destabilization of the Homocysteine
Cycle. When comparing the sensitivity of eight cell lines, two prostate cancer
(DU145 and PC-3), two kidney cancer (ACHN and 786-0), two luminal breast cancer
cell lines (MCF7 and T47D) and two basal breast cancer cell lines (MDA-MB-231 and
HS578T) (Fig 6H), we did in fact see increased sensitivity of basal breast cancer cell
lines to Sulfasalazine, as compared to the luminal breast cancer cell lines.
Interestingly, prostate cancer cell lines were even more sensitive, which is a finding
consistent with the fact that our analysis identifies PRAD as one of two disease sites
with significantly dysregulated Homocysteine Biosynthesis (Fig 2E). It is also
notable that this pathway was not detected as dysregulated in the BRCA cohort, but
it is dysregulated specifically in the basal like subtype.

Using the genes from both the unique and overlapping pathways, MMTRs of
both the uniquely dysregulated pathways in each subtype (Fig 7A (Basal), 7B
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(Luminal A)), as well as the MMTRs of those pathways dysregulated across all of the
subtypes, were identified. The top 5 MMTRs in Basal-Like unique pathways
(SREBF1, ESRRG, ESRRA, RFX2, and SREBF2) differ from those found to be
associated with the Luminal A unique pathways (IRF8, OVOL1, THAP1, GATA1, and
TFAP2(C). Additionally, those MMTRs associated with pathways dysregulated across
all subtypes were different from those unique to the Basal-like and Luminal A
(HNF4A, ESRRA, HNF4G, RARA, and EP300), with the exception of one (ESRRA),
which has been linked to all types of BRCA57. Further, the expression levels of these
MMTRs cluster out patients based on the subtype of BRCA with which they are
associated (Fig 7C), where Basal patients are indicated in black and Luminal A
patients are indicated in yellow. The distinct metabolic profiles and ability of
MMTRs to accurately distinguish normal Breast Cells from Luminal A and Basal
were further confirmed using RNA-sequencing data from 27 different cell lines>®.
First, with the exception of one luminal cell line (JM225CWM), the expression of
metabolic genes excellently segregated the luminal, basal and normal breast cell
lines (Fig 7D). Secondly, when we clustered the cell lines based on expression levels
of the MMTRs of the metabolic pathways uniquely dysregulated in patient samples
from Luminal-A subtypes and Basal-like subtypes, they also segregated the cell lines
by subtype. These MMTRs offer new explanations for the differences in metabolic
reprogramming between different subtypes of BRCA. In total, these findings suggest
that the metabolic pipeline has utility in revealing novel understanding with regards
to metabolic reprogramming not only across cancers of different tissue origin, but
also within heterogeneous cancer populations.

Discussion

The present study applies an analytical pipeline utilizing transcriptomic
information to characterize changes in metabolic pathways associated with cancer.
The approach successfully profiled significant metabolic reprogramming in 26
cancer types, revealing both common and unique patterns of disruption.
Additionally, this pipeline successfully profiles the metabolic vulnerabilities that
distinguish molecular subtypes within the same disease site. These metabolic
vulnerabilities represent points of therapeutic leverage in each of these disease sites
or subtypes of disease. Furthermore, cancer specific expression patterns are linked
to the identification of metabolic master transcriptional regulators (MMTRs), which
provide putative mechanistic insight into observed metabolic profiles. MMTRs
associated with target expression, genetic drivers and clinically relevant molecular
signatures in cancer cohorts, suggesting them as key regulators of metabolic
reprogramming in cancer. Additionally, MMTRs can be used as a predictive
biomarker of metabolism-targeting drug response, as well as a means of segregating
molecular subtypes within a disease site (Fig 7).

While metabolite levels are the final output, and therefore the most sensitive
gauge of metabolic activity, there is a lack of pan-metabolic data across disease sites.
Due to the dynamic nature of connected metabolomics and transcriptomic changes,
generating models of metabolism based on transcriptomics is complex. To better
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understand metabolic flux across types of cancer and even among sub-types within
a particular cancer type, more unbiased metabolomics studies need to be conducted
to more fully appreciate the role of metabolic reprogramming in cancer initiation,
progression, and prognosis®?.

A transcriptomic metabolic view of TCGA? data, where metabolic pathways
scores are generated, yields insights that cannot be acquired through differentially
expressed genes analysis. This pipeline expands on DEG analysis alone by not only
looking at the magnitude of the changes that occur in a particular gene, but also,
how meaningful that change is to the disease site. Combining the log fold-change
and the adjusted p-value into a single score allows us to scale the importance of
each gene expression change within metabolic pathways. The bootstrapping
approach accounts for background changes in a way that identifies patterns that
would be expected simply by chance, allowing for the elucidation of relevant
transcriptional metabolic changes. This is an important aspect of our pipeline, as it
helps to account for the varying degree of tumor associated transcriptional drift
across cancer types, as well as for tissue procurement error and/or contaminating
cell types that may be associated with cohort samples at tissue specific rates.
Furthermore, mapping these genes, with their direction and magnitude of change
(up or downregulation) onto the pathway allows for determination of patterns that
indicate a convergence of effect on key metabolites.

A high degree of correlation between population pools from different
transcriptomics platforms (RNA-sequencing vs. microarrays) further demonstrates
the robustness of this approach (Supp Fig 1). These datasets implicate many of the
same pathways as being highly dysregulated in PRAD3?, LUAD#® and BRCA*! as
compared to the normal matched tissues, and to largely the same relative
magnitudes (Supp Fig 1). This confirmation in 3 separate populations of patients on
a different transcriptomic platform reveals we are highlighting biologically relevant
metabolic pathway dysregulation, and our scoring approach is highly robust.

An important test of the validity of the metabolic pathway scores generated
from this approach is to model metabolic circuits, predict expected alterations in
metabolite pools, and compare that with published studies that examine those
metabolites. For example, in Figure 3, we explore the Pentose Glucuronate
Intercoversion pathway, the dysregulation of which is well-known and almost
exclusively studied in LIHC#243, However, we suggest there are cancers that
dysregulate this pathway to an even greater degree, including LUAD, in which we
find significant upregulation of many genes within the pathway. Unbiased
metabolomics studies comparing LUAD with normal lung tissue identified
significant elevation of UDP-D-Glucuronate#4, which is the predicted result of the
changes in expression level of enzymes in this pathway. As shown in Figure 3C the
significant gene expression changes in LUAD patient samples would be expected to
divert metabolites towards the production of UDP-D-Glucuronate. This metabolite
is responsible for the downstream production of UDP-Glucose and a-D-glucose-1P,
which feed into several other pathways, fueling polysaccharide biosynthesis and
glucosiduronide production®. The connection to these pathways are relevant to the
disease because they support a high rate of nucleic acid synthesis, and provide
NADPH for both the synthesis of fatty acids and cell survival under stress
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conditions.®162 Interestingly, LUSC upregulates this pathway more so than LUAD in
regards to magnitude of transcriptional change. However, little metabolomic data
exists in the context of this disease site. Nevertheless, our metabolic pathways
scores implicate this pathway as being at least equally important in lung squamous
cell carcinoma and adenocarcinoma.

Perhaps not surprisingly, we found some metabolic pathways that are
dysregulated in most or all types of cancer, such as the glycolytic and
gluconeogenesis pathways, as well as pathways that have a highly restricted pattern
of dysregulation like polyamine metabolism in prostate cancer (Fig 4A). The global
upregulation of genes within the pathway (Fig 4C) involved both the generation of
acetylated polyamines and flux through biosynthesis utilizing ornithine and s-
adenosylmethionine to eventually produce spermine and spermidine. It is well-
established that this pathway is highly active in normal prostate, due to high rates of
secretion of acetylated polyamines into prostatic fluid, and further enhanced in
prostate cancer.?”48, The nearly complete upregulation of the biosynthetic and
catabolic enzymes in PRAD is striking, and the idea of increased metabolic flux is
supported by metabolomics%. Additionally, the therapeutic targeting of this
pathway with BENSpm is highly effective and selective, highlighting the utility of the
metabolic pipeline to determine metabolic pathways of interest for pharmacologic
intervention. Differences in metabolic pathway dysregulation and therapeutic
targeting may be attributed to the identification of MMTRs. We identified a set of
MMTR:s for the genes in the polyamine metabolic pathway whose expression highly
and positively correlated with the significant upregulation of those genes. In
contrast, the polyamine pathway is down regulated in KICH and exhibited weaker
and non-significant correlations between expression of MMTRs and the genes
within the pathway. Further, association of MMTRs with common cancer type
specific mutations may indicate differences in metabolic reprogramming in specific
patient populations based upon co-occurrence or mutual exclusivity. For example,
TMPRSS2-ERG fusion in PRAD, which is one of the most frequently occurring
mutations, is mutually exclusive with GTF2B overexpression, a highly enriched
MMTR. Interestingly, there is a significant amount of overlap amongst ERG and
GTF2B binding sites, and in PRAD ChIP-sequencing data, ERG peaks have been
identified in three of the polyamine genes, potentially explaining their mutual
exclusion. (Supp Fig 4) This therefore highlights the potential for different genetic
drivers of disease to cooperate with altered expression of MMTRs in order to drive
specific patterns of metabolic reprogramming.

Also of interest was the identification of subsets of patients within breast
cancer that exhibit very different patterns of metabolic reprograming.
Understanding the metabolic profiles of different molecular subtypes is important in
disease sites like BRCA, where the different subtypes have distinct treatment
regimens and outcomes (Fig 6). Pooled analysis, treating all subtypes as one cohort
leads to an understanding of BRCA as a whole (Fig 64, 6B), but fails to capture the
subtypes that are driving the overall analysis. For example, the Basal-Like subtype,
as defined by the PAM505354 and also known as Triple Negative Breast Cancer
(TNBC), clusters very well based on metabolic genes and exhibits more highly
dysregulated metabolic pathways (Fig 6C). We effectively targeted this metabolic
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difference with drugs that target the Citric Acid Cycle (i.e. Metformin) (Fig 6G), and
drugs that target the Homocysteine Biosynthetic Pathway (i.e. Sulfasalazine)(Fig
6H). We found that, in both cases, the basal-like cell lines are more sensitive than the
Luminal A like cell lines, in agreement with the fact that these pathways were
uniquely dysregulated in the basal-like patient data. This again highlights the ability
of the metabolic pipeline to emphasize metabolic pathways of interest that
distinguish molecular subtypes within a single cancer, and provides selective
therapeutic targets. The identification of MMTRs driving the differences in
metabolic dysregulation between the luminal A and basal subtypes results in
distinct clustering of the Basal and Luminal A subtypes when looking at the
expression of those MMTRs (Fig 7). This, therefore, offers novel opportunities to
understand how and why metabolic pathways differ between tissues sites and
molecular subtypes, and offers new potential targets.

Overall, we provide a novel approach to utilizing transcriptomic data to
identify metabolic dysregulation. While it is clear that metabolic regulation occurs
to a great extent at the post-transcriptional and even post-translational levels, this
transcriptome based approach provides novel insights. These insights and
transcriptomic analyses will need to be combined with proteomic and metabolomics
data to develop a comprehensive picture of metabolic dysregulation in cancer.
Nevertheless, the high level of correlation observed between studies in separate
cohorts of patients with the same disease, and the metabolomics support we have in
some pathways give us confidence that this method is highly informative pan-
cancer. This analytical pipeline can be applied to any transcriptome wide data to
infer patterns of metabolic reprogramming, in any disease settings.

Methods

Pan-Cancer Differentially Expressed Gene Analysis

The results published here are in whole based upon data generated by The Cancer
Genome Atlas (TCGA)!? Research Network: http://cancergenome.nih.gov/.
Firehose®3, a web portal site that has been developed by the Broad Institute, aiming
to deliver automated analyses of the TCGA data to general users, was utilized to
download the preprocessed, Level 3, RSEM transcriptomic data. Gene expression
data were analyzed using Bioconductor 3.1 (http://bioconductor.org)®4, running on
R 3.1.3. RNA-sequencing RSEM counts were processed to remove genes lacking
expression in more than 80% of samples. To identify differentially expressed genes,
primary tumor samples (samples ending in “.01”) were compared to their matched
normal tissues (samples ending in “.11”), in their respective tissues. Scale
normalization and moderated student t tests were performed using empirical Bayes
statistics in the “Limma”%> package. The resulting P values were adjusted for
multiple testing using the false discovery rate (FDR) Benjamini and Hochberg
corrections method.

Code Availability
Code is available upon request to the corresponding author.

Pathway Score


https://doi.org/10.1101/295733
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295733; this version posted April 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Gene and pathway scores were calculated in R 3.1.3. Differentially expressed gene
lists for each cancer site were used to assign individual gene scores. Gene scores
were designated by taking the absolute value of the logFC multiplied by the -
log(adjusted P value):

Gene Score = |logFC*-log(adj.P.val)|
Metabolic pathways were then downloaded from the Kyoto Encyclopedia of Genes
and Genomes (KEGG)3® were downloaded. Genes from each of the 114 pathways
are reported in the Supplement (Supplementary Table 2). Pathway scores were
then calculated by summing the gene scores for all genes within each of the
pathways and dividing by the square root of the sample size for that particular
tissue, to account for sample size effects in different cancer sites:

Pathway Score = X(Gene Scores)/vn
All pathway scores were then exported into a table, to determine statistical
significance of each score (Supplementary Table 3). Pathways were clustered into
10 major categories based upon KEGG classifications.

Bootstrapping for Pathway Score Statistical Significance

Bootstrapping®® is a technique based on random sampling with replacement. Using
R 3.1.3, pathway scores were randomly generated 100,000 times per pathway,
based on the number of genes in the pathway, and plotted into a distribution. The
scores for each of those pathways were then plotted against the distribution and a P
value was calculated based on where that score lies within the distribution of scores
(Supplementary Figure 5). Using all p-values, the pathway score table
(Supplementary Table 4), was adjusted to only include those scores that were
considered to be statistically significant. All other values were replaced with “0”
(Supplementary Table 5).

Pathway Scores Heatmap
Bootstrapped pathway scores were utilized to create pathway score heatmaps in R
3.1.3, constructed using the “Gplots” and “Heatmap.2” packages in R. Data was
scaled and Euclidian distances and hierarchical clustering were applied using the
“h.clust” function. All 0 values (non-significant pathway scores) are represented as
gray. For specific pathway heatmaps, at the gene level, fold change values from the
initial Limma output for each cancer type, was utilized. Data was scaled using a min
to max calculation:

(m - min(m))/(max(m)-min(m))
Once again Euclidian distances and hierarchical clustering was applied. Heatmaps
of the significantly differentially expressed genes are represented by blue (negative)
or red (positive), and non-significantly differentially expressed genes are
represented as gray.

Pathway Maps

Pathway maps were generated using Cytoscape®’ software, and specifically the
VizMapper functions. Pathway maps were based on existing pathway maps in
KEGG?8. Limma output for differentially expressed gene analysis was utilized to
direct shading of genes within the pathway: red (positive fold change, statistically
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significant), blue (negative fold change, statistically significant), or gray (non-
statistically significant), for individual cancer sites.

Dose Response Cell Viability

PC3 and DU145 cells were obtained from ATCC [Manassas CA]. MDA-MB-231 cells
were provided by Dr. John Ebos, Ph.D. [Department of Cancer Genetics, Genomics
and Development, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo,
NY]. 786-0 and ACHN cells were provided by Dr. Eric Kauffman, M.D. [Department
of Medicine, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY].
HS578T cells were provided by Dr. Mikhail Nikiforov, Ph.D. [Department of Cell
Stress Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY].
MCF7 and T47D cells were provided by Dr. Katerina Gurova, M.D., Ph.D.
[Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center
(RPCCC), Buffalo, NY]. All prostate cancer cells (DU145 and PC3) were maintained
in RPMI 1640 medium supplemented with 10% FBS, and 1% antibiotics. Other cells
were maintained in DMEM with 10% FBS and 1% antibiotics. Metformin and
Sulfasalazine were obtained from Sigma and N1, Ntt-bis(ethyl)norspermine
(BENSpm) was purchased from Synthesis Med Chem [Shanghai, China]. Cells were
seeded in 96-well plates at 3000 cells/well on day 0. They then underwent either
48 hours (BENSpm and Sulfasalazine) or 72 hours (Metformin) of treatment.
Resazurin (Sigma) was then added to each well and allowed to incubate for 2 hours
at 37°C. The plates were then read on a spectrophotometer by excitation at 570 nM
and reading of the fluorescence at 600 nM. Dose-response curves were then plotted
using Prism GraphPad 7.

Master Metabolic Transcriptional Regulator Analysis

In order to characterize regulatory networks, we used iRegulon>!, a Java add-on in
Cytoscape, to identify MMTRs. In this approach, we use a large collection of
transcription factor (TF) motifs (9713 motifs for 1191 TFs) and a large collection of
ChIP-seq tracks (1120 tracks for 246 TFs). This method relies on a ranking-and-
recovery system where all genes of the human genome (hg19) are scored by a motif
discovery step integrating the clustering of binding sites within cis-regulatory
modules (CRMs), the potential conservation of CRMs across 10 vertebrate genomes,
and the potential distal location of CRMs upstream or downstream of the
transcription start site (TSS+/-10 kb). The recovery step calculates the TF
enrichment for each set of genes, input for each of the individual analyses, leading to
the prediction of the TFs and their putative direct target genes which exist in the
input lists. This method optimizes the association of TFs to motifs using both direct
annotations and predictions of TF orthologs and motif similarity.

MMTR Correlation Analysis

Correlation values between MMTRs and all expressed genes were derived in R 3.1.3,
constructed using the “cor” function across all patients in both TCGA-PRAD and
KICH cohorts. The empirical cumulative distribution function for each complete
MMTR correlation profile (background) was determined via the “ecdf’ function, and
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similarly for the MMTR correlation profiles against Polyamine Biosynthetic genes
only. Significant shift in distributions between MMTR /background and
MMTR/Polyamine Biosynthetic gene correlations was assessed by Kolmogorov-
Smirnov test.

Common Mutation Analysis

Using cBioPortal (http://www.cbioportal.org), patients in the PRAD cohort were
queried for either co-occurent relationships or mutually exclusive relationships
between the list of most commonly occurring mutations in PRAD and the 4 MMTRs
in question. CBioPortal is a publically available database, which based on all of the
genomic data available for PRAD constructs a list of the most commonly occurring
mutations. Additionally, it calculates the significance of co-occurrence or mutual
exclusivity, based upon the Mutual Exclusivity Modules (MEMo)%. MEMo is a
method that searches and identifies modules based upon: (1) genes recurrently
altered across a set of tumor samples; (2) genes known to or likely to participate in
the same biological process; and (3) alteration events within the modules are
mutually exclusive. Using this information, it then integrates multiple data types
and maps genomic alterations to biological pathways and uses a statistical model
that predicts the number of alterations both per gene and per sample.

GTF2B and ERG Binding Site Overlap

ChIP-Sequencing BED files were downloaded from the Cistrome database®®,
corresponding with 3 different studies. To confirm overlap between GTF2B and
ERG: K562 Erythroblast ; Bone Marrow Untreated from the Martens JH, et al.
(2012)¢7 study and GTF2B K562 Erythroblast ; Bone Marrow Untreated from the
Pope BD, et al. (2014)%8 study were downloaded. GenomicRange was then used to
determine the overlap between these peaks in the same line. Then, to determine
ERG peaks in Polyamine Biosynthetic genes in prostate cancer cell lines specifically,
the VCaP; Epithelium; Prostate ERG non-treated data from Sharma NL, et al.
(2014)%° was downloaded and imported into the Interactive Genome Viewer (IGV)70
to visualize peaks in these genes. GTF2B ChIP-sequencing data was not available for
GTF2B in prostate cancer.

PAM50 BRCA Analysis

The PAM50 is a method that has been previously described in the literature>354.
The PAM50 classification of tumors within the TCGA cohort was obtained>*. This
classification was then used to stratify patients into 4 major groups: Basal-Like,
HERZ2-expressing, Luminal A, and Luminal B. Any patients with no classification
within this file were removed from the analyses and all data was preprocessed as
outlined in the Pan-Cancer Differentially Expressed Gene Analysis section. Post-
normalization, all tumors still included underwent unsupervised clustering based
on the expression of all metabolic genes within the cohort. Additionally,
comparisons of patients within each cohort were then made with normal tissues to
obtain Pathway Scores, as previously described, for each of the patient cohorts.
MMTR analysis was then performed to determine MMTRs of uniquely dysregulated
pathways within the Basal-Like and Luminal A subtypes. Patients from each of
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those subtypes then underwent unsupervised hierarchical clustering based on the
gene expression of those MMTRs of uniquely dysregulated pathways.

BRCA Cell Line Analysis

RNA-sequencing data was obtained for 27 different normal breast, luminal breast
cancer and basal breast cancer cell lines>8. All data was preprocessed as outlined in
the Pan-Cancer Differentially Expressed Gene Analysis section. Post-normalization,
all tumors still included underwent unsupervised clustering based on the
expression of all metabolic genes within the cohort. Additionally, comparisons of
the cell lines from each of those subtypes then underwent unsupervised hierarchical
clustering based on the gene expression of those MMTRs of uniquely dysregulated
pathways, from the patient data.
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Figure 1. Transcriptional Metabolic Pathway Analysis Methods Pipeline (A) 26 cohorts of tumor
samples, including two pooled sets (COADREAD and LUNG) from The Cancer Genome Atlas (TCGA), with
matched Normal Samples, were utilized to determine the transcriptional metabolic profiles specific to
each type of cancer, as compared to their normal. (B) Pathway scores ((2logFC*-log(adj.p.val))/vn), for
114 Metabolic Pathways from KEGG, were then calculated based on the results of Differential Expressed
Gene (DEG) analysis using Limma to compare tumors to matched normal. Pathways are then
bootstrapped for significance, to determine which pathways are highly dysregulated as compared to
chance. Those pathways are then plotted in a heatmap, with the type of cancer as the X-axis and the
114 pathways as the y-axis. Pathways that are non-significant are gray and a gradient from white to red
for those pathways significantly dysregulated and the intensity of red indicating the magnitude of
dysregulation. (C) Significant pathway scores are then summed to determine with of the types of
cancers are most metabolically dysregulated at the transcriptional level. (D) The pathways were then
sorted into each of the 10 major metabolic pathway subtypes defined by KEGG and later underwent (E)
Master Regulator Analysis via iRegulon.

Figure 2. Ascertaining Pathways of interest by looking at major types of metabolic pathways (A) 114
Metabolic KEGG Pathways broke down into 10 major metabolic types of pathways. This allowed for the
identification of (B) pathways that were statistically significantly altered in a variety of cancers and (C)
the number of uniquely dysregulated pathways in specific tumor types. Each of these major metabolic
categories was then broken down into individual heatmaps of bootstrapped pathway scores where gray
are non-significant altered pathways and the gradient of red represents the magnitude of dysregulation
in each of the pathways across the cancer cohorts. (D) In Carbohydrate Metabolism, a pathway largely
altered across all tumor types, like Pentose and Glucuronate Interconversions, is highlighted. (E) Within
Amino Acid Metabolism the Polyamine Biosynthetic Pathway is highlighted as an example of cancer type
specific dysregulation. (F) Subcutaneous Melanoma (SKCM) was identified as the cancer type with the
highest degree of dysregulation, based on Euclidian distance, within a subset of the KEGG pathways in
the Lipid Metabolism category.

Figure 3. The Pentose Glucuronate Interconversion Pathway is dysregulated across all types of cancer
but to a different extent and in different directions (A) Heatmap of fold changes, showing the direction
of transcriptional change in tumor over normal for each individual gene within the Pentose Glucuronate
Interconversion Pathway, across all cancer types. (B) Radar plot demonstrating the number of
statistically significant up-regulated (red) and down-regulated (blue) genes within a pathway, for each of
the indicated cancers. (C) Model of the Pentose Glucuronate Interconversion Pathway in LUAD, which
has the largest number of statistically significant up-regulated genes. Pathway displays genes (triangles)
shaded by direction (red and blue, up and down, respectively) and significance and sized by fold change
differences. Pathways also include metabolite outputs (green rectangles) and connected pathways
(yellow ellipse).

Figure 4. The Polyamine Biosynthetic Pathway is highly specifically dysregulated in Prostate Cancer (A)
Heatmap of fold changes, showing the direction of transcriptional change in tumor over normal for each
individual gene within the Polyamine Biosynthetic Pathway, across all cancer types. (B) Radar plot
demonstrating the number of statistically significant up-regulated (red) and down-regulated (blue)
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genes within a pathway, for each of the indicated cancers. (C) Model of the Polyamine Biosynthetic
Pathway in PRAD, which has the largest number of statistically significant up-regulated genes. Pathway
displays genes (triangles) shaded by direction (red and blue, up and down, respectively) and significance
and sized by fold change differences. Pathways also include metabolite outputs (green rectangles).

Figure 5. Targeting Polyamine Biosynthesis is highly effective in Prostate Cancer and Master Metabolic
Transcription Regulators (MMTRs) may explain why (A) Dose response curves show prostate cancer cell
lines (PC3 and DU145) are most sensitive to SAT1 activation by BENSpm, as compared to kidney cancer
cell lines (ACHN and 786-0) and breast cancer cell lines (MCF7, MDA-MB-231, and HS578T). (B) This is
confirmed by calculation of IC50s. (C) Prostate Cancer (PRAD) heatmap of correlations between Master
Metabolic Transcription Regulators (x-axis) and the Polyamine Biosynthetic Genes (y-axis) with the
intensity representing strength of correlation (blue is negative, red is positive)and (D) Cumulative
Distribution frequencies showing MMTR correlation with every gene in the genome, with red dots
indicating the correlations with Polyamine Biosynthetic genes, show a distinct pattern and high level of
statistically significant correlation values between MMTRs and Polyamine Biosynthetic genes. P-values
for all MMTRs and Polyamine genes are reported in the table, with significant associations highlighted in
red (E) Kidney Chromophobe (KICH) heatmap of correlations between Master Metabolic Transcription
Regulators (x-axis) and the Polyamine Biosynthetic Genes (y-axis) with the intensity representing
strength of correlation (blue is negative, red is positive)and (F) Cumulative Distribution frequencies
showing MMTR correlation with every gene in the genome, with red dots indicating the correlations
with Polyamine Biosynthetic genes, show an random pattern and non-statistically significant correlation
values between MMTRs and Polyamine Biosynthetic genes. P-values for all MMTRs and Polyamine genes
are reported in the table, with significant associations highlighted in red

Figure 6. Metabolic dysregulation distinguishes BRCA molecular subtypes and defines therapeutic
sensitivity (A) Breakdown of 62 significantly dysregulated metabolic pathways in the BRCA pooled data.
There is a roughly equal dysregulation of amino acid, carbohydrate and lipid associated pathways. (B)
The top pathways dysregulated in BRCA come from a wide variety of major categories, like nucleotides
and lipids. However, the two most dysregulated pathways in BRCA are a vitamin-associated pathway,
Retinol Metabolism, and an amino acid pathway, Tyrosine Metabolism. (C) Unsupervised clustering of
BRCA patients, who were classified based upon the PAM50, on all metabolic genes, reveals a tight
cluster of the Basal-like subtype (black), which are highly metabolically dysregulated as explained by the
magnitude of dysregulation, as displayed in the heatmap. While Luminal A (yellow), Luminal B (blue) and
HER2-expressing (red), did not cluster as tightly, there are still recognizable groups of these patients. (D)
The Top 5 pathways that overlapped between all 4 subtypes of patients are shown here. While these
pathways are highly dysregulated in all 4 subtypes, they vary to different extents and are almost always
highest in the Basal-like cells. (E) After metabolic pathway scoring, pathways unique to the Basal-like,
most aggressive, and (F) Luminal A most indolent, patients were isolated and plotted. The top 5 unique
pathways for each of the subtypes are shown. (G) Targeting the Citric Acid Cycle with Metformin
revealed increased sensitivity in Basal-like cells, as compared to Luminal A cells, as emphasized by the
IC50 values. (H) Targeting the Homocysteine Biosynthetic Pathway with Sulfasalazine revealed
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increased sensitivity in Basal-like cells, as compared to Luminal A cells, as emphasized by the IC50
values.

Figure 7. Master Metabolic Transcriptional Regulators (MMTRs) distinguish BRCA molecular subtypes,
and BRCA cell lines (A) MMTR analysis of the pathways unique to Basal-like patients revealed a network
of 14 MMTRs, the 5 most highly enriched are shown here. (B) MMTR analysis of the pathways unique to
Luminal A patients revealed a network of 15 MMTRs, the 5 most highly enriched are shown here. (C)
Unsupervised clustering of Luminal A(yellow) and Basal-Like(black) patients on the expression levels of
all MMTRs of their unique pathways create separate clusters of patients. (D) Unsupervised clustering of
27 normal breast (green), basal breast cancer (black) and luminal breast cancer (yellow) patients on all
metabolic genes reveals a tight cluster of each of the distinct cell line types. (E) Unsupervised clustering
of normal (green), luminal (yellow) and basal-like(black) cell lines on the expression levels of all MMTRs
of their unique pathways create separate clusters.
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