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ABSTRACT 33 

Background 34 

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also 35 

an important livestock species. We describe a novel approach to data integration to generate an mRNA 36 

expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse 37 

range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.  38 

 39 

Results 40 

Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a 41 

reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets 42 

explored comparable transcriptomic space. The network analysis tool Miru was used to extract clusters 43 

of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type 44 

restricted, contained transcription factors that have previously been implicated in their regulation, or 45 

were otherwise associated with biological processes, such as the cell cycle. The atlas provides a 46 

resource for the functional annotation of genes that currently have only a locus ID. We cross-47 

referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression 48 

(CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of 49 

the expansion of tissue macrophage populations during development. 50 

 51 

Conclusion 52 

Expression profiles obtained from public RNA-seq datasets – despite being generated by 53 

different laboratories using different methodologies – can be made comparable to each other. 54 

This meta-analytic approach to RNA-seq can be extended with new datasets from novel 55 

tissues, and is applicable to any species. 56 

  57 
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INTRODUCTION 58 

Aggregation and meta-analysis of multiple large gene expression datasets based upon common 59 

microarray platforms is relatively commonplace in many species (e.g. [1-3]). Although RNA-seq is 60 

rapidly supplanting microarrays for gene expression profiling, it is not yet clear whether data from 61 

multiple different labs can be analysed together in an informative manner. Confounding variables 62 

reflect the many technical – and bias-prone – aspects of library preparation and sequencing (see 63 

reviews [4, 5]), with RNA-seq datasets often differing in read length [6], depth of coverage [7], strand 64 

specificity [8], RNA extraction and library selection methods [9], sequencing platform [10, 11] and the 65 

choice to sequence single- or paired-end reads [12]. For a given dataset, these variables can together 66 

affect both the number and type of genes detectable and the accuracy of their expression level 67 

estimates. Expression quantification is also affected by sample quality [13] and storage method [14], 68 

irrespective of sequencing technique: RNA degrades with lengthier post-mortem intervals [15] (the 69 

extent of which is tissue-dependent [16]) with degradation resulting in inaccurate quantification, 70 

particularly for shorter transcripts [17]. Sequencing composite biological structures (those with 71 

internal structures that have distinct functions), whether intentionally or inadvertently, can mask the 72 

signal of structure-specific differential expression [18]. Despite these variables, meta-analysis 73 

combining mammalian gene expression datasets [19-21] suggests that RNA-seq datasets are generally 74 

robust to inter-study variation, with the expression profiles of homologous tissues clustering more 75 

closely with each other than with different samples from the same study or species [22]. 76 

Expression atlases are valuable resources for functional genomics. Groups of transcripts – members of 77 

which will have similar expression profiles – can be associated with a shared function, such as a 78 

particular pathway or biological process. This principle is known as ‘guilt by association’ [23] and has 79 

previously been used to annotate genes of unknown function in human [2, 24, 25], pig [26], sheep [27] 80 

and mouse [28, 29] datasets. Co-expression information is also informative in genome-wide 81 

association studies (GWAS) of complex traits and disease susceptibility. The simple principle, that 82 
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genes involved in the same trait or phenotype tend to be expressed in the same cell type or tissue, or 83 

otherwise participate in the same pathway, has been confirmed in multiple datasets [28, 30]. 84 

Because of the ease of access in ovo, the chicken (Gallus gallus) embryo has been widely used as a 85 

model system in cell and developmental biology, constrained only by methods for genomic 86 

manipulation in situ, or in the germ line. These constraints were largely overcome through the 87 

sequencing of the genome, and technological developments such as in vivo electroporation, more 88 

than 15 years ago [31, 32]. More recent innovations including the generation of reporter transgenes 89 

[33] and genome editing via primordial germ cells [34-36] have transformed the utility of the 90 

chicken as a model organism. However, the current genome build still has many unannotated or 91 

minimally annotated genes about which very little is known [28]. Of the 18,347 protein-coding 92 

genes in version GalGal5 of the chicken genome in Ensembl89, 7275 (40%) have only been 93 

assigned an Ensembl placeholder ID. 94 

The domestic chicken is also a major source of animal protein worldwide, with different lines 95 

heavily selected for optimal production traits such as increased egg production or rapid 96 

weight gain. The molecular basis for these traits is increasingly being associated with 97 

genomic loci through genome-wide association studies based upon high density SNP 98 

platforms [37]. Both the application of the chick as a model organism, and for candidate gene 99 

analysis in genomic intervals associated with trait variation, would be expedited by 100 

improvements in functional genome annotation. In particular, it would be useful to identify 101 

the sets of protein-coding genes that share transcriptional regulation between the chick and 102 

the mouse, the most widely-studied mammalian model organism. For this purpose, we aimed 103 

to generate a comprehensive atlas of mRNA expression for the chicken. 104 

With the removal of antibiotics from the food chain and threats from emerging diseases, there is 105 

also interest in the selection of birds with increased disease resistance and/or resilience [38]. To 106 

support this activity, we were particularly interested in identifying and annotating genes expressed 107 
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specifically at high levels in cells of the innate immune system. Such gene sets have been identified 108 

in previous studies of human [2, 24, 25], pig [26], sheep [27] and mouse [28]. 109 

The current version of the chicken assembly was largely derived from high-throughput (i.e. 110 

comparatively cheap but imprecise) short read sequencing and primarily contains protein-coding 111 

gene models. The recent use of long-read – PacBio SMRT Iso-Seq – data has demonstrated that the 112 

transcriptomic complexity of chickens is comparable to humans, with many additional lncRNA 113 

models (among others) scheduled for inclusion in future Ensembl annotations [39]. 114 

To identify the set of genes expressed in innate immune cells in both unchallenged and activated 115 

conditions, we generated pure cultures of bone marrow-derived macrophages (BMDMs) grown in the 116 

presence of recombinant chicken macrophage colony-stimulating factor (CSF1), and stimulated them 117 

with the archetypal microbial agonist, lipopolysaccharide (LPS) [40]. To complement the data 118 

generated from macrophages in vitro, we also obtained RNA-seq libraries from the caecal tonsils of 119 

birds infected with Campylobacter, as well as from previous studies of macrophage, dendritic cell and 120 

heterophil populations. A global expression atlas for the chicken transcriptome was created by 121 

combining our immune-related data with 20 publicly archived RNA-seq datasets. Some were collated 122 

by the Avian RNA-seq Consortium [41], while others are drawn from a diverse range of existing 123 

publications, including studies that characterised the genetic basis of retinogenesis [42], the genetic 124 

determinants of meat tenderness [43], the morphological diversity of skin appendages [44], visceral fat 125 

metabolism [45], the transition between laying and brooding phases [46], the effect of heat stress upon 126 

pituitary development [47] and spleen function [48], the pathways involved in avian influenza 127 

resistance [49], the role of lncRNAs in the development of muscle [50], liver and adipose [51], and the 128 

transcriptional landscape of mRNA editing [52]. In total, 279 RNA-seq libraries were obtained, 129 

representing 48 distinct tissue and cell types at developmental stages spanning early embryonic (5 130 

days) to mature adult (70 weeks post-hatching). In addition, we accessed a recently published 131 

transcriptional analysis of chick development generated by Cap Analysis of Gene Expression (CAGE) 132 
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[53], a technique which can be used to quantify gene expression based on the transcript start site [54]. 133 

We show that the ‘guilt by association’ approach to functional annotation is viable even when 134 

combining disparate RNA-seq datasets, and utilise the meta-dataset to identify macrophage-specific 135 

and other informative co-expression clusters, providing a resource for genetic and genomic study of 136 

avian trait variation. 137 

 138 

RESULTS 139 

Selecting samples for inclusion in an RNA-seq meta-dataset 140 

Many chicken RNA-seq datasets are available in public repositories, as detailed in [41]. Robust co-141 

expression clustering of any two genes depends upon sampling tissues and cells in which both vary 142 

across the widest possible range. To maximise the co-expression signal, we chose datasets to represent 143 

the greatest possible diversity of tissues and organ systems. Not all studies contain links to a publicly 144 

archived dataset, such as a study of induced ochratoxicosis in the kidney cortex [55] and two studies of 145 

the bursa of Fabricius [56, 57]. Samples containing less than 10 million reads were not used, such as 146 

those from a study of the follicular transcriptome throughout the ovulation cycle [58]. 147 

Datasets used are detailed in Table S1, and have few commonalities: they were sequenced using a 148 

variety of Illumina instruments (HiSeq 2000/2500/3000/4000, Genome Analyzer II/IIx, NextSeq 500 149 

and HiScanSQ), and include single- and paired-end, strand-specific and non-specific, polyA-selected 150 

(mRNA-seq) and rRNA-depleted (total RNA-seq) libraries at different read lengths and depths. For 12 151 

tissues, independently sequenced RNA-seq datasets for the same tissue (Table S2) also allow for 152 

internal tests of the validity of aggregating the data. Throughout this text studies are referred to by 153 

their NCBI BioProject ID. 154 

 155 

Quantifying expression by iteratively revising a reference transcriptome 156 
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Expression was quantified – as transcripts per million (TPM) – using an RNA-seq processing pipeline 157 

[59] which iteratively runs the quantification tool Kallisto [60] with each iteration using an 158 

incrementally revised transcriptome. Kallisto requires that the user provide a set of transcripts, which 159 

are decomposed into k-mers. The expression of each transcript is quantified by matching this set of k-160 

mers to the k-mers of the reads. For the first iteration of Kallisto, a non-redundant transcriptome 161 

(57,234 transcripts, representing 17,680 Ensembl protein-coding genes) was obtained by combining 162 

Ensembl transcript models with NCBI mRNA RefSeqs (see Materials and Methods). 163 

The output was first parsed for library quality. The reverse cumulative distribution of TPM per gene 164 

was plotted on a log-log scale (Figure 1). The distributions generally approximate a power-law with an 165 

exponent of approximately -1 (Table S3), consistent with Zipf’s law (that the probability of an 166 

observation is inversely proportional to its rank) [61, 62]. Four samples with exponents < -0.8 or > -167 

1.2, i.e. deviating > 20% from the optimal value of -1 – were excluded from further analysis (i.e. the 168 

next iteration of Kallisto) (Table S3). Using only data from the useable samples, we created a revised 169 

reference transcriptome. During the first iteration of Kallisto, 55,027 of 57,234 transcripts (96%) were 170 

detectably expressed (average TPM > 1 in at least one tissue, where the average is the median TPM 171 

across all replicates, per BioProject, of that tissue), representing 17,313 Ensembl protein-coding genes 172 

(Table S4). After excluding 2207 transcripts with TPM < 1 in all tissues (Table S5) and those 173 

detectable only in the 4 excluded samples (n = 57), a revised transcriptome was generated containing 174 

54,970 transcripts. For the second iteration of Kallisto, expression was re-quantified using this revised 175 

transcriptome, creating a final set of gene-level TPM estimates. The overall meta-dataset provides 176 

gene-level expression for 23,864 gene models (both Ensembl and NCBI) as median TPM across all 177 

replicates, per BioProject, per tissue (Table S6). Of these gene models, 43% (10,090) were 178 

unannotated, having only either an Ensembl placeholder ID or an NCBI locus ID. 179 

 180 

Randomly down-sampling RNA-seq datasets does not quantitatively alter their expression profiles 181 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295535doi: bioRxiv preprint 

https://doi.org/10.1101/295535
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Higher resolution expression profiles are dependent upon higher sequencing depths [63] with 182 

diminishing returns – after approximately 10 million reads – on the power to detect genes 183 

differentially expressed between conditions [64]. For the purpose of functional annotation, it is more 184 

important to minimise variation between samples than to comprehensively capture transcripts. 185 

Accordingly, all datasets were randomly down-sampled to exactly 10 million reads before 186 

quantification. 187 

To ensure the resulting co-expression signals are reproducible, it is necessary to establish that there are 188 

no significant differences in expression profiles introduced by sampling. For instance, the LPS-189 

stimulated BMDM datasets were sequenced at depths of 37.5 to 52.6 million reads, such that when 190 

down-sampling, the BMDM expression profile as quantified for the meta-dataset was obtained using 191 

approximately one fifth to one quarter of the original reads (Table S7). To validate the approach, we 192 

randomly down-sampled each BMDM dataset to 10 million reads 100 times, using seqtk 193 

(https://github.com/lh3/seqtk, downloaded 29th November 2016) seeded with a random integer 194 

between 0 and 10,000 (Dataset S1). After performing an all-against-all correlation of the 100 sets of 195 

data, the average Spearman’s rho was > 0.96 (Table S8), with the absolute difference, per gene, 196 

between maximum and minimum expression level averaging approximately 8 TPM (Figure 2 and 197 

Table S9). 70-75% of the genes detectably expressed (TPM > 1) in at least one of the 100 random 198 

samples were detected in all 100 samples (Table S8). Conversely, <5% of the genes were detectable in 199 

<5% of the samples (Table S8). The detection of these genes was stochastic, as they were expressed at 200 

very low levels – on average, 1.3 TPM (Table S8). 201 

 202 

Biologically meaningful expression profiles are identified even after combining disparate RNA-seq 203 

datasets 204 

If a meta-analytic approach to RNA-seq is valid, subsets of transcripts enriched in a given tissue 205 

should have annotations functionally appropriate to that tissue. To test this, we calculated a 206 
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preferential expression measure (PEM) for each gene [65], essentially the median expression divided 207 

by the mean. We then obtained the set of Gene Ontology (GO) terms enriched in each subset of genes 208 

with the highest PEM associated with a particular tissue (Table S10) (see Materials and Methods). 209 

Consistent with the function of each tissue, the bursa of Fabricius (the site of B cell synthesis [66]) 210 

showed tissue-specificity for the expression of genes enriched for ‘defence response to bacterium’ (p = 211 

8.3x10-5), breast muscle for ‘striated muscle contraction’ (p = 1.9x10-6), cerebrum for ‘synaptic 212 

transmission’ (p = 1.5x10-4), claw epithelium for ‘bone mineralisation’ (p = 6.4x10-4), heart for both 213 

‘muscle contraction’ (p = 8.8x10-6) and ‘cellular respiration’ (p = 4.6x10-15), kidney for ‘oxidation-214 

reduction process’ (p = 5.3x10-5), pancreas for ‘proteolysis’ (p = 0.001), pituitary gland for ‘endocrine 215 

system development’ (p = 2x10-4), retina for ‘visual perception’ (p = 7.2x10-17), spleen for ‘immune 216 

response’ (p = 2.2x10-6), and trachea for ‘cilium morphogenesis’ (p < 1x10-30) (Table S10). 217 

In an all-against-all correlation matrix (Pearson’s r) (Table S11), the expression profiles of like tissues 218 

were correlated regardless of their BioProject of origin (Table S12). A sample-to-sample network 219 

graph also demonstrates that samples of the same or related tissues cluster together (Figure 3). Taken 220 

together, these results validate the aggregation of data from multiple sources to create an informative 221 

expression atlas. 222 

 223 

Signals of co-expression allow for informative functional annotation 224 

Network analysis of the meta-dataset was performed using Miru, a commercial version of BioLayout 225 

Express3D [67, 68], previously applied to pig [26], sheep [27] and mouse [28] microarray datasets and 226 

CAGE data from the FANTOM5 consortium [24, 25]. A Pearson’s correlation matrix for each gene-227 

to-gene comparison was visualised as a network graph of 18,127 nodes (genes) linked by 632,038 228 

edges (correlations above a certain threshold; in this case, r = 0.8). Clusters of interconnected nodes 229 

represent sets of genes that share a signal of co-expression. These clusters were identified by applying 230 
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the Markov clustering (MCL) algorithm [69] to the network graph, at an inflation value (which 231 

determines cluster granularity) of 2.2. The contents of each cluster are given in Table S13. 232 

Many of the co-expression clusters comprised genes with a tissue- or process-specific expression 233 

profile. Table S14 summarises the highest PEM value for a tissue in each of the clusters with >25 234 

members. Cluster 2 was largely brain-specific: of the 655 genes in this cluster, 281 (43%) had their 235 

highest PEM in the hypothalamus, 155 (24%) had their highest PEM in the cerebrum and 115 (18%) 236 

had their highest PEM in the cerebellum. Other clusters contained genes with expression enriched in 237 

liver (cluster 6), ovary (cluster 7), trachea (cluster 8), testis (cluster 10), retina (clusters 13 and 24), 238 

feather epithelium (cluster 14), breast muscle (cluster 16), kidney (cluster 17), pituitary gland (clusters 239 

19 and 25), Campylobacter-infected caecal tonsils (cluster 20), spleen (clusters 21 and 22) and adipose 240 

(cluster 23). 241 

The tissues in some of these clusters were represented by multiple independent projects combined in 242 

this meta-atlas. For instance, cluster 6 comprises genes that were enriched in the liver, with data from 243 

three separate BioProjects. Some variation in expression estimates between these independent liver 244 

samples did not affect their inclusion in the same co-expression cluster. Furthermore, the GO terms 245 

enriched in each cluster are functionally consistent with its observed tissue-specificity (Table S15). 246 

Some clusters were associated with processes shared by multiple tissues. The largest cluster, cluster 1, 247 

was enriched in embryo-derived samples, and the GO terms are associated strongly with the cell 248 

division cycle and DNA repair (Table S15). The genes within this list include the key transcriptional 249 

regulator, FOXM1, and multiple cyclins (CCNA2/B2B3/C/E1/F and J), and overlap substantially with 250 

cell cycle-associated lists derived from previous cluster analysis [2, 70]. 251 

We used the ‘guilt by association’ principle to contextualise individual gene annotations – obtained by 252 

protein-level alignment and of varying quality (see Materials and Methods) – as there is an a priori 253 

expectation that by virtue of being co-expressed, the genes within a given cluster have related (that is, 254 
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tissue- or process-specific) functions. In this respect, we can increase confidence in otherwise lower-255 

quality alignments. Some examples and proposed annotations are summarised in Table S13. 256 

The co-expression profile is especially informative for clusters with few known genes. For instance, 257 

cluster 14 contains 210 genes expressed largely in the feather epithelium (Table S13). 93% of the 258 

genes within this cluster are unannotated, with only 14 genes having a known function (Table 1). 259 

Collectively, the functions of these genes are biologically consistent with an epithelium-enriched 260 

expression profile. Of the 196 unannotated genes, 86% can be aligned to feather keratins (representing 261 

86 of the 96 genes with only an Ensembl ID and 83 of the 100 genes with only an NCBI RefSeq ID) 262 

(Table S13). Other unannotated genes include paralogues of existing genes in the cluster 263 

(ENSGALG00000004358 shares homology with AMZ1, ENSGALG00000029002 with XG and 264 

LOC428538 with SDR16C5), probable members of the keratin-associated protein family, which have 265 

essential roles in hair shaft formation [71] (ENSGALG00000018878, ENSGALG00000044257, 266 

LOC101751162, LOC101751279, LOC107055127, LOC107055128 and LOC107055130), a gene 267 

with homology to the tight junction protein claudin 4 (ENSGALG00000035131) [72], and several 268 

transcripts with homology to uricases (LOC101747367, LOC107056676 and LOC107056678), 269 

enzymes which degrade uric acid (the end point of purine metabolism) [73], notable because purines 270 

act as pigments in avian feathers [74]. 271 

 272 

Annotation of co-expression clusters associated with innate and acquired immunity and 273 

macrophage biology 274 

The most prominent set of genes co-expressed in macrophages was cluster 4 (n = 458 genes; 129 275 

[28%] are unannotated), in which > 60% of the genes have their highest PEM for BMDMs 24 hours 276 

post-LPS stimulation (Figure 4 and Table S14). This cluster is internally validated by the presence of 277 

transcripts encoding numerous known myeloid effectors/receptors (e.g. C3AR1, CCR2, CD40, CYBB, 278 

CLEC5A, DCSTAMP, NLRC5, METRK, MYD88, TLR4), lysosomal components (e.g. CTSB, LAMP1, 279 
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M6PR) and multiple transcription factors (BATF3, CEBPB, IRF1, NFE2L2, NRR1H3 [also known as 280 

LXRA], SPI1 [also known as PU.1], STAT1, TFEC) that are also macrophage-enriched in mouse and 281 

human [75]. Their co-expression strongly indicates that basic macrophage transcriptional regulation is 282 

conserved between birds and mammals. Accordingly, the provisional annotations of genes that lack an 283 

informative name in this cluster, shown in Table S13, are given extra weight by their association. 284 

Other macrophage clusters include cluster 34 (n = 93 genes; 72 [77%] are unannotated) and cluster 37 285 

(n = 79 genes; 16 [20%] are unannotated), in both of which the majority of genes had their highest 286 

PEM for the HD11 immortalised macrophage cell line (from BioProject PRJEB1406): 98% and 90%, 287 

respectively (Table S14). The smallest macrophage-specific cluster was cluster 84 (n = 26 genes; 19 288 

[73%] are unannotated), in which every gene had its highest PEM for BMDMs treated with CSF1 289 

(from BioProject PRJEB7662) (Table S14). 290 

The CSF1R gene was contained within cluster 27 (n = 129 genes, of which 32 [25%] are unannotated), 291 

which had an expression profile shared by both dendritic cells and macrophages. 36% of the genes in 292 

cluster 27 had their highest PEM for dendritic cells and 26% for untreated BMDMs (both samples 293 

from BioProject PRJEB7475), with the remaining 26% for BMDMs treated with CSF1 (from 294 

BioProject PRJEB7662) (Table S14). This cluster also contained the lipopolysaccharide receptor and 295 

commonly used monocyte marker, CD14, several genes (C1QA/B/C, MARCO, P2RY12/13, and 296 

STAB1) that are associated with tissue-specific macrophage populations in mice [76], and a single 297 

myeloid-associated transcription factor, MAFB, which is required for tissue macrophage development 298 

in mice [77]. The cells referred to as dendritic cells are bone marrow cells grown in GM-CSF (CSF2), 299 

rather than CSF1. As noted in previous analyses of mouse [78] and human [79] transcriptomes, cells 300 

differentiated in GM-CSF have much more in common with macrophages than with classical dendritic 301 

cells dependent upon FLT3-ligand. 302 

The clusters associated with the acquired immune response, predominantly B and T cells, are 303 

somewhat smaller and poorly-annotated (clusters 20, 21, 22, 29 and 78). Cluster 21, expressed most 304 
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highly in spleen, contains TIMD4 (ENSGALG00000003876), which promotes T-cell expansion and 305 

survival [80], and is enriched with B cell-associated genes, including the B cell transcription factors 306 

BATF, IRF4, PAX5, RUNX3, and SPIC, as well as the class II trans-activator CIITA, class II subunit 307 

CD74 and the class II MHC gene BLB2. The thymus-enriched cluster 29 contains CD4, the 308 

recombination activating genes RAG1 and RAG2, and the T cell transcription factors LEF1, RORC and 309 

TCF7. 310 

 311 

Integrating gene expression and protein-protein interaction networks 312 

Biological systems can be functionally organised into many different (and intersecting) 313 

networks based on the nature of their interaction, including – aside from gene co-expression 314 

networks – metabolic/biochemical networks, signal transduction networks, regulatory 315 

networks, and protein-protein interaction (PPI) networks [81]. Data from different networks 316 

can be integrated: for instance, subunits of the same protein complex are known to be co-317 

expressed [82], with those genes present in both a co-expression and PPI network having a 318 

high probability of performing similar functions [83]. We therefore determined the set of 319 

genes present in both the same co-expression cluster and a PPI network (Table S16), 320 

obtaining chicken PPI data by mapping human PPIs to orthologous chicken genes (see 321 

Materials and Methods). The PPI and co-expression data are mutually supportive. For 322 

example, there were 32 PPIs among the genes in the macrophage-specific cluster 4. These 323 

include STAT1 (signal transducer and activator of transcription 1-alpha/beta) – a critical 324 

mediator of the pro-inflammatory response of macrophages to LPS [84] – and the 325 

transcription factors ATF3, a known inducer of STAT1 [85], and SPI1/PU.1, which is 326 

essential for macrophage differentiation [86]. Also in the network are the tyrosine kinase 327 

LYN, which is activated alongside STAT1 in response to IL5 (a key mediator of eosinophil 328 

activation [87]), and the adaptor protein GRB2, which facilitates the activation of ERK by 329 
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tyrosine kinases [88] (ERK signalling is essential to macrophage development [89]). In 330 

addition, the network contained SOCS3, a negative regulator of cytokine signalling that 331 

inhibits the nuclear translocation of STAT1 in response to IFN stimulation [90], with this 332 

stimulation a key constituent of classical macrophage activation [91]. 333 

 334 

Integrating gene expression and promoter expression networks 335 

Relatively few RNA-seq datasets were available for chicken embryonic development.  Lizio 336 

et al. [53] have recently analysed the time course of chicken development using Cap Analysis 337 

of Gene Expression (CAGE).  Their dataset complements a CAGE-based analysis of gene 338 

expression in multiple tissues of the mouse during embryonic development [92].  Network 339 

analysis of the mouse dataset revealed a signature of the expansion of the tissue macrophage 340 

populations during embryonic development, and the inverse relationship between cell 341 

proliferation and tissue-specific differentiation in each organ [93]. Analysis of a macrophage-342 

specific transgene in birds revealed that, as in mammals, macrophages are first produced by 343 

the yolk sac, progressively infiltrate the embryo and expand in number to become a major 344 

cell population in every organ [33, 94]. The expression atlas we have developed provides a 345 

complementary resource for adult tissues and includes a time course of embryonic 346 

development. By combining the atlas with the CAGE data, it would be possible to infer the 347 

developmental time course of organ systems in the chicken. We obtained the chicken CAGE 348 

data of Lizio et al. [53] and clustered the promoter-based expression levels in the same 349 

manner as for the RNA-seq atlas. Figure 5 shows the resulting network graph, and the 350 

average expression profiles of a subset of clusters. Table S17 provides a full list of promoters 351 

in each of the co-expression clusters and their average expression profiles. As discussed by 352 

Lizio, et al., the embryonic CAGE data identify transcription start sites for many tissue-353 

specific and regulated genes, including developmental regulators such as brachyury. The 354 
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intersection of the CAGE and RNA-seq clusters is presented in Table S18. Not surprisingly, 355 

the largest promoter cluster overlapped substantially with cluster 1 in the RNA-seq atlas 356 

which was embryo-enriched in expression. It contained numerous developmental regulators, 357 

anabolic/cell cycle, and mitochondria-associated genes with an average profile of down-358 

regulation during development (Figure 5). Aside from the whole embryo profiles, the CAGE 359 

data contains several additional samples, including bone marrow-derived mesenchymal stem 360 

cells (MSC), aortic smooth muscle cells (ASMC), hepatocytes, extra-embryonic tissues and 361 

both leg and wing buds. Each of the samples was enriched for specific promoters that also 362 

varied during development and accordingly defined clusters. Clusters 2 and 10 of the CAGE 363 

data were enriched in MSC and ASMC, and contained many mesenchyme-associated genes 364 

including multiple collagens and other connective tissue-associated transcripts. CAGE 365 

clusters 4 and 9 were hepatocyte-enriched and most likely track the development of the liver 366 

during development. Cluster 4, shown in Figure 5, contains the transcription factor HNF1A, 367 

and many of the transcripts within it encode secreted proteins such as complement 368 

components and clotting factors. CAGE cluster 5 (Figure 5) contains the muscle-specific 369 

transcription factors MYOD1, MYOG and SOX2, and numerous skeletal muscle-associated 370 

genes in common with cluster 16 from the RNA-seq atlas, and increases in expression 371 

throughout development. The transcripts within cluster 5 are not expressed in the aortic 372 

smooth muscle cells. CAGE clusters 7, 16, 18 and 19 contained transcripts that were 373 

expressed transiently at different stages of embryonic development, including multiple 374 

members of the HOX and CDX families. CAGE clusters 8 and 25 both contained promoters 375 

of multiple genes that are expressed specifically in macrophages in the RNA-seq atlas 376 

(clusters 4 and 27). The average expression profiles are shown in Figure 5, with 377 

representative genes indicated. The macrophage-specific transcription factor SPI1, and most 378 

other macrophage-enriched genes within CAGE clusters 8 and 25, fall within the larger 379 
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macrophage-associated clusters (4, 27 and 31) within the RNA-seq atlas. Interestingly, 380 

CAGE cluster 25 appears to be enriched for genes expressed specifically in brain 381 

macrophages (microglia), including CSF1R, C1QA, C1QB, C1QC, CTSS, DOCK2, HAVCR1 382 

LAPTM5, LY86, MPEG1, and P2RY13 [95], which in mice appear to develop from yolk sac 383 

progenitors rather than definitive haematopoiesis [96]. Several other microglia/macrophage-384 

associated transcripts, notably CX3CR1, P2RY12, TIMD4, and TREM2, are detectable in the 385 

CAGE data at the same embryonic stage, but did not cluster because their expression differs 386 

in the cell populations. In each of the macrophage-associated clusters, there were numerous 387 

promoters currently with uninformative annotation, which by inference are likely to be 388 

macrophage-related. Consistent with the location of CSF1R mRNA and the CSF1R-reporter 389 

gene in the chicken [33], CSF1R and SPI1 were both first detectable in the embryo at 390 

between HH12 and HH14 (day 2), and both increased in parallel during embryonic 391 

development. Figure 6 shows the ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of the 392 

chicken CSF1R locus, identifying the transcription start site downstream of the PDGFRB 393 

locus, and the time course of appearance of CSF1R transcripts in the embryo and their 394 

expression in isolated cells. The reason that CAGE clusters 8 and 25 genes separate in the 395 

dataset is that they were also detected at high levels in “mesenchymal stem cells” and to a 396 

varying extent in “hepatocytes” (Figure 5). In mice, macrophages were shown to be a major 397 

contaminant of bone marrow-derived osteoblast cell cultures [97]. Based upon this cluster 398 

analysis in the embryo (which reveals separate mesenchyme and hepatocyte-specific 399 

clusters), and the atlas data, where these genes were clearly macrophage-enriched, the 400 

expression of macrophage-associated genes is almost certainly a reflection of the presence of 401 

large numbers of macrophages in these cell populations. Indeed, the set of promoters active in 402 

“mesenchymal stem cells” was found to be enriched for binding sites for SPI1 and CEBPA, 403 
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transcription factors that can induce the transdifferentiation of lymphoid precursors into 404 

macrophages [98]. 405 

 406 

DISCUSSION 407 

RNA-seq is a multi-step process of reverse transcription, amplification, fragmentation, purification, 408 

adaptor ligation and sequencing, with each step subject to error [99]. Such laboratory-specific 409 

variation is also independent of intrinsic sequencing biases, which can influence the nucleotide 410 

composition of the reads [100] (leading to mismatches between the sequenced read and the original 411 

RNA fragment [101]), the GC content of the reads [102], and the sequencing error rate [11]. 412 

Despite all of these constraints, Figure 3 shows that in a sample-to-sample network graph of many 413 

independently sequenced tissues, the signal of co-expression clearly outweighs the noise. 414 

The critical step in reducing the noise, and making the datasets comparable, was to down-size the 415 

RNA-seq libraries so that the depth of coverage of the transcriptome was the same in each case. 416 

This has the effect of removing a great deal of the stochastic detection of more lowly-expressed 417 

transcripts. Figure 2 and Table S9 show that the random sampling used to down-size does not 418 

substantially alter the relative expression estimates of any two genes within any given sample, with 419 

equivalent expression profiles reconstructed for each of 100 random samples. Combined with the 420 

use of Kallisto to quantify expression, which maps a common depth of k-mers to a standardised 421 

reference transcriptome, the method we have developed effectively ensured that each RNA-seq 422 

library was exploring an equivalent transcriptomic space. 423 

The success of the aggregation of public domain data in terms of genome annotation is evident 424 

from the analysis of the membership of co-expression clusters in Table S13. Each cluster clearly 425 

contains genes of known function, shows evidence of very strong GO enrichment, and as noted in 426 

similar array-based studies [2, 26] commonly contains the transcription factors that regulate the 427 
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other members of the cluster. On that basis, it would be reasonable to provisionally assign the 428 

same GO terms to genes of unknown function, at least within the larger clusters. For example, the 429 

genes within cluster 1 that are not currently functionally annotated or assigned a clear orthologue 430 

are likely to be involved in some way in the cell cycle. Indeed, the provisional annotations of many 431 

of them shown in Table S13 indicate this is very likely to be the case. Similarly, the genes we have 432 

identified that were enriched in innate and acquired immune cells are likely to be associated with 433 

heritable variation in disease resistance/susceptibility. 434 

Detailed examination of individual clusters can provide significant biological insights. Cluster 8, 435 

enriched in trachea, and with the second highest expression in lung, was strongly enriched with 436 

GO terms associated with cilium, microtubule binding, motor activity and the actin cytoskeleton 437 

(Table S15), and includes, for example, multiple members of the cilia and flagella-associated 438 

protein (CFAP), dynein regulatory complex (DRC) and other dynein-related gene families. 439 

Mutations in many of these genes have been associated with human ciliopathies [103]. This cluster 440 

also contained the transcription factor FOXJ1, which is essential for the formation of motile cilia 441 

in mice [104]. Provisional annotations of genes of unknown function in this cluster are consistent 442 

with the overall enrichment for genes associated with motility. The presence of the epithelial 443 

transcription factors ELF5 and PAX9 in this cluster suggests both could have a role in regulation of 444 

this key gene set, providing a possible reason for the embryonic lethality of the knockouts of each 445 

gene [105, 106]. Interestingly, KIAA0586, which is also known as TALPID3, is in a separate 446 

smaller cluster – number 139 – that is more widely expressed. The TALPID3 protein encodes a 447 

centromeric component, and mutation affects the formation of primary, non-motile cilia and 448 

signaling by the morphogen sonic hedgehog [107, 108]. Many of the genes that are apparently co-449 

regulated with TALPID3 have been associated in some way with regulatory functions of primary 450 

cilia, including CEP120 which, like KIAA0596, is mutated in human Joubert syndrome [109]. 451 

Other members of the cluster may be candidate interactors with TALPID3. 452 
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The validity of the approach, and of the clusters generated, was established by comparing tissue- 453 

and function-specific clusters obtained by an alternate method of quantifying RNA expression 454 

levels, CAGE, using a public dataset of chicken embryo development. This showed that tissue-455 

specific developmental gene expression can be detected using whole embryos (as we have 456 

previously shown for mouse [93]), and that the genes in the developmental stage clusters matched 457 

those found in the adult tissue atlas. 458 

The clustering we have presented is based upon an arbitrary correlation threshold. For every gene 459 

of interest, it can be informative to identify its transcriptional companions. To this end, as we have 460 

done previously for human [2], pig [26], sheep [27] and mouse [28], we have made the current 461 

version of this atlas available as a searchable database using the gene annotation portal BioGPS 462 

[110] (http://www.biogps.org/chickenatlas), where one can utilise a simple “find correlated” 463 

function to identify genes with similar expression profiles. In turn, this resource allows a rapid 464 

comparative assessment of the expression of a gene of interest in mammals and birds and the 465 

extent to which functional information is likely to be transferable across species. 466 

The advantage of the aggregation method we have applied is that it is can be extended with new 467 

data from tissues and cell types we have not currently included. The larger the dataset, and the 468 

greater the transcriptional space sampled, the more stringent the correlations that will be generated 469 

and the more likely they are to produce new biological insights. 470 

 471 

MATERIALS AND METHODS 472 

Animals 473 

To obtain bone marrow-derived macrophages, nine chickens of approximately 8 weeks of age (3 474 

female and 3 male Ross 308 broilers, and 3 female CSF1R-MacApple transgenic NOVOgen Brown 475 

layers) were euthanized by cervical dislocation and confirmed dead by decapitation. Likewise were 476 

euthanized 23 broiler chickens, each 5 weeks of age, to obtain the caecal tonsils. All animal work was 477 
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conducted in accordance with guidelines of the Roslin Institute and the University of Edinburgh and 478 

carried out under the regulations of the Animals (Scientific Procedures) Act 1986. Approval was 479 

obtained from the Roslin Institute’s and the University of Edinburgh’s Protocols and Ethics 480 

Committees. 481 

 482 

Macrophage cell culture and RNA isolation 483 

Bone marrow-derived macrophage (BMDM) culture and challenge in vivo were performed as 484 

previously described [111]. Chicken bone marrow was cultured for 7 days with 350 ng/µl chicken 485 

CSF1 on Sterilin plastic to differentiate BMDMs. Adherent cells were then transferred to tissue culture 486 

plastic and cells plated at 80% confluence. BMDMs were challenged with the addition of LPS at 100 487 

ng/ml to culture medium and then harvested after 0 (null condition), and 24 hours. Cells were 488 

harvested in TRIzol (15596018; Thermo Fisher Scientific) and extraction performed with the RNeasy 489 

Mini Kit (74106; Qiagen Hilden, Germany) according to manufacturer’s instructions. 490 

 491 

Collection of Campylobacter-infected caecal tonsils 492 

Birds were naturally exposed to Campylobacter spp. under commercial farm conditions. Caeca and 493 

caecal tonsil samples were collected in RNAlater (AM7021; Thermo Fisher Scientific, Waltham, 494 

USA). Campylobacter load in caeca was determined by selective culture as previously described 495 

[112]. Seven serial ten-fold dilutions of caecal content were prepared in phosphate-buffered saline and 496 

100 μl plated to mCCDA (modified cefoperazone-deoxycholate agar) supplemented with cefoperazone 497 

(32 mg/L) and amphotericin B (10 mg/L; Oxoid), followed by incubation for 48 hours under 498 

microaerophilic conditions (5% O2, 5% CO2, and 90% N2) at 41C. Dilutions were plated in duplicate 499 

and colonies with morphology typical of Campylobacter detected in all samples. RNA was extracted 500 

from the caecal tonsils using the RNeasy Mini Kit (74106; Qiagen Hilden, Germany) according to 501 

manufacturer’s instructions. As chickens were exposed naturally rather than being explicitly 502 
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challenged with Campylobacter, bacterial load varied considerably between individuals. Accordingly, 503 

tonsil samples were partitioned into two broad subsets: those from chickens whose caecum has high 504 

Campylobacter load (>= 10,000 CFU/g), and those with low Campylobacter load (< 10,000 CFU/g). 505 

 506 

RNA-sequencing 507 

For both BMDM and caecal tonsil samples, library preparation was performed by Edinburgh 508 

Genomics. Total RNA (for BMDMs) and mRNA (for caecal tonsils) was, in both cases, sequenced by 509 

Edinburgh Genomics at a depth of >40 million strand-specific 75bp paired-end reads per sample, using 510 

an Illumina HiSeq 4000. The raw data is deposited in the European Nucleotide Archive under 511 

accessions PRJEB22373 (BMDMs) and PRJEB22580 (caecal tonsils). 512 

 513 

Public RNA-seq datasets 514 

Publicly accessible datasets used in this study are described in Table S1. The meta-atlas aggregating 515 

these data details, per tissue, the associated NCBI BioProject and Sequence Read Archive (SRA) 516 

sample IDs (Table S6). All public datasets for this study are available via the SRA, a public repository 517 

for sequence data maintained by the International Nucleotide Sequence Database Collaboration 518 

(INSDC) and accessible from the websites of its constituent members: known as the SRA if via the 519 

National Center for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov/sra), the DRA (DDBJ 520 

Read Archive) if via the DNA Data Bank of Japan (DDBJ) (http://trace.ddbj.nig.ac.jp/dra/), and the 521 

European Nucleotide Archive (ENA) if via the European Bioinformatics Institute (EBI) 522 

(www.ebi.ac.uk/ena) [113]. For retrieving the raw files used in this study or for expanding this work 523 

with new datasets from novel tissues, note that data are directly accessible in fastq format from the 524 

ENA and DDBJ but only in a binary .sra format from the NCBI. Decompiling the latter into fastq files 525 

– using the fastq-dump tool within the SRA Toolkit 526 

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) – 527 
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is far slower than analysing fastq files with Kallisto, and so forms a bottleneck in the expression atlas 528 

creation pipeline. For this reason, obtaining fastq files in bulk from NCBI is not recommended unless 529 

necessary. 530 

 531 

Defining a reference transcriptome and quantifying expression 532 

Prior to expression level quantification, all RNA-seq datasets were randomly down-sampled to 10 533 

million reads using seqtk (https://github.com/lh3/seqtk, downloaded 29th November 2016) with 534 

parameter -s 100 (to seed the random number generator). Expression level was then estimated, as 535 

transcripts per million (TPM), using the high-speed quantification tool Kallisto v0.43.1 [60] and 536 

default parameters. For datasets comprising single-end reads, we used parameters -l 100 -s 10; 537 

estimates of the average fragment length and standard deviation of the fragment length, respectively. 538 

Kallisto quantifies expression at the transcript level by building an index of k-mers from a set of 539 

reference transcripts and then mapping the RNA-seq reads to it, matching k-mers generated from the 540 

reads with the k-mers present in the index. Transcript-level TPM estimates are then summarised to the 541 

gene level. A critical aspect of this method is in selecting an appropriate set of reference transcripts for 542 

which expression is quantified. An appropriate value of k for the index is also required because if k is 543 

too large relative to read length, there is a higher chance the k-mers of the reads will contain errors (as 544 

read quality decreases towards the 3’ end of reads [4]). If the reads generate erroneous k-mers, they 545 

will not match the k-mers of the index. We used a value of k = 21, which lies – approximately – 546 

between half the length of the shortest read and a third the length of the longest read. 547 

As a reference transcriptome, we obtained from Ensembl v89 the set of GalGal5 protein-coding 548 

transcripts, parsing the batch release (ftp://ftp.ensembl.org/pub/release-549 

89/fasta/gallus_gallus/cds/Gallus_gallus.Gallus_gallus-5.0.cds.all.fa.gz, accessed 21st June 2017) to 550 

retain only those transcripts with the ‘protein-coding’ biotype (n=28,768 transcripts, representing 551 

10,846 genes). To this was added the CDS of 28,466 NCBI mRNA RefSeqs that had neither been 552 
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assigned Ensembl transcript IDs, nor whose sequence was already present in the Ensembl release 553 

(under any other identifier). To reduce the likelihood of spurious read mapping, CDS < 300 bp were 554 

excluded from analysis. Erroneous expression level estimates are more likely when fewer possible 555 

reads can be derived from a gene, i.e. if the CDS is short [59]. While this approach arguably improves 556 

accuracy, it unavoidably excludes certain families, for instance the gallinacins [114], antimicrobial 557 

peptides known for their short chain lengths [115]. 558 

Although the Ensembl and NCBI sets of transcripts overlap, there are many unique entries in each. For 559 

example, RefSeqs XM_015294055 and XM_015294059 are both predicted transcripts of the 560 

macrophage-marker gene CD163 [116], although Ensembl refers to this gene only by the numerical ID 561 

‘418303’. RefSeq records beginning ‘XM’ are produced by the NCBI genome annotation pipeline and 562 

can lack transcript or protein homology support; by contrast, ‘NM’ records are validated [117]. 563 

Consequently, neither of the CD163 RefSeqs are assigned Ensembl transcript IDs, and so they are 564 

excluded from the Ensembl batch release. 565 

The RefSeq mRNA set also includes predictions of novel transcript sequences for existing Ensembl 566 

genes. For instance, the chicken BF1 gene (classical MHC class 1; Ensembl gene ID 567 

ENSGALG00000033932) has 7 transcripts (Ensembl v89), encoding proteins of length 228, 323, 345, 568 

346, 350, 354 and 360 amino acids (aa). However, BF1 has only 3 associated mRNA RefSeqs, 1 569 

validated and 2 predicted: NM_001044683, XM_015294995, and XM_015294996. These RefSeqs do 570 

not necessarily encode different proteins to those present in Ensembl – rather, the RefSeq mRNAs 571 

incorporate untranslated regions (UTRs) and so can encapsulate Ensembl CDS. For instance, the 572 

validated RefSeq mRNA NM_001044683 encodes the same 360aa protein as Ensembl CDS 573 

ENSGALT00000066783 (i.e. the same transcript model is independently available from both 574 

resources), but the RefSeq nucleotide sequence extends 17 bases upstream (the 5’ UTR) and 146 bases 575 

downstream (the 3’ UTR) of the coding ORF. By contrast, XM_015294995 encodes a putative 356aa 576 

peptide (XP_015150481) and XM_015294996 a 349aa peptide (XP_015150482), neither of which are 577 
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available from Ensembl. As the XM_015294996 mRNA – an automated prediction – fully 578 

incorporates ENSGALT00000086848 (the CDS encoding the 228aa BF1 protein), we considered the 579 

sequence better supported by the Ensembl model, as Ensembl takes a conservative approach to 580 

annotation [118], and the predicted peptide spurious. By contrast, the XM_015294995 mRNA does 581 

not contain any existing Ensembl CDS and so encodes a protein absent from Ensembl. 582 

Overall, we retained RefSeq ‘XM’ mRNAs only if they can be assigned to a gene not yet present in 583 

the Ensembl annotation, or, if that gene is present, they do not incorporate a CDS from any of that 584 

gene’s Ensembl transcript models. UTRs were trimmed from each RefSeq mRNA by excluding all 585 

sequence outside the longest ORF. This combined set of Ensembl and RefSeq transcripts constitutes a 586 

standardised RNA space against which expression can be quantified, as in [59]. 587 

After quantifying expression with this initial transcriptome, a revised transcriptome was created, 588 

excluding those transcripts whose average TPM was < 1 in all tissues (Table S5), or which were only 589 

detectable in one tissue (as these may be artefacts of differential sequencing depth). Tissues whose 590 

distribution of TPM estimates does not comply with Zipf’s law (see below) were not counted. The 591 

revised transcriptome contains 28,276 Ensembl transcripts (representing 10,826 Ensembl genes) and 592 

26,694 NCBI transcripts (which account for only 4665 existing Ensembl genes). 593 

 594 

Compliance of RNA-seq datasets with Zipf’s law 595 

In a correctly prepared RNA-seq dataset, a minority of reads will produce the majority of reads and so 596 

its distribution of gene-level TPM estimates should comply, to a reasonable approximation, with 597 

Zipf’s law (which states that the probability of an observation is inversely proportional to its rank). A 598 

custom Perl script was used to identify, per sample, the number of unique TPM values and the number 599 

of genes with a TPM at or exceeding this level. After excluding, for robustness, data from the first and 600 

last order of magnitude (as in [119]) and all values of TPM < 5 (which have a higher likelihood of 601 

transcriptional noise), the data was log-transformed and a linear regression model fitted using R v3.2.0 602 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295535doi: bioRxiv preprint 

https://doi.org/10.1101/295535
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

[120]. Samples whose exponents deviated too greatly from -1 (by ± 20%, i.e. if the exponent is < -0.8 603 

or > -1.2) were considered erroneous. 604 

 605 

Tissue specificity 606 

For each gene, we calculated a preferential expression measure (PEM) in a manner similar to [65]. 607 

PEM relates the average expression of that gene in a given tissue to the average expression of that 608 

gene in all tissues. For each gene i, then for tissue ti, PEM(ti) = S-A, where S = expression of gene i in 609 

tissue ti, and A = arithmetic mean expression of gene i across the set of all tissues. Prior to calculation, 610 

all TPM values < 1 were considered to be 1, and a log2-transformation applied. This is to ensure that 611 

genes with expression indistinguishable from noise (TPM < 1) will have a PEM of 0. Each gene will 612 

have a distribution of PEM values, one for each tissue in the meta-datasets. Genes with higher PEM 613 

values for a given tissue are more tissue-specific in their expression profile. 614 

 615 

Gene Ontology (GO) term enrichment 616 

GO term enrichment was assessed using the R package topGO [121], which utilises the ‘weight’ 617 

algorithm to account for the nested structure of the GO tree [122]. topGO requires a reference set of 618 

GO terms, which was built manually from the GalGal5 set (obtained from Ensembl BioMart v89 619 

[123]) and filtered to remove those terms with evidence codes NAS (non-traceable author statement) 620 

or ND (no biological data available), and those assigned to fewer than 10 genes in total. Significantly 621 

enriched GO terms (p < 0.05) are reported only if the observed number per tissue exceeds the expected 622 

by 2-fold or greater. 623 

 624 

Gene annotation 625 

Unannotated genes in GalGal5 – those with only an Ensembl placeholder ID, rather than an HGNC 626 

name – are annotated by reference to the NCBI non-redundant (nr) peptide database v77 [124], with 627 
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each annotation assigned a quality category of 1 to 8 (highest to lowest quality, respectively), as 628 

previously described [27]. For each unannotated gene, we took the longest encoded peptide and 629 

obtained the set of blastp alignments [125] against NCBI nr, at a scoring threshold of p <= 1e-25. These 630 

alignments are a set of possible gene descriptions, of which only one can be selected as the annotation 631 

of that gene. The lowest quality category, 8, is the blastp hit with the lowest E-value. All subsequent 632 

quality categories require higher-quality hits, which: (a) have a % identity within the aligned region of 633 

>= 90%, (b) have an alignment length >= 90% of the length of the query protein, (c) have an 634 

alignment length >= 50 amino acids, (d) have no gaps, and (e) are not to a protein labelled either ‘low 635 

quality’, ‘hypothetical’, ‘unnamed’, ‘uncharacterized’ or ‘putative’, or otherwise having a third-party 636 

annotation (as these can be by inference and not experiment). Quality category 7 is the best-scoring 637 

(i.e. lowest E-value) of these higher quality hits. Category 6 is as above, but with at least one 638 

identifiable hit to the human proteome. Category 5 requires that the set of alignments span at least 4 639 

different genera (excluding Gallus). At this point, if >= 75% of the alignments have the same 640 

description, the gene is named for the associated HGNC name (according to 641 

ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/locus_types/gene_with_protein_product.txt, 642 

downloaded 24th August 2016). However, as NCBI nr aggregates multiple sources of data, gene 643 

descriptions have numerous synonyms and so it is not always possible to automatically assign an 644 

HGNC symbol. The highest quality categories, 1 to 4, not only meet the above criteria but have 645 

degrees of reciprocal % identity to the human proteome. The highest quality category, 1, is if there is 646 

also a near-perfect match to an existing, related, peptide (alignment length >= 90% of the length of a 647 

human protein). Other quality categories, in descending order, are: 2 (alignment length >= 75% of the 648 

length of a human protein), 3 (>= 50%), and 4 (< 50%). Human protein sequences were obtained from 649 

genebuild GRCh38.p8 650 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000001405.34_GRCh38.p8/GCF_000001405.34_GRCh651 

38.p8_protein.faa.gz, downloaded 30th August 2016). 652 
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 653 

Network analysis 654 

Network analysis was performed using Miru (Kajeka Ltd, Edinburgh, UK), a commercial version of 655 

BioLayout Express3D [67, 68]. Miru determines the similarities between individual expression profiles 656 

by building a correlation matrix for both gene-to-gene and sample-to-sample comparisons. This matrix 657 

is then filtered to remove all correlations below a certain threshold (for the gene-to-gene comparison in 658 

the RNA-seq atlas, Pearson’s r < 0.8). A network graph is constructed by connecting nodes (genes) 659 

with edges (correlations above the threshold), and its local structure interpreted by applying the 660 

Markov clustering (MCL) algorithm [69] at an inflation value (which determines cluster granularity) 661 

of 2.2. 662 

 663 

Protein-protein interactions 664 

Protein-protein interaction data was obtained from the IID (Integrated Interactions Database) 665 

version 2017-04 (http://iid.ophid.utoronto.ca/iid, accessed 25th July 2017) [126], a resource 666 

which combines computationally predicted PPIs with experimentally determined PPIs drawn 667 

from multiple databases. These include BIND (Biomolecular Interaction Network Database) 668 

[127], BioGRID (Biological General Repository for Interaction Datasets) [128], DIP 669 

(Database of Interacting Proteins) [129], HPRD (Human Protein Reference Database) [130], 670 

IntAct [131], I2D (Interologous Interaction Database) [132], InnateDB [133] and MINT 671 

(Molecular Interaction Database) [134]. The format of the PPI data is as a list of UniProt IDs, 672 

with one of three evidence types for the interaction: ‘exp’ (experimentally determined in this 673 

species), ‘pred’ (an in silico prediction from one of four previous studies [135-138]) and 674 

‘ortho’ (predicted by mapping experimentally determined PPIs from another species to 675 

orthologous protein pairs in this species). As chicken PPI data is unavailable, we obtained 676 

human PPIs from the IID, and considered only those PPIs that (a) involve genes that each 677 
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have a one-to-one orthologue to the chicken with an orthology confidence score of 1 (using 678 

data from Ensembl Compara [139], a score of 1 indicates compliance with the gene tree), a 679 

reciprocal % gene identity of >= 75%, a whole genome alignment score of >= 75%, and a 680 

gene order conservation score of >= 75% (indicating a high degree of contiguity around the 681 

gene of interest), (b) have UniProt IDs that are unambiguously assigned to only one human 682 

gene ID (and thereby only one orthologous chicken gene ID), and (c) have PPI evidence type 683 

‘exp’ or ‘pred’. 684 

 685 

Availability of datasets 686 

To test whether down-sampling quantitatively alters the expression profile of an RNA-seq dataset, we 687 

randomly down-sampled each of the 18 BMDM datasets (+/- LPS) to 10 million reads 100 times, 688 

using seqtk seeded with a random integer between 0 and 10,000. These sets of expression estimates 689 

are available as Dataset S1, hosted on the University of Edinburgh DataShare portal 690 

(http://dx.doi.org/10.7488/ds/2137). The meta-atlas of chicken gene expression is available in full as 691 

Table S6 and via the cross-species annotation portal BioGPS 692 

(http://biogps.org/dataset/BDS_00031/chicken-atlas/). To compare genes between species and to 693 

visualise expression profiles, BioGPS requires that each gene have an Entrez ID, although this is not 694 

the case for all genes in GalGal5. The expression profiles of those genes without Entrez IDs can be 695 

found in Table S6. 696 

 697 

Analysis of chicken developmental samples 698 

The expression data derived from CAGE [53] were obtained from 699 

http://fantom.gsc.riken.jp/5/suppl/Lizio_et_al_2017/data; the expression file is named 700 

galGal5.cage_peak_tpm.osc.txt.gz and the annotation file galGal5.cage_peak_ann.txt. The annotation 701 

and expression files were emerged based on chromosomal location of the promoter. All promoters 702 
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where no sample exceeded 10 tags per million (tagsPM) were excluded from the analysis. The 703 

expression data were then entered into Miru (as described above), using a correlation coefficient 704 

threshold of 0.75. 22,839 nodes joined by 5,035,102 edges were entered into the analysis and clustered 705 

with an MCL inflation value of 2.2, resulting in 132 clusters of at least 10 nodes. 706 
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FIGURES 1224 

 1225 

 1226 

Figure 1. Reverse cumulative distribution of the number of genes that have at least a given TPM. Both 1227 

axes are logarithmic. Each line represents data from an individual SRA sample ID, quantified using 1228 

the first iteration Kallisto transcriptome (i.e. a non-redundant set of Ensembl protein-coding CDS plus 1229 

trimmed RefSeq mRNAs). Samples are not otherwise distinguished as in general, most relationships 1230 

approximate the same power-law: a minority of genes account for the majority of reads. These 1231 

relationships are piecewise linear because the capture of lowly expressed genes is noisy, an artefact of 1232 

random transcriptome sampling. The vertical red line denotes TPM = 5. At higher values of TPM, the 1233 
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majority of samples have a log-linear relationship. Those that do not are erroneous, and are excluded 1234 

from subsequent analysis. Exponents of each sample’s log-log plot are given in Table S3. 1235 

 1236 

 1237 

Figure 2. Randomly down-sampling RNA-seq reads has minimal impact on the overall expression 1238 

profile, primarily affecting expression level estimates of lowly expressed genes. Data shown is from 1239 

one dataset – unchallenged BMDMs from an adult female broiler (Ross 308) – although with 1240 

quantitatively similar findings from other samples. The figure plots the average TPM per gene, taken 1241 

after 100 random samples of 10 million reads, against the TPM obtained in each sample. The line y = x 1242 

is shown in red. 1243 
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 1244 

Figure 3. 2D representation of a sample-to-sample network graph, plotting Spearman’s correlations 1245 

between expression profiles. The graph was built using an RNA-seq meta-dataset with each sample 1246 

distinct by tissue, developmental stage and BioProject of origin, and expression level per gene per 1247 

sample averaged (where possible) across all replicates of that sample (dataset available as Table S6). 1248 

Each node (circle) in the graph represents a sample, and each edge (line) a correlation exceeding a 1249 

threshold (rho ≥ 0.82). The graph contains 82 nodes, connected by 243 edges. Selected nodes are 1250 

labelled. Overall, like tissues tend to correlate more strongly with like, irrespective of BioProject of 1251 

origin. Certain coloured nodes indicate tissues independently sequenced by multiple BioProjects 1252 

(listed in Table S2), including liver (red), spleen (yellow), lung (orange), adipose (pink), caecal tonsil 1253 

(light blue) and muscle (green). There are two notable idiosyncrasies: one of the four lung samples is 1254 
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comparatively dissimilar to the others of its group, as is one of the three caecal tonsil samples. In the 1255 

latter case, however, the two most closely correlated caecal tonsil samples are those infected with 1256 

Campylobacter. Consistent with this, these samples cluster more closely with immune cells and 1257 

tissues. The third caecal tonsil sample belongs to a healthy chicken. 1258 

 1259 

Figure 4. Expression profile of the macrophage-specific cluster 4. Histogram shows the average 1260 

expression level of the 458 genes in the cluster, where expression level per gene is calculated as the 1261 

median TPM across all replicates, per BioProject, per tissue. The expression level dataset is available 1262 

as Table S6. 1263 

 1264 
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 1265 

Figure 5. The panel on the left shows the clustered nodes for the main element in the layout graph 1266 

(upper section). Nodes allocated to the same cluster are the same colour. The panel on the right shows 1267 

the average expression profiles for five clusters highlighting the different phases of chick embryo 1268 

development, and key genes for each cluster are shown in the boxes. The layout of these clusters 1269 

within the main element is shown in the lower part of the left panel. Node colour matches the colour of 1270 

the bars on the histograms. The X-axis shows the different samples (blue – embryo developmental 1271 

time course from 1.5 hours to day 20 after fertilisation (HH45); green – extraembryonic tissues; 1272 

yellow – limb buds; orange – hepatocytes; red – bone marrow derived mesenchymal stem cells; dark 1273 
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red – aortic smooth muscle cells. Full detail of the samples can be found in Lizio, et al. [53]. Y axis 1274 

shows average TPM for TSS in the cluster for each sample. 1275 

 1276 

 1277 

Figure 6. ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of the chicken CSF1R locus, identifying 1278 

the transcription start site downstream of the PDGFRB locus (A), and the time course of appearance of 1279 

CSF1R transcripts in the embryo and their expression in isolated cells (B). 1280 

  1281 
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TABLES 1282 

Table 1. Genes in cluster 14 with known function. 1283 

Gene symbol Gene name Protein function References 

AMZ1 archaemetzincin 1 metalloprotease, possibly involved in tissue remodelling to form feather follicles [140, 141] 

ANKK1 

(PKK2) 

ankyrin repeat and 

kinase domain 

containing 1 

interacts with keratin filaments [142] 

AREG amphiregulin epithelial growth factor [143] 

CLDN9 claudin 9 tight junction membrane protein found in all epithelia  [144] 

DLX4 homeobox protein 

DLX4 

homeobox protein that regulates epithelial-mesenchymal interactions [145] 

EDMTF4 

 

 

 

EDMTFH 

epidermal 

differentiation protein 

starting with MTF 

motif 4 

epidermal 

differentiation protein 

starting with MTF and 

rich in histidine 

markers of the feather barbule and members of the epidermal differentiation complex; 

this has a role in integumentary development, including feather pigmentation 

[146-148] 

FK21 feather keratin 21 feather keratins  
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FK27 feather keratin 27 

PNPLA4 patatin-like 

phospholipase 

domain-containing 

protein 4 

enzyme with a role in retinol metabolism (retinol and related compounds regulate 

epithelial cell growth and differentiation) 

[149, 150] 

RAB38 Ras-related protein 

RAB38 

GTPase involved in melanosome biogenesis and epithelial pigmentation [151, 152] 

RASSF10 Ras association 

domain family 

member 10 

tumour suppressor that mediates the epithelial-mesenchymal transition [153] 

SDR16C5 

(RDH-E2) 

epidermal retinol 

dehydrogenase 2 

overexpressed in psoriatic human skin [154] 

XG Xg blood group blood group antigen [155] 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295535doi: bioRxiv preprint 

https://doi.org/10.1101/295535
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

SUPPLEMENTAL MATERIAL 1284 

 1285 

Dataset S1. Expression level estimates generated after randomly down-sampling the BMDM (+/- LPS) 1286 

datasets to 10 million reads 100 times. 1287 

 1288 

Table S1. Data sources for creating an RNA-seq meta-atlas. 1289 

Table S2. Independent datasets sequencing the same tissue/cell type. 1290 

Table S3. Exponents of the log-log plots after plotting the reverse cumulative distribution of TPM per 1291 

gene on a log-log scale. 1292 

Table S4. Number of genes with detectable expression, per tissue, after the first iteration of Kallisto. 1293 

Table S5. Transcripts not detectably expressed (at > 1 TPM) in any tissue, after the first iteration of 1294 

Kallisto. 1295 

Table S6. Chicken RNA-seq meta-dataset, after the second (and final) iteration of Kallisto. 1296 

Table S7. Proportion of RNA-seq reads retained by down-sampling the LPS-stimulated BMDM 1297 

datasets. 1298 

Table S8. Number of detectably expressed genes after randomly down-sampling the LPS-stimulated 1299 

BMDM datasets. 1300 

Table S9. Range of expression estimates, and absolute difference between largest and smallest 1301 

estimate, after randomly down-sampling the LPS-stimulated BMDM datasets. 1302 

Table S10. GO term enrichment for those subsets of genes whose highest PEM is for a given tissue. 1303 

Table S11. All-against-all correlation matrix for each tissue in the meta-dataset. 1304 

Table S12. Tissues whose expression vectors are most strongly correlated with each other. 1305 

Table S13. Clusters of co-expressed genes (obtained via network analysis of the RNA-seq meta-1306 

dataset), including candidate gene names for unannotated GalGal5 protein-coding genes. 1307 

Table S14. Proportion of genes in each co-expression cluster whose highest PEM is for a given tissue. 1308 
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Table S15. GO term enrichment for co-expression clusters containing >= 100 genes. 1309 

Table S16. Correlation of expression profiles for genes with a known protein-protein interaction. 1310 

Table S17. Clusters of co-expressed CAGE tags, obtained via network analysis of the Lizio, et al. 1311 

dataset [53]. 1312 

Table S18. Comparison of co-expression clusters between the RNA-seq atlas and the Lizio, et al. 1313 

CAGE dataset [53]. 1314 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295535doi: bioRxiv preprint 

https://doi.org/10.1101/295535
http://creativecommons.org/licenses/by-nc-nd/4.0/

