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ABSTRACT

Background

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also
an important livestock species. We describe a novel approach to data integration to generate an mRNA
expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse

range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.

Results

Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a
reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets
explored comparable transcriptomic space. The network analysis tool Miru was used to extract clusters
of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type
restricted, contained transcription factors that have previously been implicated in their regulation, or
were otherwise associated with biological processes, such as the cell cycle. The atlas provides a
resource for the functional annotation of genes that currently have only a locus ID. We cross-
referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression
(CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of

the expansion of tissue macrophage populations during development.

Conclusion

Expression profiles obtained from public RNA-seq datasets — despite being generated by
different laboratories using different methodologies — can be made comparable to each other.
This meta-analytic approach to RNA-seq can be extended with new datasets from novel

tissues, and is applicable to any species.
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INTRODUCTION

Aggregation and meta-analysis of multiple large gene expression datasets based upon common
microarray platforms is relatively commonplace in many species (e.g. [1-3]). Although RNA-seq is
rapidly supplanting microarrays for gene expression profiling, it is not yet clear whether data from
multiple different labs can be analysed together in an informative manner. Confounding variables
reflect the many technical — and bias-prone — aspects of library preparation and sequencing (see
reviews [4, 5]), with RNA-seq datasets often differing in read length [6], depth of coverage [7], strand
specificity [8], RNA extraction and library selection methods [9], sequencing platform [10, 11] and the
choice to sequence single- or paired-end reads [12]. For a given dataset, these variables can together
affect both the number and type of genes detectable and the accuracy of their expression level
estimates. Expression quantification is also affected by sample quality [13] and storage method [14],
irrespective of sequencing technique: RNA degrades with lengthier post-mortem intervals [15] (the
extent of which is tissue-dependent [16]) with degradation resulting in inaccurate quantification,
particularly for shorter transcripts [17]. Sequencing composite biological structures (those with
internal structures that have distinct functions), whether intentionally or inadvertently, can mask the
signal of structure-specific differential expression [18]. Despite these variables, meta-analysis
combining mammalian gene expression datasets [19-21] suggests that RNA-seq datasets are generally
robust to inter-study variation, with the expression profiles of homologous tissues clustering more
closely with each other than with different samples from the same study or species [22].

Expression atlases are valuable resources for functional genomics. Groups of transcripts — members of
which will have similar expression profiles — can be associated with a shared function, such as a
particular pathway or biological process. This principle is known as ‘guilt by association’ [23] and has
previously been used to annotate genes of unknown function in human [2, 24, 25], pig [26], sheep [27]
and mouse [28, 29] datasets. Co-expression information is also informative in genome-wide

association studies (GWAS) of complex traits and disease susceptibility. The simple principle, that
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genes involved in the same trait or phenotype tend to be expressed in the same cell type or tissue, or
otherwise participate in the same pathway, has been confirmed in multiple datasets [28, 30].
Because of the ease of access in ovo, the chicken (Gallus gallus) embryo has been widely used as a
model system in cell and developmental biology, constrained only by methods for genomic
manipulation in situ, or in the germ line. These constraints were largely overcome through the
sequencing of the genome, and technological developments such as in vivo electroporation, more
than 15 years ago [31, 32]. More recent innovations including the generation of reporter transgenes
[33] and genome editing via primordial germ cells [34-36] have transformed the utility of the
chicken as a model organism. However, the current genome build still has many unannotated or
minimally annotated genes about which very little is known [28]. Of the 18,347 protein-coding
genes in version GalGal5 of the chicken genome in Ensembl89, 7275 (40%) have only been
assigned an Ensembl placeholder ID.

The domestic chicken is also a major source of animal protein worldwide, with different lines
heavily selected for optimal production traits such as increased egg production or rapid

weight gain. The molecular basis for these traits is increasingly being associated with

genomic loci through genome-wide association studies based upon high density SNP

platforms [37]. Both the application of the chick as a model organism, and for candidate gene
analysis in genomic intervals associated with trait variation, would be expedited by

improvements in functional genome annotation. In particular, it would be useful to identify

the sets of protein-coding genes that share transcriptional regulation between the chick and

the mouse, the most widely-studied mammalian model organism. For this purpose, we aimed

to generate a comprehensive atlas of MRNA expression for the chicken.

With the removal of antibiotics from the food chain and threats from emerging diseases, there is
also interest in the selection of birds with increased disease resistance and/or resilience [38]. To

support this activity, we were particularly interested in identifying and annotating genes expressed
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specifically at high levels in cells of the innate immune system. Such gene sets have been identified

in previous studies of human [2, 24, 25], pig [26], sheep [27] and mouse [28].

The current version of the chicken assembly was largely derived from high-throughput (i.e.
comparatively cheap but imprecise) short read sequencing and primarily contains protein-coding

gene models. The recent use of long-read — PacBio SMRT Iso-Seq — data has demonstrated that the
transcriptomic complexity of chickens is comparable to humans, with many additional IncRNA
models (among others) scheduled for inclusion in future Ensembl annotations [39].

To identify the set of genes expressed in innate immune cells in both unchallenged and activated
conditions, we generated pure cultures of bone marrow-derived macrophages (BMDMs) grown in the
presence of recombinant chicken macrophage colony-stimulating factor (CSF1), and stimulated them
with the archetypal microbial agonist, lipopolysaccharide (LPS) [40]. To complement the data
generated from macrophages in vitro, we also obtained RNA-seq libraries from the caecal tonsils of
birds infected with Campylobacter, as well as from previous studies of macrophage, dendritic cell and
heterophil populations. A global expression atlas for the chicken transcriptome was created by
combining our immune-related data with 20 publicly archived RNA-seq datasets. Some were collated
by the Avian RNA-seq Consortium [41], while others are drawn from a diverse range of existing
publications, including studies that characterised the genetic basis of retinogenesis [42], the genetic
determinants of meat tenderness [43], the morphological diversity of skin appendages [44], visceral fat
metabolism [45], the transition between laying and brooding phases [46], the effect of heat stress upon
pituitary development [47] and spleen function [48], the pathways involved in avian influenza
resistance [49], the role of INcCRNAs in the development of muscle [50], liver and adipose [51], and the
transcriptional landscape of MRNA editing [52]. In total, 279 RNA-seq libraries were obtained,
representing 48 distinct tissue and cell types at developmental stages spanning early embryonic (5
days) to mature adult (70 weeks post-hatching). In addition, we accessed a recently published

transcriptional analysis of chick development generated by Cap Analysis of Gene Expression (CAGE)
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[53], a technique which can be used to quantify gene expression based on the transcript start site [54].
We show that the ‘guilt by association’ approach to functional annotation is viable even when
combining disparate RNA-seq datasets, and utilise the meta-dataset to identify macrophage-specific
and other informative co-expression clusters, providing a resource for genetic and genomic study of

avian trait variation.

RESULTS

Selecting samples for inclusion in an RNA-seq meta-dataset

Many chicken RNA-seq datasets are available in public repositories, as detailed in [41]. Robust co-
expression clustering of any two genes depends upon sampling tissues and cells in which both vary
across the widest possible range. To maximise the co-expression signal, we chose datasets to represent
the greatest possible diversity of tissues and organ systems. Not all studies contain links to a publicly
archived dataset, such as a study of induced ochratoxicosis in the kidney cortex [55] and two studies of
the bursa of Fabricius [56, 57]. Samples containing less than 10 million reads were not used, such as
those from a study of the follicular transcriptome throughout the ovulation cycle [58].

Datasets used are detailed in Table S1, and have few commonalities: they were sequenced using a
variety of Illumina instruments (HiSeq 2000/2500/3000/4000, Genome Analyzer 11/11x, NextSeq 500
and HiScanSQ), and include single- and paired-end, strand-specific and non-specific, polyA-selected
(mRNA-seq) and rRNA-depleted (total RNA-seq) libraries at different read lengths and depths. For 12
tissues, independently sequenced RNA-seq datasets for the same tissue (Table S2) also allow for
internal tests of the validity of aggregating the data. Throughout this text studies are referred to by

their NCBI BioProject ID.

Quantifying expression by iteratively revising a reference transcriptome
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Expression was quantified — as transcripts per million (TPM) — using an RNA-seq processing pipeline
[59] which iteratively runs the quantification tool Kallisto [60] with each iteration using an
incrementally revised transcriptome. Kallisto requires that the user provide a set of transcripts, which
are decomposed into k-mers. The expression of each transcript is quantified by matching this set of k-
mers to the k-mers of the reads. For the first iteration of Kallisto, a non-redundant transcriptome
(57,234 transcripts, representing 17,680 Ensembl protein-coding genes) was obtained by combining
Ensembl transcript models with NCBI mRNA RefSeqs (see Materials and Methods).

The output was first parsed for library quality. The reverse cumulative distribution of TPM per gene
was plotted on a log-log scale (Figure 1). The distributions generally approximate a power-law with an
exponent of approximately -1 (Table S3), consistent with Zipf’s law (that the probability of an
observation is inversely proportional to its rank) [61, 62]. Four samples with exponents < -0.8 or > -
1.2, i.e. deviating > 20% from the optimal value of -1 — were excluded from further analysis (i.e. the
next iteration of Kallisto) (Table S3). Using only data from the useable samples, we created a revised
reference transcriptome. During the first iteration of Kallisto, 55,027 of 57,234 transcripts (96%) were
detectably expressed (average TPM > 1 in at least one tissue, where the average is the median TPM
across all replicates, per BioProject, of that tissue), representing 17,313 Ensembl protein-coding genes
(Table S4). After excluding 2207 transcripts with TPM < 1 in all tissues (Table S5) and those
detectable only in the 4 excluded samples (n = 57), a revised transcriptome was generated containing
54,970 transcripts. For the second iteration of Kallisto, expression was re-quantified using this revised
transcriptome, creating a final set of gene-level TPM estimates. The overall meta-dataset provides
gene-level expression for 23,864 gene models (both Ensembl and NCBI) as median TPM across all
replicates, per BioProject, per tissue (Table S6). Of these gene models, 43% (10,090) were

unannotated, having only either an Ensembl placeholder ID or an NCBI locus ID.

Randomly down-sampling RNA-seq datasets does not quantitatively alter their expression profiles
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182  Higher resolution expression profiles are dependent upon higher sequencing depths [63] with

183  diminishing returns — after approximately 10 million reads — on the power to detect genes

184  differentially expressed between conditions [64]. For the purpose of functional annotation, it is more
185  important to minimise variation between samples than to comprehensively capture transcripts.

186  Accordingly, all datasets were randomly down-sampled to exactly 10 million reads before

187  quantification.

188  To ensure the resulting co-expression signals are reproducible, it is necessary to establish that there are
189  no significant differences in expression profiles introduced by sampling. For instance, the LPS-

190  stimulated BMDM datasets were sequenced at depths of 37.5 to 52.6 million reads, such that when
191  down-sampling, the BMDM expression profile as quantified for the meta-dataset was obtained using
192  approximately one fifth to one quarter of the original reads (Table S7). To validate the approach, we
193  randomly down-sampled each BMDM dataset to 10 million reads 100 times, using seqtk

194  (https://github.com/Ih3/seqtk, downloaded 29" November 2016) seeded with a random integer

195  between 0 and 10,000 (Dataset S1). After performing an all-against-all correlation of the 100 sets of
196  data, the average Spearman’s rho was > 0.96 (Table S8), with the absolute difference, per gene,

197  between maximum and minimum expression level averaging approximately 8 TPM (Figure 2 and

198  Table S9). 70-75% of the genes detectably expressed (TPM > 1) in at least one of the 100 random

199  samples were detected in all 100 samples (Table S8). Conversely, <5% of the genes were detectable in
200 <5% of the samples (Table S8). The detection of these genes was stochastic, as they were expressed at
201 very low levels — on average, 1.3 TPM (Table S8).

202

203  Biologically meaningful expression profiles are identified even after combining disparate RNA-seq
204  datasets

205 If a meta-analytic approach to RNA-seq is valid, subsets of transcripts enriched in a given tissue

206  should have annotations functionally appropriate to that tissue. To test this, we calculated a
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207  preferential expression measure (PEM) for each gene [65], essentially the median expression divided
208 by the mean. We then obtained the set of Gene Ontology (GO) terms enriched in each subset of genes
209  with the highest PEM associated with a particular tissue (Table S10) (see Materials and Methods).
210  Consistent with the function of each tissue, the bursa of Fabricius (the site of B cell synthesis [66])
211 showed tissue-specificity for the expression of genes enriched for ‘defence response to bacterium’ (p =
212 8.3x107), breast muscle for ‘striated muscle contraction’ (p = 1.9x10), cerebrum for ‘synaptic

213 transmission’ (p = 1.5x10%), claw epithelium for ‘bone mineralisation’ (p = 6.4x107#), heart for both
214 ‘muscle contraction’ (p = 8.8x10°) and ‘cellular respiration’ (p = 4.6x10°), kidney for ‘oxidation-
215  reduction process’ (p = 5.3x10°), pancreas for ‘proteolysis’ (p = 0.001), pituitary gland for ‘endocrine
216  system development’ (p = 2x10%), retina for “visual perception’ (p = 7.2x1071), spleen for ‘immune
217  response’ (p = 2.2x107), and trachea for ‘cilium morphogenesis’ (p < 1x10°%°) (Table S10).

218 In an all-against-all correlation matrix (Pearson’s r) (Table S11), the expression profiles of like tissues
219  were correlated regardless of their BioProject of origin (Table S12). A sample-to-sample network

220 graph also demonstrates that samples of the same or related tissues cluster together (Figure 3). Taken
221  together, these results validate the aggregation of data from multiple sources to create an informative
222 expression atlas.

223

224  Signals of co-expression allow for informative functional annotation

225  Network analysis of the meta-dataset was performed using Miru, a commercial version of BioLayout
226 Express®P[67, 68], previously applied to pig [26], sheep [27] and mouse [28] microarray datasets and
227  CAGE data from the FANTOMDS consortium [24, 25]. A Pearson’s correlation matrix for each gene-
228  to-gene comparison was visualised as a network graph of 18,127 nodes (genes) linked by 632,038

229  edges (correlations above a certain threshold; in this case, r = 0.8). Clusters of interconnected nodes

230  represent sets of genes that share a signal of co-expression. These clusters were identified by applying

10
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the Markov clustering (MCL) algorithm [69] to the network graph, at an inflation value (which
determines cluster granularity) of 2.2. The contents of each cluster are given in Table S13.

Many of the co-expression clusters comprised genes with a tissue- or process-specific expression
profile. Table S14 summarises the highest PEM value for a tissue in each of the clusters with >25
members. Cluster 2 was largely brain-specific: of the 655 genes in this cluster, 281 (43%) had their
highest PEM in the hypothalamus, 155 (24%) had their highest PEM in the cerebrum and 115 (18%)
had their highest PEM in the cerebellum. Other clusters contained genes with expression enriched in
liver (cluster 6), ovary (cluster 7), trachea (cluster 8), testis (cluster 10), retina (clusters 13 and 24),
feather epithelium (cluster 14), breast muscle (cluster 16), kidney (cluster 17), pituitary gland (clusters
19 and 25), Campylobacter-infected caecal tonsils (cluster 20), spleen (clusters 21 and 22) and adipose
(cluster 23).

The tissues in some of these clusters were represented by multiple independent projects combined in
this meta-atlas. For instance, cluster 6 comprises genes that were enriched in the liver, with data from
three separate BioProjects. Some variation in expression estimates between these independent liver
samples did not affect their inclusion in the same co-expression cluster. Furthermore, the GO terms
enriched in each cluster are functionally consistent with its observed tissue-specificity (Table S15).
Some clusters were associated with processes shared by multiple tissues. The largest cluster, cluster 1,
was enriched in embryo-derived samples, and the GO terms are associated strongly with the cell
division cycle and DNA repair (Table S15). The genes within this list include the key transcriptional
regulator, FOXML1, and multiple cyclins (CCNA2/B2B3/C/EL1/F and J), and overlap substantially with
cell cycle-associated lists derived from previous cluster analysis [2, 70].

We used the ‘guilt by association’ principle to contextualise individual gene annotations — obtained by
protein-level alignment and of varying quality (see Materials and Methods) — as there is an a priori

expectation that by virtue of being co-expressed, the genes within a given cluster have related (that is,

11
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tissue- or process-specific) functions. In this respect, we can increase confidence in otherwise lower-
quality alignments. Some examples and proposed annotations are summarised in Table S13.

The co-expression profile is especially informative for clusters with few known genes. For instance,
cluster 14 contains 210 genes expressed largely in the feather epithelium (Table S13). 93% of the
genes within this cluster are unannotated, with only 14 genes having a known function (Table 1).
Collectively, the functions of these genes are biologically consistent with an epithelium-enriched
expression profile. Of the 196 unannotated genes, 86% can be aligned to feather keratins (representing
86 of the 96 genes with only an Ensembl ID and 83 of the 100 genes with only an NCBI RefSeq ID)
(Table S13). Other unannotated genes include paralogues of existing genes in the cluster
(ENSGALG00000004358 shares homology with AMZ1, ENSGALG00000029002 with XG and
LOC428538 with SDR16C5), probable members of the keratin-associated protein family, which have
essential roles in hair shaft formation [71] (ENSGALG00000018878, ENSGALG00000044257,
LOC101751162, LOC101751279, LOC107055127, LOC107055128 and LOC107055130), a gene
with homology to the tight junction protein claudin 4 (ENSGALGO00000035131) [72], and several
transcripts with homology to uricases (LOC101747367, LOC107056676 and LOC107056678),
enzymes which degrade uric acid (the end point of purine metabolism) [73], notable because purines

act as pigments in avian feathers [74].

Annotation of co-expression clusters associated with innate and acquired immunity and
macrophage biology

The most prominent set of genes co-expressed in macrophages was cluster 4 (n = 458 genes; 129
[28%] are unannotated), in which > 60% of the genes have their highest PEM for BMDMSs 24 hours
post-LPS stimulation (Figure 4 and Table S14). This cluster is internally validated by the presence of
transcripts encoding numerous known myeloid effectors/receptors (e.g. C3AR1, CCR2, CD40, CYBB,

CLECS5A, DCSTAMP, NLRC5, METRK, MYD88, TLR4), lysosomal components (e.g. CTSB, LAMP1,

12
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280  MG6PR) and multiple transcription factors (BATF3, CEBPB, IRF1, NFE2L2, NRR1H3 [also known as
281  LXRA], SPI1 [also known as PU.1], STAT1, TFEC) that are also macrophage-enriched in mouse and
282  human [75]. Their co-expression strongly indicates that basic macrophage transcriptional regulation is
283  conserved between birds and mammals. Accordingly, the provisional annotations of genes that lack an
284  informative name in this cluster, shown in Table S13, are given extra weight by their association.

285  Other macrophage clusters include cluster 34 (n = 93 genes; 72 [77%] are unannotated) and cluster 37
286  (n =79 genes; 16 [20%] are unannotated), in both of which the majority of genes had their highest
287  PEM for the HD11 immortalised macrophage cell line (from BioProject PRIEB1406): 98% and 90%,
288  respectively (Table S14). The smallest macrophage-specific cluster was cluster 84 (n = 26 genes; 19
289  [73%] are unannotated), in which every gene had its highest PEM for BMDMs treated with CSF1

290 (from BioProject PRIEB7662) (Table S14).

291  The CSF1R gene was contained within cluster 27 (n = 129 genes, of which 32 [25%] are unannotated),
292  which had an expression profile shared by both dendritic cells and macrophages. 36% of the genes in
293  cluster 27 had their highest PEM for dendritic cells and 26% for untreated BMDMs (both samples

294  from BioProject PRIEB7475), with the remaining 26% for BMDMs treated with CSF1 (from

295  BioProject PRIEB7662) (Table S14). This cluster also contained the lipopolysaccharide receptor and
296 commonly used monocyte marker, CD14, several genes (C1QA/B/C, MARCO, P2RY12/13, and

297  STABLI) that are associated with tissue-specific macrophage populations in mice [76], and a single

298  myeloid-associated transcription factor, MAFB, which is required for tissue macrophage development
299 inmice [77]. The cells referred to as dendritic cells are bone marrow cells grown in GM-CSF (CSF2),
300 rather than CSF1. As noted in previous analyses of mouse [78] and human [79] transcriptomes, cells
301 differentiated in GM-CSF have much more in common with macrophages than with classical dendritic
302  cells dependent upon FLT3-ligand.

303  The clusters associated with the acquired immune response, predominantly B and T cells, are

304 somewhat smaller and poorly-annotated (clusters 20, 21, 22, 29 and 78). Cluster 21, expressed most
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highly in spleen, contains TIMD4 (ENSGALG00000003876), which promotes T-cell expansion and
survival [80], and is enriched with B cell-associated genes, including the B cell transcription factors
BATF, IRF4, PAX5, RUNX3, and SPIC, as well as the class I trans-activator CIITA, class Il subunit
CD74 and the class Il MHC gene BLB2. The thymus-enriched cluster 29 contains CD4, the
recombination activating genes RAG1 and RAG2, and the T cell transcription factors LEF1, RORC and

TCF7.

Integrating gene expression and protein-protein interaction networks

Biological systems can be functionally organised into many different (and intersecting)
networks based on the nature of their interaction, including — aside from gene co-expression
networks — metabolic/biochemical networks, signal transduction networks, regulatory
networks, and protein-protein interaction (PPI) networks [81]. Data from different networks
can be integrated: for instance, subunits of the same protein complex are known to be co-
expressed [82], with those genes present in both a co-expression and PPI network having a
high probability of performing similar functions [83]. We therefore determined the set of
genes present in both the same co-expression cluster and a PP1 network (Table S16),
obtaining chicken PPI data by mapping human PPIs to orthologous chicken genes (see
Materials and Methods). The PPI and co-expression data are mutually supportive. For
example, there were 32 PPIs among the genes in the macrophage-specific cluster 4. These
include STAT1 (signal transducer and activator of transcription 1-alpha/beta) — a critical
mediator of the pro-inflammatory response of macrophages to LPS [84] — and the
transcription factors ATF3, a known inducer of STAT1 [85], and SPI1/PU.1, which is
essential for macrophage differentiation [86]. Also in the network are the tyrosine kinase
LYN, which is activated alongside STATL in response to IL5 (a key mediator of eosinophil

activation [87]), and the adaptor protein GRB2, which facilitates the activation of ERK by
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330 tyrosine kinases [88] (ERK signalling is essential to macrophage development [89]). In
331  addition, the network contained SOCS3, a negative regulator of cytokine signalling that
332 inhibits the nuclear translocation of STAT1 in response to IFN stimulation [90], with this
333  stimulation a key constituent of classical macrophage activation [91].

334

335 Integrating gene expression and promoter expression networks

336  Relatively few RNA-seq datasets were available for chicken embryonic development. Lizio
337 etal. [53] have recently analysed the time course of chicken development using Cap Analysis
338  of Gene Expression (CAGE). Their dataset complements a CAGE-based analysis of gene
339  expression in multiple tissues of the mouse during embryonic development [92]. Network
340 analysis of the mouse dataset revealed a signature of the expansion of the tissue macrophage
341  populations during embryonic development, and the inverse relationship between cell

342  proliferation and tissue-specific differentiation in each organ [93]. Analysis of a macrophage-
343  specific transgene in birds revealed that, as in mammals, macrophages are first produced by
344  the yolk sac, progressively infiltrate the embryo and expand in number to become a major
345  cell population in every organ [33, 94]. The expression atlas we have developed provides a
346  complementary resource for adult tissues and includes a time course of embryonic

347  development. By combining the atlas with the CAGE data, it would be possible to infer the
348  developmental time course of organ systems in the chicken. We obtained the chicken CAGE
349  data of Lizio et al. [53] and clustered the promoter-based expression levels in the same

350  manner as for the RNA-seq atlas. Figure 5 shows the resulting network graph, and the

351  average expression profiles of a subset of clusters. Table S17 provides a full list of promoters
352 ineach of the co-expression clusters and their average expression profiles. As discussed by
353  Lizio, et al., the embryonic CAGE data identify transcription start sites for many tissue-

354  specific and regulated genes, including developmental regulators such as brachyury. The
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intersection of the CAGE and RNA-seq clusters is presented in Table S18. Not surprisingly,
the largest promoter cluster overlapped substantially with cluster 1 in the RNA-seq atlas
which was embryo-enriched in expression. It contained numerous developmental regulators,
anabolic/cell cycle, and mitochondria-associated genes with an average profile of down-
regulation during development (Figure 5). Aside from the whole embryo profiles, the CAGE
data contains several additional samples, including bone marrow-derived mesenchymal stem
cells (MSC), aortic smooth muscle cells (ASMC), hepatocytes, extra-embryonic tissues and
both leg and wing buds. Each of the samples was enriched for specific promoters that also
varied during development and accordingly defined clusters. Clusters 2 and 10 of the CAGE
data were enriched in MSC and ASMC, and contained many mesenchyme-associated genes
including multiple collagens and other connective tissue-associated transcripts. CAGE
clusters 4 and 9 were hepatocyte-enriched and most likely track the development of the liver
during development. Cluster 4, shown in Figure 5, contains the transcription factor HNF1A,
and many of the transcripts within it encode secreted proteins such as complement
components and clotting factors. CAGE cluster 5 (Figure 5) contains the muscle-specific
transcription factors MYOD1, MYOG and SOX2, and numerous skeletal muscle-associated
genes in common with cluster 16 from the RNA-seq atlas, and increases in expression
throughout development. The transcripts within cluster 5 are not expressed in the aortic
smooth muscle cells. CAGE clusters 7, 16, 18 and 19 contained transcripts that were
expressed transiently at different stages of embryonic development, including multiple
members of the HOX and CDX families. CAGE clusters 8 and 25 both contained promoters
of multiple genes that are expressed specifically in macrophages in the RNA-seq atlas
(clusters 4 and 27). The average expression profiles are shown in Figure 5, with
representative genes indicated. The macrophage-specific transcription factor SP11, and most

other macrophage-enriched genes within CAGE clusters 8 and 25, fall within the larger
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macrophage-associated clusters (4, 27 and 31) within the RNA-seq atlas. Interestingly,
CAGE cluster 25 appears to be enriched for genes expressed specifically in brain
macrophages (microglia), including CSF1R, C1QA, C1QB, C1QC, CTSS, DOCK2, HAVCR1
LAPTM5, LY86, MPEGL, and P2RY13 [95], which in mice appear to develop from yolk sac
progenitors rather than definitive haematopoiesis [96]. Several other microglia/macrophage-
associated transcripts, notably CX3CR1, P2RY12, TIMD4, and TREM2, are detectable in the
CAGE data at the same embryonic stage, but did not cluster because their expression differs
in the cell populations. In each of the macrophage-associated clusters, there were numerous
promoters currently with uninformative annotation, which by inference are likely to be
macrophage-related. Consistent with the location of CSF1R mRNA and the CSF1R-reporter
gene in the chicken [33], CSF1R and SPI1 were both first detectable in the embryo at
between HH12 and HH14 (day 2), and both increased in parallel during embryonic
development. Figure 6 shows the ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of the
chicken CSF1R locus, identifying the transcription start site downstream of the PDGFRB
locus, and the time course of appearance of CSF1R transcripts in the embryo and their
expression in isolated cells. The reason that CAGE clusters 8 and 25 genes separate in the
dataset is that they were also detected at high levels in “mesenchymal stem cells” and to a
varying extent in “hepatocytes” (Figure 5). In mice, macrophages were shown to be a major
contaminant of bone marrow-derived osteoblast cell cultures [97]. Based upon this cluster
analysis in the embryo (which reveals separate mesenchyme and hepatocyte-specific
clusters), and the atlas data, where these genes were clearly macrophage-enriched, the
expression of macrophage-associated genes is almost certainly a reflection of the presence of
large numbers of macrophages in these cell populations. Indeed, the set of promoters active in

“mesenchymal stem cells” was found to be enriched for binding sites for SPI11 and CEBPA,
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transcription factors that can induce the transdifferentiation of lymphoid precursors into

macrophages [98].

DISCUSSION

RNA-seq is a multi-step process of reverse transcription, amplification, fragmentation, purification,
adaptor ligation and sequencing, with each step subject to error [99]. Such laboratory-specific
variation is also independent of intrinsic sequencing biases, which can influence the nucleotide
composition of the reads [100] (leading to mismatches between the sequenced read and the original
RNA fragment [101]), the GC content of the reads [102], and the sequencing error rate [11].
Despite all of these constraints, Figure 3 shows that in a sample-to-sample network graph of many
independently sequenced tissues, the signal of co-expression clearly outweighs the noise.

The critical step in reducing the noise, and making the datasets comparable, was to down-size the
RNA-seq libraries so that the depth of coverage of the transcriptome was the same in each case.
This has the effect of removing a great deal of the stochastic detection of more lowly-expressed
transcripts. Figure 2 and Table S9 show that the random sampling used to down-size does not
substantially alter the relative expression estimates of any two genes within any given sample, with
equivalent expression profiles reconstructed for each of 100 random samples. Combined with the
use of Kallisto to quantify expression, which maps a common depth of k-mers to a standardised
reference transcriptome, the method we have developed effectively ensured that each RNA-seq
library was exploring an equivalent transcriptomic space.

The success of the aggregation of public domain data in terms of genome annotation is evident
from the analysis of the membership of co-expression clusters in Table S13. Each cluster clearly
contains genes of known function, shows evidence of very strong GO enrichment, and as noted in

similar array-based studies [2, 26] commonly contains the transcription factors that regulate the
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428  other members of the cluster. On that basis, it would be reasonable to provisionally assign the
429  same GO terms to genes of unknown function, at least within the larger clusters. For example, the
430  genes within cluster 1 that are not currently functionally annotated or assigned a clear orthologue
431  are likely to be involved in some way in the cell cycle. Indeed, the provisional annotations of many
432  of them shown in Table S13 indicate this is very likely to be the case. Similarly, the genes we have
433  identified that were enriched in innate and acquired immune cells are likely to be associated with
434  heritable variation in disease resistance/susceptibility.

435  Detailed examination of individual clusters can provide significant biological insights. Cluster 8,
436  enriched in trachea, and with the second highest expression in lung, was strongly enriched with
437 GO terms associated with cilium, microtubule binding, motor activity and the actin cytoskeleton
438  (Table S15), and includes, for example, multiple members of the cilia and flagella-associated
439  protein (CFAP), dynein regulatory complex (DRC) and other dynein-related gene families.
440  Mutations in many of these genes have been associated with human ciliopathies [103]. This cluster
441  also contained the transcription factor FOXJ1, which is essential for the formation of motile cilia
442  in mice [104]. Provisional annotations of genes of unknown function in this cluster are consistent
443  with the overall enrichment for genes associated with motility. The presence of the epithelial
444  transcription factors ELF5 and PAX9 in this cluster suggests both could have a role in regulation of
445  this key gene set, providing a possible reason for the embryonic lethality of the knockouts of each
446  gene [105, 106]. Interestingly, KIAA0586, which is also known as TALPID3, is in a separate
447  smaller cluster — number 139 — that is more widely expressed. The TALPID3 protein encodes a
448  centromeric component, and mutation affects the formation of primary, non-motile cilia and
449  signaling by the morphogen sonic hedgehog [107, 108]. Many of the genes that are apparently co-
450  regulated with TALPID3 have been associated in some way with regulatory functions of primary
451  cilia, including CEP120 which, like KIAA0596, is mutated in human Joubert syndrome [109].

452  Other members of the cluster may be candidate interactors with TALPID3.
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453  The validity of the approach, and of the clusters generated, was established by comparing tissue-
454  and function-specific clusters obtained by an alternate method of quantifying RNA expression
455  levels, CAGE, using a public dataset of chicken embryo development. This showed that tissue-
456  specific developmental gene expression can be detected using whole embryos (as we have
457  previously shown for mouse [93]), and that the genes in the developmental stage clusters matched
458  those found in the adult tissue atlas.

459  The clustering we have presented is based upon an arbitrary correlation threshold. For every gene
460  of interest, it can be informative to identify its transcriptional companions. To this end, as we have
461  done previously for human [2], pig [26], sheep [27] and mouse [28], we have made the current
462  version of this atlas available as a searchable database using the gene annotation portal BioGPS
463  [110] (http://www.biogps.org/chickenatlas), where one can utilise a simple “find correlated”
464  function to identify genes with similar expression profiles. In turn, this resource allows a rapid
465  comparative assessment of the expression of a gene of interest in mammals and birds and the
466  extent to which functional information is likely to be transferable across species.

467  The advantage of the aggregation method we have applied is that it is can be extended with new
468  data from tissues and cell types we have not currently included. The larger the dataset, and the
469  greater the transcriptional space sampled, the more stringent the correlations that will be generated
470  and the more likely they are to produce new biological insights.

471

472  MATERIALS AND METHODS

473 Animals

474  To obtain bone marrow-derived macrophages, nine chickens of approximately 8 weeks of age (3
475  female and 3 male Ross 308 broilers, and 3 female CSF1R-MacApple transgenic NOVOgen Brown
476 layers) were euthanized by cervical dislocation and confirmed dead by decapitation. Likewise were

477  euthanized 23 broiler chickens, each 5 weeks of age, to obtain the caecal tonsils. All animal work was
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conducted in accordance with guidelines of the Roslin Institute and the University of Edinburgh and
carried out under the regulations of the Animals (Scientific Procedures) Act 1986. Approval was
obtained from the Roslin Institute’s and the University of Edinburgh’s Protocols and Ethics

Committees.

Macrophage cell culture and RNA isolation

Bone marrow-derived macrophage (BMDM) culture and challenge in vivo were performed as
previously described [111]. Chicken bone marrow was cultured for 7 days with 350 ng/ul chicken
CSF1 on Sterilin plastic to differentiate BMDMs. Adherent cells were then transferred to tissue culture
plastic and cells plated at 80% confluence. BMDMs were challenged with the addition of LPS at 100
ng/ml to culture medium and then harvested after O (null condition), and 24 hours. Cells were
harvested in TRIzol® (15596018; Thermo Fisher Scientific) and extraction performed with the RNeasy

Mini Kit (74106; Qiagen Hilden, Germany) according to manufacturer’s instructions.

Collection of Campylobacter-infected caecal tonsils

Birds were naturally exposed to Campylobacter spp. under commercial farm conditions. Caeca and
caecal tonsil samples were collected in RNAlater (AM7021; Thermo Fisher Scientific, Waltham,
USA). Campylobacter load in caeca was determined by selective culture as previously described
[112]. Seven serial ten-fold dilutions of caecal content were prepared in phosphate-buffered saline and
100 pl plated to mCCDA (modified cefoperazone-deoxycholate agar) supplemented with cefoperazone
(32 mg/L) and amphotericin B (10 mg/L; Oxoid), followed by incubation for 48 hours under
microaerophilic conditions (5% O2, 5% CO2, and 90% N2) at 41C. Dilutions were plated in duplicate
and colonies with morphology typical of Campylobacter detected in all samples. RNA was extracted
from the caecal tonsils using the RNeasy Mini Kit (74106; Qiagen Hilden, Germany) according to

manufacturer’s instructions. As chickens were exposed naturally rather than being explicitly
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challenged with Campylobacter, bacterial load varied considerably between individuals. Accordingly,
tonsil samples were partitioned into two broad subsets: those from chickens whose caecum has high

Campylobacter load (>= 10,000 CFU/qg), and those with low Campylobacter load (< 10,000 CFU/g).

RNA-sequencing

For both BMDM and caecal tonsil samples, library preparation was performed by Edinburgh
Genomics. Total RNA (for BMDMs) and mRNA (for caecal tonsils) was, in both cases, sequenced by
Edinburgh Genomics at a depth of >40 million strand-specific 75bp paired-end reads per sample, using
an Illumina HiSeq 4000. The raw data is deposited in the European Nucleotide Archive under

accessions PRJEB22373 (BMDMs) and PRIJEB22580 (caecal tonsils).

Public RNA-seq datasets

Publicly accessible datasets used in this study are described in Table S1. The meta-atlas aggregating
these data details, per tissue, the associated NCBI BioProject and Sequence Read Archive (SRA)
sample IDs (Table S6). All public datasets for this study are available via the SRA, a public repository
for sequence data maintained by the International Nucleotide Sequence Database Collaboration
(INSDC) and accessible from the websites of its constituent members: known as the SRA if via the
National Center for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov/sra), the DRA (DDBJ
Read Archive) if via the DNA Data Bank of Japan (DDBJ) (http://trace.ddbj.nig.ac.jp/dra/), and the
European Nucleotide Archive (ENA) if via the European Bioinformatics Institute (EBI)
(www.ebi.ac.uk/ena) [113]. For retrieving the raw files used in this study or for expanding this work
with new datasets from novel tissues, note that data are directly accessible in fastq format from the
ENA and DDBJ but only in a binary .sra format from the NCBI. Decompiling the latter into fastq files
— using the fastg-dump tool within the SRA Toolkit

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) —
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is far slower than analysing fastq files with Kallisto, and so forms a bottleneck in the expression atlas
creation pipeline. For this reason, obtaining fastq files in bulk from NCBI is not recommended unless

necessary.

Defining a reference transcriptome and quantifying expression

Prior to expression level quantification, all RNA-seq datasets were randomly down-sampled to 10
million reads using seqtk (https://github.com/Ih3/seqtk, downloaded 29th November 2016) with
parameter -s 100 (to seed the random number generator). Expression level was then estimated, as
transcripts per million (TPM), using the high-speed quantification tool Kallisto v0.43.1 [60] and
default parameters. For datasets comprising single-end reads, we used parameters -1 100 -s 10;
estimates of the average fragment length and standard deviation of the fragment length, respectively.
Kallisto quantifies expression at the transcript level by building an index of k-mers from a set of
reference transcripts and then mapping the RNA-seq reads to it, matching k-mers generated from the
reads with the k-mers present in the index. Transcript-level TPM estimates are then summarised to the
gene level. A critical aspect of this method is in selecting an appropriate set of reference transcripts for
which expression is quantified. An appropriate value of k for the index is also required because if k is
too large relative to read length, there is a higher chance the k-mers of the reads will contain errors (as
read quality decreases towards the 3° end of reads [4]). If the reads generate erroneous k-mers, they
will not match the k-mers of the index. We used a value of k = 21, which lies — approximately —
between half the length of the shortest read and a third the length of the longest read.

As a reference transcriptome, we obtained from Ensembl v89 the set of GalGal5 protein-coding
transcripts, parsing the batch release (ftp://ftp.ensembl.org/pub/release-
89/fasta/gallus_gallus/cds/Gallus_gallus.Gallus_gallus-5.0.cds.all.fa.gz, accessed 21% June 2017) to
retain only those transcripts with the ‘protein-coding’ biotype (n=28,768 transcripts, representing

10,846 genes). To this was added the CDS of 28,466 NCBI mRNA RefSegs that had neither been
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553  assigned Ensembl transcript IDs, nor whose sequence was already present in the Ensembl release

554  (under any other identifier). To reduce the likelihood of spurious read mapping, CDS < 300 bp were
555  excluded from analysis. Erroneous expression level estimates are more likely when fewer possible

556  reads can be derived from a gene, i.e. if the CDS is short [59]. While this approach arguably improves
557  accuracy, it unavoidably excludes certain families, for instance the gallinacins [114], antimicrobial
558  peptides known for their short chain lengths [115].

559  Although the Ensembl and NCBI sets of transcripts overlap, there are many unique entries in each. For
560 example, RefSeqs XM _ 015294055 and XM 015294059 are both predicted transcripts of the

561  macrophage-marker gene CD163 [116], although Ensembl refers to this gene only by the numerical 1D
562  ‘418303’. RefSeq records beginning ‘XM’ are produced by the NCBI genome annotation pipeline and
563  can lack transcript or protein homology support; by contrast, ‘NM’ records are validated [117].

564  Consequently, neither of the CD163 RefSeqs are assigned Ensembl transcript 1Ds, and so they are

565  excluded from the Ensembl batch release.

566  The RefSeq mRNA set also includes predictions of novel transcript sequences for existing Ensembl
567  genes. For instance, the chicken BF1 gene (classical MHC class 1; Ensembl gene 1D

568 ENSGALG00000033932) has 7 transcripts (Ensembl v89), encoding proteins of length 228, 323, 345,
569 346, 350, 354 and 360 amino acids (aa). However, BF1 has only 3 associated mRNA RefSegs, 1

570 validated and 2 predicted: NM_001044683, XM_015294995, and XM_015294996. These RefSeqs do
571  not necessarily encode different proteins to those present in Ensembl — rather, the RefSeq mRNAs

572  incorporate untranslated regions (UTRSs) and so can encapsulate Ensembl CDS. For instance, the

573  validated RefSeq mRNA NM_001044683 encodes the same 360aa protein as Ensembl CDS

574 ENSGALTO00000066783 (i.e. the same transcript model is independently available from both

575  resources), but the RefSeq nucleotide sequence extends 17 bases upstream (the 5° UTR) and 146 bases
576  downstream (the 3’ UTR) of the coding ORF. By contrast, XM_015294995 encodes a putative 356aa

577  peptide (XP_015150481) and XM _015294996 a 349aa peptide (XP_015150482), neither of which are
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578 available from Ensembl. As the XM _015294996 mRNA — an automated prediction — fully

579  incorporates ENSGALT00000086848 (the CDS encoding the 228aa BF1 protein), we considered the
580  sequence better supported by the Ensembl model, as Ensembl takes a conservative approach to

581  annotation [118], and the predicted peptide spurious. By contrast, the XM 015294995 mRNA does
582  not contain any existing Ensembl CDS and so encodes a protein absent from Ensembl.

583  Overall, we retained RefSeq ‘XM’ mRNAs only if they can be assigned to a gene not yet present in
584  the Ensembl annotation, or, if that gene is present, they do not incorporate a CDS from any of that

585  gene’s Ensembl transcript models. UTRs were trimmed from each RefSeq mRNA by excluding all
586  sequence outside the longest ORF. This combined set of Ensembl and RefSeq transcripts constitutes a
587  standardised RNA space against which expression can be quantified, as in [59].

588  After quantifying expression with this initial transcriptome, a revised transcriptome was created,

589  excluding those transcripts whose average TPM was < 1 in all tissues (Table S5), or which were only
590 detectable in one tissue (as these may be artefacts of differential sequencing depth). Tissues whose
591  distribution of TPM estimates does not comply with Zipf’s law (see below) were not counted. The
592  revised transcriptome contains 28,276 Ensembl transcripts (representing 10,826 Ensembl genes) and
593 26,694 NCBI transcripts (which account for only 4665 existing Ensembl genes).

594

595  Compliance of RNA-seq datasets with Zipf’s law

596 Inacorrectly prepared RNA-seq dataset, a minority of reads will produce the majority of reads and so
597 its distribution of gene-level TPM estimates should comply, to a reasonable approximation, with

598  Zipf’s law (which states that the probability of an observation is inversely proportional to its rank). A
599  custom Perl script was used to identify, per sample, the number of unique TPM values and the number
600  of genes with a TPM at or exceeding this level. After excluding, for robustness, data from the first and
601 last order of magnitude (as in [119]) and all values of TPM < 5 (which have a higher likelihood of

602  transcriptional noise), the data was log-transformed and a linear regression model fitted using R v3.2.0
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[120]. Samples whose exponents deviated too greatly from -1 (by £ 20%, i.e. if the exponent is < -0.8

or > -1.2) were considered erroneous.

Tissue specificity

For each gene, we calculated a preferential expression measure (PEM) in a manner similar to [65].
PEM relates the average expression of that gene in a given tissue to the average expression of that
gene in all tissues. For each gene i, then for tissue ti, PEM(ti) = S-A, where S = expression of gene i in
tissue ti, and A = arithmetic mean expression of gene i across the set of all tissues. Prior to calculation,
all TPM values < 1 were considered to be 1, and a logz-transformation applied. This is to ensure that
genes with expression indistinguishable from noise (TPM < 1) will have a PEM of 0. Each gene will
have a distribution of PEM values, one for each tissue in the meta-datasets. Genes with higher PEM

values for a given tissue are more tissue-specific in their expression profile.

Gene Ontology (GO) term enrichment

GO term enrichment was assessed using the R package topGO [121], which utilises the ‘weight’
algorithm to account for the nested structure of the GO tree [122]. topGO requires a reference set of
GO terms, which was built manually from the GalGal5 set (obtained from Ensembl BioMart v89
[123]) and filtered to remove those terms with evidence codes NAS (non-traceable author statement)
or ND (no biological data available), and those assigned to fewer than 10 genes in total. Significantly
enriched GO terms (p < 0.05) are reported only if the observed number per tissue exceeds the expected

by 2-fold or greater.

Gene annotation
Unannotated genes in GalGal5 — those with only an Ensembl placeholder ID, rather than an HGNC

name — are annotated by reference to the NCBI non-redundant (nr) peptide database v77 [124], with
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628  each annotation assigned a quality category of 1 to 8 (highest to lowest quality, respectively), as

629  previously described [27]. For each unannotated gene, we took the longest encoded peptide and

630  obtained the set of blastp alignments [125] against NCBI nr, at a scoring threshold of p <= 1e°. These
631 alignments are a set of possible gene descriptions, of which only one can be selected as the annotation
632  of that gene. The lowest quality category, 8, is the blastp hit with the lowest E-value. All subsequent
633  quality categories require higher-quality hits, which: (a) have a % identity within the aligned region of
634 >=90%, (b) have an alignment length >= 90% of the length of the query protein, (c) have an

635 alignment length >= 50 amino acids, (d) have no gaps, and (e) are not to a protein labelled either ‘low
636  quality’, ‘hypothetical’, ‘unnamed’, ‘uncharacterized’ or ‘putative’, or otherwise having a third-party
637  annotation (as these can be by inference and not experiment). Quality category 7 is the best-scoring
638  (i.e. lowest E-value) of these higher quality hits. Category 6 is as above, but with at least one

639 identifiable hit to the human proteome. Category 5 requires that the set of alignments span at least 4
640  different genera (excluding Gallus). At this point, if >= 75% of the alignments have the same

641  description, the gene is named for the associated HGNC name (according to

642  ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/locus_types/gene_with_protein_product.txt,

643  downloaded 24™ August 2016). However, as NCBI nr aggregates multiple sources of data, gene

644  descriptions have numerous synonyms and so it is not always possible to automatically assign an

645 HGNC symbol. The highest quality categories, 1 to 4, not only meet the above criteria but have

646  degrees of reciprocal % identity to the human proteome. The highest quality category, 1, is if there is
647  also a near-perfect match to an existing, related, peptide (alignment length >= 90% of the length of a
648  human protein). Other quality categories, in descending order, are: 2 (alignment length >= 75% of the
649  length of a human protein), 3 (>= 50%), and 4 (< 50%). Human protein sequences were obtained from
650 genebuild GRCh38.p8

651  (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000001405.34 GRCh38.p8/GCF_000001405.34 GRCh

652  38.p8_protein.faa.gz, downloaded 30" August 2016).
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653

654  Network analysis

655  Network analysis was performed using Miru (Kajeka Ltd, Edinburgh, UK), a commercial version of
656  BioLayout Express®® [67, 68]. Miru determines the similarities between individual expression profiles
657 by building a correlation matrix for both gene-to-gene and sample-to-sample comparisons. This matrix
658 is then filtered to remove all correlations below a certain threshold (for the gene-to-gene comparison in
659  the RNA-seq atlas, Pearson’s r < 0.8). A network graph is constructed by connecting nodes (genes)
660  with edges (correlations above the threshold), and its local structure interpreted by applying the

661  Markov clustering (MCL) algorithm [69] at an inflation value (which determines cluster granularity)
662 of 2.2.

663

664  Protein-protein interactions

665  Protein-protein interaction data was obtained from the 11D (Integrated Interactions Database)

666  version 2017-04 (http://iid.ophid.utoronto.ca/iid, accessed 25th July 2017) [126], a resource

667  which combines computationally predicted PPIs with experimentally determined PPIs drawn

668  from multiple databases. These include BIND (Biomolecular Interaction Network Database)

669 [127], BioGRID (Biological General Repository for Interaction Datasets) [128], DIP

670 (Database of Interacting Proteins) [129], HPRD (Human Protein Reference Database) [130],

671  IntAct [131], 12D (Interologous Interaction Database) [132], InnateDB [133] and MINT

672  (Molecular Interaction Database) [134]. The format of the PPI data is as a list of UniProt IDs,

673  with one of three evidence types for the interaction: ‘exp’ (experimentally determined in this

674  species), ‘pred’ (an in silico prediction from one of four previous studies [135-138]) and

675  ‘ortho’ (predicted by mapping experimentally determined PPIs from another species to

676  orthologous protein pairs in this species). As chicken PPI data is unavailable, we obtained

677  human PPIs from the IID, and considered only those PPIs that (a) involve genes that each

28


https://doi.org/10.1101/295535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295535; this version posted April 5, 2018. The copyright holder for this preprint (which was not

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

have a one-to-one orthologue to the chicken with an orthology confidence score of 1 (using
data from Ensembl Compara [139], a score of 1 indicates compliance with the gene tree), a
reciprocal % gene identity of >= 75%, a whole genome alignment score of >= 75%, and a
gene order conservation score of >= 75% (indicating a high degree of contiguity around the
gene of interest), (b) have UniProt IDs that are unambiguously assigned to only one human
gene ID (and thereby only one orthologous chicken gene ID), and (c) have PPI evidence type

‘exp’ or ‘pred’.

Availability of datasets

To test whether down-sampling quantitatively alters the expression profile of an RNA-seq dataset, we
randomly down-sampled each of the 18 BMDM datasets (+/- LPS) to 10 million reads 100 times,
using seqtk seeded with a random integer between 0 and 10,000. These sets of expression estimates
are available as Dataset S1, hosted on the University of Edinburgh DataShare portal
(http://dx.doi.org/10.7488/ds/2137). The meta-atlas of chicken gene expression is available in full as
Table S6 and via the cross-species annotation portal BioGPS
(http://biogps.org/dataset/BDS_00031/chicken-atlas/). To compare genes between species and to
visualise expression profiles, BioGPS requires that each gene have an Entrez ID, although this is not
the case for all genes in GalGal5. The expression profiles of those genes without Entrez 1Ds can be

found in Table S6.

Analysis of chicken developmental samples

The expression data derived from CAGE [53] were obtained from
http://fantom.gsc.riken.jp/5/suppl/Lizio_et al 2017/data; the expression file is named
galGal5.cage_peak_tpm.osc.txt.gz and the annotation file galGal5.cage_peak_ann.txt. The annotation

and expression files were emerged based on chromosomal location of the promoter. All promoters
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703 where no sample exceeded 10 tags per million (tagsPM) were excluded from the analysis. The

704  expression data were then entered into Miru (as described above), using a correlation coefficient

705  threshold of 0.75. 22,839 nodes joined by 5,035,102 edges were entered into the analysis and clustered
706  with an MCL inflation value of 2.2, resulting in 132 clusters of at least 10 nodes.

707
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1227  Figure 1. Reverse cumulative distribution of the number of genes that have at least a given TPM. Both
1228  axes are logarithmic. Each line represents data from an individual SRA sample 1D, quantified using
1229 the first iteration Kallisto transcriptome (i.e. a non-redundant set of Ensembl protein-coding CDS plus
1230  trimmed RefSeq mRNAS). Samples are not otherwise distinguished as in general, most relationships
1231  approximate the same power-law: a minority of genes account for the majority of reads. These

1232 relationships are piecewise linear because the capture of lowly expressed genes is noisy, an artefact of

1233 random transcriptome sampling. The vertical red line denotes TPM = 5. At higher values of TPM, the
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1234  majority of samples have a log-linear relationship. Those that do not are erroneous, and are excluded

1235  from subsequent analysis. Exponents of each sample’s log-log plot are given in Table S3.
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1238  Figure 2. Randomly down-sampling RNA-seq reads has minimal impact on the overall expression
1239  profile, primarily affecting expression level estimates of lowly expressed genes. Data shown is from
1240  one dataset — unchallenged BMDMs from an adult female broiler (Ross 308) — although with

1241  quantitatively similar findings from other samples. The figure plots the average TPM per gene, taken
1242  after 100 random samples of 10 million reads, against the TPM obtained in each sample. The line y = x

1243 is shown in red.
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Figure 3. 2D representation of a sample-to-sample network graph, plotting Spearman’s correlations
between expression profiles. The graph was built using an RNA-seq meta-dataset with each sample
distinct by tissue, developmental stage and BioProject of origin, and expression level per gene per
sample averaged (where possible) across all replicates of that sample (dataset available as Table S6).
Each node (circle) in the graph represents a sample, and each edge (line) a correlation exceeding a
threshold (rho > 0.82). The graph contains 82 nodes, connected by 243 edges. Selected nodes are
labelled. Overall, like tissues tend to correlate more strongly with like, irrespective of BioProject of
origin. Certain coloured nodes indicate tissues independently sequenced by multiple BioProjects
(listed in Table S2), including liver (red), spleen (yellow), lung (orange), adipose (pink), caecal tonsil

(light blue) and muscle (green). There are two notable idiosyncrasies: one of the four lung samples is
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comparatively dissimilar to the others of its group, as is one of the three caecal tonsil samples. In the

latter case, however, the two most closely correlated caecal tonsil samples are those infected with

Campylobacter. Consistent with this, these samples cluster more closely with immune cells and

tissues. The third caecal tonsil sample belongs to a healthy chicken.
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Figure 4. Expression profile of the macrophage-specific cluster 4. Histogram shows the average

expression level of the 458 genes in the cluster, where expression level per gene is calculated as the

median TPM across all replicates, per BioProject, per tissue. The expression level dataset is available

as Table S6.
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1266  Figure 5. The panel on the left shows the clustered nodes for the main element in the layout graph
1267  (upper section). Nodes allocated to the same cluster are the same colour. The panel on the right shows
1268  the average expression profiles for five clusters highlighting the different phases of chick embryo

1269  development, and key genes for each cluster are shown in the boxes. The layout of these clusters

1270  within the main element is shown in the lower part of the left panel. Node colour matches the colour of
1271  the bars on the histograms. The X-axis shows the different samples (blue — embryo developmental
1272  time course from 1.5 hours to day 20 after fertilisation (HH45); green — extraembryonic tissues;

1273 yellow — limb buds; orange — hepatocytes; red — bone marrow derived mesenchymal stem cells; dark
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1274  red — aortic smooth muscle cells. Full detail of the samples can be found in Lizio, et al. [53]. Y axis
1275  shows average TPM for TSS in the cluster for each sample.
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1278  Figure 6. ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of the chicken CSF1R locus, identifying
1279  the transcription start site downstream of the PDGFRB locus (A), and the time course of appearance of
1280  CSF1R transcripts in the embryo and their expression in isolated cells (B).

1281
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TABLES

Table 1. Genes in cluster 14 with known function.

Gene symbol | Gene name Protein function References
AMZ1 archaemetzincin 1 metalloprotease, possibly involved in tissue remodelling to form feather follicles [140, 141]
ANKK1 ankyrin repeat and interacts with keratin filaments [142]
(PKK2) kinase domain
containing 1
AREG amphiregulin epithelial growth factor [143]
CLDNS9 claudin 9 tight junction membrane protein found in all epithelia [144]
DLX4 homeobox protein homeobox protein that regulates epithelial-mesenchymal interactions [145]
DLX4
EDMTF4 epidermal markers of the feather barbule and members of the epidermal differentiation complex; | [146-148]
differentiation protein | this has a role in integumentary development, including feather pigmentation
starting with MTF
motif 4
EDMTFH epidermal
differentiation protein
starting with MTF and
rich in histidine
FK21 feather keratin 21 feather keratins
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FK27 feather keratin 27

PNPLA4 patatin-like enzyme with a role in retinol metabolism (retinol and related compounds regulate [149, 150]
phospholipase epithelial cell growth and differentiation)
domain-containing
protein 4

RAB38 Ras-related protein GTPase involved in melanosome biogenesis and epithelial pigmentation [151, 152]
RAB38

RASSF10 Ras association tumour suppressor that mediates the epithelial-mesenchymal transition [153]
domain family
member 10

SDR16C5 epidermal retinol overexpressed in psoriatic human skin [154]

(RDH-E2) dehydrogenase 2

XG Xg blood group blood group antigen [155]
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SUPPLEMENTAL MATERIAL

Dataset S1. Expression level estimates generated after randomly down-sampling the BMDM (+/- LPS)

datasets to 10 million reads 100 times.

Table S1. Data sources for creating an RNA-seq meta-atlas.

Table S2. Independent datasets sequencing the same tissue/cell type.

Table S3. Exponents of the log-log plots after plotting the reverse cumulative distribution of TPM per
gene on a log-log scale.

Table S4. Number of genes with detectable expression, per tissue, after the first iteration of Kallisto.
Table S5. Transcripts not detectably expressed (at > 1 TPM) in any tissue, after the first iteration of
Kallisto.

Table S6. Chicken RNA-seq meta-dataset, after the second (and final) iteration of Kallisto.

Table S7. Proportion of RNA-seq reads retained by down-sampling the LPS-stimulated BMDM
datasets.

Table S8. Number of detectably expressed genes after randomly down-sampling the LPS-stimulated
BMDM datasets.

Table S9. Range of expression estimates, and absolute difference between largest and smallest
estimate, after randomly down-sampling the LPS-stimulated BMDM datasets.

Table S10. GO term enrichment for those subsets of genes whose highest PEM is for a given tissue.
Table S11. All-against-all correlation matrix for each tissue in the meta-dataset.

Table S12. Tissues whose expression vectors are most strongly correlated with each other.

Table S13. Clusters of co-expressed genes (obtained via network analysis of the RNA-seq meta-
dataset), including candidate gene names for unannotated GalGal5 protein-coding genes.

Table S14. Proportion of genes in each co-expression cluster whose highest PEM is for a given tissue.
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1309  Table S15. GO term enrichment for co-expression clusters containing >= 100 genes.

1310  Table S16. Correlation of expression profiles for genes with a known protein-protein interaction.

1311  Table S17. Clusters of co-expressed CAGE tags, obtained via network analysis of the Lizio, et al.
1312  dataset [53].

1313  Table S18. Comparison of co-expression clusters between the RNA-seq atlas and the Lizio, et al.

1314  CAGE dataset [53].
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