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Abstract:  

Collective behavior can spontaneously emerge when individuals follow common rules of 
interaction. However, the behavior of each individual will differ due to existing genetic and 
non-genetic variation within the population. It remains unclear how this individuality is 
managed to achieve collective behavior. We quantified individuality in bands of clonal 
Escherichia coli cells that migrate collectively along a channel by following a self-
generated gradient of attractant. We discovered that despite substantial differences in 
individual chemotactic abilities, the cells are able to migrate as a coherent group by 
spontaneously sorting themselves within the moving band. This sorting mechanism 
ensures that differences between individual chemotactic abilities are compensated by 
differences in the local steepness of the traveling gradient each individual must navigate, 
and determines the minimum performance required to travel with the band. By resolving 
conflicts between individuality and collective migration, this mechanism enables 
populations to maintain advantageous diversity while on the move. 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295196doi: bioRxiv preprint 

https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

Cells and larger organisms exhibit collective behaviors that are often advantageous to the 
participating individuals1, 2. Many such collective behaviors dynamically emerge when a 
large number of individuals follow the same rules to interact with each other and the 
environment3, 4. Prominent examples are bird flocks4, 5, 6 and the collective migration of 
bacteria along channels7, 8, 9, 10, 11 and on agar plates8, 9, 12. At the same time, phenotypic 
differences among even genetically-identical individuals are a ubiquitous feature of 
biology13. Phenotypic diversity can lead to useful leader-follower structures within a 
traveling group. For example in migrating neural crest cells and in fish shoals, many 
organisms may follow a few more informed individuals14. In microbial communities, 
maintaining diversity in the population can enable bet-hedging strategies to survive 
uncertain environments and resolve trade-offs13, 15, 16, 17, 18. However, heterogeneity can 
also be disruptive, as is the case in simulated swarms where non-aligners tend to be 
purged from the swarm19. This raises a dilemma: although phenotypic diversity provides 
advantages, it also tends to reduce coordination. 
 
One of the simplest cases of collective behavior is exhibited by bacteria: clonal 
populations of motile E. coli cells collectively migrate when placed at high density at the 
bottom of a tube filled with nutrients8, 9, 10, 11. This collective behavior is mediated by the 
well-characterized chemotaxis system20, which enables the bacteria to follow chemical 
gradients, in this case generated by their consumption of attractant present in the medium 
(Fig. 1A). However, populations of E. coli exhibit substantial cell-to-cell variability in their 
swimming phenotypes13, 21 and, hence, chemotactic abilities, even when all cells are 
genetically identical22. How bacterial populations manage phenotypic heterogeneity to still 
allow coordinated collective migration remains largely unknown, mainly because of the 
difficulties in measuring cellular behavior at both the collective and the individual levels in 
the same experiment21.   
 
Although the migration of traveling waves or “bands” of bacteria has also served as a 
classic model for the theoretical study of emergent phenomena and pattern formation in 
biology10, 23, the effect of non-genetic diversity on this process has scarcely been 
examined. Previous studies examined how two populations may travel together24, 25, 
however it was assumed that within each population all of the individuals were identical. 
The mechanisms by which a continuum of phenotypes can achieve coherent migration 
have not been investigated.  
 
Here, we used a microfluidic system that enables precise quantitative measurements at 
the individual and collective scales to study the interplay of diversity and collective 
bacterial migration. Our central finding is that within the traveling band, cells 
spontaneously sort themselves such that their chemotactic abilities are matched to the 
local gradient steepness, enabling diverse cells to travel together with the same drift 
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speed. Extending the classic Keller-Segel model of traveling bands to account for 
diversity predicts this spatial sorting and qualitatively recapitulates the experimental 
results. Our second finding is a novel mechanism that reduces the rate at which cells fall 
off the back of the band: when attractant consumption depends on local oxygen, oxygen 
limitation in the center of the band increases the gradient of attractant at the back, helping 
cells there to keep up. 
 
Results 
 
To quantify collective behavior and diversity in the same experiment, we designed a 
microfluidic device consisting of a long channel to observe the traveling band11, followed 
by a large chamber to quantify the distribution of phenotypes in the band (Fig. 1b and 
Extended Data Fig. 1). Approximately 2 × 10% clonal E. coli cells grown in M9 glycerol 
medium (M9 salts, glycerol and casamino acids; Methods) were introduced with fresh 
medium into the device and concentrated at the end of the channel by centrifugation 
(Methods). Following centrifugation, sequential bands of cells collectively migrated along 
the channel at different but nearly constant speeds (Fig. 1c), presumably consuming 
different compounds within the undefined media, as demonstrated in early studies8.   
 
E. coli cells navigate by alternating straight “runs” with “tumbles” that randomly reorient 
their swimming direction (Fig. 1d). By transiently suppressing tumbles whenever 
attractant signal increases, they perform a biased random walk that allows them to move 
towards higher concentrations of attractant20. In the absence of a gradient, the fraction of 
time a cell spends tumbling—its tumble bias (TB)—remains approximately constant and 
therefore can be used as a quantitative measure of the phenotype of the cell. Importantly, 
using the same strain and microfluidic channel depth, we previously demonstrated that 
the tumble bias is a strong determinant of chemotactic performance in liquid: lower tumble 
bias cells drift significantly faster up a static gradient than higher tumble bias cells22. To 
quantify the distribution of phenotypes in the isogenic population that was introduced in 
the device, a low density of cells was loaded into the microfluidic device without 
centrifugation, and individual cells were tracked to determine their TB, as previously 
described21, 22. Tumble bias was broadly distributed in the population with some cells 
tumbling less than 10% of the time (i.e. TB < 0.1) and others more than 50% of the time 
(Fig. 1e black), consistent with previous studies13, 21. Given the functional consequences 
of this non-genetic diversity, how can the same population of cells migrate together as a 
coordinated group as shown in Fig. 1c?  
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Figure 1 | Collective migration of a phenotypically diverse clonal population.  a, When 
concentrated at the bottom of a nutrient channel, motile E. coli cells emerge from the high cell 
density region and travel in bands along the channel by following gradients of attractant produced 
by their consumption. b, Microfluidic device used to quantify the band migration and the 
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phenotypic diversity within the band. Control gates along the channel (black vertical lines) are 
initially open (top), and later closed to capture different bands of cells in the observation chamber 
(bottom), where single cells are tracked to quantify the distribution of phenotypes within the band 
(Extended Data Fig. 1). c, Time-lapse imaging of E. coli cells expressing the fluorescent protein 
mRFP1 showing the collective migration of bands in M9 glycerol medium (M9 salts, glycerol and 
casamino acids; Methods). In this undefined medium several bands emerge that travel at different 
speeds (red: 0.68 mm/min, yellow:  0.23 mm/min)8. We verified that labeling cells did not affect 
band speeds nor tumble bias distributions (Extended Data Fig. 2). d, The tumble bias (color)—
average probability to tumble—of individual cells was quantified by tracking a cell for two minutes 
in an uniform environment (no gradient) and detecting tumbles (black dots) as previously 
described21, 22. e, Collective migration selects against high TB cells. Tumble bias distributions from 
the first (red) and second (yellow) bands (n=3), and from the population that was introduced in 
the device (black; n=3). f, The tumble bias distribution of the cells in the 1st wave (red in e) 
gradually shifted back towards the original distribution (black) during growth in the perfused 
chamber. Fresh M9 glycerol medium was supplied every 30 min. The TB distribution was 
measured every 20 minutes. 
 
 
To answer this question, we first considered whether all phenotypes or only a subset of 
them traveled in each band. We used pressure valves to capture one band of cells at a 
time in the wide chamber of our device (Fig. 1b and Extended Data Fig. 1b). After trapping 
cells in the wide chamber, it was perfused with fresh media to homogenize the 
environment and dilute the cell density. We verified that perfusion of the wide chamber 
did not affect the distribution of tumble biases (Extended Data Fig. 3). Dilution enabled 
us to track individual cells. Homogenization ensured that cells had adapted back to a 
uniform environment and were not responding to an attractant gradient when we 
measured their tumble biases. The distribution of tumble bias was shifted towards lower 
tumble bias in both traveling bands compared to the original distribution (Fig. 1e), 
suggesting that it was more difficult for high tumble bias cells to participate in collective 
migration. Selection against high tumble bias cells was stronger in the faster band (Fig. 
1e, red) than in the slower one (Fig. 1e, yellow). Cell density and number also varied 
between the two bands (Fig. 1c), suggesting that there were interdependencies between 
the speed of the group, its size, and the diversity of the individuals able to migrate with 
the group. We periodically tracked cells after they were trapped and diluted in the wide 
chamber and found that the original tumble bias distribution recovered after growth (Fig. 
1f). Thus, selection of low tumble bias cells by the collective migration was not due to 
genetic heterogeneity. Also, it is unlikely that cell growth affected the tumble bias selection 
while cells were traveling in a band because the duration of the experiment (30 mins) was 
shorter than the cell doubling time (~55 mins, Extended Data Fig. 4).  
 
To determine the relationship between the number of cells in the band, the band speed, 
and diversity, we switched from casamino acids to a defined M9 glycerol buffer containing 
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the chemoattractant aspartate as the only amino acid (Methods). In this condition, a single 
band formed (Fig. 2a), and its speed could be tuned by changing the concentration of 
supplemented aspartate12 (Fig. 2b). To measure band speed and density, cells 
expressing mRFP1 were mixed with unlabeled cells at ratios of 1:20, 1:50 or 1:100, and 
their positions were detected at various time points (Fig. 2a and Methods11, 26). Band 
speed, number of cells in the band, and density profiles were stable over time with a slow 
decay due to cells falling off at the back of the band (Figs. 2bcd and Extended Data Fig. 
5). Although there were variations across experimental replicates due to variations in the 
number of cells introduced in the device, the relationship between aspartate concentration 
and band parameters was consistent. Specifically, as the concentration of aspartate 
increased, the speed of the band decreased (Fig. 2b), the number and peak density of 
cells in the band increased (Fig. 2cd), and the distribution of tumble bias within the band 
shifted towards higher tumble bias (Fig 2e). In general, collective migration selected 
against high tumble bias cells, with selection being stronger in faster bands (Figs. 2ef). 
Note however, that diversity was not eliminated—all bands still exhibited a range of 
tumble biases. Thus, while collective migration selected against high tumble bias cells, it 
was still possible for a diverse group to travel together. 
 
To better understand how collective migration selects tumble bias, we extended the 
classic Keller-Segel mathematical model describing traveling bands of bacteria10 to 
include phenotypic diversity (Methods Eqs. (1)-(3)). In this model, cells consume the 
diffusible attractant aspartate, which generates a traveling gradient that the cells follow 
by biasing their random walk (Figure 3a). Faster consumption, more cells, or less 
aspartate all lead to a faster traveling gradient10. The motion of a phenotype 𝑖 depends 
on two parameters: its effective diffusion coefficient, 𝜇( = 𝜇(𝑇𝐵(), which results from the 
cells’ random walk, and its chemotactic coefficient, 𝜒( = 𝜒(𝑇𝐵(), which quantifies how 
effective that phenotype is at biasing its motion27, 28, 29 to follow the perceived amount of 
aspartate, 𝑓. Theory and tracking of individual E. coli cells swimming in a static gradient 
of 𝛼-methylaspartate (non-metabolizable analogue of aspartate) have shown that 𝜇 and 
𝜒 are decreasing functions of the tumble bias, 𝑇𝐵 (note that for very low values of 𝑇𝐵 less 
than ~0.05, 𝜒 increases with 𝑇𝐵: indeed for 𝑇𝐵 = 0 the cell is just diffusing and 𝜒 = 0; 
Methods)21, 22. Thus, in a gradient of attractant, cells with higher tumble bias do not diffuse 
as much and climb slower than cells with lower tumble bias. The dependency of 𝑓 on 
aspartate concentration has been characterized, as well30. Moreover, we conducted 
HPLC experiments to verify that the chemotaxis response to aspartate dominated that to 
amino acids secreted as by-products of aspartate metabolism. Experiments conducted 
with mutants lacking the oxygen receptor aer or both aer and tsr indicated that aerotaxis 
was not essential and Tar response to aspartate was sufficient for band migration31 
(Methods and Extended Data Fig. 6).  
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Figure 2 | Relationship between band speed, density, and phenotypic diversity.  a, Time-
lapse coordinates (black dots) of cells traveling in defined buffer (M9 glycerol buffer: M9 salts and 
glycerol, supplemented with 200 µM of the chemoattractant aspartate). Only one band forms in 
each experiment. 1:100 cells were labeled with mRFP1 and their coordinates detected (Methods). 
Decreasing the concentration of aspartate in the buffer from 200 µM (blue; 1:100 cells labelled), 
to 100 µM (yellow; 1:50 cells labelled) to 50 µM aspartate (red; 1:20 cells labelled) increased the 
band speed (b), decreased the number of cells (c) and cell density (d), and increased selection 
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against the high tumble bias cells in the band (e,f). Details in Methods and Extended Figure 5. b, 
Band speed as a function of aspartate concentration in the buffer. Circles: experiments in which 
tumble bias were measured and used in e and f. Diamonds: experiments in which tumble bias 
were not measured. Dashed: simulations described in Methods. p value: one-sided two sample t-
test assuming unequal variances, t-value = 4.1, df = 5.4 for comparison between 50 µM and 100 
µM, t-value = 4.2, df = 3.8 for comparison between 100 µM and 200 µM. c, Number of cells 
traveling in the band. Circles, diamonds and dashed: same as in b. p value: one-sided two sample 
t-test assuming unequal variances, t-value = -3.9, df = 6.5 for comparison between 50 µM and 
100 µM, t-value = -4.6, df = 6.4 for comparison between 100 µM and 200 µM. d, Average cell 
density profiles over time and experiments, aligned as in Extended Data Fig. 5. Line: mean over 
n = 5 (red), n = 4 (yellow), n = 5 (blue) replicate experiments. Shade: SD. For each experiment, 9 
profiles were measured at 1.3-min intervals. Dashed: simulations. e, Tumble bias distribution of 
the cells that travelled with the band. Lines: average over the experiments in circles in b and c; 
shading: SD; dashed lines: simulations). f, Ratio between the distribution of phenotypes (TB) in 
the traveling band (Fig. 2e, colored lines) and that of the original population (Fig. 2e, black) 
quantifies the enrichment of phenotypes as a function of tumble bias. (Solid lines: mean of the 
measurements from the experiments in circles in b; shading: standard error of the mean; dashed: 
simulations).  

 
To metabolize aspartate, E. coli consumes oxygen32. Introducing a fluorescent oxygen 
sensor33 in the M9 glycerol buffer revealed that oxygen availability is reduced in the center 
of the traveling band where cell density is high (Extended Data Figure 7a-f). This results 
in a dependency of the average consumption rate of aspartate on cell density (Extended 
Data Figure 7h). We modeled this effect such that the aspartate consumption rate 
depended linearly on oxygen concentration and constrained the related parameters by 
measuring oxygen and aspartate consumption rates in batch cultures (Extended Data 
Figure 7g). For simplicity, we ignored possible phenotypic diversity in the aspartate 
consumption rate, as well as the possible dependence of the diffusion coefficient on cell 
density34, which was found previously to be negligible in similar experiments11. We also 
omitted possible contributions of hydrodynamics35 and physical interactions between cells, 
which can become important when bacteria swarm over surfaces36. The resulting model 
(Methods and Table 1) qualitatively reproduced the main features of our experiments, 
including the dependency on aspartate concentration of the band speed (Fig. 2b), cell 
number and density (Fig. 2cd), tumble bias distribution (Fig 2e), phenotypic selection (Fig. 
2f), and average aspartate consumption rate per cell as a function of cell number in the 
band (Extended Figure Data 7h).    
 
An important feature of the experiments reproduced by the simulations is the increasing 
selection against high tumble bias cells as the amount of aspartate is reduced (Fig. 2f). 
What mechanism enables cells with diverse chemotactic abilities to collectively migrate 
together as one band, and what controls the upper bound on the tumble bias among those 
able to migrate together? For every phenotype that travels with the band at constant 
speed 𝑐 , the flux of cells must be approximately invariant in time and equal to the 
chemotactic flux minus that due to diffusion. Focusing on the partial differential equation 
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for the cell density of phenotype 𝑖 and switching to the moving reference frame 𝑧 = 𝑥 − 𝑐𝑡 
(here 𝑥 and 𝑡 are absolute position and time), two predictions emerge (Methods Eqs. (7)-
(8)). First, the traveling phenotypes must distribute themselves spatially within the band 
so that differences in local signal strengths, the slope 67

68
 of the black line in Fig. 3a, 

compensate for differences in the chemotactic abilities of each phenotype, 𝜒(, such that  
𝑐 = 𝜒(

67
68
(𝑧(), where 𝑧( is the position of peak density of phenotype 𝑖 (Fig. 3a). Therefore, 

this spatial sorting places the better performers (higher 𝜒(, lower 𝑇𝐵() in the front of the 
band, where the gradient is shallower and more difficult to follow (Fig. 3a, dark red 
dashed), and the weaker performers (lower 𝜒( , higher 𝑇𝐵( )  at the back, where the 
gradient is steeper (Fig. 3a, pink dotted). Furthermore, a second prediction is that the 
gradient will reach a maximal steepness (Fig. 3a dashed border of grey zone), 
determining the weakest phenotype that can travel (lowest 𝜒(, upper bound on 𝑇𝐵(). Thus, 
we see the interplay between individuals 𝑖  and the effect of the community on the 
available resource, 𝑓. 

 
Figure 3 | Mathematical modeling suggests a mechanism for consistent collective 
migration of diverse phenotypes. a, Collective migration of diverse phenotypes at the same 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295196doi: bioRxiv preprint 

https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

speed is made possible by the spontaneous spatial ordering of individual phenotypes within the 
band such that each individual’s chemotactic ability is matched to the local gradient steepness 67

68
. 

The proportion of better performers (larger 𝜒, lower TB; dark red) should be enriched where the 
gradient is shallower (front), while the proportion of weaker performers (smaller 𝜒, higher TB; pink) 
should be enriched where the gradient signal is steeper (back). The position where the perceived 
gradient steepness is maximum (dashed border of grey in a corresponds to the highest tumble 
bias able to travel with the band. Cells in the grey region slowly fall out of the band. b, Simulated 
density profiles of cells migrating in 200 μM aspartate (the same simulation as Fig. 2d blue dashed) 
show sorting based on tumble bias. c, Chemotactic coefficient χ(z)  (blue) defined by the 
phenotype whose density profile peaks at position 𝑧, and perceived gradient steepness 67

68
 (black). 

Red symbols correspond to the location of the peak cell density for individual phenotypes. d, 
Spatial sorting enables consistent migration velocity for all phenotypes. The migration velocity, 
χ(𝑧) 67

68
, of the phenotype whose density profile peaks at position 𝑧 gradually decreases towards 

the back of the band until the grey region is reached. In the grey region the migration velocity falls 
off more rapidly, preventing the high TB phenotypes located there from staying in the band.  

 
Analysis of simulations confirmed these analytical predictions (Figs. 3bcd). The 
steepness of the perceived signal 67

68
, which emerges dynamically from the cells’ 

consumption, peaked at the back of the traveling band (low 𝑧) and decayed towards the 
front (high 𝑧) (Fig. 3c black). In contrast, the position 𝑧( of the peak density of phenotype 
𝑖 increased with its chemotaxis coefficient 𝜒( (Fig 3c blue), revealing an ordering of the 
phenotypes within the migratory band (Figs. 3bc). Multiplying the two together gave a 
nearly constant velocity throughout the band, thus providing an explanation of how the 
various phenotypes might travel together (Fig. 3d). The rightmost points in Fig. 3c (blue 
line) and Fig. 3d (black line) correspond to the phenotype with the maximum chemotactic 
coefficient in the band. Ahead of that location, there are no more peaks in the cell density 
of any phenotype, however there are cells due to diffusion. At the back of the band, cells 
with tumble bias higher than the predicted upper bound rapidly fell off of the band (Figs. 
3ad grey zones). Importantly, these predictions emerged from just the dynamics of cell 
density (Methods Eq. (1)) and therefore hold true irrespective of whether oxygen is 
included in the model.  
 
Comparing simulations with and without the oxygen-dependent consumption rate 
revealed that the oxygen-dependency reduces leakage of the highest-TB cells located at 
the back of the band (Extended Data Figure 8b). The higher concentration of oxygen at 
the back relative to the center of the band locally increases the rate of consumption and, 
hence, the slope of the traveling gradient of aspartate, helping the cells there stay longer 
with the band (Methods Eq. (9)). Thus, oxygen-dependency has a similar cohesive effect 
as the secretion of a self-attractant, which also helps reduce the leakage of cells11, 25, 37.  
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To experimentally test the prediction of spatial sorting in the band by phenotype, we 
measured the relative position of two populations of cells with different mean tumble bias, 
⟨𝑇𝐵⟩, within the traveling band. The distribution of tumble bias in the population was 
controlled by manipulating the level of expression of the phosphatase CheZ, which 
deactivates the chemotaxis response regulator CheY (Extended Data Fig. 9a). We 
generated multiple populations with different tumble bias distributions of varying ⟨𝑇𝐵⟩ (Fig.  
4a).  In each population, we labeled 1 in 50 cells of the same genetic background and 
induction level by ectopically expressing either mRFP1 or YFP. The inducer was washed 
away when cells were resuspended in buffer before starting the migration experiment. 
When cells from the lowest (red) and highest (cyan) tumble bias distributions were mixed 
in equal parts and introduced in the device, spontaneous spatial order emerged, with cells 
from the low (high) tumble bias distribution located at the front (back) of the traveling band 
(Fig. 4bc and Extended Data Fig. 9b for replicates). The distance between the peaks of 
the density profiles of the two populations remained nearly constant over the duration of 
the experiment, indicating that the two populations traveled together at the same speed 
(Fig. 4e). We verified that the distance between the peak densities of the two populations 
was stable in longer experiments (Extended Data Fig. 9d). Mixing populations with closer 
TB distributions caused the peaks of the two traveling populations to be closer (magenta 
and green in Figs. 4ad and Extended Data Fig 9c for replicates), suggesting that distance 
between peaks increases with difference in ⟨𝑇𝐵⟩ as a result of spatial sorting. Due to 
experimental limitations, we could not measure the TB distributions of all four strains in 
each of the experiments reported in Figs. 4a-e. To better quantify the relationship 
between peak separation and difference in ⟨𝑇𝐵⟩  value, we instead mixed pairs of 
populations using only fluorescent strains induced with different levels of aTc. For each 
pair, we measured the 𝑇𝐵 distributions right before loading cells in the device, and then 
measured the distance between the fluorescence peaks in the resulting traveling band 
(Fig 4f). This confirmed that there is a monotonic relationship between peak separation 
and difference in ⟨𝑇𝐵⟩  values. Therefore, cells of various phenotypes appear to 
spontaneously sort themselves along the traveling band according to their tumble bias, 
enabling them to migrate collectively despite phenotypic differences. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295196doi: bioRxiv preprint 

https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

 
 

Figure 4 | Phenotypes spontaneously order themselves along the traveling band according 
to tumble bias. a, The distribution of tumble bias in the population can be controlled by 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295196doi: bioRxiv preprint 

https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

manipulating the level of expression of the phosphatase CheZ, which deactivates the response 
regulator CheY (Extended Data Figure 9a). b, Time-lapse coordinates (transparent colored dots) 
of an equal mixture of low (red in a) and high (cyan in a) TB cells traveling in 200 µM aspartate 
M9 glycerol buffer (See Methods). c, Corresponding density profiles (color) together with total cell 
density (black). (Line: mean over n=34 time points measured at 40 sec intervals) for one 
experiment; shading: SD; 5 replicates are in Extended Data Figure 9b). d Same as in c but for 
magenta and green populations in a. 2 replicates are in Extended Data Fig. 9c. e. Peak positions 
as a function of time for the data in b. f. The distance between the fluorescence intensity peaks 
of two populations traveling together in a single band increases with the difference between the 
mean TB of the two populations. For each independent experiment, two populations labelled with 
different fluorescent proteins (mRFP1 or YFP) were induced using different aTc amounts to obtain 
distributions with different mean tumble biases. Dots: average over n=4 experiments; error bars 
are SD. 

 
Discussion 
 
How do organisms maintain collective behavior despite the potential conflicts created by 
phenotypic diversity among individuals? We studied this question using traveling bands 
of chemotaxing E. coli, which collectively migrate at the same speed despite differences 
in chemotactic abilities of individuals in the band. Our key result is that spontaneous 
spatial organization of phenotypes within a traveling band helps resolve the conflicts 
between phenotypic diversity and collective migration. By matching individual abilities to 
the local difficulty of the navigation task within the band, this sorting mechanism ensures 
consistent migration speed across the band. This process also determines the minimum 
chemotactic performance required to keep up with the band, therefore explaining how 
diversity can become limited by collective behavior. Thus, the mechanism reported here 
enables a continuum of phenotypes to migrate coherently.  
 
In the traveling band, there is always a slow leakage of cells off the back of the band 
because of the finite sensitivity of the cells for the attractant they are chasing38, 39, 40, 41. 
High tumble bias cells, in particular, which are localized at the back of the wave, are at 
risk of falling off. We discovered that this leakage can be reduced (but not eliminated) if 
the consumption rate of the attractant is lower in the center of the band than at the back, 
where the consumption rate determines the local gradient steepness and chemotactic 
drift. In our case, this arises because aspartate consumption depends on oxygen, which 
becomes limited in the center of the band where cell density is high. This mechanism 
provides an alternative to other mechanisms known to reduce cell leakage, such as the 
secretion of an attractant by the traveling cells11, 25, 37. Note that the spontaneous sorting 
mechanism discussed above helps compensate for differences in chemotactic abilities, 
irrespective of the presence of such auxiliary mechanisms (oxygen or self-attractant). 
 
Traveling bands of bacteria have been studied for decades since Julius Adler’s 
experiments in capillary tubes8, 9. Adler reported the formation of multiple traveling bands 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295196doi: bioRxiv preprint 

https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

in complex media; we observe the same in casamino acids (Fig. 1) and expect multiple 
bands to be able to form when multiple consumable attractants are present. Within a 
migrating band the cells respond to the traveling gradient, some parts of which can be 
fairly steep. Therefore, we expect the instantaneous tumble bias of an individual cell to 
be dynamically changing depending on its direction of motion and position within the 
gradient, as previously reported11, 29. Here we showed that phenotypic (intrinsic) 
differences in adapted tumble bias between cells contribute significantly to spatial 
structure within the traveling band. In future studies we will separate the contributions of 
phenotypic and dynamic diversity to group structure. It will also be interesting to examine 
the contribution of initial conditions, dimensionality, and growth (necessary to maintain 
traveling cell density over long times41, 42, 43) to this process.  
 
Previous analysis of bacterial traveling bands assumed that the population consisted of 
identical cells10, 11, 37, 44, 45 or at most two phenotypes24, 25. Here we extended these studies 
by taking into account the continuum of phenotypes that is always present in a 
population13, 21, 22. One study that considered how two phenotypes might travel together 
made the theoretical assumption that cells sense only the direction of the gradient, not its 
magnitude25. This assumption causes the peak densities of the two phenotypes in that 
model to coincide in space, contrary to our experimental observations. In another 
theoretical study24, the cells did respond to the gradient magnitude, and the two 
phenotypes in the traveling solution were spatially separated. Although not discussed in 
the paper, the phenotype with the higher chemotactic coefficient is in the front in that 
solution, in agreement with our sorting mechanism. However in that model, the range of 
sensitivity was assumed to extend to vanishing concentrations, as in the original Keller-
Segel model10, which is not biologically realistic27.  
 
Following depletion of local resources, the spatial self-organizing mechanism described 
here could enable populations of bacteria to maintain diversity while traveling towards 
better environments. This diversity increases the probability that a phenotype well-suited 
to unexpected environments will be available if needed during travel until a destination is 
reached where growth can replenish the population. Because the range of phenotypes 
allowed within a travelling group depends on the spatial profile of the traveling gradient, 
this mechanism introduces important feedback between the environment, cellular 
metabolism, and phenotypic diversity, which together generate spatial patterns of 
phenotypes according to functional capabilities. The same mechanism might also enable 
different bacterial species to travel together, thus enabling migration of small ecosystems.  
Collective migration of eukaryotes resulting from traveling gradients of attractants 
generated by consumption or breakdown of an attractant has recently been found to be 
more important than previously believed because it enables cell migration over much 
larger distances than migration along externally imposed gradients46. Being able to 
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maintain diversity within the traveling group could be important in the context of immunity 
and cancer. 
 
The types of interactions between collective behavior and phenotypic diversity reported 
here might also be at play beyond microbiology and cell biology, in contexts where 
individuals in a group respond to the cumulative effect on the environment of the 
individuals ahead. Whereas a bird monitors its neighbors to benefit from the collective 
information acquired by the flock, here individuals monitor the environmental gradient to 
benefit from the information accumulated in the environment by the band. In both cases, 
there is a group “memory” in the form of a spatial structure that individuals respond to47. 
In general, both types of memory are probably available and utilized by groups, with their 
relative importance determined by the specific biology of the organisms.  
 
Methods 

Mathematical model 

We extended the classic Keller and Segel10 model to include the effect of phenotypic 
differences in tumble bias. The key variables in the model are the density 𝜌((𝑥, 𝑡) of cells 
of phenotype 𝑖 as a function of position 𝑥 and time 𝑡 and the concentration of aspartate 
𝐴(𝑥, 𝑡). Cells of phenotype 𝑖 are characterized by their chemotactic coefficient 𝜒(  and 
diffusivity 𝜇(. Because aspartate consumption depends on oxygen32 we also model the 
amount of oxygen dissolved in the media 𝑂(𝑥, 𝑡). The parameters of the model are in 
Table 1. The time-dependent evolution reads: 

ABC
AD
= 𝜇(

AEBC
AFE

− A
AF
G𝜒(𝜌(

A7(H)
AF

I                   (1) 

AH
AD
= 𝜇H

AEH
AFE

− 𝛼H	(𝑂)
H

KLMH
∑ 𝜌((                     (2) 

AO
AD
= 𝜇O

AEO
AFE

− 𝛼O
O	

KPMO
∑ 𝜌(( + 𝜅(𝑂SF − 𝑂)	                                 (3) 

Eq. (1) represents the motion of cells due to diffusion and chemotaxis. 𝑓(𝐴) =
𝑀	log XYMH/K[

YMH/K\
]  is the perceived signal which depends on the local aspartate 

concentration 	𝐴 , where 𝐾_ = 3.5	𝜇𝑀  and 	𝐾Y = 1000	𝜇𝑀  represent the dissociation 
constants of aspartate for the inactive and active conformations of the Tar receptors, and 
𝑀 = 6 is the receptor gain29, 48. The effective diffusion coefficient and the chemotaxis 
coefficient are functions of the microscopic parameters of individual cell swimming 

behavior. We draw on previous work22, 29 to model them as 𝜇( =
dE

e
(YfghC)	

(Yfi)jk,CMlmnop
 and 𝜒( =

q[	ghC
gh[MghC

𝜇(  (Extended Data Figure 8a). In these expressions, 𝑣~36	µm/s  is the cell 

swimming speed, which when projected in 2D49 corresponds to the average speed we 
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measure in our quasi-2D device (~28 µm/s);  Θ = 0.16	is the directional persistence 
between successive runs22; 𝐷yzD = 0.062	𝑠fY is the rotational diffusion coefficient during 

runs21, 50; 𝜆},( = 𝜔� ghC
YfghC

  is the rate of switching from the run state to the tumble state; 

and	𝜔 = 3.8	𝑠fY is the motor switching frequency, considering the multiple flagella effect, 
as modeled previously22. 𝜇( and 𝜒( are monotonically decreasing functions of the tumble 
bias 𝑇𝐵(  and �C

�C
≈ 22 = 𝑘_ , apart for the range 0 ≤ 𝑇𝐵( ≲ 𝑇𝐵_ = 0.05  where 𝜒(𝑇𝐵()  is 

increasing as recently observed in experiments where individual cells were tracked in a 
static gradient of 𝛼-methylaspartate (non-metabolizable analogue of aspartate)22.  

Eq. (2) represents the change in the concentration of aspartate due to diffusion, with 
diffusivity 𝜇H, and to consumption, with half-max constant 𝐾H and maximum rate 𝛼H(𝑂) =
𝛼H_ G1 − 𝑔H + 𝑔H

O
O��
I. Here, 𝛼H_ is the base consumption rate, 𝑂�� is the external oxygen 

concentration, and 𝑔H is the fractional reduction of aspartate consumption rate at zero 
oxygen. Eq. (3) describes the time-dependent evolution of oxygen, with diffusion 
coefficient 𝜇O , maximum consumption rate 𝛼O , half-max constant 𝐾O , and supply of 
oxygen through the PDMS with the mass transfer rate 𝜅. 

Eqs. (1)-(3) were integrated in MATLAB using second-order centered differences for the 
spatial derivatives (mesh size 20 μm) and an explicit 4th-order Runge-Kutta routine for 
temporal integration (time step 0.08 s). We used no-flux boundary conditions. The initial 

condition was 𝜌((𝑥, 0) = 𝜌_ 	 ∙ 𝑃(𝑇𝐵()𝑒
fGF F[� I

E

  for 0 < 𝑥 < 1.6	𝑚𝑚 and  𝜌((𝑥, 0) = 0 for 𝑥 >
1.6	𝑚𝑚. Here, 𝜌_  is the initial cell density scale, determined from the total initial cell 
number ~2 × 10% ; 𝑥_ = 0.8	𝑚𝑚 ; and 𝑃(𝑇𝐵()  was obtained from experimental 
measurements (Fig. 2e black).  

Assuming near constant wave speed, we rewrite Eq. (2) in the moving coordinate	𝑧 = 𝑥 −
𝑐𝑡 and integrate from −∞ to +∞ to obtain 

 〈𝛼H〉 =
	�	H[
(�/�)

.                                             (4) 

Here, 〈𝛼H〉 is the average attractant consumption rate, 𝑁 is the number of cells in the band, 
and 𝑎 is the cross-sectional area of the channel. In the absence of oxygen-dependent 
consumption of aspartate, the average consumption rate in the band would be constant 
across experimental conditions10. However, oxygen-dependent consumption makes the 
average consumption rate decrease with increasing cell density in the band, which is 
correlated with the number of cells in the band (Fig. 2c). As shown in Extended Data Fig. 
7h, the value of 〈𝛼H〉 calculated from experimental data using Eq. 4 decreases as the 
number of cells in the band increases, which is captured in simulations.  

To derive the result of spatial sorting analytically from this model, we first rewrite Eq. (1) 
in the moving coordinate 𝑧 = 𝑥 − 𝑐𝑡: 
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−𝑐 ABC
A8
= 𝜇(

AEBC
A8E

− A
A8
G𝜒(𝜌(

A7(H)
A8

I,   (5) 

Noting that for each phenotype 𝑖 to be traveling with the group, its density profile must 
have a peak. Around the density peak 𝑧( we must have 6BC

68
�
8�8C

= 0 and 6
EBC
68E

�
8�8C

< 0.  

Rewriting Eq. (5) as  

𝜇(
AEBC
A8E

= −𝑐 ABC
A8
+ 𝜒(

ABC
A8

A7(H)
A8

+ 𝜒(
AE7(H)
A8E

,   (6) 

we then have at the density peaks 𝑧(: 

 𝜇(
6EBC
68E

�
8�8C

= 𝜒(𝜌( 	
6E7
68E
�
8�8C

< 0              (7) 

Eq. (7) indicates that in the front of the band the perceived gradient must be shallow and 
become progressively steeper as 𝑧  decreases towards the back (Fig. 3c black). 
Integrating Eq. (5) and using 6BC

68
�
8�8C

= 0, we obtain 

 𝑐 = 𝜒( 	
67
68
�
8�8C

              (8) 

Eqs. (7)-(8) together show that the cell density peaks 𝑧(  of each phenotype 𝑖  are 
monotonically ordered according to their chemotactic coefficients 𝜒(. 

Examining the effect of oxygen analytically, at the back of the wave the aspartate 
concentration is small so that the chemotactic drift there is 𝜒(

A7(H)
A8

≈ 𝜒(
�
K[

6H
68

. Rewriting Eq. 
(2) in the moving coordinate, assuming the diffusion term is negligible10, and assuming 
𝐴 ≫ 𝐾H gives an expression for 𝑑𝐴/𝑑𝑧. From this, the drift becomes 

𝜒(
A7(H)
A8

≈ �C�
K[�

𝛼H	(𝑂)∑ 𝜌(( .     (9) 

At the back of the band there are fewer cells and therefore more oxygen than in the middle 
of the band. Thus, when the aspartate consumption rate depends on oxygen, 𝛼H	(𝑂) 
becomes larger at the back than the mean over the band, 〈𝛼H〉. As a consequence, the 
drift at the back is higher than in the case without oxygen dependence, slowing down the 
decay of the band. We verified this by running simulations with and without oxygen 
dependence (Extended Data Figure 8b). In the simulations without oxygen, we set 𝛼H 
equal to a constant value, corresponding to the average consumption rate in the band 
〈𝛼H〉 in the simulation with oxygen dependence. This was intended to make the wave 
speeds in the two simulations similar, eliminating the effect of different wave speeds on 
cell leakage rates. 
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Table 1. Model parameters  
 
Strains, growth conditions and sample preparation  

Symbol Definition and Value Reference 

𝑀 The receptor gain for aspartate, 𝑀 = 6 Ref 29 

𝐾_ 
The dissociation constant to aspartate for the inactive 
conformation of the Tar receptor, 𝐾_ = 3.5	𝜇𝑀 Ref 48 

𝐾Y 
The dissociation constant to aspartate for the active conformation 
of the Tar receptor, 𝐾_ = 1000	𝜇𝑀 Ref 48 

𝜇H The diffusion coefficient of aspartate molecules, 𝜇H = 500	𝜇𝑚l/𝑠 Ref 51 

𝐾H 

The aspartate concentration at half-max of its consumption, 

𝐾H = 0.5	µM Ref 52 

𝛼H_ 
The maximum aspartate consumption rate, 𝛼H_ = 9.3	µmol/min/
cell 

Extended Data 
Fig.  7g 

𝑂�� The external oxygen level,	𝑂�� = 250	µM Ref 53 

𝑔H 

The basal ratio of relative consumption rate at zero oxygen, 

𝑔H = 0.27 
Extended Data 
Fig.  7h 

𝜇O The diffusion coefficient of dissolved oxygen, 𝜇O = 2500	𝜇𝑚l/𝑠 Ref 51 

𝛼O 

The maximum oxygen consumption rate, 

𝛼O = 7 ×	10fYY	µmol/min/cell 
Extended Data 
Fig.  7g 

𝐾O 

The dissolved oxygen concentration at half-max its consumption, 

𝐾O = 1	µM 
Extended Data 
Fig.  7g 

𝜅 The oxygen transfer rate through ~0.5 cm of PDMS, 𝜅 = 0.02	sfY Ref 54 

𝜌_ Initial cell density, 𝜌_	~	2.87 ×	10Y_	cells/ml This study 

𝑥_ Length scale of initial cell density profile, 𝑥_ = 0.8	𝑚𝑚 This study 

𝑣 Cell swimming speed, 𝑣	~	36	µm/s This study 

Θ Directional persistence  Θ = 0.16 Ref 22 

𝐷yzD  Rotational diffusion coefficient during runs, 𝐷yzD = 0.062	sfY Ref 50  

𝑘_ Parameter in the expression for 𝜒(/𝜇(, 𝑘_ = 22 Ref 22 

𝑇𝐵_ Parameter in the expression for 𝜒(/𝜇(, 𝑇𝐵_ = 0.05 Ref 22 
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E. coli RP437 was used as the wild type strain for chemotaxis in this study. Cells were 
grown in M9 glycerol medium: M9 salts (6.78 g/L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 
1.0 g/L NH4Cl), supplemented with 4 ml/L glycerol, 0.1 % casamino acids, 1.0 mM 
magnesium sulfate, and 0.05% w/v polyvinylpyrrolidone-40 at 30°C. Appropriate 
antibiotics were supplemented (ampicillin 100 µg/mL, kanamycin 50 µg/mL, and 
chloramphenicol 25 µg/mL) when necessary to maintain plasmids.  

For Fig. 1 cells were collected at mid-exponential phase (~ an OD600 of 0.3) and washed 
twice with fresh M9 glycerol medium, then resuspended in fresh M9 glycerol medium to 
concentrate cell density at an OD600 of 0.7. These cells were then gently loaded into the 
microfluidics chamber, which was maintained at 30°C throughout the experiment.  

To generate a single traveling band, experiments were conducted in M9 glycerol buffer: 
motility buffer (M9 salts, 0.01 mM methionine, 0.1 mM EDTA, 0.05% w/v 
polyvinylpyrrolidone-40) supplemented with 4 ml/L glycerol and the indicated amount of 
aspartate. This buffer was used to wash and resuspend cells instead of the complex 
growth medium (M9 glycerol medium) mentioned above. The same M9 salts were used 
in the M9 glycerol medium and M9 glycerol buffer to minimize osmolality changes. RP437 
is auxotroph for leucine, histidine, methionine, and threonine, and therefore does not grow 
in M9 glycerol buffer. 

To control the tumble bias distribution, we used a DcheZ strain derivative of RP437 
containing a chromosomally-integrated copy of the phosphatase CheZ under the control 
of the inducible promoter and tetR (gift from Dr. Chenli Liu). CheZ dephosphorylates the 
response regulator CheY, which, when phosphorylated, induces the motors to switch and 
the cells to tumble. Thus, low CheZ results in higher CheY-P and more tumbling, and vice 
versa. Anhydrotetracycline (aTc) was added overnight in the culture when indicated to 
release the repressor TetR from the cheZ promoter region, inducing the expression of 
CheZ in this strain. To color-code strains, pBca1020-r0040 carrying mRFP1 (obtained 
from BioBrick), pLambda driving mRFP1 (gift from Dr. Chenli Liu) and plasmids carrying 
YFP55 under constitutive promoter were transformed into RP437 and into the inducible 
CheZ strain by electroporation.  

 

Microfluidic device design and fabrication 

Microfluidic devices were constructed from the biocompatible and oxygen-permeable 
silicone polymer polydimethylsiloxane (PDMS) on cover glass following standard soft 
lithography protocols for two-layer devices56. The master molds for the device consisted 
of two silicon wafers with features created using ultraviolet (UV) photoresist lithography. 
The bottom wafer had two main parts: a large chamber created using SU-8 negative resist 
(thickness: 10 µm, SU8 3010, Microchem), and a long channel together with two 
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inlet/outlet channels designed to be opened and closed using pressure actuated valves. 
A second coat of SPR positive resist (thickness: 14 µm, SPR 220-7.0, MEGAPOSIT) on 
the same wafer was used to create a rounded channel profile that can collapse fully if 
depressed from above (Extended Data Figure 1a). The second, top wafer contained 
features for the control channels that close the collapsible features in the bottom wafer. 
The top wafer was created using SU-8 negative resist (thickness: 10 µm, SU8 3010, 
Microchem). The resists were then cured using UV light exposure through photomasks 
designed in CAD software and printed by CAD/Art Services Inc. (Bandon, Oregon), again 
following photoresist manufacturer specifications. Subsequently, wafers were baked and 
the uncured photoresist was dissolved. After curing the SPR coat, the features were 
baked further to produce a rounded profile. After both wafers were complete, a protective 
coat of silane was applied by vapor deposition. 

To cast and manufacture the two-layer device, the top wafer was coated with a 5 mm 
thick layer of degassed 10:1 PDMS-to-curing agent ratio (Sylgard 184, Dow Corning). For 
the bottom layer, a 20:1 mixture was prepared and spin coated to create a 100 μm thick 
layer. The two layers were partially baked for 45 minutes at 70°C. The top layer was then 
cut and separated from the wafer, holes were punched from the feature side using a 
sharpened 20 gauge blunt-tip needle to make external connections to the control valve 
lines, then aligned and laminated onto the bottom layer. The stacked layers were baked 
together for 1.5 hours at 70°C and allowed to cool. The laminated layers were then cut 
out and the remaining ports were punched to make external connections with the 
channels. To reduce the evaporation of the microfluidic device, the PDMS device was 
soaked overnight in Millipore-filtered water at 50°C.   

The assembled PDMS devices were bonded to 24 x 50 mm glass coverslips (#1.5). The 
PDMS was cleaned with transparent adhesive tape (Magic Tape, Scotch) followed by 
rinsing with (in order) isopropanol, methanol, and Millipore-filtered water, air-drying 
between each rinse. The glass was rinsed the same way, with acetone, isopropanol, 
methanol, and Millipore-filtered water. The PDMS was tape-cleaned an additional time, 
and then the two pieces were placed in a plasma bonding oven (Harrick Plasma) under 
vacuum, gently laminated, and then baked on an 80°C hotplate for 15 minutes to establish 
a covalent bond. Devices were stored at room temperature and used within 24 hours. 

 

Running the experiment: band formation and imaging 
 

Washed cells were gently loaded into the device which was then centrifuged for 20 min 
at 700 g in a 30°C environmental room to concentrate cells at the end of the chamber 
(Extended Data Fig. 1b). After spinning, the microfluidic device was placed on an inverted 
microscope (Nikon Eclipse Ti-U) equipped with a custom environmental chamber (50% 
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humidity and 30°C). A custom MATLAB script was used to control the microscope and its 
automated stage (Prior) via the MicroManager interface57. Time-lapse images (phase-
contrast and fluorescence: mRFP1 or YFP) of the migrating cells were acquired using a 
Hamamatsu ORCA-Flash4.0 V2 camera (2,048 × 2,048 array of 6.5 × 6.5 μm pixels), a 
10X phase contrast objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D. 16.0 mm) and a LED 
illuminator (Lumencor SOLA light engine, Beaverton, OR) through the mCherry block 
(Chroma 49008, Ex: ET560/40×, Em: ET630/75m) or EYFP block (Chroma 49003; Ex: 
ET500/20x, Em: ET535/30m). Once the band formed, starting at the origin (closed end of 
the channel), the motorized stage moved along the channel and paused every ~1.3 mm 
(the width of one frame with a small overlap < 0.1 mm between consecutive positions) to 
take images in phase contrast and fluorescence (exposure time 122 ms for both 
channels). After reaching the observation chamber, acquisition started over at the origin 
every 40 seconds (every 60 sec for Fig. 1c). 

In Figure 1, all cells were expressing mRFP1. In Figure 2, unlabeled and fluorescently 
labeled cells were separately grown to mid-exponential phase (~ an OD600 of 0.3). For 
the experiments with 50, 100, and 200 µM aspartate, the fluorescently labeled cells were 
diluted with unlabeled cells at the following ratios 1:20, 1:50, 1:100. The mixed cells were 
then washed, and resuspended to the same predetermined density (an OD600 of 0.7). 
The mixed populations were loaded into the microfluidic device and imaged as described 
above. In Fig. 4b-e, a similar procedure was followed to prepare the samples for different 
induction conditions. A 1:1 mixture of high and low induction cultures was mixed and 
loaded in the device.  

In Fig.4f, a 1:1 mixture of high and low aTc induction (ranging from 1-10 ng/ml) cultures 
with all cells fluorescently labelled by mRFP1 or YFP was mixed and loaded in the device. 
The distances between the peaks of the density profiles of the two populations were 
calculated by measuring the distance between the peaks in the two fluorescent intensity 
profiles. The mean tumble bias of each population were measured by loading a sample 
of the population on a cover slip and tracking individual cells as previously described21. 

Once a band arrived in the perfused chamber, the gate near the chamber was closed 
(using 10 psi pressure) to capture the band (Extended Data Fig. 1b). To capture the 
second band in a separate experiment, the gate remained open until the first band passed, 
then closed. The first band was immediately flushed away by flowing M9 glycerol 
medium/buffer at 3 psi for 5~20 seconds through the chamber until all cells were flushed 
from the chamber. The gate was then reopened to let the second band migrate into the 
chamber. Once a band was captured in the perfused chamber, several pulses of fresh 
medium/buffer at 3 psi were flown in to reduce cell density and homogenize the 
environment in the chamber.  Cells were left to adapt in the perfused chamber for a few 
minutes.  
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Tumble bias detection 

Once cell density became relatively homogeneous, the swimming trajectories of individual 
cells were recorded for 2 minutes at 8 fps in order to extract tumble bias. We verified that 
perfusion of the observation chamber did not affect the distribution of tumble biases 
(Extended Data Fig. 2). Each tumble bias distribution was generated by acquiring 4 
movies, tracking the individual cells, and determining their tumble bias as described 
before21, 22. The resulting number of sample trajectories longer than 10 sec (shorter tracks 
were discarded because they provide poor estimate of tumble bias21) was limited by the 
number of independent movies one can acquire in the PDMS chamber, the size of which 
corresponds to 4 field of views, and the density of cells, which must be kept low for 
tracking to be possible. This procedure resulted in a minimum of 2823 and 3209 
trajectories per distribution giving an error of at most 1.15% and 1.00% in the 
determination of the CDF estimated by bootstrapping for Figures 1 and 2, respectively. 

 

Image analysis and determination of the number of cells in the band. 
 

Image analysis was conducted in MATLAB. We detected the position of the centroid of 
each fluorescent cell using the MATLAB function bwconncomp. Figs. 2a, 4b and 
Extended Data Figs. 6de report these coordinates. The number of labelled cells was 
multiplied with the dilution ratio to obtain the total number of cells in the band. 

Cell density profiles in Figs. 2d, 4cd and Extended Data Figs. 9bc were measured as 
follows: cell density profiles were extracted for each time point within one experiment and 
aligned before averaging. The cell density profile at a given time point was calculated by 
dividing the number of cells by the volume in one spatial bin (~ 120 µm) along the 
observation channel. To reduce alignment error before averaging, the position of the peak 
density in each profile was identified by first smoothing the profile with a moving filter with 
a 5-bin span (MATLAB function smooth) and then identifying the position of the peak. To 
avoid boundary effects, only the profiles with peak position located between 3 to 8 mm 
from the origin were used to calculate the average density profile. The mean and standard 
deviation shown in the figures were calculated with raw cell density profiles (not 
smoothed). 

 

Measurement of amino acids by HPLC show that aspartate dominates the 
chemotaxis response 
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When consuming aspartate, E. coli cells secrete other amino acids, which could affect 
group migration58. We used HPLC to analyze the amino acids secreted by the cells when 
they are suspended in M9 glycerol buffer supplemented with aspartate. RP437 cells were 
grown in 200 ml M9 glycerol medium up to mid-exponential phase and washed twice with 
M9 glycerol buffer supplemented with 500 µM aspartate. Cells were then resuspended in 
5 ml of the same defined medium at an OD600 of 1 and placed in a 200ml flask. The flask 
was shaken at 200 rpm to maximize aeration at 30°C. Every 15 minutes, a 500 µl of 
culture was sampled, filtered using 0.2 µm filter (Acrodisc 13 mm Syringe Filter with 0.2 
µm HT Tuffryn Membrane, Pall Corporation), and analyzed by HPLC via pre-column 
derivatization method.  The resulting derivatives were separated by phase 
chromatography using a Dionex Ultimate 3000 HPLC, with a coupled DAD-3000RS diode 
array detector (Dionex) and FLD detector (Dionex) using an ACE C18 column (3 µm, 3 x 
150 mm). Amino acid standard (AAS18 Sigma) was used as reference.  

Upon uptake of aspartate, cells secreted small amounts of glutamate (Glu), asparagine 
(Asn), and homoserine (HS), which are attractants (Extended Data Figure 6c). To quantify 
the relative contribution of each amino acid to the chemotactic response in our experiment 
the measured concentration of each amino acid was plotted in units of the corresponding 
EC50 of the dose response of the chemotaxis system. The EC50 of the dose response 
of the chemotaxis system for each amino acid has been quantified by the Sourjik lab using 
in vivo FRET measurements in RP437, the strain used in this study. The EC50 values of 
RP437 E. coli are 0.3 μM for aspartate (Asp), 50 μM for glutamate (Glu), 30 μM for 
asparagine (Asn), and 3 mM for homoserine (HS)48. Extended Data Figure 6c reveals 
that the response to aspartate dominates by almost two orders of magnitude over the 
responses to the other amino acids. It also shows that of the three secreted amino acids, 
glutamate is the one that has the second largest effect, albeit still much smaller than the 
response to aspartate. Finally, we also checked that chemotaxis towards oxygen does 
not play a significant role either. Mutant strains lacking the oxygen receptor aer or both 
aer and tsr form bands under the same condition as in Fig. 2a, indicating that aerotaxis 
is not essential and Tar response to aspartate is sufficient for the band to travel (Extended 
Data Figure 6de). 

 

Experimental evidence of oxygen limitation in the center of the traveling band 
 

Ruthenium complexes are toxic to E. coli, hence the need to encapsulate them in 
phospholipid micelles. This was achieved using the same protocol as in ref 33. 
Fluorescence of the ruthenium complex is quenched by oxygen binding, so higher 
fluorescence corresponds to lower oxygen concentration. Note that the high density of 
cells in the band could exclude the dye; however, this should decrease fluorescence 
intensity, the opposite effect of decreased oxygen. Experiments were performed in 100 
μm-deep and 14 μm-deep devices. The 100 μm-deep devices were straight channels, 39 
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mm long and 600 μm wide. The 14 μm-deep devices were the same as those used in the 
other experiments in this paper. However, since the control gates interfere with the 
fluorescence signal, the top layer of PDMS was fabricated without a mold for the gates. 
In both cases, a 1:500 dilution of concentrated micelles was added to bacteria prepared 
as described above, just before loading into the microfluidic device. This dilution was 
intended to avoid sequestration of oxygen from the cells. Two control experiments were 
performed in the 14 μm device, one with dye and no cells, and one with cells and no dye. 
Imaging and data analysis of all three types of experiments were performed in the same 
way. 

Imaging equipment were the same as described above with a few exceptions. The 
excitation filter from an ECFP block (Chroma 31044v2, D436/20x), the emission filter from 
an mCherry block (Chroma 49008, ET630/75m), and the dichroic mirror from the mCherry 
block (Chroma 49008, T585lpxr) were used to image the dye due to its large Stokes shift.  

For the 100-μm device, the 10x objective described above was used for imaging. Images 
were taken in 2-minute intervals. For the 14-μm device, imaging was performed using a 
40X oil objective (Nikon CFI Plan Fluor, NA 1.3, W.D. 0.24 mm). Images were taken in 
3.5-minute intervals. 

To analyze the fluorescence images, fluorescence intensity was first averaged over the 
width of the channel that was visible in the image, 𝐼(𝑥, 𝑡). At each location x, the passing 
wave appeared as a brief peak in intensity during the time course. To separate this from 
slow variations in signal due to photobleaching and possible global changes in oxygen 
concentration, we smoothed the time course of fluorescence intensity at each position, 
𝐼F(𝑡), using MATLAB’s smooth function (smoothing method: lowess; window size: 4, 
corresponding to a time window of 14 minutes) to produce the slowly varying background 
signal, 𝐼©F(𝑡). To extract the fast-passing wave, we divided 𝐼F(𝑡) element-wise by 𝐼©F(𝑡) for 
each position 𝑥. As a result, the slowly changing background was normalized to 1, while 
faster changes in signal were different from 1. This also eliminated differences in 
illumination over space. Finally, the noisy normalized profiles produced by this analysis 
were median filtered over space using MATLAB’s medfilt1 (window size: 10). 

 

Measurement of oxygen consumption rate in batch cultures 
 
RP437 cells were grown in 200 ml M9 glycerol medium to mid-exponential phase and 
washed twice with M9 glycerol buffer supplemented with 200 µM aspartate. Cells were 
then resuspended in 50 ml of the same defined buffer to an OD600 of 0.5. The sample 
was placed in a beaker at 30°C. The surface of the buffer was sealed by overlaying 
mineral oil. The level of dissolved oxygen was measured with a portable dissolved oxygen 
meter (Melwaukee MW600) every 30 seconds. The cell sample was continuously stirred 
at 300 rpm with a magnetic stirrer. The consumption rate per cell per minute was obtained 
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by dividing the reduction in oxygen by the number of cells and the sampling interval time 
(Extended Data Fig. 7g). 

 

Measurement of the aspartate consumption rate in batch cultures 
 

RP437 cells were grown in 200 ml M9 glycerol medium up to mid-exponential phase and 
washed twice with M9 glycerol buffer supplemented with 500 µM aspartate. Cells were 
resuspended in 3 ml of the same defined buffer to make cell density at an OD600 of 1. 
Two samples were prepared in two test tubes. One tube was shaken at 200 rpm to 
maximize aeration while the other tube was left on the bench with mineral oil overlaid on 
the liquid surface to avoid supply of oxygen from air. These two tubes were incubated at 
30°C and sampled every 10 minutes. The amount of aspartate in the collected sample 
was then measured by using Aspartate Assay Kit (Abcam). The consumption rate per cell 
per minute was obtained by dividing the reduction of aspartate in the sample by the 
number of cells and the sampling interval time (Extended Data Fig. 7g). 

 

Statistical analysis and experimental reproducibility 
 

No statistical methods were used to predetermine sample size. Standard error in the CDF 
of the tumble bias in each replicate experiment was determined by bootstrapping (1000 
bootstrap samples).  One-sided unpaired two sample Student’s t-test assuming unequal 
variances was used for comparison between two groups in Figs. 2bc. P values <0.05 
were considered statistically significant and marked with asterisks. For t-test, t-values and 
degrees of freedom are provided in the figure legends. The error bars are defined in each 
figure caption and are standard deviation except in Fig. 2f. Data presented in the main 
figures were drawn from at least three independent replicates, with the exception of Fig. 
4d (n = 2). The number of replicates is mentioned in the caption of each figure. 

 

Code availability 
 

We used a custom MATLAB code to analyze the swimming behavior of E.coli cells21, 22. 
The algorithms to simulate the mathematical model are described above and available 
from the corresponding author upon request.   

Data availability 
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Data generated and analyzed during this study are included in the figures and 
supplementary information files. Additional datasets generated and analyzed during the 
current study are available from the corresponding author on reasonable request. 
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