bioRxiv preprint doi: https://doi.org/10.1101/295196; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Title: Spatial Self-Organization Resolves Conflicts Between Individuality and
Collective Migration

Authors: X. Fu'lt, S. Kato'st, J. Long"?# H.H. Mattingly'#, C. He3, D.C. Vural™, S.W.
Zucker*® and T. Emonet"?

Affiliations:

' Department of Molecular, Cellular and Developmental Biology, Yale University, New
Haven, CT 06520, USA.

2 Department of Physics, Yale University, New Haven, CT 06520, USA.

3 Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China.

4 Department of Computer Science, Yale University, New Haven, CT 06520, USA.
5> Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.

T These authors contributed equally to this work.
# These authors contributed equally to this work.

T Current address: Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

§ Current address: Department of Molecular Biotechnology, Graduate School of
Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-
8530, Japan.

* Current address: Department of Physics, University of Notre dame, Notre Dame, IN
46556, USA.

* Correspondence to: Thierry Emonet (thierry.emonet@yale.edu).


https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295196; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Abstract:

Collective behavior can spontaneously emerge when individuals follow common rules of
interaction. However, the behavior of each individual will differ due to existing genetic and
non-genetic variation within the population. It remains unclear how this individuality is
managed to achieve collective behavior. We quantified individuality in bands of clonal
Escherichia coli cells that migrate collectively along a channel by following a self-
generated gradient of attractant. We discovered that despite substantial differences in
individual chemotactic abilities, the cells are able to migrate as a coherent group by
spontaneously sorting themselves within the moving band. This sorting mechanism
ensures that differences between individual chemotactic abilities are compensated by
differences in the local steepness of the traveling gradient each individual must navigate,
and determines the minimum performance required to travel with the band. By resolving
conflicts between individuality and collective migration, this mechanism enables
populations to maintain advantageous diversity while on the move.
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Cells and larger organisms exhibit collective behaviors that are often advantageous to the
participating individuals’ 2. Many such collective behaviors dynamically emerge when a
large number of individuals follow the same rules to interact with each other and the
environment® 4. Prominent examples are bird flocks* % © and the collective migration of
bacteria along channels” & ® 0. 1" and on agar plates® % '2. At the same time, phenotypic
differences among even genetically-identical individuals are a ubiquitous feature of
biology'3. Phenotypic diversity can lead to useful leader-follower structures within a
traveling group. For example in migrating neural crest cells and in fish shoals, many
organisms may follow a few more informed individuals'. In microbial communities,
maintaining diversity in the population can enable bet-hedging strategies to survive
uncertain environments and resolve trade-offs' 15 16.17. 18 'However, heterogeneity can
also be disruptive, as is the case in simulated swarms where non-aligners tend to be
purged from the swarm'®. This raises a dilemma: although phenotypic diversity provides
advantages, it also tends to reduce coordination.

One of the simplest cases of collective behavior is exhibited by bacteria: clonal
populations of motile E. coli cells collectively migrate when placed at high density at the
bottom of a tube filled with nutrients® ® 1% 11 This collective behavior is mediated by the
well-characterized chemotaxis system?°, which enables the bacteria to follow chemical
gradients, in this case generated by their consumption of attractant present in the medium
(Fig. 1A). However, populations of E. coli exhibit substantial cell-to-cell variability in their
swimming phenotypes' 2! and, hence, chemotactic abilities, even when all cells are
genetically identical??2. How bacterial populations manage phenotypic heterogeneity to still
allow coordinated collective migration remains largely unknown, mainly because of the
difficulties in measuring cellular behavior at both the collective and the individual levels in
the same experiment?'.

Although the migration of traveling waves or “bands” of bacteria has also served as a
classic model for the theoretical study of emergent phenomena and pattern formation in
biology'® 23, the effect of non-genetic diversity on this process has scarcely been
examined. Previous studies examined how two populations may travel together? 25,
however it was assumed that within each population all of the individuals were identical.
The mechanisms by which a continuum of phenotypes can achieve coherent migration
have not been investigated.

Here, we used a microfluidic system that enables precise quantitative measurements at
the individual and collective scales to study the interplay of diversity and collective
bacterial migration. Our central finding is that within the traveling band, cells
spontaneously sort themselves such that their chemotactic abilities are matched to the
local gradient steepness, enabling diverse cells to travel together with the same drift
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speed. Extending the classic Keller-Segel model of traveling bands to account for
diversity predicts this spatial sorting and qualitatively recapitulates the experimental
results. Our second finding is a novel mechanism that reduces the rate at which cells fall
off the back of the band: when attractant consumption depends on local oxygen, oxygen
limitation in the center of the band increases the gradient of attractant at the back, helping
cells there to keep up.

Results

To quantify collective behavior and diversity in the same experiment, we designed a
microfluidic device consisting of a long channel to observe the traveling band'’, followed
by a large chamber to quantify the distribution of phenotypes in the band (Fig. 1b and
Extended Data Fig. 1). Approximately 2 x 10° clonal E. coli cells grown in M9 glycerol
medium (M9 salts, glycerol and casamino acids; Methods) were introduced with fresh
medium into the device and concentrated at the end of the channel by centrifugation
(Methods). Following centrifugation, sequential bands of cells collectively migrated along
the channel at different but nearly constant speeds (Fig. 1c), presumably consuming
different compounds within the undefined media, as demonstrated in early studies®.

E. coli cells navigate by alternating straight “runs” with “tumbles” that randomly reorient
their swimming direction (Fig. 1d). By transiently suppressing tumbles whenever
attractant signal increases, they perform a biased random walk that allows them to move
towards higher concentrations of attractant?°. In the absence of a gradient, the fraction of
time a cell spends tumbling—its tumble bias (TB)—remains approximately constant and
therefore can be used as a quantitative measure of the phenotype of the cell. Importantly,
using the same strain and microfluidic channel depth, we previously demonstrated that
the tumble bias is a strong determinant of chemotactic performance in liquid: lower tumble
bias cells drift significantly faster up a static gradient than higher tumble bias cells??. To
quantify the distribution of phenotypes in the isogenic population that was introduced in
the device, a low density of cells was loaded into the microfluidic device without
centrifugation, and individual cells were tracked to determine their TB, as previously
described?'- 22, Tumble bias was broadly distributed in the population with some cells
tumbling less than 10% of the time (i.e. TB < 0.1) and others more than 50% of the time
(Fig. 1e black), consistent with previous studies'® 2'. Given the functional consequences
of this non-genetic diversity, how can the same population of cells migrate together as a
coordinated group as shown in Fig. 1c?
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Figure 1 | Collective migration of a phenotypically diverse clonal population. a, When
concentrated at the bottom of a nutrient channel, motile E. coli cells emerge from the high cell
density region and travel in bands along the channel by following gradients of attractant produced
by their consumption. b, Microfluidic device used to quantify the band migration and the
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phenotypic diversity within the band. Control gates along the channel (black vertical lines) are
initially open (top), and later closed to capture different bands of cells in the observation chamber
(bottom), where single cells are tracked to quantify the distribution of phenotypes within the band
(Extended Data Fig. 1). ¢, Time-lapse imaging of E. coli cells expressing the fluorescent protein
mRFP1 showing the collective migration of bands in M9 glycerol medium (M9 salts, glycerol and
casamino acids; Methods). In this undefined medium several bands emerge that travel at different
speeds (red: 0.68 mm/min, yellow: 0.23 mm/min)®. We verified that labeling cells did not affect
band speeds nor tumble bias distributions (Extended Data Fig. 2). d, The tumble bias (color)—
average probability to tumble—of individual cells was quantified by tracking a cell for two minutes
in an uniform environment (no gradient) and detecting tumbles (black dots) as previously
described?"??, e, Collective migration selects against high TB cells. Tumble bias distributions from
the first (red) and second (yellow) bands (n=3), and from the population that was introduced in
the device (black; n=3). f, The tumble bias distribution of the cells in the 1% wave (red in e)
gradually shifted back towards the original distribution (black) during growth in the perfused
chamber. Fresh M9 glycerol medium was supplied every 30 min. The TB distribution was
measured every 20 minutes.

To answer this question, we first considered whether all phenotypes or only a subset of
them traveled in each band. We used pressure valves to capture one band of cells at a
time in the wide chamber of our device (Fig. 1b and Extended Data Fig. 1b). After trapping
cells in the wide chamber, it was perfused with fresh media to homogenize the
environment and dilute the cell density. We verified that perfusion of the wide chamber
did not affect the distribution of tumble biases (Extended Data Fig. 3). Dilution enabled
us to track individual cells. Homogenization ensured that cells had adapted back to a
uniform environment and were not responding to an attractant gradient when we
measured their tumble biases. The distribution of tumble bias was shifted towards lower
tumble bias in both traveling bands compared to the original distribution (Fig. 1e),
suggesting that it was more difficult for high tumble bias cells to participate in collective
migration. Selection against high tumble bias cells was stronger in the faster band (Fig.
1e, red) than in the slower one (Fig. 1e, yellow). Cell density and number also varied
between the two bands (Fig. 1c), suggesting that there were interdependencies between
the speed of the group, its size, and the diversity of the individuals able to migrate with
the group. We periodically tracked cells after they were trapped and diluted in the wide
chamber and found that the original tumble bias distribution recovered after growth (Fig.
1f). Thus, selection of low tumble bias cells by the collective migration was not due to
genetic heterogeneity. Also, it is unlikely that cell growth affected the tumble bias selection
while cells were traveling in a band because the duration of the experiment (30 mins) was
shorter than the cell doubling time (~55 mins, Extended Data Fig. 4).

To determine the relationship between the number of cells in the band, the band speed,
and diversity, we switched from casamino acids to a defined M9 glycerol buffer containing
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the chemoattractant aspartate as the only amino acid (Methods). In this condition, a single
band formed (Fig. 2a), and its speed could be tuned by changing the concentration of
supplemented aspartate' (Fig. 2b). To measure band speed and density, cells
expressing mRFP1 were mixed with unlabeled cells at ratios of 1:20, 1:50 or 1:100, and
their positions were detected at various time points (Fig. 2a and Methods'" 2). Band
speed, number of cells in the band, and density profiles were stable over time with a slow
decay due to cells falling off at the back of the band (Figs. 2bcd and Extended Data Fig.
5). Although there were variations across experimental replicates due to variations in the
number of cells introduced in the device, the relationship between aspartate concentration
and band parameters was consistent. Specifically, as the concentration of aspartate
increased, the speed of the band decreased (Fig. 2b), the number and peak density of
cells in the band increased (Fig. 2cd), and the distribution of tumble bias within the band
shifted towards higher tumble bias (Fig 2e). In general, collective migration selected
against high tumble bias cells, with selection being stronger in faster bands (Figs. 2ef).
Note however, that diversity was not eliminated—all bands still exhibited a range of
tumble biases. Thus, while collective migration selected against high tumble bias cells, it
was still possible for a diverse group to travel together.

To better understand how collective migration selects tumble bias, we extended the
classic Keller-Segel mathematical model describing traveling bands of bacteria™ to
include phenotypic diversity (Methods Eqgs. (1)-(3)). In this model, cells consume the
diffusible attractant aspartate, which generates a traveling gradient that the cells follow
by biasing their random walk (Figure 3a). Faster consumption, more cells, or less
aspartate all lead to a faster traveling gradient’®. The motion of a phenotype i depends
on two parameters: its effective diffusion coefficient, u; = u(TB;), which results from the
cells’ random walk, and its chemotactic coefficient, y; = y(TB;), which quantifies how
effective that phenotype is at biasing its motion®” 2. 29 to follow the perceived amount of
aspartate, f. Theory and tracking of individual E. coli cells swimming in a static gradient
of a-methylaspartate (non-metabolizable analogue of aspartate) have shown that 4 and
x are decreasing functions of the tumble bias, TB (note that for very low values of TB less
than ~0.05, y increases with TB: indeed for TB = 0 the cell is just diffusing and y = 0;
Methods)?'-22. Thus, in a gradient of attractant, cells with higher tumble bias do not diffuse
as much and climb slower than cells with lower tumble bias. The dependency of f on
aspartate concentration has been characterized, as well®*. Moreover, we conducted
HPLC experiments to verify that the chemotaxis response to aspartate dominated that to
amino acids secreted as by-products of aspartate metabolism. Experiments conducted
with mutants lacking the oxygen receptor aer or both aer and tsr indicated that aerotaxis
was not essential and Tar response to aspartate was sufficient for band migration3'
(Methods and Extended Data Fig. 6).
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Figure 2 | Relationship between band speed, density, and phenotypic diversity. a, Time-
lapse coordinates (black dots) of cells traveling in defined buffer (M9 glycerol buffer: M9 salts and
glycerol, supplemented with 200 uM of the chemoattractant aspartate). Only one band forms in
each experiment. 1:100 cells were labeled with mRFP1 and their coordinates detected (Methods).
Decreasing the concentration of aspartate in the buffer from 200 uM (blue; 1:100 cells labelled),
to 100 uM (yellow; 1:50 cells labelled) to 50 uM aspartate (red; 1:20 cells labelled) increased the
band speed (b), decreased the number of cells (¢) and cell density (d), and increased selection
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against the high tumble bias cells in the band (e,f). Details in Methods and Extended Figure 5. b,
Band speed as a function of aspartate concentration in the buffer. Circles: experiments in which
tumble bias were measured and used in e and f. Diamonds: experiments in which tumble bias
were not measured. Dashed: simulations described in Methods. p value: one-sided two sample t-
test assuming unequal variances, t-value = 4.1, df = 5.4 for comparison between 50 uM and 100
uM, t-value = 4.2, df = 3.8 for comparison between 100 uM and 200 uM. ¢, Number of cells
traveling in the band. Circles, diamonds and dashed: same as in b. p value: one-sided two sample
t-test assuming unequal variances, t-value = -3.9, df = 6.5 for comparison between 50 uM and
100 uM, t-value = -4.6, df = 6.4 for comparison between 100 uM and 200 uM. d, Average cell
density profiles over time and experiments, aligned as in Extended Data Fig. 5. Line: mean over
n =5 (red), n =4 (yellow), n =5 (blue) replicate experiments. Shade: SD. For each experiment, 9
profiles were measured at 1.3-min intervals. Dashed: simulations. e, Tumble bias distribution of
the cells that travelled with the band. Lines: average over the experiments in circles in b and c;
shading: SD; dashed lines: simulations). f, Ratio between the distribution of phenotypes (TB) in
the traveling band (Fig. 2e, colored lines) and that of the original population (Fig. 2e, black)
quantifies the enrichment of phenotypes as a function of tumble bias. (Solid lines: mean of the
measurements from the experiments in circles in b; shading: standard error of the mean; dashed:
simulations).

To metabolize aspartate, E. coli consumes oxygen32. Introducing a fluorescent oxygen
sensor®? in the M9 glycerol buffer revealed that oxygen availability is reduced in the center
of the traveling band where cell density is high (Extended Data Figure 7a-f). This results
in a dependency of the average consumption rate of aspartate on cell density (Extended
Data Figure 7h). We modeled this effect such that the aspartate consumption rate
depended linearly on oxygen concentration and constrained the related parameters by
measuring oxygen and aspartate consumption rates in batch cultures (Extended Data
Figure 7g). For simplicity, we ignored possible phenotypic diversity in the aspartate
consumption rate, as well as the possible dependence of the diffusion coefficient on cell
density34, which was found previously to be negligible in similar experiments''. We also
omitted possible contributions of hydrodynamics3® and physical interactions between cells,
which can become important when bacteria swarm over surfaces®. The resulting model
(Methods and Table 1) qualitatively reproduced the main features of our experiments,
including the dependency on aspartate concentration of the band speed (Fig. 2b), cell
number and density (Fig. 2cd), tumble bias distribution (Fig 2e), phenotypic selection (Fig.
2f), and average aspartate consumption rate per cell as a function of cell number in the
band (Extended Figure Data 7h).

An important feature of the experiments reproduced by the simulations is the increasing
selection against high tumble bias cells as the amount of aspartate is reduced (Fig. 2f).
What mechanism enables cells with diverse chemotactic abilities to collectively migrate
together as one band, and what controls the upper bound on the tumble bias among those
able to migrate together? For every phenotype that travels with the band at constant
speed c, the flux of cells must be approximately invariant in time and equal to the
chemotactic flux minus that due to diffusion. Focusing on the partial differential equation
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for the cell density of phenotype i and switching to the moving reference frame z = x — ct
(here x and t are absolute position and time), two predictions emerge (Methods Egs. (7)-
(8)). First, the traveling phenotypes must distribute themselves spatially within the band
so that differences in local signal strengths, the slope % of the black line in Fig. 3a,
compensate for differences in the chemotactic abilities of each phenotype, y;, such that
C=xi %(zi), where z; is the position of peak density of phenotype i (Fig. 3a). Therefore,
this spatial sorting places the better performers (higher y;, lower TB;) in the front of the
band, where the gradient is shallower and more difficult to follow (Fig. 3a, dark red
dashed), and the weaker performers (lower y;, higher TB;) at the back, where the
gradient is steeper (Fig. 3a, pink dotted). Furthermore, a second prediction is that the
gradient will reach a maximal steepness (Fig. 3a dashed border of grey zone),
determining the weakest phenotype that can travel (lowest y;, upper bound on TB;). Thus,
we see the interplay between individuals i and the effect of the community on the
available resource, f.
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Figure 3 | Mathematical modeling suggests a mechanism for consistent collective
migration of diverse phenotypes. a, Collective migration of diverse phenotypes at the same

10


https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295196; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

speed is made possible by the spontaneous spatial ordering of individual phenotypes within the

band such that each individual’s chemotactic ability is matched to the local gradient steepness %.

The proportion of better performers (larger y, lower TB; dark red) should be enriched where the
gradient is shallower (front), while the proportion of weaker performers (smaller y, higher TB; pink)
should be enriched where the gradient signal is steeper (back). The position where the perceived
gradient steepness is maximum (dashed border of grey in a corresponds to the highest tumble
bias able to travel with the band. Cells in the grey region slowly fall out of the band. b, Simulated
density profiles of cells migrating in 200 uM aspartate (the same simulation as Fig. 2d blue dashed)
show sorting based on tumble bias. ¢, Chemotactic coefficient x(z) (blue) defined by the
phenotype whose density profile peaks at position z, and perceived gradient steepness % (black).

Red symbols correspond to the location of the peak cell density for individual phenotypes. d,
Spatial sorting enables consistent migration velocity for all phenotypes. The migration velocity,

x(2) %, of the phenotype whose density profile peaks at position z gradually decreases towards

the back of the band until the grey region is reached. In the grey region the migration velocity falls
off more rapidly, preventing the high TB phenotypes located there from staying in the band.

Analysis of simulations confirmed these analytical predictions (Figs. 3bcd). The
steepness of the perceived signal % which emerges dynamically from the cells’

consumption, peaked at the back of the traveling band (low z) and decayed towards the
front (high z) (Fig. 3c black). In contrast, the position z; of the peak density of phenotype
i increased with its chemotaxis coefficient y; (Fig 3c blue), revealing an ordering of the
phenotypes within the migratory band (Figs. 3bc). Multiplying the two together gave a
nearly constant velocity throughout the band, thus providing an explanation of how the
various phenotypes might travel together (Fig. 3d). The rightmost points in Fig. 3c (blue
line) and Fig. 3d (black line) correspond to the phenotype with the maximum chemotactic
coefficient in the band. Ahead of that location, there are no more peaks in the cell density
of any phenotype, however there are cells due to diffusion. At the back of the band, cells
with tumble bias higher than the predicted upper bound rapidly fell off of the band (Figs.
3ad grey zones). Importantly, these predictions emerged from just the dynamics of cell
density (Methods Eqg. (1)) and therefore hold true irrespective of whether oxygen is
included in the model.

Comparing simulations with and without the oxygen-dependent consumption rate
revealed that the oxygen-dependency reduces leakage of the highest-TB cells located at
the back of the band (Extended Data Figure 8b). The higher concentration of oxygen at
the back relative to the center of the band locally increases the rate of consumption and,
hence, the slope of the traveling gradient of aspartate, helping the cells there stay longer
with the band (Methods Eq. (9)). Thus, oxygen-dependency has a similar cohesive effect
as the secretion of a self-attractant, which also helps reduce the leakage of cells'" 25 37
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To experimentally test the prediction of spatial sorting in the band by phenotype, we
measured the relative position of two populations of cells with different mean tumble bias,
(TB), within the traveling band. The distribution of tumble bias in the population was
controlled by manipulating the level of expression of the phosphatase CheZ, which
deactivates the chemotaxis response regulator CheY (Extended Data Fig. 9a). We
generated multiple populations with different tumble bias distributions of varying (TB) (Fig.
4a). In each population, we labeled 1 in 50 cells of the same genetic background and
induction level by ectopically expressing either mMRFP1 or YFP. The inducer was washed
away when cells were resuspended in buffer before starting the migration experiment.
When cells from the lowest (red) and highest (cyan) tumble bias distributions were mixed
in equal parts and introduced in the device, spontaneous spatial order emerged, with cells
from the low (high) tumble bias distribution located at the front (back) of the traveling band
(Fig. 4bc and Extended Data Fig. 9b for replicates). The distance between the peaks of
the density profiles of the two populations remained nearly constant over the duration of
the experiment, indicating that the two populations traveled together at the same speed
(Fig. 4e). We verified that the distance between the peak densities of the two populations
was stable in longer experiments (Extended Data Fig. 9d). Mixing populations with closer
TB distributions caused the peaks of the two traveling populations to be closer (magenta
and green in Figs. 4ad and Extended Data Fig 9c for replicates), suggesting that distance
between peaks increases with difference in (TB) as a result of spatial sorting. Due to
experimental limitations, we could not measure the TB distributions of all four strains in
each of the experiments reported in Figs. 4a-e. To better quantify the relationship
between peak separation and difference in (TB) value, we instead mixed pairs of
populations using only fluorescent strains induced with different levels of aTc. For each
pair, we measured the TB distributions right before loading cells in the device, and then
measured the distance between the fluorescence peaks in the resulting traveling band
(Fig 4f). This confirmed that there is a monotonic relationship between peak separation
and difference in (TB) values. Therefore, cells of various phenotypes appear to
spontaneously sort themselves along the traveling band according to their tumble bias,
enabling them to migrate collectively despite phenotypic differences.
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Figure 4 | Phenotypes spontaneously order themselves along the traveling band according
to tumble bias. a, The distribution of tumble bias in the population can be controlled by
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manipulating the level of expression of the phosphatase CheZ, which deactivates the response
regulator CheY (Extended Data Figure 9a). b, Time-lapse coordinates (transparent colored dots)
of an equal mixture of low (red in a) and high (cyan in a) TB cells traveling in 200 uM aspartate
M9 glycerol buffer (See Methods). ¢, Corresponding density profiles (color) together with total cell
density (black). (Line: mean over n=34 time points measured at 40 sec intervals) for one
experiment; shading: SD; 5 replicates are in Extended Data Figure 9b). d Same as in ¢ but for
magenta and green populations in a. 2 replicates are in Extended Data Fig. 9c. e. Peak positions
as a function of time for the data in b. f. The distance between the fluorescence intensity peaks
of two populations traveling together in a single band increases with the difference between the
mean TB of the two populations. For each independent experiment, two populations labelled with
different fluorescent proteins (MRFP1 or YFP) were induced using different aTc amounts to obtain
distributions with different mean tumble biases. Dots: average over n=4 experiments; error bars
are SD.

Discussion

How do organisms maintain collective behavior despite the potential conflicts created by
phenotypic diversity among individuals? We studied this question using traveling bands
of chemotaxing E. coli, which collectively migrate at the same speed despite differences
in chemotactic abilities of individuals in the band. Our key result is that spontaneous
spatial organization of phenotypes within a traveling band helps resolve the conflicts
between phenotypic diversity and collective migration. By matching individual abilities to
the local difficulty of the navigation task within the band, this sorting mechanism ensures
consistent migration speed across the band. This process also determines the minimum
chemotactic performance required to keep up with the band, therefore explaining how
diversity can become limited by collective behavior. Thus, the mechanism reported here
enables a continuum of phenotypes to migrate coherently.

In the traveling band, there is always a slow leakage of cells off the back of the band
because of the finite sensitivity of the cells for the attractant they are chasing3® 3% 40. 41,
High tumble bias cells, in particular, which are localized at the back of the wave, are at
risk of falling off. We discovered that this leakage can be reduced (but not eliminated) if
the consumption rate of the attractant is lower in the center of the band than at the back,
where the consumption rate determines the local gradient steepness and chemotactic
drift. In our case, this arises because aspartate consumption depends on oxygen, which
becomes limited in the center of the band where cell density is high. This mechanism
provides an alternative to other mechanisms known to reduce cell leakage, such as the
secretion of an attractant by the traveling cells'" 2% 37 Note that the spontaneous sorting
mechanism discussed above helps compensate for differences in chemotactic abilities,
irrespective of the presence of such auxiliary mechanisms (oxygen or self-attractant).

Traveling bands of bacteria have been studied for decades since Julius Adler’s
experiments in capillary tubes® °. Adler reported the formation of multiple traveling bands
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in complex media; we observe the same in casamino acids (Fig. 1) and expect multiple
bands to be able to form when multiple consumable attractants are present. Within a
migrating band the cells respond to the traveling gradient, some parts of which can be
fairly steep. Therefore, we expect the instantaneous tumble bias of an individual cell to
be dynamically changing depending on its direction of motion and position within the
gradient, as previously reported!’: 2°. Here we showed that phenotypic (intrinsic)
differences in adapted tumble bias between cells contribute significantly to spatial
structure within the traveling band. In future studies we will separate the contributions of
phenotypic and dynamic diversity to group structure. It will also be interesting to examine
the contribution of initial conditions, dimensionality, and growth (necessary to maintain
traveling cell density over long times*' 42 43) to this process.

Previous analysis of bacterial traveling bands assumed that the population consisted of
identical cells'® 11.37.44.45 or at most two phenotypes?* 25. Here we extended these studies
by taking into account the continuum of phenotypes that is always present in a
population 2122 One study that considered how two phenotypes might travel together
made the theoretical assumption that cells sense only the direction of the gradient, not its
magnitude?®. This assumption causes the peak densities of the two phenotypes in that
model to coincide in space, contrary to our experimental observations. In another
theoretical study?*, the cells did respond to the gradient magnitude, and the two
phenotypes in the traveling solution were spatially separated. Although not discussed in
the paper, the phenotype with the higher chemotactic coefficient is in the front in that
solution, in agreement with our sorting mechanism. However in that model, the range of
sensitivity was assumed to extend to vanishing concentrations, as in the original Keller-
Segel model'®, which is not biologically realistic?’.

Following depletion of local resources, the spatial self-organizing mechanism described
here could enable populations of bacteria to maintain diversity while traveling towards
better environments. This diversity increases the probability that a phenotype well-suited
to unexpected environments will be available if needed during travel until a destination is
reached where growth can replenish the population. Because the range of phenotypes
allowed within a travelling group depends on the spatial profile of the traveling gradient,
this mechanism introduces important feedback between the environment, cellular
metabolism, and phenotypic diversity, which together generate spatial patterns of
phenotypes according to functional capabilities. The same mechanism might also enable
different bacterial species to travel together, thus enabling migration of small ecosystems.
Collective migration of eukaryotes resulting from traveling gradients of attractants
generated by consumption or breakdown of an attractant has recently been found to be
more important than previously believed because it enables cell migration over much
larger distances than migration along externally imposed gradients*¢. Being able to

15


https://doi.org/10.1101/295196
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295196; this version posted April 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

maintain diversity within the traveling group could be important in the context of immunity
and cancer.

The types of interactions between collective behavior and phenotypic diversity reported
here might also be at play beyond microbiology and cell biology, in contexts where
individuals in a group respond to the cumulative effect on the environment of the
individuals ahead. Whereas a bird monitors its neighbors to benefit from the collective
information acquired by the flock, here individuals monitor the environmental gradient to
benefit from the information accumulated in the environment by the band. In both cases,
there is a group “memory” in the form of a spatial structure that individuals respond to*’.
In general, both types of memory are probably available and utilized by groups, with their
relative importance determined by the specific biology of the organisms.

Methods

Mathematical model

We extended the classic Keller and Segel'® model to include the effect of phenotypic
differences in tumble bias. The key variables in the model are the density p;(x, t) of cells
of phenotype i as a function of position x and time t and the concentration of aspartate
A(x,t). Cells of phenotype i are characterized by their chemotactic coefficient y; and
diffusivity ;. Because aspartate consumption depends on oxygen®? we also model the
amount of oxygen dissolved in the media O(x,t). The parameters of the model are in
Table 1. The time-dependent evolution reads:

api _  9*p; 0 of (4)
%= 5E =7 (e ) (1)

LMl Ix
aA RV
Y a2 %()KMZmL 2)
a0 a%0
E =HUo 53 ax2 Ao Ko+0 lel + K(Oex - ) (3)

Eq. (1) represents the motion of cells due to diffusion and chemotaxis. f(4) =

144/Kq
Aflog[1+A/K1

concentration A, where K, =35uM and K; = 1000 uM represent the dissociation
constants of aspartate for the inactive and active conformations of the Tar receptors, and
M = 6 is the receptor gain® “®. The effective diffusion coefficient and the chemotaxis

coefficient are functions of the microscopic parameters of individual cell swimming

. . 2 1-TB;
behavior. We draw on previous work?? 2° to model them as y; = v (U-TB)
3 (1-0)ARi+2Dro¢

] is the perceived signal which depends on the local aspartate

and y; =
ko TB;

TBo+TB;
swimming speed, which when projected in 2D*° corresponds to the average speed we

u; (Extended Data Figure 8a). In these expressions, v~36 um/s is the cell
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measure in our quasi-2D device (~28 um/s); © = 0.16 is the directional persistence
between successive runs??; D,,, = 0.062 s~! is the rotational diffusion coefficient during

runs?%; A = w % is the rate of switching from the run state to the tumble state;

and w = 3.8 s71 is the motor switching frequency, considering the multiple flagella effect,
as modeled previously??. u; and y; are monotonically decreasing functions of the tumble

bias TB; and ;ﬂz 22 =k, apart for the range 0 < TB; < TB, = 0.05 where y(TB;) is

increasing as recently observed in experiments where individual cells were tracked in a
static gradient of a-methylaspartate (non-metabolizable analogue of aspartate)??.

Eq. (2) represents the change in the concentration of aspartate due to diffusion, with
diffusivity u4, and to consumption, with half-max constant K, and maximum rate a,(0) =

QAo (1 —ga+ 9ga é). Here, ay, is the base consumption rate, O, is the external oxygen

concentration, and g, is the fractional reduction of aspartate consumption rate at zero
oxygen. Eq. (3) describes the time-dependent evolution of oxygen, with diffusion
coefficient u,, maximum consumption rate a,, half-max constant K,, and supply of
oxygen through the PDMS with the mass transfer rate k.

Egs. (1)-(3) were integrated in MATLAB using second-order centered differences for the
spatial derivatives (mesh size 20 ym) and an explicit 4"-order Runge-Kutta routine for
temporal integration (time step 0.08 s). We used no-flux boundary conditions. The initial

2
condition was p;(x,0) = p, -P(TBi)e_(x/xo) for0 < x < 1.6 mm and p;(x,0) =0 for x >
1.6 mm. Here, p, is the initial cell density scale, determined from the total initial cell
number ~2x10%; x,=08mm ; and P(TB;) was obtained from experimental
measurements (Fig. 2e black).

Assuming near constant wave speed, we rewrite Eq. (2) in the moving coordinate z = x —
ct and integrate from —oo to +co to obtain

cA
(@) = 2. (4)

Here, (a,) is the average attractant consumption rate, N is the number of cells in the band,
and a is the cross-sectional area of the channel. In the absence of oxygen-dependent
consumption of aspartate, the average consumption rate in the band would be constant
across experimental conditions'®. However, oxygen-dependent consumption makes the
average consumption rate decrease with increasing cell density in the band, which is
correlated with the number of cells in the band (Fig. 2c). As shown in Extended Data Fig.
7h, the value of (a,) calculated from experimental data using Eq. 4 decreases as the
number of cells in the band increases, which is captured in simulations.

To derive the result of spatial sorting analytically from this model, we first rewrite Eq. (1)
in the moving coordinate z = x — ct:
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dp; _  0d%p; 0 9f(4)
_CE = Ui 972 _E(Xipi 9z )= (5)
Noting that for each phenotype i to be traveling with the group, its density profile must
. 2,.
have a peak. Around the density peak z; we must have % = 0 and % < 0.
Z=2Zj Z=Zj

Rewriting Eq. (5) as

Hi azz 62+Xi¥ 0z * Xi 0z2 '’

azpi _ C% dp; 9f(4) azf(A) (6)

we then have at the density peaks z;:

d*p;

d?f
Hi~ 2

= XiPi 73
z=2z; dz?

<0 (7)

z=z;

Eq. (7) indicates that in the front of the band the perceived gradient must be shallow and
become progressively steeper as z decreases towards the back (Fig. 3c black).

Integrating Eq. (5) and using % = 0, we obtain
c=xiY ®)

z=z;

Eqgs. (7)-(8) together show that the cell density peaks z; of each phenotype i are
monotonically ordered according to their chemotactic coefficients y;.

Examining the effect of oxygen analytically, at the back of the wave the aspartate
f(A) _ M dA

concentration is small so that the chemotactic drift there is y; “or SN a Rewriting Eq.
(2) in the moving coordinate, assuming the diffusion term is negligible'?, and assuming
A > K, gives an expression for dA/dz. From this, the drift becomes
152 ~ 2% a, (0) Lipi (9)

At the back of the band there are fewer cells and therefore more oxygen than in the middle
of the band. Thus, when the aspartate consumption rate depends on oxygen, a, (0)
becomes larger at the back than the mean over the band, (a,). As a consequence, the
drift at the back is higher than in the case without oxygen dependence, slowing down the
decay of the band. We verified this by running simulations with and without oxygen
dependence (Extended Data Figure 8b). In the simulations without oxygen, we set a,
equal to a constant value, corresponding to the average consumption rate in the band
(ay) in the simulation with oxygen dependence. This was intended to make the wave
speeds in the two simulations similar, eliminating the effect of different wave speeds on
cell leakage rates.
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Symbol | Definition and Value Reference
M The receptor gain for aspartate, M = 6 Ref 2°
The dissociation constant to aspartate for the inactive
K, conformation of the Tar receptor, K, = 3.5 uM Ref 48
The dissociation constant to aspartate for the active conformation
K, of the Tar receptor, K, = 1000 uM Ref 48
Ua The diffusion coefficient of aspartate molecules, p, = 500 um?/s | Ref®’

The aspartate concentration at half-max of its consumption,

K, K, = 0.5 uM Ref %2

The maximum aspartate consumption rate, a,y = 9.3 umol/min/ | Extended Data
Q40 cell Fig. 79
Oey The external oxygen level, O, = 250 uM Ref %

The basal ratio of relative consumption rate at zero oxygen,
P ¥ Extended Data

Uo The diffusion coefficient of dissolved oxygen, p, = 2500 um?/s | Ref®’

The maximum oxygen consumption rate,
Extended Data

ao ap =7 % 10711 ymol/min/cell Fig. 79

The dissolved oxygen concentration at half-max its consumption,
Extended Data

K, K, =1uM Fig. 79
K The oxygen transfer rate through ~0.5 cm of PDMS, x = 0.02s™! | Ref *
Po Initial cell density, p, ~ 2.87 x 10° cells/ml This study
Xo Length scale of initial cell density profile, x, = 0.8 mm This study
v Cell swimming speed, v ~ 36 um/s This study
0 Directional persistence © = 0.16 Ref 22
Dyot Rotational diffusion coefficient during runs, D,,; = 0.062 s} Ref %°
ko Parameter in the expression for y;/u;, ko = 22 Ref %
TB, Parameter in the expression for y;/u;, TBy = 0.05 Ref 22

Table 1. Model parameters

Strains, growth conditions and sample preparation
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E. coli RP437 was used as the wild type strain for chemotaxis in this study. Cells were
grown in M9 glycerol medium: M9 salts (6.78 g/L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl,
1.0 g/L NH4CI), supplemented with 4 ml/L glycerol, 0.1 % casamino acids, 1.0 mM
magnesium sulfate, and 0.05% w/v polyvinylpyrrolidone-40 at 30°C. Appropriate
antibiotics were supplemented (ampicillin 100 pg/mL, kanamycin 50 pg/mL, and
chloramphenicol 25 pg/mL) when necessary to maintain plasmids.

For Fig. 1 cells were collected at mid-exponential phase (~ an OD600 of 0.3) and washed
twice with fresh M9 glycerol medium, then resuspended in fresh M9 glycerol medium to
concentrate cell density at an OD600 of 0.7. These cells were then gently loaded into the
microfluidics chamber, which was maintained at 30°C throughout the experiment.

To generate a single traveling band, experiments were conducted in M9 glycerol buffer:
motility buffer (M9 salts, 0.01 mM methionine, 0.1 mM EDTA, 0.05% w/v
polyvinylpyrrolidone-40) supplemented with 4 ml/L glycerol and the indicated amount of
aspartate. This buffer was used to wash and resuspend cells instead of the complex
growth medium (M9 glycerol medium) mentioned above. The same M9 salts were used
in the M9 glycerol medium and M9 glycerol buffer to minimize osmolality changes. RP437
is auxotroph for leucine, histidine, methionine, and threonine, and therefore does not grow
in M9 glycerol buffer.

To control the tumble bias distribution, we used a AcheZ strain derivative of RP437
containing a chromosomally-integrated copy of the phosphatase CheZ under the control
of the inducible promoter and tetR (gift from Dr. Chenli Liu). CheZ dephosphorylates the
response regulator CheY, which, when phosphorylated, induces the motors to switch and
the cells to tumble. Thus, low CheZ results in higher CheY-P and more tumbling, and vice
versa. Anhydrotetracycline (aTc) was added overnight in the culture when indicated to
release the repressor TetR from the cheZ promoter region, inducing the expression of
CheZ in this strain. To color-code strains, pBca1020-r0040 carrying mRFP1 (obtained
from BioBrick), pLambda driving mRFP1 (gift from Dr. Chenli Liu) and plasmids carrying
YFP® under constitutive promoter were transformed into RP437 and into the inducible
CheZ strain by electroporation.

Microfluidic device design and fabrication

Microfluidic devices were constructed from the biocompatible and oxygen-permeable
silicone polymer polydimethylsiloxane (PDMS) on cover glass following standard soft
lithography protocols for two-layer devices®¢. The master molds for the device consisted
of two silicon wafers with features created using ultraviolet (UV) photoresist lithography.
The bottom wafer had two main parts: a large chamber created using SU-8 negative resist
(thickness: 10 ym, SU8 3010, Microchem), and a long channel together with two
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inlet/outlet channels designed to be opened and closed using pressure actuated valves.
A second coat of SPR positive resist (thickness: 14 ym, SPR 220-7.0, MEGAPOSIT) on
the same wafer was used to create a rounded channel profile that can collapse fully if
depressed from above (Extended Data Figure 1a). The second, top wafer contained
features for the control channels that close the collapsible features in the bottom wafer.
The top wafer was created using SU-8 negative resist (thickness: 10 ym, SU8 3010,
Microchem). The resists were then cured using UV light exposure through photomasks
designed in CAD software and printed by CAD/Art Services Inc. (Bandon, Oregon), again
following photoresist manufacturer specifications. Subsequently, wafers were baked and
the uncured photoresist was dissolved. After curing the SPR coat, the features were
baked further to produce a rounded profile. After both wafers were complete, a protective
coat of silane was applied by vapor deposition.

To cast and manufacture the two-layer device, the top wafer was coated with a 5 mm
thick layer of degassed 10:1 PDMS-to-curing agent ratio (Sylgard 184, Dow Corning). For
the bottom layer, a 20:1 mixture was prepared and spin coated to create a 100 pm thick
layer. The two layers were partially baked for 45 minutes at 70°C. The top layer was then
cut and separated from the wafer, holes were punched from the feature side using a
sharpened 20 gauge blunt-tip needle to make external connections to the control valve
lines, then aligned and laminated onto the bottom layer. The stacked layers were baked
together for 1.5 hours at 70°C and allowed to cool. The laminated layers were then cut
out and the remaining ports were punched to make external connections with the
channels. To reduce the evaporation of the microfluidic device, the PDMS device was
soaked overnight in Millipore-filtered water at 50°C.

The assembled PDMS devices were bonded to 24 x 50 mm glass coverslips (#1.5). The
PDMS was cleaned with transparent adhesive tape (Magic Tape, Scotch) followed by
rinsing with (in order) isopropanol, methanol, and Millipore-filtered water, air-drying
between each rinse. The glass was rinsed the same way, with acetone, isopropanol,
methanol, and Millipore-filtered water. The PDMS was tape-cleaned an additional time,
and then the two pieces were placed in a plasma bonding oven (Harrick Plasma) under
vacuum, gently laminated, and then baked on an 80°C hotplate for 15 minutes to establish
a covalent bond. Devices were stored at room temperature and used within 24 hours.

Running the experiment: band formation and imaqing

Washed cells were gently loaded into the device which was then centrifuged for 20 min
at 700 g in a 30°C environmental room to concentrate cells at the end of the chamber
(Extended Data Fig. 1b). After spinning, the microfluidic device was placed on an inverted
microscope (Nikon Eclipse Ti-U) equipped with a custom environmental chamber (50%
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humidity and 30°C). A custom MATLAB script was used to control the microscope and its
automated stage (Prior) via the MicroManager interface®’. Time-lapse images (phase-
contrast and fluorescence: mRFP1 or YFP) of the migrating cells were acquired using a
Hamamatsu ORCA-Flash4.0 V2 camera (2,048 x 2,048 array of 6.5 x 6.5 ym pixels), a
10X phase contrast objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D. 16.0 mm) and a LED
illuminator (Lumencor SOLA light engine, Beaverton, OR) through the mCherry block
(Chroma 49008, Ex: ET560/40%, Em: ET630/75m) or EYFP block (Chroma 49003; Ex:
ET500/20x, Em: ET535/30m). Once the band formed, starting at the origin (closed end of
the channel), the motorized stage moved along the channel and paused every ~1.3 mm
(the width of one frame with a small overlap < 0.1 mm between consecutive positions) to
take images in phase contrast and fluorescence (exposure time 122 ms for both
channels). After reaching the observation chamber, acquisition started over at the origin
every 40 seconds (every 60 sec for Fig. 1c).

In Figure 1, all cells were expressing mRFP1. In Figure 2, unlabeled and fluorescently
labeled cells were separately grown to mid-exponential phase (~ an OD600 of 0.3). For
the experiments with 50, 100, and 200 uM aspartate, the fluorescently labeled cells were
diluted with unlabeled cells at the following ratios 1:20, 1:50, 1:100. The mixed cells were
then washed, and resuspended to the same predetermined density (an OD600 of 0.7).
The mixed populations were loaded into the microfluidic device and imaged as described
above. In Fig. 4b-e, a similar procedure was followed to prepare the samples for different
induction conditions. A 1:1 mixture of high and low induction cultures was mixed and
loaded in the device.

In Fig.4f, a 1:1 mixture of high and low aTc induction (ranging from 1-10 ng/ml) cultures
with all cells fluorescently labelled by mRFP1 or YFP was mixed and loaded in the device.
The distances between the peaks of the density profiles of the two populations were
calculated by measuring the distance between the peaks in the two fluorescent intensity
profiles. The mean tumble bias of each population were measured by loading a sample
of the population on a cover slip and tracking individual cells as previously described?".

Once a band arrived in the perfused chamber, the gate near the chamber was closed
(using 10 psi pressure) to capture the band (Extended Data Fig. 1b). To capture the
second band in a separate experiment, the gate remained open until the first band passed,
then closed. The first band was immediately flushed away by flowing M9 glycerol
medium/buffer at 3 psi for 5~20 seconds through the chamber until all cells were flushed
from the chamber. The gate was then reopened to let the second band migrate into the
chamber. Once a band was captured in the perfused chamber, several pulses of fresh
medium/buffer at 3 psi were flown in to reduce cell density and homogenize the
environment in the chamber. Cells were left to adapt in the perfused chamber for a few
minutes.
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Tumble bias detection

Once cell density became relatively homogeneous, the swimming trajectories of individual
cells were recorded for 2 minutes at 8 fps in order to extract tumble bias. We verified that
perfusion of the observation chamber did not affect the distribution of tumble biases
(Extended Data Fig. 2). Each tumble bias distribution was generated by acquiring 4
movies, tracking the individual cells, and determining their tumble bias as described
before?!-22. The resulting number of sample trajectories longer than 10 sec (shorter tracks
were discarded because they provide poor estimate of tumble bias?') was limited by the
number of independent movies one can acquire in the PDMS chamber, the size of which
corresponds to 4 field of views, and the density of cells, which must be kept low for
tracking to be possible. This procedure resulted in a minimum of 2823 and 3209
trajectories per distribution giving an error of at most 1.15% and 1.00% in the
determination of the CDF estimated by bootstrapping for Figures 1 and 2, respectively.

Image analysis and determination of the number of cells in the band.

Image analysis was conducted in MATLAB. We detected the position of the centroid of
each fluorescent cell using the MATLAB function bwconncomp. Figs. 2a, 4b and
Extended Data Figs. 6de report these coordinates. The number of labelled cells was
multiplied with the dilution ratio to obtain the total number of cells in the band.

Cell density profiles in Figs. 2d, 4cd and Extended Data Figs. 9bc were measured as
follows: cell density profiles were extracted for each time point within one experiment and
aligned before averaging. The cell density profile at a given time point was calculated by
dividing the number of cells by the volume in one spatial bin (~ 120 ym) along the
observation channel. To reduce alignment error before averaging, the position of the peak
density in each profile was identified by first smoothing the profile with a moving filter with
a 5-bin span (MATLAB function smooth) and then identifying the position of the peak. To
avoid boundary effects, only the profiles with peak position located between 3 to 8 mm
from the origin were used to calculate the average density profile. The mean and standard
deviation shown in the figures were calculated with raw cell density profiles (not
smoothed).

Measurement of amino acids by HPLC show that aspartate dominates the
chemotaxis response
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When consuming aspartate, E. coli cells secrete other amino acids, which could affect
group migration®8. We used HPLC to analyze the amino acids secreted by the cells when
they are suspended in M9 glycerol buffer supplemented with aspartate. RP437 cells were
grown in 200 ml M9 glycerol medium up to mid-exponential phase and washed twice with
M9 glycerol buffer supplemented with 500 uM aspartate. Cells were then resuspended in
5 ml of the same defined medium at an OD600 of 1 and placed in a 200ml flask. The flask
was shaken at 200 rpm to maximize aeration at 30°C. Every 15 minutes, a 500 pl of
culture was sampled, filtered using 0.2 ym filter (Acrodisc 13 mm Syringe Filter with 0.2
pum HT Tuffryn Membrane, Pall Corporation), and analyzed by HPLC via pre-column
derivatization method. The resulting derivatives were separated by phase
chromatography using a Dionex Ultimate 3000 HPLC, with a coupled DAD-3000RS diode
array detector (Dionex) and FLD detector (Dionex) using an ACE C18 column (3 ym, 3 x
150 mm). Amino acid standard (AAS18 Sigma) was used as reference.

Upon uptake of aspartate, cells secreted small amounts of glutamate (Glu), asparagine
(Asn), and homoserine (HS), which are attractants (Extended Data Figure 6¢). To quantify
the relative contribution of each amino acid to the chemotactic response in our experiment
the measured concentration of each amino acid was plotted in units of the corresponding
ECS50 of the dose response of the chemotaxis system. The EC50 of the dose response
of the chemotaxis system for each amino acid has been quantified by the Sourjik lab using
in vivo FRET measurements in RP437, the strain used in this study. The EC50 values of
RP437 E. coli are 0.3 pM for aspartate (Asp), 50 uM for glutamate (Glu), 30 uM for
asparagine (Asn), and 3 mM for homoserine (HS)*. Extended Data Figure 6c reveals
that the response to aspartate dominates by almost two orders of magnitude over the
responses to the other amino acids. It also shows that of the three secreted amino acids,
glutamate is the one that has the second largest effect, albeit still much smaller than the
response to aspartate. Finally, we also checked that chemotaxis towards oxygen does
not play a significant role either. Mutant strains lacking the oxygen receptor aer or both
aer and tsr form bands under the same condition as in Fig. 2a, indicating that aerotaxis
is not essential and Tar response to aspartate is sufficient for the band to travel (Extended
Data Figure 6de).

Experimental evidence of oxyqgen limitation in the center of the traveling band

Ruthenium complexes are toxic to E. coli, hence the need to encapsulate them in
phospholipid micelles. This was achieved using the same protocol as in ref 33
Fluorescence of the ruthenium complex is quenched by oxygen binding, so higher
fluorescence corresponds to lower oxygen concentration. Note that the high density of
cells in the band could exclude the dye; however, this should decrease fluorescence
intensity, the opposite effect of decreased oxygen. Experiments were performed in 100
pum-deep and 14 ym-deep devices. The 100 um-deep devices were straight channels, 39
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mm long and 600 um wide. The 14 ym-deep devices were the same as those used in the
other experiments in this paper. However, since the control gates interfere with the
fluorescence signal, the top layer of PDMS was fabricated without a mold for the gates.
In both cases, a 1:500 dilution of concentrated micelles was added to bacteria prepared
as described above, just before loading into the microfluidic device. This dilution was
intended to avoid sequestration of oxygen from the cells. Two control experiments were
performed in the 14 ym device, one with dye and no cells, and one with cells and no dye.
Imaging and data analysis of all three types of experiments were performed in the same
way.

Imaging equipment were the same as described above with a few exceptions. The
excitation filter from an ECFP block (Chroma 31044v2, D436/20x), the emission filter from
an mCherry block (Chroma 49008, ET630/75m), and the dichroic mirror from the mCherry
block (Chroma 49008, T585Ipxr) were used to image the dye due to its large Stokes shift.

For the 100-pym device, the 10x objective described above was used for imaging. Images
were taken in 2-minute intervals. For the 14-um device, imaging was performed using a
40X oil objective (Nikon CFI Plan Fluor, NA 1.3, W.D. 0.24 mm). Images were taken in
3.5-minute intervals.

To analyze the fluorescence images, fluorescence intensity was first averaged over the
width of the channel that was visible in the image, I(x, t). At each location x, the passing
wave appeared as a brief peak in intensity during the time course. To separate this from
slow variations in signal due to photobleaching and possible global changes in oxygen
concentration, we smoothed the time course of fluorescence intensity at each position,
L, (t), using MATLAB’s smooth function (smoothing method: lowess; window size: 4,
corresponding to a time window of 14 minutes) to produce the slowly varying background
signal, I,.(t). To extract the fast-passing wave, we divided I,.(t) element-wise by I, (t) for
each position x. As a result, the slowly changing background was normalized to 1, while
faster changes in signal were different from 1. This also eliminated differences in
illumination over space. Finally, the noisy normalized profiles produced by this analysis
were median filtered over space using MATLAB’s medfilt1 (window size: 10).

Measurement of oxygen consumption rate in batch cultures

RP437 cells were grown in 200 ml M9 glycerol medium to mid-exponential phase and
washed twice with M9 glycerol buffer supplemented with 200 uM aspartate. Cells were
then resuspended in 50 ml of the same defined buffer to an OD600 of 0.5. The sample
was placed in a beaker at 30°C. The surface of the buffer was sealed by overlaying
mineral oil. The level of dissolved oxygen was measured with a portable dissolved oxygen
meter (Melwaukee MWG600) every 30 seconds. The cell sample was continuously stirred
at 300 rpm with a magnetic stirrer. The consumption rate per cell per minute was obtained
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by dividing the reduction in oxygen by the number of cells and the sampling interval time
(Extended Data Fig. 79).

Measurement of the aspartate consumption rate in batch cultures

RP437 cells were grown in 200 ml M9 glycerol medium up to mid-exponential phase and
washed twice with M9 glycerol buffer supplemented with 500 uM aspartate. Cells were
resuspended in 3 ml of the same defined buffer to make cell density at an OD600 of 1.
Two samples were prepared in two test tubes. One tube was shaken at 200 rpm to
maximize aeration while the other tube was left on the bench with mineral oil overlaid on
the liquid surface to avoid supply of oxygen from air. These two tubes were incubated at
30°C and sampled every 10 minutes. The amount of aspartate in the collected sample
was then measured by using Aspartate Assay Kit (Abcam). The consumption rate per cell
per minute was obtained by dividing the reduction of aspartate in the sample by the
number of cells and the sampling interval time (Extended Data Fig. 79).

Statistical analysis and experimental reproducibility

No statistical methods were used to predetermine sample size. Standard error in the CDF
of the tumble bias in each replicate experiment was determined by bootstrapping (1000
bootstrap samples). One-sided unpaired two sample Student’s t-test assuming unequal
variances was used for comparison between two groups in Figs. 2bc. P values <0.05
were considered statistically significant and marked with asterisks. For t-test, t-values and
degrees of freedom are provided in the figure legends. The error bars are defined in each
figure caption and are standard deviation except in Fig. 2f. Data presented in the main
figures were drawn from at least three independent replicates, with the exception of Fig.
4d (n = 2). The number of replicates is mentioned in the caption of each figure.

Code availability

We used a custom MATLAB code to analyze the swimming behavior of E.coli cells?'- 22,
The algorithms to simulate the mathematical model are described above and available
from the corresponding author upon request.

Data availability
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Data generated and analyzed during this study are included in the figures and
supplementary information files. Additional datasets generated and analyzed during the
current study are available from the corresponding author on reasonable request.
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