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RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs.
Although in vivo binding sites of RBPs can now be determined genome-wide, most studies
typically focused on individual RBPs. Here, we examined a large compendium of 114 high-
quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the
same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of
categories of target RNA binding preference, sequence preference, and transcript region
specificity was performed, and identified potential posttranscriptional regulatory modules, i.e.
specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These
regulatory modules encoded functionally related proteins and exhibited distinct differences in
RNA metabolism, expression variance, as well as subcellular localization. This integrative
investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a
human cell line will be a valuable resource for understanding the complexity of post-

transcriptional regulation.
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Introduction

Of the 20,345 annotated protein-coding genes in human, at least 1,542 are RNA-binding proteins
(RBPs) (Gerstberger et al., 2014). RBPs interact with RNA regulatory elements within RNA
targets to control splicing, nuclear export, localization, stability, and translation (Moore, 2005).
RBPs have specificity to bind one or multiple RNA categories, including messenger RNA
(mRNA) and diverse categories of non-coding RNA such as ribosomal RNA (rRNA), transfer
RNA (tRNA), small nuclear and nucleolar RNA (snRNA/snoRNA), microRNA (miRNA), and
long non-coding RNA (IncRNA). Mutations in RBPs or RNA regulatory elements can result in
defects in RNA metabolism that cause human disease (Cooper et al., 2009; Fredericks et al.,

2015).

A standard technique for in vivo global identification of RBP-RNA interaction sites consists of
immunoprecipitating the ribonucleoprotein (RNP) complex, isolating the bound RNA, and
quantifying the RNA targets by microarrays or deep sequencing (Tenenbaum et al., 2000; Zhao
et al., 2010). The introduction of cross-linking prior to immunoprecipitation (CLIP) as well as
RNase digestion enabled the biochemical mapping of individual interaction sites (Ule et al.,
2003). Subsequent modifications to CLIP increased the resolution of the interaction sites (Hafner
et al., 2010; Konig et al., 2010). One of these methods, photoactivatable ribonucleoside-
enhanced cross-linking and immunoprecipitation (PAR-CLIP), utilizes 4-thiouridine or 6-
thioguanosine combined with 365 nm UV crosslinking to produce single-nucleotide RBP-RNA
interaction evidence that is utilized to define binding sites (Corcoran et al., 2011; Garzia et al.,

2017b; Hafner et al., 2010).
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Experimentally-derived RBP binding sites provide valuable functional insights. First, they can
reveal the rules for regulatory site recognition by the RBP, whether due to sequence and/or
structural characteristics. Second, the region and position of the interaction sites of an RBP
within transcripts provides insights into its role in RNA metabolism and its subcellular
localization. For example, if most of the mapped interaction sites are intronic and adjacent to
splice sites, the RBP is highly likely to be a nuclear splicing factor rather than a cytoplasmic
translation factor. Finally, these data reveal the target transcripts and therefore the potential

biological role for the RBP.

Throughout the life of an RNA, interactions with many different RBPs determine the ultimate
fate of the transcript. Even though profiling of the interaction sites of a single RBP is clearly
powerful, it does not provide information on other RBPs potentially targeting the same RNA or
on other regulatory elements within the RNA. Small comparative efforts focusing on the
regulation of splicing, 3” end processing, RNA stability by AU-rich elements, and miRNA-
mediated silencing have demonstrated the value of integrating interaction sites from multiple
RBPs (Martin et al., 2012; Mukherjee et al., 2014; Pandit et al., 2013; Zhang et al., 2010).
Therefore, a large-scale comparative examination of interaction sites for many RBPs will yield

valuable knowledge regarding the architecture and determinants of RNA regulatory networks.

At least 173 PAR-CLIP experiments have been performed in HEK293 cells to date, laying the
groundwork for a large-scale integrative analysis and complementing efforts of ENCODE, which
focused on other cell types and utilized other CLIP protocols (Van Nostrand et al., 2016). We

describe a concerted effort to identify and uniformly process all high-quality PAR-CLIP data sets
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80 by evaluating the characteristic T-to-C transitions induced by photocrosslinking. Using the

81  resulting compendium of high-quality in vivo RBP interaction maps from the same cell line

82  enabled us to determine the relationship between RBPs with respect to their preferred category of
83  target RNA and any underlying sequence specificity. We uncovered regulatory modules reflected
84 by combinatorial binding events, and assessed their role and functional implications on RNA

85  metabolism. Finally, our results support the role of RBPs in buffering gene expression variance.
86

87  Results

88 A high-quality map of in vivo RBP-RNA interactions across 64 proteins

89  In order to generate a comprehensive quantitative resource of RBP-RNA interactions within a
90  human cell line, we identified 166 published PAR-CLIP data sets performed predominantly in
91 HEK?293 cells, and added 7 new libraries generated in our laboratories (Sup Table 1). Typically,
92  these datasets were generated using transgenic HEK293 cell lines in which each individual RBP
93  was FLAG-tagged and recombined into the same chromosomal locus containing a strong

94  promoter. In this way, the expression of each RBP as well as the strength of its

95  immunoprecipitation were generally comparable. Furthermore, the availability of orthogonal

96 transcriptome-wide datasets quantifying individual steps of RNA metabolism made HEK293

97  cells ideal for examining the functional characteristics of RNA targets (Mukherjee et al., 2017).

98

99  Each of the 173 PAR-CLIP libraries generated in HEK293 were subject to a stringent analysis
100  strategy to retain high-quality datasets (Supplemental Table 1). First, each library was analyzed

101  using the PAR-CLIP Suite v1.0 (https://rnaworld.rockefeller.edu/PARCLIP_suite) (Garzia et al.,
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102 2017b) to discriminate significant target RNA categories from non-crosslinked background RNA
103  categories populated by fragments of abundant cellular RNAs (see Methods, Supplemental Fig.
104 1A). Next, we defined binding sites based on the local density of T-to-C transitions using

105  PARpipe (https://github.com/ohlerlab/PARpipe) (Corcoran et al., 2011) and only retained those
106 libraries with sufficiently high read counts and T-to-C transition specificity compared to a deeply
107  sequenced background reference library (Supplemental Fig 1b) (Friedersdorf and Keene, 2014).
108  Since the immunoprecipitation step was omitted in this reference library it served as an effective
109  comparison point to score read count and T-to-C transition for all RBPs. Finally, for RBPs with
110  more than 3 libraries available, outlier libraries exhibiting poor correlation of 6-mer frequencies
111 were excluded (Supplemental Fig 1d, e). This resulted in 114 libraries corresponding to 64 RBPs
112 that were the basis for downstream analysis. There were eight RBP families represented by two

113 or more RBPs.

114

115  Grouping RBPs by annotation category and positional binding site preferences

116  As first step to describe RBP-RNA regulatory networks, we determined the relative binding
117  preference of each RBP for specific target RNA annotation categories (Supplemental Table 2).
118  For each library, we calculated an RNA annotation category preference value, defined as the
119  difference in the fraction of T-to-C reads per annotation category between each RBP library and
120  the reference library. We performed hierarchical clustering of RBPs by annotation category
121  preference, using Ward’s method and Euclidean distances. This yielded eight clusters of binding
122  preference (Figure la — orange line demarcates cluster definitions) with varying enrichment or
123  depletion for individual or combinations of specific annotation categories. For each of these

124  clusters, we compiled a detailed table summarizing the reported functions for each of the RBPs
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125  (Table 1). Taken together, clustering by RNA annotation category separated RBPs into groups

126  according to their known subcellular localization and functions.

127  Three of the eight clusters (clusters 2, 4, and 5) contained nine RBPs that exhibited preference
128  for categories of non-coding RNA (rRNA, snRNA, snoRNA, and tRNA), but not mRNA,
129  precursor mRNA (pre-mRNA), or IncRNA. The remaining five clusters contained 55 RBPs
130  exhibiting preference for binding to mRNA, pre-mRNA and long-noncoding RNA (IncRNA)
131  annotation categories. The RBPs in clusters 1, 6, 7, and 8 exhibited strong preferences for
132 various mRNA annotation categories. The RBPs in cluster 3 did not exhibiting strong preference
133  for specific mRNA annotation categories. Additionally, for each of the RBPs in the cluster, we
134  performed a positional meta-analysis of binding sites with respect to major transcript landmarks
135  within target mRNAs. Many of the RBPs also showed strong preferences for binding to specific

136  positions within mRNAs relating to their role in specific steps of mRNA processing (Table 1).

137  We hypothesized that target annotation category preferences and positional binding preferences
138  should reflect subcellular localization of the RBP and its role(s) in mRNA processing. Cluster 6
139  contained twelve RBPs and exhibited strong preference for intronic regions and to a lesser
140  degree 3° UTRs of mRNAs and IncRNAs. The intronic preference was consistent with the
141  predominantly nuclear localization of these RBPs and the pre-mRNA splicing process. ELAVLI,
142 which is the sole member of the ELAVLI1 family of RBPs that is predominantly localized in the
143  nucleus but capable of shuttling to the cytoplasm, exhibited positional binding flanking the end
144  of the 3’ UTR and for 5’ and 3’ splice sites. Cluster 8 contained fourteen RBPs and exhibited
145  distinct preference for 3° UTR regions. This included the unpublished and predominantly
146  cytoplasmic ELAVLI1 family members, ELAVL2, ELAVL3, and ELAVL4, which exhibited a

147  strong positional preference for binding in the distal region of the 3° UTR and acting
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148  predominantly on mature mRNA (Mansfield and Keene, 2012). In summary, the annotation
149  category preferences and positional binding preferences implicated the specific steps of mRNA

150  processing the RBPs potentially regulate.

151

152  The spectrum of RNA sequence specificity

153  RBPs exist on a spectrum of specificity depending on a variety of primary and secondary
154  structure features (Jankowsky and Harris, 2015). Here, our goal was to identify the RBPs with
155  substantial primary sequence specificity and then examine their sequence preference. For each of
156  the 55 RBPs, we counted all possible 6-mers using Jellyfish (Margais and Kingsford, 2011) for
157  the reads contributing to PARalyzer-defined binding sites. We observed 6-mer frequencies
158 ranging as high as 512-fold to as low as 5-fold over a uniform distribution of 6-mers
159  (Supplemental figure 2a). In contrast, our reference background library exhibited 16-fold
160  enrichment of at least one 6-mer compared to uniform. AGO1-4 libraries were excluded from 6-
161  mer analysis due to the overwhelming sequence contribution from crosslinked miRNAs. Twenty-
162  seven RBPs did not have a single 6-mer found at higher frequency than present in the reference
163  sample. Amongst these RBPs established or expected to display low sequence-specificity were
164  the RNA helicase MOV10, the nuclear exosome component DIS3, and the EIF3 complex
165 translation initiation factors.

166

167  For each of the 24 RBPs with stronger sequence enrichment than the reference library, we
168  clustered the top 5 sequences enriched over the reference library (Figure 2). Our results
169  recapitulated the sequence preference for the RBPs in this group with well-characterized

170  sequence motifs (detailed in Table 2). The ELAVLI1 family proteins, which bound to different
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171  regions and positions of mRNA, showed similar preference for U- and AU-rich 6-mers, while
172 ZFP36 only enriched a subset of the AU-rich 6-mers (Mukherjee et al., 2014). Complementing
173  the 6-mer enrichment analysis, we performed motif analysis for each RBP library with the motif
174  finding algorithm SSMART (sequence-structure motif identification for RNA-binding
175  proteins, (Munteanu et al., 2018)) (Supplemental Fig 2b). For most RBPs, we observed strong
176  concordance between the two analyses. RBM?20 was a clear exception, for which we observed
177  the established UCUU-containing motifs (Maatz et al., 2014) with SSMART, but a GA-rich
178  sequence in the 6-mer enrichment analysis. However, we do observe UCUU-containing motifs in
179  the top 15, but not top5 6-mers for RBM20. Altogether, our analysis was remarkably consistent
180  with previously reported motifs in spite of differences in data processing and analysis (detailed

181  Table 2).

182

183  Identification of RNA regulatory modules

184  To understand the functional impact of co-regulation by multiple RBPs, we analyzed the co-
185  variation in binding patterns of all 55 RBPs across 13,299 target RNA encoding genes to probe
186  for the existence of regulatory modules, i.e., specific subsets of RNAs implicated in similar
187  function bound by subsets of RBPs. To this end, we employed Factor Analysis (FA), which
188  reduces a large number of observed variables to a smaller number of latent factors. Here, our
189  observed variables represented the normalized RBP binding (see methods) for each of the 55
190  RBPs across all target RNA encoding genes (n=13,299). The latent factors represented similar
191  binding patterns to RNA targets by one or more of the 55 RBPs. RBPs exhibiting high loadings

192  for the same factor would have very similar binding patterns to RNA targets. Importantly in this
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193  framework, a single RBP could be assigned to multiple factors, just as a single RBP can
194  participate in multiple RNPs and regulate different aspects of RNA metabolism.

195

196  The FA model decomposed the 55 x 13,299 normalized RBP binding matrix into a 55 x 10 factor
197  loading matrix (representing the strength of the dependence of each of the 55 RBP target RNA
198  binding pattern on each of the 10 factors), a 13,299 x 10 factor score coefficient matrix
199  (representing the dependence between the binding of the 13,299 target RNA encoding gene and
200  each of the 10 factors), and residual error (Supplemental Fig 3a and methods). Cumulatively, the
201  FA model explained ~60% of the variance in the observed data. The remaining unexplained
202  variance was expected due to the challenges of integrating data sets of varying depth and quality,
203  in spite of our efforts to control these aspects. The communality, which is the amount of variance
204  explained by the model for each RBP-binding variable, varied drastically for all 55 RBPs; the
205 model explained at least 80% of the variance in enrichment scores for 12 RBPs, and at least 50%
206  of the variance in enrichment scores for 30 RBPs (Supplemental Figure 3b). RBPs with lower
207  communality often coincided with shallow depth of their PAR-CLIP libraries.

208

209  The FA model also uncovered interesting parallels between the similarity in the binding of target
210  RNA encoding genes and the target annotation category preferences (from Figure la). We
211  observed that individual factors contained RBPs that preferred binding to either mature (Factors
212 1,3,4,5,8) or precursor transcripts (Factors 2, 6), reflecting involvement in different stages of
213  RNA metabolism (Figure 3a). Furthermore, individual factors contained RBPs exhibiting similar
214  patterns of binding to specific regions of the mRNA (i.e., intron, coding, 3’ UTR). Indeed, RBPs

215  from the same family, or known to regulate a specific aspect of RNA processing, had high
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216  loadings for the same factors. For example, the ELAVLI1 family members were associated with
217  Factor 1; the AGO1 family were associated with Factor 3; the IGF2BP1 family were associated
218  with Factor 4; the FMRI1 family had were associated with Factor 5 and Factor 8; LINE-1
219  encoded proteins were associated with Factor 7. One of the unanticipated associations was that
220  of HNRNPC with Factor 2, which contained mainly cleavage and polyadenylation factors.
221  Interestingly, HNRNPC was shown to interact with U-rich sequences downstream of a viral
222 poly-adenylation signal nearly three decades ago (Wilusz et al., 1988), and more recently, to
223  repress cleavage and poly-adenylation in humans (Gruber et al., 2016). These examples highlight
224  the specific testable hypotheses generated by an integrative analysis that are not necessarily
225  obvious when examining a single RBP in isolation.

226

227 By clustering the factor score coefficients, i.e. the specific linear combination of RBP binding for
228  that target RNA, we identified target RNA encoding genes constituting putative regulatory
229  modules associated with a given factor. Therefore, each regulatory module was associated with
230 an RBP component (the subset of RBPs exhibiting similar binding pattern) and a RNA
231  component (the subsets of target RNA encoding genes bound by those RBPs). These regulatory
232 modules did not imply physical interactions between RBPs; rather, it identified RBPs that may
233  cooperate in controlling RNA metabolism for specific subsets of RNA targets, possibly across
234  cellular compartments. Almost a quarter of the target RNA encoding genes (3,180/13,299) were
235  assigned to regulatory modules by exhibiting high factor score coefficients for a single factor
236  (Supplemental figure 3c). We did not identify target RNA encoding genes with high factor score
237  coefficients for Factor 9 or 10. The remaining target RNA encoding genes did not exhibit high

238  factor score coefficients for any specific factor in our analysis, suggesting that the targets were
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239  either not bound by specific combinations of these RBPs, bound broadly by all RBPs, or not
240  bound by the subset of RBPs in the analysis. As such, we labeled this target RNA encoding gene
241  category as “non-specific’. The RNA regulatory modules encoding genes were enriched for
242  different GO categories. Factor 1 RNA regulatory modules were enriched for ‘AU-rich element
243  binding’ and Factor 3 RNA regulatory modules were enriched for ‘gene silencing by miRNA’;
244  AU-rich RBPs and AGO proteins were strongly associated with Factor 1 and Factor 3,
245  respectively. This was consistent with the recurrent observation that RBPs target the mRNAs
246  encoding themselves (Pullmann et al., 2007; Tenenbaum et al., 2000). In turn, the RNAs
247  encoding “non-specific” genes contained ribosomal proteins and mitochondrial electron-
248  transport proteins.

249

250  RNA regulatory modules underlie distinct patterns of RNA metabolism

251 In order to test the functional relevance of these RNA regulatory modules, we reasoned that
252 perturbation (change of protein abundance or activity) of an RBP will lead to pronounced effects
253  only for the RNA regulatory modules assigned to the specific factor(s) that RBP is associated
254  with. We examined mature and precursor RNA expression changes induced by siRNA
255  knockdown of ELAVLI (Kishore et al., 2011). ELAVL1 was strongly associated with both
256  Factor 1 and Factor 2, which exhibited RNA targeting patterns for mature or precursor RNAs,
257  respectively. Concordantly, Factor 1 associated RNA regulatory modules, but not Factor 2 RNA
258  regulatory modules, exhibited ELAVL1-dependent stabilization of mature RNA (Figure 4a).
259  Likewise, Factor 2 RNA regulatory modules exhibited a more pronounced ELAVL1-dependent
260  stabilization of precursor RNA than Factor 1 RNA regulatory modules (Figure 4b). Each human

261 ELAVI family protein contains three RRM domains (>90% sequence identity), but the hinge
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262  region between the second and third RRM of ELAVLI contains a shuttling sequence responsible
263  for its nuclear localization (Fan and Steitz, 1998). Due to the lack of this shuttling sequence,
264 ELAVL2/3/4 are predominantly cytoplasmic and were strongly associated with Factor 1, but not
265  Factor 2. Taken together, the model was able to correctly identify and distinguish ELAVLI1-
266  dependent stabilization of both precursor and mature RNA (Lebedeva et al., 2011; Mukherjee et
267 al.,2011).

268

269  We hypothesized that the subsets of RNAs assigned to the different regulatory module would
270  exhibit differences in RNA metabolism driven by the RBPs in the factor associated with the
271  regulatory module. Therefore, we compared six aspects of RNA metabolism previously
272  quantified in HEK293 cells (Mukherjee et al., 2017), for each of the RNA regulatory modules
273  associated with each of the factors. The factor-associated RNA regulatory modules exhibited
274  very distinct RNA metabolic profiles compared to each other and to non-specific category
275  (Figure 4c, Supplemental Figure 4a). Factor 2 RNA regulatory modules, which was the only
276  factor associated with RBPs binding to precursor mRNA and IncRNA, had low processing rates,
277  high degradation rates and their encoded RNAs were preferentially localized in the nucleus
278  versus the cytoplasm. Factor 2 RNA regulatory modules were strongly enriched for IncRNAs
279  (Figure 4d). Indeed, these genes strongly overlapped with a set of IncRNAs likely to be
280  functional (Supplemental figure 4b) (Mukherjee et al., 2017).

281

282  We also examined regulatory differences in RNA metabolism for genes associated with
283  cytoplasm-enriched factors. For example, factor 1 RNA regulatory modules were more stable

284  than Factor 3 RNA regulatory modules (Figure 4c). Factor 1 was strongly associated with
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285 ELAVLI family proteins, which stabilize target mRNAs. Factor 3 was strongly associated with
286  AGOIl family proteins, which execute miRNA-mediated degradation of target mRNAs.
287  Additionally, Factor 4 RNA regulatory modules, which are bound by IGF2BP1 family proteins,
288  were highly synthesized, processed, stabilized, and translated (Figure 4c). The RNA targets of
289 IGF2BPI family RBPs were strongly localized to the ER (Supplemental Figure 4c) (Jgnson et
290  al., 2007), which is also consistent with the proposed role of IGF2BP1 family proteins for RNA
291  localization and translation (Farina et al., 2003; Nielsen et al., 2001). Although correlative, these
292  results indicate that different RBP binding patterns beget different consequences for RNA
293  metabolism.

294

295  Specific RNA regulatory modules also exhibited preferential localization to processing bodies
296  (P-bodies), which are cytoplasmic granules associated with translational repression (Sheth and
297  Parker, 2003). Namely, Factor 3 RNA regulatory modules, which were strongly associated with
298  the AGOI family, were the most strongly enriched for localizing to P-bodies according to a
299  recent study characterizing the transcriptome and proteome of P-bodies, and the AGO2 protein
300 itself was 90-fold enriched (Hubstenberger et al., 2017). Similarly, Factor 5 RNA regulatory
301 modules, which were strongly associated with the FMRI1 family, were also enriched for
302  localizing in P-bodies, along with the FMR1 protein (16-fold enriched). In contrast, the non-
303  specific category was depleted from P-bodies.

304

305 Fine-tuning of gene expression has been postulated to be an important function of post-
306  transcriptional regulation by RBP and miRNAs. Therefore, we examined the cell-to-cell

307  variability in gene expression across 25 individual HEK293 cells with respect to the RNA
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308 regulatory modules. The single-cell RNA-seq data was very deeply sequenced and generated
309 using the massively parallel single-cell RNA-sequencing (MARS-Seq) protocol (Guillaumet-
310  Adkins et al., 2017). Most RNA regulatory modules exhibited lower expression variability than
311  the non-specific category (Figure 4e). In particular, Factor 4 RNA regulatory modules exhibited
312  the lowest variation and highest median expression across the 25 cells (Supplemental Figure 4d).
313  These results supported the broad notion that post-transcriptional gene regulation generally
314  confers robustness and fine-tuning of gene expression.

315

316 Conclusion

317  Our study presents a curation of existing datasets, followed by systematic analysis of high-
318 quality and high-resolution RBP-RNA interaction data. We focused on the RBPs that
319  preferentially bound to mRNA and IncRNA and examined their sequence specificity and
320  sequence motif preferences. Our survey of the RBP regulatory landscape identified the most
321 prevalent subsets of RNAs targeted by a specific subset of RBPs, which we refer to as RNA
322  regulatory modules.

323

324  We utilized high quality PAR-CLIP datasets for which the immunoprecipitation was generally
325  comparable due to fact most RBPs were FLAG-tagged. Nevertheless, several caveats associated
326  with the interpretation of this analysis need to be pointed out. Despite several measures of quality
327  control to decide which datasets to include in our analysis, the libraries varied greatly in depth,
328  quality, digestion biases and potentially other confounding variables with respect to the protocol.
329  The FA model quantitatively assessed the degree to which we could explain the full complement

330 of RBP-RNA target binding patterns. These confounders undoubtedly contributed to the ~40%
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331  of variance not explained by the FA model. In comparison, the ENCODE eCLIP datasets (Van
332  Nostrand et al., 2016) are likely to suffer from different confounders: they were generated using
333  one consistent experimental protocol but used antibodies against endogenous proteins expressed
334  at varying levels, and for which IP efficiency can vary greatly in spite of the quality control
335  performed (Sundararaman et al., 2016). Essentially, this represents the trade-offs in experimental
336  design between analyzing the endogenous protein compared to an epitope-tagged protein.
337 Modifying the genomic loci of the protein to engineer an endogenous epitope tagged RBP is
338  avery promising strategy.

339

340  Assuming the RBPs investigated here are a representative sample of the ~1,542 RBPs encoded in
341  the human genome, there may be an astounding number of RBPs with substantial primary
342  sequence specificity. However, the degree of sequence specificity is determined by the nature of
343  the RBP-RNA interaction, which can be quite extensive and specific, as in the case of Pumilio,
344  or minimal and non-sequence specific, as in the case of an RNA-helicase. An interesting
345  exception were the A-rich sequences enriched by UPF1, which is an RNA helicase and therefore
346  unlikely to exhibit strong sequence specificity. One possible explanation is that such sequences
347  may represent pre-mature polyA tail recognition involved in aspects of ribosome quality control
348  demonstrated in yeast (Koutmou et al., 2015) and human cells (Garzia et al., 2017a). Likewise,
349  more examples of unanticipated sequence enrichments may shed light on novel RNA regulatory
350 mechanisms.

351

352  Our FA model was able to identify distinct RBP-RNA target regulatory modules. At the very

353  minimum, 25% of target RNA encoding genes were assigned to RNA regulatory modules. This
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354 s very likely an underestimation due to noisy data and a biased, far from complete sampling of
355 RBPs. However, there is likely to be a subset of genes for which post-transcriptional gene
356  regulation indeed plays a negligible role, at least in HEK293 cells. Furthermore, a small number
357  of RBPs in our analysis are not endogenously expressed in HEK293 and their natural expression
358 s tissue-specific and/or context-dependent. The approach presented here can scale to binding
359  data for all ~700 RBPs experimentally shown to be associated with poly-adenylated RNA in
360 HEK293 cells or even ~1,542 known RBPs (Baltz et al., 2012).

361

362 The RNA regulatory modules exhibited different patterns of RNA processing, degradation,
363  localization, and translation. We speculate that these differences in RNA metabolism were driven
364 by individual RBPs or the combination of RBPs associated with that regulatory module. This
365  was supported by the response of specific RNA regulatory modules to ELAVL1 knockdown
366  (Figure 4A, B). Additionally, the RNA regulatory modules encoded functionally related proteins
367 and similarly localized proteins. The enrichments were for proteins with similar molecular
368  functions or multi-component complexes rather than signaling pathways (Supplemental Fig 3b).
369  Altogether, these lines of evidence provide support for the coordinate regulation of ‘functionally
370  coherent’” RNA regulatory modules as proposed by the post-transcriptional operon/regulon model
371  (Keene, 2007). The ultimate test of this model would involve manipulating specific combinations
372  of binding sites and RBPs. Our study provides the rationale for such experiments, which
373  unfortunately remain technically challenging.

374

375  Our observations have important implications for RBP-RNA regulatory networks and their

376  importance in gene expression. The mRNA targets within specific regulatory modules encoded
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377  the RBP themselves, a generalization of a commonly made observation that RBPs bind to the
378 mRNAs encoding them (Mesarovic et al., 2004). Our analysis lends support for this frequently
379  observed potential auto-regulatory feedback. These feedback loops may in fact buffer the
380 expression range of the targeted mRNAs, including those of the RBP. In this context, the
381 observation that the RNA regulatory modules exhibited lower cell-to-cell gene expression
382  variance, provides more evidence for the importance of post-transcriptional regulation in
383  buffering transcriptional noise (Bahar Halpern et al., 2015; Battich et al., 2015). Systematic
384  perturbation of individual and combinations of RBPs will be quite powerful in revealing
385 fundamental properties of RNA regulatory networks such as auto-regulatory feedback and
386  buffering.

387

388  The binding preference and targets of the vast majority of human RBPs remains unknown. The
389 insights gained from this study demonstrate the value of large-scale efforts by ENCODE and
390  others in the community to globally identify RBP binding sites. Of the 64 RBPs in this study, 44
391  were not represented in the ENCODE cell lines. Cumulatively these efforts interrogate ~10% of
392  human RBPs with known RNA-binding domains. Thus, these two large scale efforts offer the
393  potential to complement one another in our continuing attempts to understanding RBP-RNA
394  regulatory networks, for which we have only glimpsed the tip of the iceberg.

395
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409

410 STAR Methods

411  Processing, filtering, and quality control of PAR-CLIP libraries

412  Each PAR-CLIP library was subject to two rounds of quality control. First, all PAR-CLIP
413  libraries generated in HEK293 cells were subject to the quality control pipeline PAR-CLIP Suite
414  v1.0 (https://rmaworld.rockefeller.edu/PARCLIP_suite/). Using raw Illumina sequencing data,
415  this pipeline identified the predominant target RNA category or categories for each RBP and

416  provided the T-to-C conversion frequency resolved by read length and RNA category
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417  (Supplemental Fig 1). The mapped reads of each RNA category were resolved by error distance
418 0 (d0), error distance 1 (d1; split in T-to-C and d1 other than T-to-C), and error distance 2 (d2).
419  This process discriminated for each library true target RNA categories from non-crosslinked
420  background RNA categories populated by fragments of abundant cellular RNAs. In order to
421  disqualify experiments comprising too many non-crosslinked RBP-specifically bound RNAs or
422  co-purified non-crosslinked background RNAs, we pursued only datasets which collect at least
423 10,000 redundant d1 reads = 20 nt in at least one of major RNA annotation categories with d1(T-
424  to-C)/(d0 + d1) = 30%, and d1(T-to-C)/(d1-total) = 65%.

425 For the libraries passing the first threshold, we defined and annotated binding sites using
426  PARpipe, which is a pipeline wrapper for PARalyzer (Corcoran et al., 2011; Mukherjee et al.,
427  2014). The threshold for additional filtering were determined by comparisons with the reference
428  library (Friedersdorf and Keene, 2014). This reference library was generated using a modified
429  PAR-CLIP protocol in which there was no immunoprecipitation and the addition of an rRNA
430  depletion step after proteinase K digestion, followed by a partial digestion using RNase T1. We
431  required libraries had to have an average fraction T-to-C over remaining reads greater than 0.32
432  (the average fraction T-to-C over remaining reads greater of the reference library), an average
433  conversion specificity greater than 0, more than 20000 aligned reads, not be digested only with
434  micrococcal nuclease, a redundant read copy fraction less than .98 (Supplemental Fig 1b,c and
435  Sup Table 1). For RBPs with three or more libraries, we removed outlier based on correlation of
436  6-mer frequency calculated from PARalyzer-utilized reads.

437
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438  Annotation category preference and positional analysis of binding density

439  For calculating the annotation category preference, we calculated the difference in the fraction of
440  T-to-C reads per annotation category between each RBP library and the reference library. For
441  example, if the fraction of miRNA annotated reads with T-to-C transitions in a specific RBP
442  library was 0.20 compared to 0.05 in the reference library, the miRNA preference value for this
443  specific RBP is 0.15. For the positional binding analysis, we selected genes (n=15120) using
444  GENCODE v19 as annotation based on our earlier work on HEK293 RNA processing and
445  turnover dynamics (Mukherjee et al., 2017). Isoform expression was calculated using RSEM (Li
446  and Dewey, 2011). For each gene, we selected the transcript isoform with the highest isoform
447  percentage or chose one randomly in case of ties (n=8298). The list of selected transcript
448  isoforms was used to calculate the median 5' UTR, CDS and 3' UTR length proportions (5'
449  UTR=0.06, CDS=0.53, 3' UTR=0.41) using R Bioconductor packages GenomicFeatures and
450  GenomicRanges. For regions downstream annotated transcription ends (TES) and adjacent to
451 splice sites, we chose windows of fixed sizes (TES 500nt, 5° and 3’ splice sites 250nt each). We
452  generated coverage tracks from the PARalyzer output alignment files and intersected those with
453  the filtered transcripts. Each annotation category was binned according to its relative coverage
454  averaged according to each bin. For intronic coverage, we averaged across all introns per gene,
455  given a minimal intron length of 500nt. All bins were stitched to one continuous track per
456  transcript. Altogether 6632 intron containing transcripts showed coverage in at least one
457  PARCLIP library. For each library, we required transcripts to have a minimal coverage
458 maximum of > 2. For each transcript, we scaled the binned coverage dividing by its maximal
459  coverage (min-to-1 scaling) to emphasize spatial patterns independent from transcript expression

460 levels. Replicate RBP PARCLIP libraries were combined at this point. Transcripts targeted in
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461 more than one replicate library were aggregated using the average of their binned coverage.
462  RBPs with less than 50 filtered target transcripts (after aggregation) were not considered. Next,
463  we split transcript coverage in two parts, separating 5' UTR to TES regions and intronic regions.
464  To generate the scaled meta coverage across all targeted transcripts per RBP, we used the
465  heatMeta function from the Genomation package. For the S'UTR to TES, we scaled each RBP
466  meta-coverage track independent of other RBPs. For each RBP, we subtracted the scaled meta
467  coverage of PARCLIP reference library (Friedersdorf and Keene, 2014). For intronic sequences,
468  we scaled each RBP relative to all other RBPs to highlight RBPs with more substantial intronic
469  Dbinding patterns. Finally, we visualized the density using pheatmap.

470

471  Sequence analysis

472  We calculated 6-mer frequencies with Jellyfish from all reads that generated a PARalyzer
473  binding site for each library. For each RBP, we selected the library with the lowest percent of
474  duplicated sequences (see supplemental table 1) to serve as a representative library for the
475  sequence analysis and factor analysis. For each RBP, we counted the number of 6-mers with a
476  frequency of x or higher, where x was from 1/4096 to 1/4. To evaluate the 6-mers enriched by a
477  given RBP relative to the reference library, we regressed the RBP 6-mer frequency against the
478  the reference library 6-mer frequency and collected the residuals (the unexplained variance).
479  Next, identified all 6-mers that were found as the top 5 enriched over the reference library for
480  any of the analyzed RBPs. We clustered the enrichment scores for the 6-mers across all RBPs
481  and generated a heatmap using the ‘aheatmap’ function in NMF R package. We ran SSMART
482  using all binding sites found in mRNA-derived annotation categories ranked by the library size

483  normalized enrichment over the reference library.
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484  Factor analysis

485  For each site identified we calculated a library size normalized enrichment compared to the the
486  reference library. We calculated the sum of all enrichment scores for all sites annotated as
487 mRNA and IncRNA. Next, we normalized for expression levels (collected the residuals) to
488  create the final matrix of values. The number of factors, 10, was determined using the majority
489  result of numerous methods to estimate the number of factors. Clustering of the score matrix was

490  performed using the most stable results from numerous iterations of k-means clustering.

491

492  Gene ontology analysis

493  Multiple-test corrected gene ontology enrichment values were calculated using the TOPGO R
494  package. For each set of genes, we used all 13,299 genes in the factor analysis as the background
495  or gene universe. Enrichment was calculated using the ‘parent-child’ approach on the top 100
496  enriched terms. This metric accounts for the hierarchical organization of gene ontology terms to
497  minimize false-positive enrichments. We performed a Bonferonni multiple test correction on the
498  enrichment p-values.

499

500 Premature and mature RNA quantification

501 Mature- and premature-transcript expression, transcripts per million (TPM), was quantified with

502 RSEMv1.2.11 (http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.11.tar.ez) as described

503  previously (Mukherjee et al., 2017). Briefly, for each gene we included an additional isoform
504  corresponding to the sequence of the full gene locus. Specifically, we modified the

505 GENCODEV19 gtf and used this as the input for the ‘rsem-prepare-reference’ function to
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506  generate a modified index used for quantification. For each gene, we calculated the expression of
507  ‘mature’ RNA as the sum of all isoforms for that gene excluding the ‘primary’ transcript. For
508 intronless genes, premature and mature expression values were summed. We performed this
509  analysis on the ELAVLI1 knockdown RNA-seq experiments (Kishore et al., 2011).

510

511  Cell-to-cell expression variability

512 RNA-seq gene expression data for 25 individual HEK293 cells were downloaded from
513  (Guillaumet-Adkins et al., 2017). We calculated the coefficient of variation (100*standard

514  deviation/mean) for each gene across all 25 cells.
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516 Figure 1. RBP analyzed and binding preferences by RNA category. A) Heatmap of reference
517 normalized annotation category preference for each RBP clustered into 8 branches by color
518 (left). The heatmap represents the difference in the proportion of sites for a given annotation
519 category in the RBP library versus the reference library. Heatmap of the reference library
520 normalized relative positional binding preference of the 55 RBPs with enriched binding in at
521 least one mRNA-relevant annotation category per branch (right). RBP-specific binding
522  preferences were averaged across selected transcripts (see methods). The relative spatial

523  proportion of 5’UTR, coding regions and 3’'UTR were averaged across all selected transcript
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524  isoforms. For TES (regions beyond transcription end site), 5° splice site, and 3’ splice site, we
525  chose fixed windows (250nt for TES and 500nt for splice sites). For each RBP, meta-coverage
526  was scaled between 5’UTR to TES. The 5’ and 3’ intronic splice site coverage was scaled
527  separately from other regions but relative to each other.

528
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D) Count of libraries passing QC per RBP. E) Examples of outlier library removal (libraries

labeled with red text were removed) based on correlation of read 6-mer frequency for RBPs with

3 or more libraries.
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551 Figure 2.RBP binding sequence specificity and elements. A) Heatmap of reference
552  normalized 6-mer enrichment for top 5 enriched 6-mers for each RBP in the set of RBPs
553  exhibiting more sequence specificity than the reference.
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Supplemental Figure 2.
Grouping RBPs by
sequence specificity. A)

Heatmap of the number of
6-mers enriched per RBP at
different specificity
thresholds. The color scale
represents the log. [number
of 6-mers] that are enriched
at a given threshold (y-axis).
The thresholds are
represented as log, [6-mer
frequency]. There are 4096
different 6-mers and if they
were uniformly present this
would represent a value of -
12 =log. [1/4096]. The
horizontal dashed lines at -8,

represents 16-fold

enrichment over a uniform background. For reference, the vertical dashed lines indicate the
behavior of the reference library. B) Top 3 SSMART motif results using all binding sites found

in mRNA-derived annotation categories ranked by the library size normalized enrichment over

reference library.
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579  Figure 3. RNA regulatory modules. A) Factor analysis of target RNA encoding genes binding
580 normalized by the reference library and expression for the 55 RBPs binding to mRNAs and
581 IncRNAs for 13,299 genes (see ‘factor analysis’ section in methods for details). Spring-
582  embedded graph of the factor loading matrix, indicating the association between each of the 55
583 RBPs and one of the 10 factors. Nodes color-coded by RNA annotation category preference
584  cluster membership from figure 1. Edge width scales with factor loadings (thicker edge = higher
585 factor loading = stronger association). Only edges with a factor loading > 0.2 (positive values in
586  black) or < -.2 (negative values in green) depicted.
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Supplemental Figure 3.

Factor analysis model

selection and performance.
A) Plot of eigenvalues
versus number of factors to
determine  the  optimal
number of factors using four
methods (different
colors). B) Barplot of the
communality, or the
variance in a given RBP
cumulatively explained by
the all factors. C) Heatmap
of the median factor score
all
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624  each gene set. C) Heatmap of the median value of synthesis rate, processing rates, degradation
625 rates, cytoplasmic versus nuclear localization, polyribosomal versus cytoplasmic localization,
626  and translational status from ribosome profiling data for each gene set (top). Heatmap of the
627  odds-ratio of the overlap between factor associated gene sets with annotation (bottom). D) Box-
628  and-whisker plot for each gene set of the enrichment in P-bodies. E) Box-and-whisker plot for
629  each gene set of the coefficient of variation across 25 individual HEK293 cells.
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data. B) Heatmap of the
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odds-ratio of the overlap
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between factor associated gene sets with RNA categories based on similar metabolic profiles
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from (Mukherjee et al., 2017). C) Heatmap of the odds-ratio of the overlap between factor
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associated gene sets and protein localization annotation. D) Box-and-whisker plot for each gene
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set of the median expression across 25 HEK?293 cells.
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