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RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. 21	

Although in vivo binding sites of RBPs can now be determined genome-wide, most studies 22	

typically focused on individual RBPs. Here, we examined a large compendium of 114 high-23	

quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the 24	

same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of 25	

categories of target RNA binding preference, sequence preference, and transcript region 26	

specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. 27	

specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These 28	

regulatory modules encoded functionally related proteins and exhibited distinct differences in 29	

RNA metabolism, expression variance, as well as subcellular localization. This integrative 30	

investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a 31	

human cell line will be a valuable resource for understanding the complexity of post-32	

transcriptional regulation. 33	

  34	
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Introduction 35	

Of the 20,345 annotated protein-coding genes in human, at least 1,542 are RNA-binding proteins 36	

(RBPs) (Gerstberger et al., 2014). RBPs interact with RNA regulatory elements within RNA 37	

targets to control splicing, nuclear export, localization, stability, and translation (Moore, 2005). 38	

RBPs have specificity to bind one or multiple RNA categories, including messenger RNA 39	

(mRNA) and diverse categories of non-coding RNA such as ribosomal RNA (rRNA), transfer 40	

RNA (tRNA), small nuclear and nucleolar RNA (snRNA/snoRNA), microRNA (miRNA), and 41	

long non-coding RNA (lncRNA). Mutations in RBPs or RNA regulatory elements can result in 42	

defects in RNA metabolism that cause human disease (Cooper et al., 2009; Fredericks et al., 43	

2015).  44	

 45	

A standard technique for in vivo global identification of RBP-RNA interaction sites consists of 46	

immunoprecipitating the ribonucleoprotein (RNP) complex, isolating the bound RNA, and 47	

quantifying the RNA targets by microarrays or deep sequencing (Tenenbaum et al., 2000; Zhao 48	

et al., 2010). The introduction of cross-linking prior to immunoprecipitation (CLIP) as well as 49	

RNase digestion enabled the biochemical mapping of individual interaction sites (Ule et al., 50	

2003). Subsequent modifications to CLIP increased the resolution of the interaction sites (Hafner 51	

et al., 2010; König et al., 2010). One of these methods, photoactivatable ribonucleoside-52	

enhanced cross-linking and immunoprecipitation (PAR-CLIP), utilizes 4-thiouridine or 6-53	

thioguanosine combined with 365 nm UV crosslinking to produce single-nucleotide RBP-RNA 54	

interaction evidence that is utilized to define binding sites (Corcoran et al., 2011; Garzia et al., 55	

2017b; Hafner et al., 2010). 56	
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Experimentally-derived RBP binding sites provide valuable functional insights. First, they can 57	

reveal the rules for regulatory site recognition by the RBP, whether due to sequence and/or 58	

structural characteristics. Second, the region and position of the interaction sites of an RBP 59	

within transcripts provides insights into its role in RNA metabolism and its subcellular 60	

localization. For example, if most of the mapped interaction sites are intronic and adjacent to 61	

splice sites, the RBP is highly likely to be a nuclear splicing factor rather than a cytoplasmic 62	

translation factor. Finally, these data reveal the target transcripts and therefore the potential 63	

biological role for the RBP. 64	

 65	

Throughout the life of an RNA, interactions with many different RBPs determine the ultimate 66	

fate of the transcript. Even though profiling of the interaction sites of a single RBP is clearly 67	

powerful, it does not provide information on other RBPs potentially targeting the same RNA or 68	

on other regulatory elements within the RNA. Small comparative efforts focusing on the 69	

regulation of splicing, 3’ end processing, RNA stability by AU-rich elements, and miRNA-70	

mediated silencing have demonstrated the value of integrating interaction sites from multiple 71	

RBPs (Martin et al., 2012; Mukherjee et al., 2014; Pandit et al., 2013; Zhang et al., 2010). 72	

Therefore, a large-scale comparative examination of interaction sites for many RBPs will yield 73	

valuable knowledge regarding the architecture and determinants of RNA regulatory networks. 74	

 75	

At least 173 PAR-CLIP experiments have been performed in HEK293 cells to date, laying the 76	

groundwork for a large-scale integrative analysis and complementing efforts of ENCODE, which 77	

focused on other cell types and utilized other CLIP protocols (Van Nostrand et al., 2016). We 78	

describe a concerted effort to identify and uniformly process all high-quality PAR-CLIP data sets 79	
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by evaluating the characteristic T-to-C transitions induced by photocrosslinking. Using the 80	

resulting compendium of high-quality in vivo RBP interaction maps from the same cell line 81	

enabled us to determine the relationship between RBPs with respect to their preferred category of 82	

target RNA and any underlying sequence specificity. We uncovered regulatory modules reflected 83	

by combinatorial binding events, and assessed their role and functional implications on RNA 84	

metabolism. Finally, our results support the role of RBPs in buffering gene expression variance. 85	

 86	

Results 87	

A high-quality map of in vivo RBP-RNA interactions across 64 proteins 88	

In order to generate a comprehensive quantitative resource of RBP-RNA interactions within a 89	

human cell line, we identified 166 published PAR-CLIP data sets performed predominantly in 90	

HEK293 cells, and added 7 new libraries generated in our laboratories (Sup Table 1). Typically, 91	

these datasets were generated using transgenic HEK293 cell lines in which each individual RBP 92	

was FLAG-tagged and recombined into the same chromosomal locus containing a strong 93	

promoter. In this way, the expression of each RBP as well as the strength of its 94	

immunoprecipitation were generally comparable. Furthermore, the availability of orthogonal 95	

transcriptome-wide datasets quantifying individual steps of RNA metabolism made HEK293 96	

cells ideal for examining the functional characteristics of RNA targets (Mukherjee et al., 2017). 97	

 98	

Each of the 173 PAR-CLIP libraries generated in HEK293 were subject to a stringent analysis 99	

strategy to retain high-quality datasets (Supplemental Table 1). First, each library was analyzed 100	

using the PAR-CLIP Suite v1.0 (https://rnaworld.rockefeller.edu/PARCLIP_suite) (Garzia et al., 101	
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2017b) to discriminate significant target RNA categories from non-crosslinked background RNA 102	

categories populated by fragments of abundant cellular RNAs (see Methods, Supplemental Fig. 103	

1A). Next, we defined binding sites based on the local density of T-to-C transitions using 104	

PARpipe (https://github.com/ohlerlab/PARpipe) (Corcoran et al., 2011) and only retained those 105	

libraries with sufficiently high read counts and T-to-C transition specificity compared to a deeply 106	

sequenced background reference library (Supplemental Fig 1b) (Friedersdorf and Keene, 2014). 107	

Since the immunoprecipitation step was omitted in this reference library it served as an effective 108	

comparison point to score read count and T-to-C transition for all RBPs. Finally, for RBPs with 109	

more than 3 libraries available, outlier libraries exhibiting poor correlation of 6-mer frequencies 110	

were excluded (Supplemental Fig 1d, e). This resulted in 114 libraries corresponding to 64 RBPs 111	

that were the basis for downstream analysis. There were eight RBP families represented by two 112	

or more RBPs. 113	

 114	

Grouping RBPs by annotation category and positional binding site preferences 115	

As first step to describe RBP-RNA regulatory networks, we determined the relative binding 116	

preference of each RBP for specific target RNA annotation categories (Supplemental Table 2). 117	

For each library, we calculated an RNA annotation category preference value, defined as the 118	

difference in the fraction of T-to-C reads per annotation category between each RBP library and 119	

the reference library. We performed hierarchical clustering of RBPs by annotation category 120	

preference, using Ward’s method and Euclidean distances. This yielded eight clusters of binding 121	

preference (Figure 1a – orange line demarcates cluster definitions) with varying enrichment or 122	

depletion for individual or combinations of specific annotation categories. For each of these 123	

clusters, we compiled a detailed table summarizing the reported functions for each of the RBPs 124	
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(Table 1). Taken together, clustering by RNA annotation category separated RBPs into groups 125	

according to their known subcellular localization and functions. 126	

Three of the eight clusters (clusters 2, 4, and 5) contained nine RBPs that exhibited preference 127	

for categories of non-coding RNA (rRNA, snRNA, snoRNA, and tRNA), but not mRNA, 128	

precursor mRNA (pre-mRNA), or lncRNA. The remaining five clusters contained 55 RBPs 129	

exhibiting preference for binding to mRNA, pre-mRNA and long-noncoding RNA (lncRNA) 130	

annotation categories. The RBPs in clusters 1, 6, 7, and 8 exhibited strong preferences for 131	

various mRNA annotation categories. The RBPs in cluster 3 did not exhibiting strong preference 132	

for specific mRNA annotation categories. Additionally, for each of the RBPs in the cluster, we 133	

performed a positional meta-analysis of binding sites with respect to major transcript landmarks 134	

within target mRNAs. Many of the RBPs also showed strong preferences for binding to specific 135	

positions within mRNAs relating to their role in specific steps of mRNA processing (Table 1). 136	

We hypothesized that target annotation category preferences and positional binding preferences 137	

should reflect subcellular localization of the RBP and its role(s) in mRNA processing. Cluster 6 138	

contained twelve RBPs and exhibited strong preference for intronic regions and to a lesser 139	

degree 3’ UTRs of mRNAs and lncRNAs. The intronic preference was consistent with the 140	

predominantly nuclear localization of these RBPs and the pre-mRNA splicing process. ELAVL1, 141	

which is the sole member of the ELAVL1 family of RBPs that is predominantly localized in the 142	

nucleus but capable of shuttling to the cytoplasm, exhibited positional binding flanking the end 143	

of the 3’ UTR and for 5’ and 3’ splice sites. Cluster 8 contained fourteen RBPs and exhibited 144	

distinct preference for 3’ UTR regions. This included the unpublished and predominantly 145	

cytoplasmic ELAVL1 family members, ELAVL2, ELAVL3, and ELAVL4, which exhibited a 146	

strong positional preference for binding in the distal region of the 3’ UTR and acting 147	
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predominantly on mature mRNA (Mansfield and Keene, 2012). In summary, the annotation 148	

category preferences and positional binding preferences implicated the specific steps of mRNA 149	

processing the RBPs potentially regulate. 150	

 151	

The spectrum of RNA sequence specificity 152	

RBPs exist on a spectrum of specificity depending on a variety of primary and secondary 153	

structure features (Jankowsky and Harris, 2015). Here, our goal was to identify the RBPs with 154	

substantial primary sequence specificity and then examine their sequence preference. For each of 155	

the 55 RBPs, we counted all possible 6-mers using Jellyfish (Marçais and Kingsford, 2011) for 156	

the reads contributing to PARalyzer-defined binding sites. We observed 6-mer frequencies 157	

ranging as high as 512-fold to as low as 5-fold over a uniform distribution of 6-mers 158	

(Supplemental figure 2a). In contrast, our reference background library exhibited 16-fold 159	

enrichment of at least one 6-mer compared to uniform. AGO1-4 libraries were excluded from 6-160	

mer analysis due to the overwhelming sequence contribution from crosslinked miRNAs. Twenty-161	

seven RBPs did not have a single 6-mer found at higher frequency than present in the reference 162	

sample. Amongst these RBPs established or expected to display low sequence-specificity were 163	

the RNA helicase MOV10, the nuclear exosome component DIS3, and the EIF3 complex 164	

translation initiation factors. 165	

 166	

For each of the 24 RBPs with stronger sequence enrichment than the reference library, we 167	

clustered the top 5 sequences enriched over the reference library (Figure 2). Our results 168	

recapitulated the sequence preference for the RBPs in this group with well-characterized 169	

sequence motifs (detailed in Table 2). The ELAVL1 family proteins, which bound to different 170	
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regions and positions of mRNA, showed similar preference for U- and AU-rich 6-mers, while 171	

ZFP36 only enriched a subset of the AU-rich 6-mers (Mukherjee et al., 2014). Complementing 172	

the 6-mer enrichment analysis, we performed motif analysis for each RBP library with the motif 173	

finding algorithm SSMART (sequence-structure motif identification for RNA-binding 174	

proteins, (Munteanu et al., 2018)) (Supplemental Fig 2b). For most RBPs, we observed strong 175	

concordance between the two analyses. RBM20 was a clear exception, for which we observed 176	

the established UCUU-containing motifs (Maatz et al., 2014) with SSMART, but a GA-rich 177	

sequence in the 6-mer enrichment analysis. However, we do observe UCUU-containing motifs in 178	

the top 15, but not top5 6-mers for RBM20. Altogether, our analysis was remarkably consistent 179	

with previously reported motifs in spite of differences in data processing and analysis (detailed 180	

Table 2). 181	

 182	

Identification of RNA regulatory modules 183	

To understand the functional impact of co-regulation by multiple RBPs, we analyzed the co-184	

variation in binding patterns of all 55 RBPs across 13,299 target RNA encoding genes to probe 185	

for the existence of regulatory modules, i.e., specific subsets of RNAs implicated in similar 186	

function bound by subsets of RBPs. To this end, we employed Factor Analysis (FA), which 187	

reduces a large number of observed variables to a smaller number of latent factors. Here, our 188	

observed variables represented the normalized RBP binding (see methods) for each of the 55 189	

RBPs across all target RNA encoding genes (n=13,299). The latent factors represented similar 190	

binding patterns to RNA targets by one or more of the 55 RBPs. RBPs exhibiting high loadings 191	

for the same factor would have very similar binding patterns to RNA targets.  Importantly in this 192	
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framework, a single RBP could be assigned to multiple factors, just as a single RBP can 193	

participate in multiple RNPs and regulate different aspects of RNA metabolism.  194	

 195	

The FA model decomposed the 55 x 13,299 normalized RBP binding matrix into a 55 x 10 factor 196	

loading matrix (representing the strength of the dependence of each of the 55 RBP target RNA 197	

binding pattern on each of the 10 factors), a 13,299 x 10 factor score coefficient matrix 198	

(representing the dependence between the binding of the 13,299 target RNA encoding gene and 199	

each of the 10 factors), and residual error (Supplemental Fig 3a and methods). Cumulatively, the 200	

FA model explained ~60% of the variance in the observed data. The remaining unexplained 201	

variance was expected due to the challenges of integrating data sets of varying depth and quality, 202	

in spite of our efforts to control these aspects. The communality, which is the amount of variance 203	

explained by the model for each RBP-binding variable, varied drastically for all 55 RBPs; the 204	

model explained at least 80% of the variance in enrichment scores for 12 RBPs, and at least 50% 205	

of the variance in enrichment scores for 30 RBPs (Supplemental Figure 3b). RBPs with lower 206	

communality often coincided with shallow depth of their PAR-CLIP libraries. 207	

 208	

The FA model also uncovered interesting parallels between the similarity in the binding of target 209	

RNA encoding genes and the target annotation category preferences (from Figure 1a). We 210	

observed that individual factors contained RBPs that preferred binding to either mature (Factors 211	

1, 3, 4, 5, 8) or precursor transcripts (Factors 2, 6), reflecting involvement in different stages of 212	

RNA metabolism (Figure 3a). Furthermore, individual factors contained RBPs exhibiting similar 213	

patterns of binding to specific regions of the mRNA (i.e., intron, coding, 3’ UTR). Indeed, RBPs 214	

from the same family, or known to regulate a specific aspect of RNA processing, had high 215	
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loadings for the same factors. For example, the ELAVL1 family members were associated with 216	

Factor 1; the AGO1 family were associated with Factor 3; the IGF2BP1 family were associated 217	

with Factor 4; the FMR1 family had were associated with Factor 5 and Factor 8; LINE-1 218	

encoded proteins were associated with Factor 7. One of the unanticipated associations was that 219	

of HNRNPC with Factor 2, which contained mainly cleavage and polyadenylation factors. 220	

Interestingly, HNRNPC was shown to interact with U-rich sequences downstream of a viral 221	

poly-adenylation signal nearly three decades ago (Wilusz et al., 1988), and more recently, to 222	

repress cleavage and poly-adenylation in humans (Gruber et al., 2016). These examples highlight 223	

the specific testable hypotheses generated by an integrative analysis that are not necessarily 224	

obvious when examining a single RBP in isolation.  225	

 226	

By clustering the factor score coefficients, i.e. the specific linear combination of RBP binding for 227	

that target RNA, we identified target RNA encoding genes constituting putative regulatory 228	

modules associated with a given factor. Therefore, each regulatory module was associated with 229	

an RBP component (the subset of RBPs exhibiting similar binding pattern) and a RNA 230	

component (the subsets of target RNA encoding genes bound by those RBPs). These regulatory 231	

modules did not imply physical interactions between RBPs; rather, it identified RBPs that may 232	

cooperate in controlling RNA metabolism for specific subsets of RNA targets, possibly across 233	

cellular compartments. Almost a quarter of the target RNA encoding genes (3,180/13,299) were 234	

assigned to regulatory modules by exhibiting high factor score coefficients for a single factor 235	

(Supplemental figure 3c).  We did not identify target RNA encoding genes with high factor score 236	

coefficients for Factor 9 or 10. The remaining target RNA encoding genes did not exhibit high 237	

factor score coefficients for any specific factor in our analysis, suggesting that the targets were 238	
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either not bound by specific combinations of these RBPs, bound broadly by all RBPs, or not 239	

bound by the subset of RBPs in the analysis. As such, we labeled this target RNA encoding gene 240	

category as “non-specific”. The RNA regulatory modules encoding genes were enriched for 241	

different GO categories. Factor 1 RNA regulatory modules were enriched for ‘AU-rich element 242	

binding’ and Factor 3 RNA regulatory modules were enriched for ‘gene silencing by miRNA’; 243	

AU-rich RBPs and AGO proteins were strongly associated with Factor 1 and Factor 3, 244	

respectively. This was consistent with the recurrent observation that RBPs target the mRNAs 245	

encoding themselves (Pullmann et al., 2007; Tenenbaum et al., 2000). In turn, the RNAs 246	

encoding “non-specific” genes contained ribosomal proteins and mitochondrial electron-247	

transport proteins.  248	

 249	

RNA regulatory modules underlie distinct patterns of RNA metabolism 250	

In order to test the functional relevance of these RNA regulatory modules, we reasoned that 251	

perturbation (change of protein abundance or activity) of an RBP will lead to pronounced effects 252	

only for the RNA regulatory modules assigned to the specific factor(s) that RBP is associated 253	

with. We examined mature and precursor RNA expression changes induced by siRNA 254	

knockdown of ELAVL1 (Kishore et al., 2011). ELAVL1 was strongly associated with both 255	

Factor 1 and Factor 2, which exhibited RNA targeting patterns for mature or precursor RNAs, 256	

respectively. Concordantly, Factor 1 associated RNA regulatory modules, but not Factor 2 RNA 257	

regulatory modules, exhibited ELAVL1-dependent stabilization of mature RNA (Figure 4a). 258	

Likewise, Factor 2 RNA regulatory modules exhibited a more pronounced ELAVL1-dependent 259	

stabilization of precursor RNA than Factor 1 RNA regulatory modules (Figure 4b). Each human 260	

ELAV1 family protein contains three RRM domains (>90% sequence identity), but the hinge 261	
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region between the second and third RRM of ELAVL1 contains a shuttling sequence responsible 262	

for its nuclear localization (Fan and Steitz, 1998). Due to the lack of this shuttling sequence, 263	

ELAVL2/3/4 are predominantly cytoplasmic and were strongly associated with Factor 1, but not 264	

Factor 2. Taken together, the model was able to correctly identify and distinguish ELAVL1-265	

dependent stabilization of both precursor and mature RNA (Lebedeva et al., 2011; Mukherjee et 266	

al., 2011). 267	

 268	

We hypothesized that the subsets of RNAs assigned to the different regulatory module would 269	

exhibit differences in RNA metabolism driven by the RBPs in the factor associated with the 270	

regulatory module. Therefore, we compared six aspects of RNA metabolism previously 271	

quantified in HEK293 cells (Mukherjee et al., 2017), for each of the RNA regulatory modules 272	

associated with each of the factors. The factor-associated RNA regulatory modules exhibited 273	

very distinct RNA metabolic profiles compared to each other and to non-specific category 274	

(Figure 4c, Supplemental Figure 4a). Factor 2 RNA regulatory modules, which was the only 275	

factor associated with RBPs binding to precursor mRNA and lncRNA, had low processing rates, 276	

high degradation rates and their encoded RNAs were preferentially localized in the nucleus 277	

versus the cytoplasm. Factor 2 RNA regulatory modules were strongly enriched for lncRNAs 278	

(Figure 4d). Indeed, these genes strongly overlapped with a set of lncRNAs likely to be 279	

functional (Supplemental figure 4b) (Mukherjee et al., 2017). 280	

 281	

We also examined regulatory differences in RNA metabolism for genes associated with 282	

cytoplasm-enriched factors. For example, factor 1 RNA regulatory modules were more stable 283	

than Factor 3 RNA regulatory modules (Figure 4c). Factor 1 was strongly associated with 284	
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ELAVL1 family proteins, which stabilize target mRNAs. Factor 3 was strongly associated with 285	

AGO1 family proteins, which execute miRNA-mediated degradation of target mRNAs. 286	

Additionally, Factor 4 RNA regulatory modules, which are bound by IGF2BP1 family proteins, 287	

were highly synthesized, processed, stabilized, and translated (Figure 4c). The RNA targets of 288	

IGF2BP1 family RBPs were strongly localized to the ER (Supplemental Figure 4c) (Jønson et 289	

al., 2007), which is also consistent with the proposed role of IGF2BP1 family proteins for RNA 290	

localization and translation (Farina et al., 2003; Nielsen et al., 2001). Although correlative, these 291	

results indicate that different RBP binding patterns beget different consequences for RNA 292	

metabolism. 293	

 294	

Specific RNA regulatory modules also exhibited preferential localization to processing bodies 295	

(P-bodies), which are cytoplasmic granules associated with translational repression (Sheth and 296	

Parker, 2003). Namely, Factor 3 RNA regulatory modules, which were strongly associated with 297	

the AGO1 family, were the most strongly enriched for localizing to P-bodies according to a 298	

recent study characterizing the transcriptome and proteome of P-bodies, and the AGO2 protein 299	

itself was 90-fold enriched (Hubstenberger et al., 2017). Similarly, Factor 5 RNA regulatory 300	

modules, which were strongly associated with the FMR1 family, were also enriched for 301	

localizing in P-bodies, along with the FMR1 protein (16-fold enriched). In contrast, the non-302	

specific category was depleted from P-bodies. 303	

 304	

Fine-tuning of gene expression has been postulated to be an important function of post-305	

transcriptional regulation by RBP and miRNAs. Therefore, we examined the cell-to-cell 306	

variability in gene expression across 25 individual HEK293 cells with respect to the RNA 307	
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regulatory modules. The single-cell RNA-seq data was very deeply sequenced and generated 308	

using the massively parallel single-cell RNA-sequencing (MARS-Seq) protocol (Guillaumet-309	

Adkins et al., 2017). Most RNA regulatory modules exhibited lower expression variability than 310	

the non-specific category (Figure 4e). In particular, Factor 4 RNA regulatory modules exhibited 311	

the lowest variation and highest median expression across the 25 cells (Supplemental Figure 4d). 312	

These results supported the broad notion that post-transcriptional gene regulation generally 313	

confers robustness and fine-tuning of gene expression.  314	

 315	

Conclusion 316	

Our study presents a curation of existing datasets, followed by systematic analysis of high-317	

quality and high-resolution RBP-RNA interaction data. We focused on the RBPs that 318	

preferentially bound to mRNA and lncRNA and examined their sequence specificity and 319	

sequence motif preferences. Our survey of the RBP regulatory landscape identified the most 320	

prevalent subsets of RNAs targeted by a specific subset of RBPs, which we refer to as RNA 321	

regulatory modules.  322	

 323	

We utilized high quality PAR-CLIP datasets for which the immunoprecipitation was generally 324	

comparable due to fact most RBPs were FLAG-tagged. Nevertheless, several caveats associated 325	

with the interpretation of this analysis need to be pointed out. Despite several measures of quality 326	

control to decide which datasets to include in our analysis, the libraries varied greatly in depth, 327	

quality, digestion biases and potentially other confounding variables with respect to the protocol. 328	

The FA model quantitatively assessed the degree to which we could explain the full complement 329	

of RBP-RNA target binding patterns. These confounders undoubtedly contributed to the ~40% 330	
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of variance not explained by the FA model. In comparison, the ENCODE eCLIP datasets (Van 331	

Nostrand et al., 2016) are likely to suffer from different confounders: they were generated using 332	

one consistent experimental protocol but used antibodies against endogenous proteins expressed 333	

at varying levels, and for which IP efficiency can vary greatly in spite of the quality control 334	

performed (Sundararaman et al., 2016). Essentially, this represents the trade-offs in experimental 335	

design between analyzing the endogenous protein compared to an epitope-tagged protein. 336	

Modifying the genomic loci of the protein to engineer an endogenous epitope tagged RBP is 337	

a very promising strategy. 338	

 339	

Assuming the RBPs investigated here are a representative sample of the ~1,542 RBPs encoded in 340	

the human genome, there may be an astounding number of RBPs with substantial primary 341	

sequence specificity. However, the degree of sequence specificity is determined by the nature of 342	

the RBP-RNA interaction, which can be quite extensive and specific, as in the case of Pumilio, 343	

or minimal and non-sequence specific, as in the case of an RNA-helicase. An interesting 344	

exception were the A-rich sequences enriched by UPF1, which is an RNA helicase and therefore 345	

unlikely to exhibit strong sequence specificity. One possible explanation is that such sequences 346	

may represent pre-mature polyA tail recognition involved in aspects of ribosome quality control 347	

demonstrated in yeast (Koutmou et al., 2015) and human cells (Garzia et al., 2017a). Likewise, 348	

more examples of unanticipated sequence enrichments may shed light on novel RNA regulatory 349	

mechanisms.  350	

 351	

Our FA model was able to identify distinct RBP-RNA target regulatory modules. At the very 352	

minimum, 25% of target RNA encoding genes were assigned to RNA regulatory modules. This 353	
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is very likely an underestimation due to noisy data and a biased, far from complete sampling of 354	

RBPs. However, there is likely to be a subset of genes for which post-transcriptional gene 355	

regulation indeed plays a negligible role, at least in HEK293 cells. Furthermore, a small number 356	

of RBPs in our analysis are not endogenously expressed in HEK293 and their natural expression 357	

is tissue-specific and/or context-dependent. The approach presented here can scale to binding 358	

data for all ~700 RBPs experimentally shown to be associated with poly-adenylated RNA in 359	

HEK293 cells or even ~1,542 known RBPs (Baltz et al., 2012). 360	

 361	

The RNA regulatory modules exhibited different patterns of RNA processing, degradation, 362	

localization, and translation. We speculate that these differences in RNA metabolism were driven 363	

by individual RBPs or the combination of RBPs associated with that regulatory module. This 364	

was supported by the response of specific RNA regulatory modules to ELAVL1 knockdown 365	

(Figure 4A, B). Additionally, the RNA regulatory modules encoded functionally related proteins 366	

and similarly localized proteins. The enrichments were for proteins with similar molecular 367	

functions or multi-component complexes rather than signaling pathways (Supplemental Fig 3b). 368	

Altogether, these lines of evidence provide support for the coordinate regulation of ‘functionally 369	

coherent’ RNA regulatory modules as proposed by the post-transcriptional operon/regulon model 370	

(Keene, 2007). The ultimate test of this model would involve manipulating specific combinations 371	

of binding sites and RBPs. Our study provides the rationale for such experiments, which 372	

unfortunately remain technically challenging.  373	

 374	

Our observations have important implications for RBP-RNA regulatory networks and their 375	

importance in gene expression. The mRNA targets within specific regulatory modules encoded 376	
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the RBP themselves, a generalization of a commonly made observation that RBPs bind to the 377	

mRNAs encoding them (Mesarovic et al., 2004). Our analysis lends support for this frequently 378	

observed potential auto-regulatory feedback. These feedback loops may in fact buffer the 379	

expression range of the targeted mRNAs, including those of the RBP. In this context, the 380	

observation that the RNA regulatory modules exhibited lower cell-to-cell gene expression 381	

variance, provides more evidence for the importance of post-transcriptional regulation in 382	

buffering transcriptional noise (Bahar Halpern et al., 2015; Battich et al., 2015). Systematic 383	

perturbation of individual and combinations of RBPs will be quite powerful in revealing 384	

fundamental properties of RNA regulatory networks such as auto-regulatory feedback and 385	

buffering. 386	

 387	

The binding preference and targets of the vast majority of human RBPs remains unknown. The 388	

insights gained from this study demonstrate the value of large-scale efforts by ENCODE and 389	

others in the community to globally identify RBP binding sites. Of the 64 RBPs in this study, 44 390	

were not represented in the ENCODE cell lines. Cumulatively these efforts interrogate ~10% of 391	

human RBPs with known RNA-binding domains. Thus, these two large scale efforts offer the 392	

potential to complement one another in our continuing attempts to understanding RBP-RNA 393	

regulatory networks, for which we have only glimpsed the tip of the iceberg. 394	

 395	
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 409	

STAR Methods 410	

Processing, filtering, and quality control of PAR-CLIP libraries 411	

Each PAR-CLIP library was subject to two rounds of quality control. First, all PAR-CLIP 412	

libraries generated in HEK293 cells were subject to the quality control pipeline PAR-CLIP Suite 413	

v1.0 (https://rnaworld.rockefeller.edu/PARCLIP_suite/). Using raw Illumina sequencing data, 414	

this pipeline identified the predominant target RNA category or categories for each RBP and 415	

provided the T-to-C conversion frequency resolved by read length and RNA category 416	
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(Supplemental Fig 1). The mapped reads of each RNA category were resolved by error distance 417	

0 (d0), error distance 1 (d1; split in T-to-C and d1 other than T-to-C), and error distance 2 (d2). 418	

This process discriminated for each library true target RNA categories from non-crosslinked 419	

background RNA categories populated by fragments of abundant cellular RNAs. In order to 420	

disqualify experiments comprising too many non-crosslinked RBP-specifically bound RNAs or 421	

co-purified non-crosslinked background RNAs, we pursued only datasets which collect at least 422	

10,000 redundant d1 reads ≥ 20 nt in at least one of major RNA annotation categories with d1(T-423	

to-C)/(d0 + d1) ≥ 30%, and d1(T-to-C)/(d1-total) ≥ 65%. 424	

For the libraries passing the first threshold, we defined and annotated binding sites using 425	

PARpipe, which is a pipeline wrapper for PARalyzer (Corcoran et al., 2011; Mukherjee et al., 426	

2014). The threshold for additional filtering were determined by comparisons with the reference 427	

library (Friedersdorf and Keene, 2014). This reference library was generated using a modified 428	

PAR-CLIP protocol in which there was no immunoprecipitation and the addition of an rRNA 429	

depletion step after proteinase K digestion, followed by a partial digestion using RNase T1. We 430	

required libraries had to have an average fraction T-to-C over remaining reads greater than 0.32 431	

(the average fraction T-to-C over remaining reads greater of the reference library), an average 432	

conversion specificity greater than 0, more than 20000 aligned reads, not be digested only with 433	

micrococcal nuclease, a redundant read copy fraction less than .98 (Supplemental Fig 1b,c and 434	

Sup Table 1). For RBPs with three or more libraries, we removed outlier based on correlation of 435	

6-mer frequency calculated from PARalyzer-utilized reads.  436	

  437	
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Annotation category preference and positional analysis of binding density 438	

For calculating the annotation category preference, we calculated the difference in the fraction of 439	

T-to-C reads per annotation category between each RBP library and the reference library. For 440	

example, if the fraction of miRNA annotated reads with T-to-C transitions in a specific RBP 441	

library was 0.20 compared to 0.05 in the reference library, the miRNA preference value for this 442	

specific RBP is 0.15. For the positional binding analysis, we selected genes (n=15120) using 443	

GENCODE v19 as annotation based on our earlier work on HEK293 RNA processing and 444	

turnover dynamics (Mukherjee et al., 2017). Isoform expression was calculated using RSEM (Li 445	

and Dewey, 2011). For each gene, we selected the transcript isoform with the highest isoform 446	

percentage or chose one randomly in case of ties (n=8298). The list of selected transcript 447	

isoforms was used to calculate the median 5' UTR, CDS and 3' UTR length proportions (5' 448	

UTR=0.06, CDS=0.53, 3' UTR=0.41) using R Bioconductor packages GenomicFeatures and 449	

GenomicRanges. For regions downstream annotated transcription ends (TES) and adjacent to 450	

splice sites, we chose windows of fixed sizes (TES 500nt, 5’ and 3’ splice sites 250nt each). We 451	

generated coverage tracks from the PARalyzer output alignment files and intersected those with 452	

the filtered transcripts. Each annotation category was binned according to its relative coverage 453	

averaged according to each bin. For intronic coverage, we averaged across all introns per gene, 454	

given a minimal intron length of 500nt. All bins were stitched to one continuous track per 455	

transcript. Altogether 6632 intron containing transcripts showed coverage in at least one 456	

PARCLIP library. For each library, we required transcripts to have a minimal coverage 457	

maximum of > 2. For each transcript, we scaled the binned coverage dividing by its maximal 458	

coverage (min-to-1 scaling) to emphasize spatial patterns independent from transcript expression 459	

levels. Replicate RBP PARCLIP libraries were combined at this point. Transcripts targeted in 460	
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more than one replicate library were aggregated using the average of their binned coverage. 461	

RBPs with less than 50 filtered target transcripts (after aggregation) were not considered. Next, 462	

we split transcript coverage in two parts, separating 5' UTR to TES regions and intronic regions. 463	

To generate the scaled meta coverage across all targeted transcripts per RBP, we used the 464	

heatMeta function from the Genomation package. For the 5'UTR to TES, we scaled each RBP 465	

meta-coverage track independent of other RBPs. For each RBP, we subtracted the scaled meta 466	

coverage of PARCLIP reference library (Friedersdorf and Keene, 2014). For intronic sequences, 467	

we scaled each RBP relative to all other RBPs to highlight RBPs with more substantial intronic 468	

binding patterns. Finally, we visualized the density using pheatmap. 469	

 470	

Sequence analysis 471	

We calculated 6-mer frequencies with Jellyfish from all reads that generated a PARalyzer 472	

binding site for each library. For each RBP, we selected the library with the lowest percent of 473	

duplicated sequences (see supplemental table 1) to serve as a representative library for the 474	

sequence analysis and factor analysis. For each RBP, we counted the number of 6-mers with a 475	

frequency of x or higher, where x was from 1/4096 to 1/4. To evaluate the 6-mers enriched by a 476	

given RBP relative to the reference library, we regressed the RBP 6-mer frequency against the 477	

the reference library 6-mer frequency and collected the residuals (the unexplained variance). 478	

Next, identified all 6-mers that were found as the top 5 enriched over the reference library for 479	

any of the analyzed RBPs. We clustered the enrichment scores for the 6-mers across all RBPs 480	

and generated a heatmap using the ‘aheatmap’ function in NMF R package. We ran SSMART 481	

using all binding sites found in mRNA-derived annotation categories ranked by the library size 482	

normalized enrichment over the reference library. 483	
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Factor analysis 484	

For each site identified we calculated a library size normalized enrichment compared to the the 485	

reference library. We calculated the sum of all enrichment scores for all sites annotated as 486	

mRNA and lncRNA. Next, we normalized for expression levels (collected the residuals) to 487	

create the final matrix of values. The number of factors, 10, was determined using the majority 488	

result of numerous methods to estimate the number of factors. Clustering of the score matrix was 489	

performed using the most stable results from numerous iterations of k-means clustering. 490	

 491	

Gene ontology analysis 492	

Multiple-test corrected gene ontology enrichment values were calculated using the TOPGO R 493	

package. For each set of genes, we used all 13,299 genes in the factor analysis as the background 494	

or gene universe. Enrichment was calculated using the ‘parent-child’ approach on the top 100 495	

enriched terms. This metric accounts for the hierarchical organization of gene ontology terms to 496	

minimize false-positive enrichments. We performed a Bonferonni multiple test correction on the 497	

enrichment p-values. 498	

 499	

Premature and mature RNA quantification 500	

Mature- and premature-transcript expression, transcripts per million (TPM), was quantified with 501	

RSEMv1.2.11 (http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.11.tar.gz) as described 502	

previously (Mukherjee et al., 2017). Briefly, for each gene we included an additional isoform 503	

corresponding to the sequence of the full gene locus. Specifically, we modified the 504	

GENCODEv19 gtf and used this as the input for the ‘rsem-prepare-reference’ function to 505	
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generate a modified index used for quantification. For each gene, we calculated the expression of 506	

‘mature’ RNA as the sum of all isoforms for that gene excluding the ‘primary’ transcript. For 507	

intronless genes, premature and mature expression values were summed. We performed this 508	

analysis on the ELAVL1 knockdown RNA-seq experiments (Kishore et al., 2011). 509	

 510	

Cell-to-cell expression variability 511	

RNA-seq gene expression data for 25 individual HEK293 cells were downloaded from 512	

(Guillaumet-Adkins et al., 2017). We calculated the coefficient of variation (100*standard 513	

deviation/mean) for each gene across all 25 cells.  514	
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Figures 515	

Figure 1. RBP analyzed and binding preferences by RNA category. A) Heatmap of reference 516	

normalized annotation category preference for each RBP clustered into 8 branches by color 517	

(left). The heatmap represents the difference in the proportion of sites for a given annotation 518	

category in the RBP library versus the reference library. Heatmap of the reference library 519	

normalized relative positional binding preference of the 55 RBPs with enriched binding in at 520	

least one mRNA-relevant annotation category per branch (right). RBP-specific binding 521	

preferences were averaged across selected transcripts (see methods). The relative spatial 522	

proportion of 5’UTR, coding regions and 3’UTR were averaged across all selected transcript 523	
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isoforms. For TES (regions beyond transcription end site), 5’ splice site, and 3’ splice site, we 524	

chose fixed windows (250nt for TES and 500nt for splice sites). For each RBP, meta-coverage 525	

was scaled between 5’UTR to TES. The 5’ and 3’ intronic splice site coverage was scaled 526	

separately from other regions but relative to each other. 527	

  528	
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Supplemental Figure 1.  QC 529	

filtering of libraries. A) 530	

Description of PAR-CLIP 531	

suite to assess library quality 532	

control per annotation 533	

category (left). Example of 534	

number of reads mapping to 535	

each RNA category with up to 536	

2 mismatches resolved by 537	

length of adapter-extracted 538	

sequence reads for an 539	

ELAVL1 library (middle). 540	

Sequencing read composition 541	

of the most abundant RNA 542	

category fir the ELAVL1 library. Reads were assigned as d0 (white), d1 T-to-C (red), d1 other 543	

than T-to-C, (light gray), and d2 (black) (right). B) Libraries had to have > 20,000 aligned reads 544	

and a mean conversion specificity > 0, and a higher mean T-to-C fraction than the the reference 545	

library (red lower, blue higher). C) Number of libraries analyzed and their quality control status. 546	

D) Count of libraries passing QC per RBP. E) Examples of outlier library removal (libraries 547	

labeled with red text were removed) based on correlation of read 6-mer frequency for RBPs with 548	

3 or more libraries. 549	
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 550	

Figure 2. RBP binding sequence specificity and elements. A) Heatmap of reference 551	

normalized 6-mer enrichment for top 5 enriched 6-mers for each RBP in the set of RBPs 552	

exhibiting more sequence specificity than the reference. 553	

  554	
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Supplemental Figure 2. 555	

Grouping RBPs by 556	

sequence specificity. A) 557	

Heatmap of the number of 558	

6-mers enriched per RBP at 559	

different specificity 560	

thresholds. The color scale 561	

represents the log2 [number 562	

of 6-mers] that are enriched 563	

at a given threshold (y-axis). 564	

The thresholds are 565	

represented as log2 [6-mer 566	

frequency]. There are 4096 567	

different 6-mers and if they 568	

were uniformly present this 569	

would represent a value of -570	

12 =log2 [1/4096]. The 571	

horizontal dashed lines at -8, 572	

represents 16-fold 573	

enrichment over a uniform background. For reference, the vertical dashed lines indicate the 574	

behavior of the reference library. B) Top 3 SSMART motif results using all binding sites found 575	

in mRNA-derived annotation categories ranked by the library size normalized enrichment over 576	

reference library. 577	
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 578	

Figure 3. RNA regulatory modules. A) Factor analysis of target RNA encoding genes binding 579	

normalized by the reference library and expression for the 55 RBPs binding to mRNAs and 580	

lncRNAs for 13,299 genes (see ‘factor analysis’ section in methods for details). Spring-581	

embedded graph of the factor loading matrix, indicating the association between each of the 55 582	

RBPs and one of the 10 factors. Nodes color-coded by RNA annotation category preference 583	

cluster membership from figure 1. Edge width scales with factor loadings (thicker edge = higher 584	

factor loading = stronger association). Only edges with a factor loading > 0.2 (positive values in 585	

black) or < -.2 (negative values in green) depicted. 586	
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Supplemental Figure 3. 588	

Factor analysis model 589	

selection and performance. 590	

A) Plot of eigenvalues 591	

versus number of factors to 592	

determine the optimal 593	

number of factors using four 594	

methods (different 595	

colors). B) Barplot of the 596	

communality, or the 597	

variance in a given RBP 598	

cumulatively explained by 599	

the all factors. C) Heatmap 600	

of the median factor score 601	

coefficient value for all 602	

genes that clustered 603	

together. The number of 604	

genes assigned to a specific factor and the top two most significant enriched GO annotations for 605	

each ontology class: molecular function (MF), cellular component (CC), and biological process 606	

(BP). 607	
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Figure 4. Functional 609	

characterization of 610	

RNA regulatory 611	

modules. A) The 612	

difference in either A) 613	

primary or B) mature 614	

RNA expression 615	

(transcripts per 616	

million) upon 617	

ELAVL1 knockdown 618	

by siRNA treatment 619	

(y-axis), specifically 620	

the log2[siRNA EGFP 621	

TPM]-log2[siRNA 622	

ELAVL1 TPM], for 623	

each gene set. C) Heatmap of the median value of synthesis rate, processing rates, degradation 624	

rates, cytoplasmic versus nuclear localization, polyribosomal versus cytoplasmic localization, 625	

and translational status from ribosome profiling data for each gene set (top). Heatmap of the 626	

odds-ratio of the overlap between factor associated gene sets with annotation (bottom). D) Box-627	

and-whisker plot for each gene set of the enrichment in P-bodies. E) Box-and-whisker plot for 628	

each gene set of the coefficient of variation across 25 individual HEK293 cells. 629	
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Supplemental Figure 4. 631	

RNA metabolism profiles 632	

for factor-associated 633	

gene sets. A) Box-and-634	

whisker plot for each gene 635	

set of the synthesis rates, 636	

processing rates, 637	

degradation rates, 638	

cytoplasmic versus nuclear 639	

localization (Cyt vs Nuc), 640	

polyribosomal versus 641	

cytoplasmic localization 642	

(Poly vs Cyt), and 643	

translational status from 644	

ribosome profiling 645	

data. B) Heatmap of the 646	

odds-ratio of the overlap 647	

between factor associated gene sets with RNA categories based on similar metabolic profiles 648	

from (Mukherjee et al., 2017). C) Heatmap of the odds-ratio of the overlap between factor 649	

associated gene sets and protein localization annotation. D) Box-and-whisker plot for each gene 650	

set of the median expression across 25 HEK293 cells.  651	
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