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Abstract

In economics and in perceptual decision-making contextual effects are well documented, where decision weights are
adjusted as a function of the distribution of stimuli. Yet, in reinforcement learning literature whether and how contextual
information pertaining to decision states is integrated in learning algorithms has received comparably little attention. Here, in
an attempt to fill this gap, we investigated reinforcement learning behavior and its computational substrates in a task where
we orthogonally manipulated both outcome valence and magnitude, resulting in systematic variations in state-values. Over
two experiments, model comparison indicated that subjects’ behavior is best accounted for by an algorithm which includes
both reference point-dependence and range-adaptation — two crucial features of state-dependent valuation. In addition, we
found state-dependent outcome valuation to progressively emerge over time, to be favored by increasing outcome
information and to be correlated with explicit understanding of the task structure. Finally, our data clearly show that, while
being locally adaptive (for instance in negative valence and small magnitude contexts), state-dependent valuation comes at

the cost of seemingly irrational choices, when options are extrapolated out from their original contexts.
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Introduction

In everyday life, our decision-making abilities are solicited in situations that range from the most mundane (choosing how to
dress, what to eat, or which road to take to avoid traffic-jams) to the most consequential (deciding to get engaged, or to give
up on a long-lasting costly project). In other words, our actions and decisions result in outcomes which can dramatically differ
in terms of affective valence (positive versus negative) and intensity (small versus big magnitude). These two features of the
outcome value are captured by different psychological concepts — affect vs. salience —, and by different behavioral and
physiological manifestations (approach/avoidance vs. arousal/energization levels)'-3.

In ecological environments, where new options and actions are episodically made available to a decision-maker, both the
valence and magnitude associated with the newly available option and action outcomes have to be learnt from experience.
The reinforcement-learning (RL) theory offers simple computational solutions, where the expected value (product of valence
and magnitude) is learnt by trial-and-error, thanks to an updating mechanism based on prediction error correction 45. RL
algorithms have been extensively used during the past couple of decades in the field of cognitive neuroscience, because
they parsimoniously account for behavioral results, neuronal activities in both human and non-human primates, and
psychiatric symptoms induced by neuromodulatory dysfunction 6-10,

However, this simple RL model is unsuited to be used as is in ecological contexts 1112, Rather, similarly to the perceptual and
economic decision-making domains, growing evidence suggests that reinforcement learning behavior is sensitive to
contextual effects 36, This is particularly striking in loss-avoidance contexts, where an avoided-loss (objectively an
affectively neural event) can become a relative reward if the decision-maker has frequently experienced losses in the
considered environment. In that case, the decision-maker’'s knowledge about the reward distribution in the recent history or
at a specific location, affects her perception of the valence of outcomes. Reference-dependence, i.e., the evaluation of
outcomes as gains or losses relative to a temporal or spatial reference point (context), is one of the fundamental principles of
prospect theory and behavioral economics '7. Yet, only recently have theoretical and experimental studies in animal and
human investigated this reference-dependence in RL 820, These studies have notably revealed that reference-dependence
can significantly improve learning performances in contexts of negative valence (loss-avoidance), but at the cost of
generating post-learning inconsistent preferences 1819,

In addition to this valence reference-dependence, another important contextual effect that may be incorporated in ecological
RL algorithms is range adaptation. At the behavioral level, it has long been known that our sensitivity to sensory stimuli or
monetary amounts is not the same across different ranges of intensity/magnitude 222, These findings have recently
paralleled with the description of neuronal range adaptation: in short, the need to provide efficient coding of information in
various ranges of situations entails that the firing rate of neuron adapts to the distributional properties of the variable being
encoded 2. Converging pieces of evidence have recently confirmed neuronal range-adaptation in economic and perceptual
decision-making, although its exact implementation remains debated 24-27.

Comparatively, the existence of behavioral and neural features of range-adaptation has been less explored in RL, where it
could critically affect the coding of outcome magnitude. In the reinforcement-learning framework the notion of context, which
is more prevalent in the economic or perception literatures, is embodied in the notion of state. In the RL framework the
environment is defined as a collection of discrete states, where stimuli are encountered, decisions are made and outcomes
are collected. Behavioral and neural manifestations of context-dependence could therefore be achieved by (or reframed as)
state-dependent processes.

Here, we hypothesized that in human RL, the trial-by-trial learning of option and action values is concurrently affected by

reference-point centering and range adaptation. To test this hypothesis and investigate the computational basis of such
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state-dependent learning, we adapted a well-validated RL paradigm 1928, to include orthogonal manipulations of outcome
valence and outcome magnitude.

Over two experiments we found that human RL behavior is consistent with value-normalization, both in terms of state-based
reference-dependence and range-adaptation. To better characterize this normalization process at the algorithmic level, we
compared several RL algorithms, which differed in the extent and in the way they implement state-dependent valuation
(reference-dependence and range adaptation). In particular, we contrasted models implementing full, partial or no value
normalization 2. We also evaluated models implementing state-dependent valuation at the decision stage (as opposed to the
outcome evaluation stage) and implementing marginally decreasing utility (as proposed by Bernoulli)22. Overall, the
normalization process was found to be partial, to occur at the valuation level, to progressively arise during learning and to be
correlated with explicit understanding of the task structure (environmental). Finally, while being optimal in an efficient coding
perspective, this normalization leads to irrational preference when options are extrapolated out from their original learning

context.
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92 Results

93 Behavioral paradigm to challenge context-dependence

94 Healthy subjects performed two variants of a probabilistic instrumental learning task with monetary rewards and losses. In
95 those two variants, participants saw at each trial a couple of abstract stimuli (options) which were probabilistically paired with
96 good or bad outcomes, and had to select the one they believed would be most beneficial for their payoff. The options were
97  always presented in fixed pairs, which defined stable choice contexts. These contexts were systematically manipulated, so
98 as to implement a 2x2 factorial design across two qualities of the option outcomes: outcome valence (reward or loss) and
99  outcome magnitude (big; 1€; or small: 10c). In all contexts, the two options were associated with different, stationary,
100  outcome probabilities (75% or 25%). The ‘favorable’ and ‘unfavorable’ options differ in their net expected value. The
101 favorable option in the reward and big magnitude context is paired with a reward of 1€ with probability 75%, while the
102 unfavorable option only 25% of the time. Likewise, the favorable option in the loss and small magnitude context is paired with
103 aloss of 10 cents with probability 25%, while the unfavorable option 75% of the time (Figure 1). Subjects therefore had to
104 learn to choose the options associated either with highest reward probability or those associated with lowest loss probability.
105 After the last learning session, subjects performed a transfer test in which they were asked to indicate the option with the
106 highest value, in choices involving all possible binary combinations — that is, including pairs of options that had never been
107 associated during the task. Transfer test choices were not followed by feedback, to not interfere with subjects’ final estimates
108 of option values. In the second variant of the experiment, an additional factor was added to the design: the feedback
109 information about the outcomes (partial or complete) was manipulated to make this variant a 2x2x2 factorial design. In the
110 partial context, participants were only provided with feedback about the option they chose, while in the complete context,
1M1 feedback about the outcome of the non-chosen option was also provided.

112

113 Outcome magnitude moderately affects learning performance

114 In order to characterize the learning behavior of participants in our tasks, we first simply analyzed the correct response rate
115 in the learning sessions, i.e., choices directed toward the most favorable stimulus (i.e. associated with the highest expected
116 reward or the lowest expected loss). In all contexts, this average correct response rate was higher than chance level 0.5,
117  signaling significant instrumental learning effects (T(59)=16.6, P<0.001). We also investigated the effects of our main
118  experimental manipulations (outcome valence (reward/loss), outcome magnitude (big/small) and feedback information
119 (partial/complete, Experiment 2 only)) (Table 1). Because there was no significant effect of the experiment (i.e., when
120 explicitly entered as factor ‘Experiment’: F(59)=0.96, P>0.3), we polled the two experiments to assess the effects of common
121 factors (outcome valence and magnitude). Replicating previous findings 19, we found that the outcome valence did not affect
122 learning performance (F(59)=0.167, P>0.6), and that feedback information significantly modulated learning in Experiment 2
123 (F(39)=7.4, P<0.01). Finally, we found that the outcome magnitude manipulation, which is a novelty of the present
124 experiments, had a significant effect on learning performance (F(59)=9.09, P<0.004); Post-hoc test confirmed that across
125 both experiments subjects showed significantly higher correct choice rate in the big-magnitude compared with the small-
126 magnitude contexts (T(59)>3.0, P<0.004), and similar correct choice rate in the reward compared to the losses contexts
127 (T(59)=0.41, P>0.13).

128

129 Option preferences in the transfer test cannot be explained by option expected value

130 Following the analytical strategy used in previous studies 819, we next turned to the results from the transfer test, and
131 analyzed the pattern of correct choice rates, i.e., the proportion of choices directed toward the most favorable stimulus (i.e.,

132 associated with the highest expected reward or the lowest expected loss). Overall, the correct choice rate in the transfer was
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133 significantly higher than chance, thus providing evidence of significant value transfer and retrieval (T(59)>3.0, P<0.004). We
134 also analyzed how our experimental factors (outcome valence (reward/loss), outcome magnitude (big/small) and option
135 favorableness (i.e., being the symbol the most favorable of its pair during the learning sessions)) influenced the choice rate
136 per symbol. The choice rate per symbol is the average frequency with which a given symbol is chosen in the transfer test,
137 and can therefore be taken as a measure of the subjective preference for a given option. Consistent with significant value
138  transfer and retrieval, the ANOVA revealed significant effects of outcome valence (F(59)=76, P<0.001) and option
139 correctness (F(59)=203.5, P<0.001) indicating that — in average — symbols associated with favorable outcomes were
140 preferred compared to symbols associated with less favorable ones. However, and in line with what we found in simpler
141 contexts 1928, the analysis of the transfer test revealed that option preference did not linearly follow the objective ranking
142 based on their absolute expected value (Probability(Outcome) x Magnitude(Outcome)). For example, the favorable option of
143 the reward/small context was chosen more often than the less favorable option of the reward/big context (0.71+0.03 vs
144 0.4110.04; T(59)=6.43, P<0.0001). Similarly, the favorable option of the loss/small magnitude context was chosen more
145  often than the less favorable option of the reward/small context (0.42+0.03 vs 0.56+0.03; T(59)=2.88, P<0.006). Crucially,
146 while the latter value inversion reflects reference-point dependence, as shown in previous studies 928, the former effect is
147 new and could be a signature of a more global range-adaptation process.

148

149 Delineating the computational hypothesis

150 Although these overall choice patterns appear puzzling at first sight — since they would be classified as “irrational” from the
151 point of view of the classical economic theory based on absolute values 30 —, we previously reported that similar seemingly
152 irrational behavior and inconsistent results could be coherently generated and explained by state-dependent reinforcement-
153 learning models. To hypothesize this reasoning, we next turned to computational modeling to provide a parsimonious
154 explanation of the present results.

155 To do so, we fitted the behavioral data with several variations of standard RL models (see Methods). The first model is a
156  standard Q-learning algorithm, referred to as ABSOLUTE. The second model is a modified version of the Q-learning model

157 that encodes outcomes in a state-dependent manner:
158 (1)

Rpps(t) -V (s)
V)l +ma"{°'|V(s)|}

159  where the state value V/(s) is initialized to 0, takes the value of the first non-zero (chosen or unchosen) outcome in each

Rggr(t) =

160 context s, and then remains stable over subsequent trials. The first term of the question implements range adaptation
161 (divisive normalization) and the second term reference point-dependence (subtractive normalization). As a result,
162 favorable/unfavorable outcomes are encoded in a binary scale, despite their absolute scale. We refer to this model as
163 RELATIVE, while highlighting here that this model extends and generalizes the so-called “RELATIVE model” employed in a
164 previous study, since the latter only incorporated a reference-point-dependence subtractive normalization term, and not a
165 range adaptation divisive normalization term 19.

166 The third model, referred to as HYBRID, encodes the reward as a weighted sum of an ABSOLUTE and a RELATIVE reward:
167 (2)

Ruyp(t) = @ * Rpgr(t) + (1 — ) * Raps(t)
168  The weight parameter (w) of the HYBRID model quantifies at the individual level the balance between absolute (w=0.0) and

169  relative value encoding (w=1.0).
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170

171 The fourth model, referred to as the UTILITY model, implements the economic notion of marginally decreasing subjective
172 utility 17,22, Since our task included only two non-zero outcomes, we implemented the UTILITY model by scaling the big
173 magnitude outcomes (|1€]) with a multiplicative factor (0.1<v<1.0).

174

175 Finally, the fifth model, referred to as the POLICY model, normalizes (range adaptation and reference point correction)
176 values at the decision step (i.e., in the softmax), where the probability of choosing ‘a’ over ‘b’ is defined by:

177 (3

1

(Qt(s.b)—Qt(s.a)*g)
1+ e\Qsb)+Qe(sa) B

P (s,a) =

178

179 Model comparison favors the HYBRID model

180 For each model, we estimated the optimal free parameters by likelihood maximization. The Bayesian Information Criterion
181 (BIC) was then used to compare the goodness-of-fit and parsimony of the different models. We ran three different
182 optimization and comparison procedures, for the different phases of the experiments: learning sessions only, transfer test
183 only, and both tests. Thus we obtained a specific fit for each parameter and each model in the learning sessions, transfer
184 test, and both.

185

186 Overall (i.e., across both experiments and experimental phases), we found that the HYBRID model significantly better
187  accounted for the data compared to the RELATIVE, the ABSOLUTE, the POLICY and the UTILITY models (HYB vs. ABS
188  T(59)=6.35, P<0.0001; HYB vs. REL T(59)=6.07, P<0.0001; HYB vs. POL T(59)=6.79, P<0.0001; HYB vs. UTY T(59)=2.72,
189 P<0.01). This result was robust across experiments and across experimental sessions (learning sessions vs. transfer test)
190  (Table 3). In the main text we focus on discussing the ABSOLUTE and the RELATIVE models, which are nested within the
191 HYBRID and therefore represent extreme cases (absent or complete) of value normalization. We refer to the
192  Supplementary Materials for a detailed analysis of the properties of the POLICY and the UTILITY models, and the reasons
193 of their rejections.

194

195 Model simulations falsify the ABSOLUTE and the RELATIVE models

196  Although model comparison unambiguously favored the HYBRID model, we next aimed to falsify the alternative models,
197 using simulations 3'. To do so, we compared the correct choice rate in the learning sessions to the model predictions of the
198 three main models (ABSOLUTE, RELATIVE and HYBRID). We generated for each model and for each trial t the probability
199 of choosing the most favorable option, given the subjects’ history of choices and outcomes, using the individual best-fitting
200  sets of parameters. Concerning the learning sessions, we particularly focused on the magnitude effect (i.e., the difference in
201 performance between big and small magnitude contexts). As expected, the ABSOLUTE model exacerbates the observed
202 magnitude effect (simulations vs. data, T(59)=5.8, P<0.001). On the other side, the RELATIVE model underestimates the
203 actual effect (simulations vs. data, T(59)=3.0, P<0.004). Finally (and unsurprisingly), the HYBRID model manages to
204 accurately account for the observed magnitude effect (T(59)=0.93, P>0.35) (Figure 2 A-B). We subsequently compared the
205 choice rate in the transfer test to the three models’ predictions. Both the ABSOLUTE and the RELATIVE models failed to
206 correctly predict choice preference in the transfer test (Figure 2.C and Table S2). Crucially, both models failed to predict the

207 choice rate of intermediate value options. The ABSOLUTE model predicted a quite linear option preference, predicting that
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208 the transfer test choice rate should be highly determined by the expected utility of the options. On the other side, the
209 RELATIVE model’s predictions of the transfer test option preferences were uniquely driven by the option context-dependent
210 favorableness. Finally, choices predicted by the HYBRID model accurately captured the observed option preferences by
211 predicting both an overall correlation between preferences and expected utility and the violation of the monotony of this
212 relation concerning intermediate value options (Figure 2.D). To summarize, and similarly to what was observed in previous
213 studies 181929 choices in both the learning and transfer test could not be explained by assuming that option values are
214 encoded in an absolute manner, nor by assuming that they are encoded in a fully context-dependent manner, but are
215 consistent with a partial context dependence. In the subsequent sections we analyze the factors that affect value
216 contextualization both within and between subjects.

217

218 Relative value encoding emerges during learning

219 Overall we found that a weighted mixture of absolute and relative value encoding (the HYBRID model) better explained the
220 data compared to the “extreme” ABSOLUTE or RELATIVE models. However, this model comparison integrates over all the
221 trials, leaving open the possibility that, while on average subjects displayed no neat preference for either of the two extreme
222 models, this result may arise from averaging over different phases in which one of the models could still be preferred. To test
223 this hypothesis, we analyzed the trial-by-trial likelihood difference between the RELATIVE and the ABSOLUTE model. This
224 quantity basically measures which model better predicts the data in a given trial: if positive, the RELATIVE model better
225  explains the data, if negative, the ABSOLUTE model does. We submitted the trial-by-trial likelihood difference during a
226 learning session to a repeated measure ANOVA with ‘trial’ (1:80) as within-subject factor. This analysis showed a significant
227 effect of trial indicating that the evidence for the RELATIVE and the ABSOLUTE model evolves over time (F(79)=6.2, P<2e-
228 16). Post-hoc tests revealed two big clusters of trials with non-zero likelihood difference: a very early cluster (10 trials from
229  the 4t to the 14t) and a very late one (17 trials from the 62t to the 78%). To confirm this results, we averaged across
230 likelihood difference in the first half (1:40 trials) and in the second half (41:80 trials). In the first half we found this differential
231 to be significantly negative, indicating that the ABSOLUTE model better predicted subjects’ behavior (T(59)=2.1, P=0.036). In
232 contrast, in the second half we found this differential to be significantly positive, indicating that the RELATIVE model better
233 predicted subjects’ behavior (T(59)=2.1, P=0.039). Furthermore, a direct comparison between the two phases also revealed
234 a significant difference (T(59)=3.9, P=0.00005) (Figure 3.A-B). Finally, consistent with a progressively increasing likelihood
235  of the RELATIVE compared the ABSOLUTE model during the learning sessions, we found that the weight parameter (w) of
236  the HYBRID model obtained from the transfer test (0.50+0.05) was numerically higher compared to that of the learning
237  sessions (0.44+0.05) (Table S1).

238

239  Counterfactual information favors relative value learning

240  The two experiments differed in that in the second one (Experiment 2) half of the trials were complete feedback trials. In
241 complete feedback trials, subjects were presented with the outcomes of both the chosen and the forgone options. In line with
242 the observation that information concerning the forgone outcome promotes state-dependent valuation both at the behavioral
243 and neural levels 1832, we tested whether or not the presence of such “counterfactual” feedbacks affects the balance
244 between absolute and relative value learning. To do so, we compared the negative log-likelihood difference between the
245 RELATIVE and the ABSOLUTE model separately for the two experiments. Note that since the two models have the same
246 number of free parameters, they can be directly compared using the log-likelihood. In Experiment 2 (where 50% of the trials

247  were “complete feedback” trials) we found this differential to be significantly positive, indicating that the RELATIVE model
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248 better fits the data (T(39)=2.5, P=0.015). In contrast, in Experiment 1 (where 0% of the trials were “complete feedback” trials),
249  we found this differential to be significantly negative, indicating that the ABSOLUTE model better fits the data (T(19)=2.9,
250 P=0.001). Furthermore, a direct comparison between the two experiments also revealed a significant difference (T(58)=3.9,
251 P=0.0002) (Figure 3.C). Accordingly, we also found the weight parameter (w) of the HYBRID model to be significantly higher
252 in Experiment 2 compared to Experiment 1 (T(58)=2.8, P=0.007) (Figure 3.D). Finally, consistently with reduced relative
253 value learning, we found that the correct choice difference between the 1€ and the 0.1€ contexts in Experiment 1 (mean:
254 +0.10; range: -0.24/+0.51) was 189.5% of that observed in Experiment 2 (mean: +0.05; range: -0.32/+0.40).

255

256 Explicit understanding of task structure is linked to relative value encoding

257 In our learning protocol the fact that options were presented in fixed pairs (i.e. contexts) has to be discovered by subjects,
258 because the information was not explicitly given in the instructions and the contexts were not visually cued. In between the
259 learning and the transfer phases subjects were asked whether or not they believed that options were presented in fixed pairs
260  and how many pairs there were (in the second session). Concerning the first question (“fixed pairs”), 71.7% of subjects
261 responded correctly. Concerning the second question (“pairs number’), 50.0% of subjects responded correctly and the
262  average number of pairs was 3.60+0.13, which significantly underestimated the true value (four: T(59)=3.0, P=0.0035). To
263 test whether or not the explicit knowledge of the subdivision of the learning task in discrete choice contexts was correlated
264  with the propensity to learn relative values, we calculated the correlation between the number of correct responses in the
265  debriefing (0, 1 or 2) and the weight parameter (w) of the HYBRID model. We found a positive and significant correlation
266 (Rz=0.11, P=0.009) (direct comparison of the weight parameter (w) between subjects with 0 vs. 2 correct responses in the
267  debriefing: T(37)=2.8, P=0.0087) (Figure 3.E). To confirm this result, we ran the reciprocal analysis, by splitting subjects into
268 two groups according to their weight parameter and we found that subjects with >0.5 had a significantly higher number of
269  correct responses in the debriefing compared to subjects with m<0.5 (T(58)=3.0, P=0.0035) (Figure 3.F).

270

271 Rational and irrational consequences of relative value encoding

272 Previous behavioral analyses, as well as model comparison results, showed that a mixture of relative and absolute value
273 learning (the HYBRID model) explained subjects’ behavior. In particular, during the learning sessions, subjects displayed a
274 correct choice difference between the 1€ and the 0.1€ contexts smaller than that predicted by the ABSOLUTE model. During
275 the transfer test, the response pattern indicated, consistent with the RELATIVE model, “correct” options with lower expected
276 utility were often preferred to “incorrect” options with higher expected utility. To formally test the hypothesis that relative value
277 learning is positively associated with correct choice in the learning phase (i.e., rational) and negatively associated with
278  correct choice (i.e., choice of the option with the highest absolute value) in the transfer phase (i.e., irrational), we tested the
279 correlation between correct choice rates in these two phases and the weight parameter (w), which quantifies the balance
280 between the ABSOLUTE (w=0.0) and RELATIVE models (w=1.0). Consistent with this idea we found a positive and
281 significant correlation between the weight parameter and the correct choice rate in the 0.1€ contexts (R?=0.19, P=0.0005)
282  and a negative and significant correlation between the same parameter and the correct choice rate in the transfer test
283 (R2=0.42, P=0.00000003) (Figure 3.G-H). This means that, the better a subject was at picking the correct option during the
284 learning phase (rational behavior), the least often she would pick the option with the highest absolute value during the test
285 phase (irrational behavior).

286
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287 Discussion

288 In the present paper, we investigated state-dependent valuation in human reinforcement learning. In particular, we adapted a
289 task designed to address the reference-dependence 9 to include an additional manipulation of the magnitude of outcomes,
290 in order to investigate range-adaptation . In the learning sessions, analyses of behavioral data showed that the
291 manipulation of outcome valence had a significant effect on learning performance, with high-magnitude outcomes inducing
292 better learning compared to low-magnitude outcomes. On the contrary, and in line with what we reported previously '8, the
293 manipulation of outcome valence had no such effect. In the transfer test, participants exhibited seemingly irrational
294 preferences, sometimes preferring options that had objectively lower expected values than other options. Crucially, these
295 irrational preferences are compatible with state-dependent valuation.

296

297 State-dependent (or context-dependent) valuation has been ascribed to a large number of different behavioral, neural and
298 computational manifestations 6. Under this rather general umbrella, reference-dependence and range-adaptation constitute
299 two specific, and in principle dissociable, mechanisms: on the one hand, reference-dependence is the mechanism through
300 which, in a context where monetary losses are frequent, loss avoidance (an affective neural event) is experienced as a
301 positive outcome. On the other hand, range-adaptation is the mechanism through which, in contexts with different outcome
302 magnitudes (i.e., different affective saliency), high-magnitude and low-magnitude outcomes are experienced similarly.

303

304 In order to formally and quantitatively test for the presence of these two components of state-dependent valuation in our
305 experimental data, we used computational modelling. Our model space included two ‘extreme’ models: the ABSOLUTE and
306  the RELATIVE models. The ABSOLUTE model learns the context-independent — absolute — value of available options. In
307 contrast, the RELATIVE model implements both reference-dependence and range-adaptation (‘full’ adaptation; 29). These
308 two ‘extreme’ models predict radically different choice patterns in both the learning sessions and the transfer test. While the
309  ABSOLUTE model predicts a big effect of outcome magnitude in the learning sessions and rational preferences in the
310  transfer test, the RELATIVE model predicts no magnitude effect and highly irrational preferences in the transfer test.
311 Specifically, according to the RELATIVE model, the choices in the transfer test are not affected by the outcome valence or by
312 the outcome magnitude, but dominated by options’ context-dependent favorableness factor. Comparison between model
313  simulations and experimental data falsified both models 31, since in both the learning sessions and in the transfer test,
314 subjects performance lied in between the predictions of the ABSOLUTE and RELATIVE models. To account for this pattern
315 we designed a HYBRID model. The HYBRID model implements a trade-off between the absolute and relative learning
316 modules, which is governed by an additional free parameter (‘partial adaptation’; 29). Owing to this partial adaptation, the
317 HYBRID model accurately accounts for the performance in the learning sessions and for the preferences expressed in the
318 transfer test, including the preference inversion patterns.

319

320 Using model comparison, we attempted to provide a specific description of the process at stake in our task, and ruled out
321 alternative accounts of normalization. Crucially, normalization can be implemented as an adaptation over time of the
322 valuation mechanism to account for the distribution of option values encountered in successive choices, or as a time-
323 independent decision mechanism limited to the values of options considered in one choice event 2433, In the present case,
324 model comparison favored the HYBRID model which implements a time-adapting value normalization against the POLICY
325 model which implements a time-independent decision normalization. This result derives from the fact that during the learning

326  sessions, the POLICY model uses a divisive normalization at the moment of choice to level the learning performance in


https://doi.org/10.1101/295022
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/295022; this version posted April 6, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Rational and irrational consequences of state-dependence valuation

327 different contexts (e.g. big and small magnitudes), while still relying on learning absolute values 25. Therefore, these absolute
328 values cannot produce the seemingly irrational preferences observed in the transfer test.

329

330 The idea that the magnitude of available outcomes is somewhat rescaled by decision-makers is the cornerstone of the
331 concept of utility 22. In economics, this magnitude normalization is considered a stable property of individuals, and typically
332 modelled with a marginally decreasing utility function whose parameters reflect individual core preferences 3435 This
333 approach was implemented in the UTILITY model, present in our model space. However, this model did not provide a
334  satisfactory account of the behavioral data, and hence was not favored by the model-comparison approach. Similarly to the
335  case of the POLICY model, this result derives from the fact that the UTILITY model cannot account for the emergence of
336 reference-dependence, which is necessary to produce preference reversals between the symbols of opposite valence in the
337 transfer test. Crucially, correct choice rate during the learning sessions were equally well predicted by the UTILITY and the
338 HYBRID models, thus highlighting the importance of using a transfer test, where options are extrapolated from original
339  contexts, to challenge computational models of value learning and encoding 19.36:37,

340

341 Overall, our model comparison (based on both goodness-of-fit criteria and simulation-based falsification) favored the
342 HYBRID model, which indicates that the pattern of choices exhibited by our subjects in the learning sessions and in the
343 transfer test is most probably the result of a trade-off between absolute and relative values. In the HYBRID model, this trade-
344 off was implemented by a subject-specific weight parameter (w), which quantified the relative influence of the normalized
345 versus absolute value-learning modules. A series of subsequent analyses revealed that several relevant factors affect this
346 trade-off. First, we showed using an original trial-by-trial model comparison that the trade-off between absolute value-
347 learning and normalized value learning implemented by the HYBRID model is progressive and gradual. This is an important
348 novelty compared to previous work which only suggested such progressivity by showing that value rescaling was dependent
349  of progressively acquired feedback information (18). Note that learning normalized value ultimately converges to learning
350 which option of a context is best, regardless of its valence or relative value compared to the alternative option. Second, and
351 in line with the idea that information concerning the forgone outcome promotes state dependent valuation 1832, we also found
352 that the relative weight of the normalized-value learning module (w) increased when more information was available
353 (counterfactual feedback). Finally, individuals whose pattern of choices was indicative of a strong influence of the normalized
354 value learning module (i.e., with higher w) appeared to have a better understanding of the task, assessed in the debriefing.
355 Overall, these findings suggest that value normalization is the results of a ‘high-level’ — or ‘model-based’ — process through
356  which outcome information is not only used to update action values, but also to build an explicit representation of the
357 embedding context where outcomes are experienced. Consistent with this interpretation, value normalization has recently
358 been shown to be degraded by manipulations imposing a penalty for high-level costly cognitive functions, such as high
359 memory load conditions in economic decision-making tasks 38. One can also speculate that value contextualization should be
360 impaired under high cognitive load % and when outcome information is made unconscious 40. Future research using multi-
361 tasking and visual masking could address these hypotheses 4!. An additional feature of the design suggests that this value
362 normalization is an active process. In our paradigm the different choice contexts were presented in an interleaved manner,
363 meaning that a subject could not be presented with the same context more than a few times in a row. Therefore, contextual
364 effects could not be ascribed to slow and passive habituation (or sensitization) processes.

365

366 Although the present results, together with converging evidence in economics and psychology, concordantly point that state-

367 dependent valuation is needed to provide a satisfactory account of human behavior, there is still an open debate concerning

10
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368 the exact implementation of such contextual influences. In paradigms where subjects are systematically presented with full
369 feedback information, it would seem that subjects simply encode the difference between obtained and forgone outcome, thus
370 parsimoniously achieving full context-dependence without explicitly representing and encoding state value 1832, However,
371 such models cannot be easily and effectively adapted to tasks where only partial feedback information is available. In these
372 tasks, context-dependence has been more efficiently implemented by assuming separate representational structures for
373  action and state values which are then used to center action-specific prediction errors 1920, In the present paper, we
374 implemented this computational architecture in the HYBRID model, which builds on a partial adaptation scheme between an
375 ABSOLUTE and a RELATIVE model. Although descriptive by nature, such hybrid models are commonly used in multi-step
376 decision-making paradigms, e.g., to implement trade-offs between model-based and model free learning 4244, because they
377 allow to readily quantify the contributions of different learning strategies, and to straightforwardly map to popular dual-
378 process accounts of decision-making 4546, In this respect, future studies adapting the present paradigm for functional
379 imaging will be crucial to assess whether absolute and relative (i.e., reference-point centered and range adapted) outcome
380 values are encoded in different regions (dual valuation), or whether contextual information is readily integrated with outcome
381 values in a single brain region (partial adaptation). However, it should be noted that previous studies using similar paradigms,
382 consistently provided support for the second hypothesis, by showing that contextual information is integrated in a brain
383 valuation system encompassing both the ventral striatum and the ventral prefrontal cortex, which therefore represent
384 ‘partially adapted’ values 192029, This is corroborated by similar observations from electrophysiological recordings of single
385 neurons in monkeys 26.27:47.48,

386

387 As in our previous study 928, we also manipulated outcome valence in order to create ‘gain’ and ‘loss’ decision frames.
388 While focusing on the results related to the manipulation of outcome magnitude, which represented the novelty of the present
389 design, we nonetheless replicated previous findings indicating that subjects perform equally well in both decision frames and
390 that this effect is parsimoniously explained assuming relative value encoding. This robust result contradicts both standard
391 reinforcement principles and behavioral economic results. In the context of animal learning literature, while Thorndike’s
392  famous law of effect parsimoniously predicts reward maximization in a ‘gain’ decision frame, it fails to explain punishment
393 minimization in the ‘loss’ frame. Mower elegantly formalized this issue (4° ‘how can a shock that is not experienced, i.e.,
394 which is avoided, be said to provide [...] a source of [...] satisfaction?’) and proposed the two-factor theory that can be seen
395  as an antecedent of our relative value-learning model. In addition, the gain/loss behavioral symmetry is surprising with
396 respects to behavioral economic theory because it contradicts the loss aversion principle 7. In fact, if ‘losses loom larger
397 than gains’, one would predict a higher correct response rate in the ‘loss’ compared to the ‘gain’ domain in our task. Yet,
398 such deviations to standard behavioral economic theory are not infrequent when decisions are based on experience rather
399 than description 50, an observation referred to as the “experience/description gap” 552, While studies of the
400 “experience/description gap” typically focus on deviations regarding attitude risky and rare outcomes, our and other groups’
401 results indicate that a- less documented but nonetheless - robust instance of the experience/description gap is precisely the
402 absence of loss aversion 353,

403

404 To conclude, state-dependent valuation, defined as the combination of reference-point dependence and range-adaptation, is
405 a double-edged sword of value-based learning and decision-making. Reference-point dependence provides obvious
406 beneficial behavioral consequences in punishment avoidance contexts and range-adaptation allows to perform optimally
407  when decreasing outcome magnitudes. The combination of these two mechanisms (implemented in the HYBRID model) is

408  therefore accompanied with satisfactory learning performance in all proposed contexts. However, these beneficial effects on

11
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409 learning performance are traded-off against possible suboptimal preferences and decisions, when options are extrapolated
410 from their original context. Crucially, our results show that state-dependent valuation remains only partial. As a consequence,
411 subjects under-performed in the learning sessions relative to full context-dependent strategies (RELATIVE model), as well as
412 in the transfer test relative to absolute value strategies (ABSOLUTE model). These findings support the idea that bounded
413 rationality may not only arise from intrinsic limitations of the brain computing capacity, but also from the fact that different
414 situations require different valuation strategies to achieve optimal performance. Given the fact that humans and animals
415 often interact with changing and probabilistic environments, apparent bounded rationality may simply be the result of the
416  effort for being able to achieve a good level of performance in a variety of different contexts. These results shed new light on
417 the computational constraints shaping everyday reinforcement learning abilities in humans, most-likely set by evolutionary
418 forces to optimally forage in changing environments %,

419

420

421

12
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422 Methods

423 Experimental subjects

424  We tested 60 subjects (39 females; aged 22.3+3.3 years). Subjects were recruited via Internet advertising in a local mailing-
425 list dedicated to cognitive science-related activities. We experienced no technical problems, so we were able to include all 60
426 subjects. The research was carried out following the principles and guidelines for experiments including human participants
427 provided in the declaration of Helsinki (1964, revised in 2013). The local Ethical Committee approved the study and subjects
428 provided written informed consent prior to their inclusion. To sustain motivation throughout the experiment, subjects were
429 given a bonus dependent on the actual money won in the experiment (average money won: 3.73+0.27, against chance
430  T(59)=13.9, P<0.0001).

431

432 Behavioral protocol

433 Subjects performed a probabilistic instrumental learning task adapted from previous imaging and patient studies '°. Subjects
434 were first provided with written instructions, which were reformulated orally if necessary. They were explained that the aim of
435  the task was to maximize their payoff and that seeking monetary rewards and avoiding monetary losses were equally
436 important. For each experiment, subjects performed two learning sessions. Cues were abstract stimuli taken from the
437 Agathodaimon alphabet. Each session contained four novel pairs of cues. The pairs of cues were fixed, so that a given cue
438 was always presented with the same other cue. Thus, within sessions, pairs of cues represented stable choice contexts.
439 Within sessions, each pair of cues was presented 20 times for a total of 80 trials. The four cue pairs corresponded to the four
440  contexts (reward/big magnitude, reward/small magnitude, loss/big magnitude and loss/small magnitude). Within each pair,
441 the two cues were associated to a zero and a non-zero outcome with reciprocal probabilities (0.75/0.25 and 0.25/0.75). On
442 each trial, one pair was randomly presented on the left and the right side of a central fixation cross. Pairs or cues were
443 presented in a pseudo-randomized and unpredictable manner to the subject (intermixed design). The side in which a given
444 cue was presented was also pseudo-randomized, such that a given cue was presented an equal number of times in the left
445 and the right of the central cue. Subjects were required to select between the two cues by pressing one of the corresponding
446 two buttons, with their left or right thumb, to select the leftmost or the rightmost cue, respectively, within a 3000ms time
447 window. After the choice window, a red pointer appeared below the selected cue for 500ms. At the end of the trial, the cues
448  disappeared and the selected one was replaced by the outcome (“+1.0€”,*+0.1€”, “0.0€”, “-0.1€” or “-1.0€”) for 3000ms. In
449 Experiment 2, in the complete information contexts (50% of the trials), the outcome corresponding to the unchosen option
450 (counterfactual) was displayed. A novel trial started after a fixation screen (1000ms, jittered between 500-1500ms). After the
451 two learning sessions, subjects performed a transfer test. This transfer test involved only the 8 cues (2*4 pairs) of the last
452 session, which were presented in all possible binary combinations (28, not including pairs formed by the same cue) (see also
453 18). Each pair of cues was presented 4 times, leading to a total of 112 trials. Instructions for the transfer test were provided
454 orally after the end of the last learning session. Subjects were explained that they would be presented with pairs of cues
455 taken from the last session, and that all pairs would not have been necessarily displayed together before. On each trial, they
456 had to indicate which of the cues was the one with the highest value by pressing on the buttons as in the learning task.
457 Subjects were also explained that there was no money at stake, but encouraged to respond as they would have if it were the
458 case. In order to prevent explicit memorizing strategies, subjects were not informed that they would have to perform a
459  transfer test until the end of the second (last) learning sessions. Timing of the transfer test differed from that of the learning
460 sessions in that the choice was self-paced and in the absence of outcome phase. During the transfer test, the outcome was
461 not provided in order not to modify the option values learned during the learning sessions. Between the leaning sessions and

462 the transfer test subjects were interviewed in order to probe the extent of their explicit knowledge of the task’s structure.
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463 More precisely the structured interview assessed: 1) whether or not the subjects were aware about the cues being presented
464 in fixed pairs (choice contexts); 2) how many choice contexts they believed were simultaneously present in a learning
465 session. The experimenter recorded the responses, but provided no feedback about their correctness in order to not affect
466  subjects’ performance in the transfer test.

467

468 Model-free analyses

469 For the two experiments, we were interested in three different variables reflecting subjects’ learning: (1) correct choice rate
470 (i.e. choices directed toward highest expected reward or the lowest expected loss) during the learning task of the experiment.
471 Statistical effects were assessed using multiple-way repeated measures ANOVAs with feedback valence, feedback
472 magnitude, and feedback information (in Experiment 2 only) as within-subject factors; (2) correct choice rate during the
473 transfer test, i.e., choosing the option with the highest absolute expected value (each symbol has a positive or negative
474 absolute expected value, calculated as Probability(outcome) x Magnitude(outcome)); and (3) choice rate of the transfer test
475 (i.e., the number of times an option is chosen, divided by the number of times the option is presented). The variable
476 represents the value attributed to one option, i.e., the preference of the subjects for each of the symbols. Transfer test choice
477 rates were submitted to multiple-way repeated measures ANOVAs, to assess the effects of option favorableness (being the
478 most advantageous option of the pair), feedback valence and feedback magnitude as within-subject factors. Post-hoc tests
479 were performed using one-sided, one-sample t-tests. As a control analysis, additional post-hoc tests were performed against
480  chance. All statistical analyses were performed using Matlab (www.mathworks.com).

481

482 Model space

483 We analyzed our data with extensions of the Q-learning algorithm 454, The goal of all models was to find in each choice

484 context (or state) the option that maximizes the expected reward R.

485
486 At trial t, option values of the current context s are updated with the Rescorla-Wagner rule 5:
4387  (4)
Qe+1(s,6) = Q(s,0) + a b,
Qer1(s,u) = Qe(s,w) + ay by,
488
489

490  wherea, is the learning rate for the chosen (c) option and a,, the learning rate for the unchosen (u) option, i.e. the

491 counterfactual learning rate. 8, and &,, are prediction error terms calculated as follows:
492  (5)

8¢ = Re(t) — Qc(s, )
Syt = Ry(t) — Qe(s,u)
493
494 &, is updated in both partial and complete feedback contexts and &,, is updated in the complete feedback context only
495 (Experiment 2, only).
496
497 We modelled subjects’ choice behavior using a softmax decision rule representing the probability for a subject to choose one

498  option a over the other option b:
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499 (6)

1
(Qt(S:b)l—?Qt(S'a))

P(s,a) =
1+ e
500 where B is the temperature parameter. High temperatures cause the action to be all (nearly) equi-probable. Low

501 temperatures cause a greater difference in selection probability for actions that differ in their value estimates 4.

502

503

504 We compared four alternative computational models: the ABSOLUTE model, which encodes outcomes in an absolute scale
505 independently of the choice context in which they are presented; the RELATIVE model which encodes outcomes on a binary
506 (correctfincorrect) scale, relative to the choice context in which they are presented 55, the HYBRID model, which encodes
507 outcomes as a weighted sum of the absolute and relative value; the POLICY model, which encodes outcome in an absolute
508  scale, butimplements divisive normalization in the policy.

509

510  ABSOLUTE model

511 The outcomes are encoded as the subjects see them as feedback. A positive outcome is encoded as its “real” positive value
512 (in euros) and a negative outcome is encoded as its ‘real” negative value (in  euros):
513 Rpgs(t) € {—1.0€,-0.1€,0.0€,0.1€,1.0€}.

514

515 RELATIVE model

516 The outcomes (both chosen and unchosen) are encoded on a context-dependent correct/incorrect relative scale. The model
517 assumes the effective outcome value to be adapted to the range of the outcomes present in a given context. The option
518 values are no longer calculated in an absolute scale, but relatively to their choice context value: in the delta-rule, the correct
519 option is updated with a reward of 1 and the incorrect option is updated with a reward of 0. To determine the context of
520 choice, the model uses a state value V(s) stable over trials, initialized to 0, which takes the value of the first non-zero

521 (chosen or unchosen) outcome in each context s.

522
523 (7)

R =7+ o (o)
524
525
526

527 Thus, the outcomes (chosen and unchosen) are now normalized to a context-dependent correct/incorrect encoding:
528  RggL(t) € {0, 1}. The chosen and unchosen option values and prediction errors are updated with the same rules as in the
529 ABSOLUTE model.

530

531 HYBRID model

532 At trial t the prediction errors of the chosen and unchosen options are updated as a weighted sum of the absolute and
533 relative outcomes:

534

15
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535 (8)

Ruyp(t) = @ * Rpgr(t) + (1 — w) * Rps(t)
536
537
538

539 where w is the individual weight. At each trial {, the model independently encodes both outcomes as previously described

Rpps(t) if @ =0
Rrer(®) if w =1

541 prediction errors are updated with the same rules as in the ABSOLUTE model.
542
543 POLICY model

544 We also considered a fourth POLICY model that encodes option values as the ABSOLUTE model and normalizes them in

540 and updates the final HYBRID outcome: Ryyg(t) = { The chosen and unchosen option values and

545 the softmax rule, i.e., at the decision step 25.2647;

546 (9)
1
P.(s,a) = e
1+ e\QGh+QtGsa) B
547

548  UTILITY model
549 Finally, we considered a fifth UTILITY model, which implements the economic notion of marginally decreasing subjective

550 utility 17.22, The big magnitude outcomes (|R| = 1) are re-scaled with a multiplicative factor 0.1 <v < 1.0:
551 (10)

Ryry(t) = v * Rags(t) if IRl =1

552
553
554 Model fitting, comparison and simulation
555 Specifically for the learning sessions, transfer test, and both, we optimized model parameters, the temperature 8, the factual
556 learning rate a, the counterfactual learning rate a. (in Experience 2 only) and the weight w (in the HYBRID model only), by
557 minimizing the negative log likelihood LL,,,, using Matlab's fmincon function, initialized at starting points of 1 for the
558 temperature and 0.5 for the learning rates and the weight. As a quality check we replicated this analysis using multiple
559 starting points and this did not change the results (S Table 4). We computed at the individual level the Bayesian Information
560 Criterion (BIC) using, for each model, its number of free parameters d; (note that the Experiment 2 has an additional
561 parameter a;) and the number of trials ntrials (note that this number of trials varies with the optimization procedure:
562 learning sessions only, 160, transfer test only, 112, or both, 272):
563  (11)

BIC = 2 * LLyqy + log(ntrials) = d;
564
565 Model estimates of choice probability were generated ftrial-by-trial using the optimal individual parameters. We made
566 comparisons between predicted and actual choices with a one-sample t-test and tested models' performances out of the
567 sample by assessing their ability to account for the transfer test choices. On the basis of model-estimate choice probability,

568  we calculated the log-likelihood of learning sessions and transfer test choices that we compared between computational
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569 models. Finally, we submitted the model-estimate transfer-test choice probability to the same statistical analyses as the
570 actual choices (ANOVA and post-hoc t-test; within-simulated data comparison) and we compared modeled choices to the
571 actual data. In particular, we analyzed actual and simulated correct choice rates (i.e., the proportions of choices directed
572 toward the most advantageous stimulus) and compared transfer-test choices for each symbol with a sampled t-test between
573 the behavioral choices and the simulated choices.

574

575

576
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Figure 1: Experimental design and normalization process (A) Learning task with 4 different contexts: reward/big,
reward/small, loss/small, loss/big. Each symbol is associated with a probability (P) of gaining or losing an amount of money
or magnitude (M). M varies as a function of the choice contexts (reward seeking: +1.0€ or +0.1€; loss avoidance: -1.0€ or -
0.1€; small magnitude: +0.1€ or -0.1€; big magnitude: +1.0€ or -1.0€). (B) The graph schematizes the transition from
absolute value encoding (where values are negative in the loss avoidance contexts and smaller in the small magnitude
contexts) to relative value encoding (complete adaptation as in the RELATIVE model), where favorable and unfavorable

options have similar values in all contexts, thanks to both reference-point and range adaptation.
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709 Figure 3: Computational properties and behavioral correlates of value normalization. (A) Likelihood difference (from
710 model fitting) between the ABSOLUTE and the RELATIVE models over the 80 trials of the task sessions. A negative
711 likelihood difference means that the ABSOLUTE model is the best-fitting model for the trial and a positive likelihood
712 difference means that the RELATIVE model is the best-fitting model for the trial. Green dots: likelihood difference
713 significantly different from 0 (P<0,05). (B) Likelihood difference between the ABSOLUTE and the RELATIVE models over the
714 first part of the task (40 first trials) and the last part (40 last trials). (C) Likelihood difference between the ABSOLUTE and the
715 RELATIVE models for the two experiments. A negative likelihood difference means that the ABSOLUTE model is the best-
716 fitting model for the experiment and a positive likelihood difference means that the RELATIVE model is the best-fitting model
717 for the experiment. (D) Subject-specific free parameter weight (w) comparison for the two experiments. (E) Subject-specific
718  free parameter weight (w) as a function of correct debriefing for the two questions (“fixed pairs” and “number of pairs”). (F)
719 Debriefing as a function of the weight parameter. (G) and (H) Correct choice rate as a function of subjects’ weight parameter
720 in the learning sessions and the transfer test for both Experiment 1 and Experiment 2. One dot corresponds to one
721 participant (N=60); green lines represent the linear regression calculations. ***p<0.001, **p<0.01, *p<0.05, t-test.
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Table 1: Correct choice rate of the learning sessions as a function of task factors in the Experiment 1, Experiment 2 and both

experiments.

Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60)
F-val P-val F-val P-val F-val P-val

Val 0,002 0,969 0,285 0,597 0,167 0,684

Inf 7,443 **0,0095

Mag 4,872 *0,0398 4,267 *0,0456 9,091 **0,00378

Val x Inf 1,037 0,315

Val x Mag 4,011 0,0597 0,08 0,779 1,755 0,19

Inf x Mag 0,006 0,939

Val x Inf x Mag 0,347 0,559

Table 2: Choice rate of the transfer test as a function of task factors and option correctness in the Experiment 1, Experiment

2 and both experiments.

Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60)
F-val P-val F-val P-val F-val P-val

Valence 33,42 **1,43e-05 43,78 **7,23e-08 76 **3,38e-12
Favorableness 57,66 ***3,6e-07 149,5 ***6,46e-15 203,5 ***<2e-16
Magnitude 2,929 0,103 4,225 *0,0466 0,525 0,472
Val x Corr 4,039 0,0589 6,584 *0,0142 10,8 **0,00171
Val x Mag 11,68 **0,00289 3,565 0,0665 11,55 **0,00122
Corr x Mag 10,8 **0,00388 0,441 0,51 4,131 *0,0466
Val x Corr x Mag 8,241 **0,00979 1,529 0,224 7,159 **0,00964

Table 3: BICs as a function of the dataset used for parameter optimization (Learning sessions, Transfer test or Both) and the

computational model.

Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60)
Learning Transfer Learning Transfer Learning Transfer
Both Both Both
sessions test sessions test sessions test
(nt=272) (nt=272) (nt=272)
(nt=160) (nt=112) (nt=160) (nt=112) (nt=160) (nt=112)
ABSOLUTE
(dt=213) 179.845.9 | 113.6457 | 295.149.9 | 190.945.9 | 126.9+4.1 | 3254465 | 187.2438 | 122434 | 315.356
RELATIVE
(dt=203) 1933445 | 1358451 | 329.648.0 | 1851456 | 121.1%4.0 | 306.0£7.3 | 187.9+4.0 | 126.0+3.3 | 313.95.7
HYBRID (df=3/4) | 178.3t6.0 | 109.3+5.0 | 284.6+9.1 | 1815458 | 105.8+4.1 | 290.5#8.0 | 180.5+4.3 | 106.9+3.2 | 288.5:6.1
POLICY (df=2/3) | 185446.9 | 123.746.3 | 311.0£122 | 190.1+4.9 | 1394439 | 3346465 | 188.5+3.9 | 134.2¢34 | 326.746.0
UTILITY (df=3/4) | 1739465 | 1075+6.3 | 282.2+10.8 | 1834456 | 123145 | 310.1+7.1 | 180.2#¢4.3 | 117.9+3.8 | 300.8+6.2
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