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Abstract 22 
In economics and in perceptual decision-making contextual effects are well documented, where decision weights are 23 

adjusted as a function of the distribution of stimuli. Yet, in reinforcement learning literature whether and how contextual 24 

information pertaining to decision states is integrated in learning algorithms has received comparably little attention. Here, in 25 
an attempt to fill this gap, we investigated reinforcement learning behavior and its computational substrates in a task where 26 

we orthogonally manipulated both outcome valence and magnitude, resulting in systematic variations in state-values. Over 27 

two experiments, model comparison indicated that subjects’ behavior is best accounted for by an algorithm which includes 28 

both reference point-dependence and range-adaptation – two crucial features of state-dependent valuation. In addition, we 29 
found state-dependent outcome valuation to progressively emerge over time, to be favored by increasing outcome 30 

information and to be correlated with explicit understanding of the task structure. Finally, our data clearly show that, while 31 

being locally adaptive (for instance in negative valence and small magnitude contexts), state-dependent valuation comes at 32 
the cost of seemingly irrational choices, when options are extrapolated out from their original contexts.  33 

 34 
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Introduction 38 

In everyday life, our decision-making abilities are solicited in situations that range from the most mundane (choosing how to 39 

dress, what to eat, or which road to take to avoid traffic-jams) to the most consequential (deciding to get engaged, or to give 40 

up on a long-lasting costly project). In other words, our actions and decisions result in outcomes which can dramatically differ 41 
in terms of affective valence (positive versus negative) and intensity (small versus big magnitude). These two features of the 42 

outcome value are captured by different psychological concepts – affect vs. salience –, and by different behavioral and 43 

physiological manifestations (approach/avoidance vs. arousal/energization levels)1–3. 44 
In ecological environments, where new options and actions are episodically made available to a decision-maker, both the 45 

valence and magnitude associated with the newly available option and action outcomes have to be learnt from experience. 46 

The reinforcement-learning (RL) theory offers simple computational solutions, where the expected value (product of valence 47 

and magnitude) is learnt by trial-and-error, thanks to an updating mechanism based on prediction error correction 4,5. RL 48 
algorithms have been extensively used during the past couple of decades in the field of cognitive neuroscience, because 49 

they parsimoniously account for behavioral results, neuronal activities in both human and non-human primates, and 50 

psychiatric symptoms induced by neuromodulatory dysfunction 6–10. 51 
However, this simple RL model is unsuited to be used as is in ecological contexts 11,12. Rather, similarly to the perceptual and 52 

economic decision-making domains, growing evidence suggests that reinforcement learning behavior is sensitive to 53 

contextual effects 13–16. This is particularly striking in loss-avoidance contexts, where an avoided-loss (objectively an 54 

affectively neural event) can become a relative reward if the decision-maker has frequently experienced losses in the 55 
considered environment. In that case, the decision-maker’s knowledge about the reward distribution in the recent history or 56 

at a specific location, affects her perception of the valence of outcomes. Reference-dependence, i.e., the evaluation of 57 

outcomes as gains or losses relative to a temporal or spatial reference point (context), is one of the fundamental principles of 58 
prospect theory and behavioral economics 17. Yet, only recently have theoretical and experimental studies in animal and 59 

human investigated this reference-dependence in RL 18–20. These studies have notably revealed that reference-dependence 60 

can significantly improve learning performances in contexts of negative valence (loss-avoidance), but at the cost of 61 

generating post-learning inconsistent preferences 18,19. 62 
In addition to this valence reference-dependence, another important contextual effect that may be incorporated in ecological 63 

RL algorithms is range adaptation. At the behavioral level, it has long been known that our sensitivity to sensory stimuli or 64 

monetary amounts is not the same across different ranges of intensity/magnitude 21,22. These findings have recently 65 
paralleled with the description of neuronal range adaptation: in short, the need to provide efficient coding of information in 66 

various ranges of situations entails that the firing rate of neuron adapts to the distributional properties of the variable being 67 

encoded 23. Converging pieces of evidence have recently confirmed neuronal range-adaptation in economic and perceptual 68 

decision-making, although its exact implementation remains debated 24–27.  69 
Comparatively, the existence of behavioral and neural features of range-adaptation has been less explored in RL, where it 70 

could critically affect the coding of outcome magnitude. In the reinforcement-learning framework the notion of context, which 71 

is more prevalent in the economic or perception literatures, is embodied in the notion of state. In the RL framework the 72 
environment is defined as a collection of discrete states, where stimuli are encountered, decisions are made and outcomes 73 

are collected. Behavioral and neural manifestations of context-dependence could therefore be achieved by (or reframed as) 74 

state-dependent processes. 75 

Here, we hypothesized that in human RL, the trial-by-trial learning of option and action values is concurrently affected by 76 
reference-point centering and range adaptation. To test this hypothesis and investigate the computational basis of such 77 
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state-dependent learning, we adapted a well-validated RL paradigm 19,28, to include orthogonal manipulations of outcome 78 

valence and outcome magnitude.  79 

Over two experiments we found that human RL behavior is consistent with value-normalization, both in terms of state-based 80 

reference-dependence and range-adaptation. To better characterize this normalization process at the algorithmic level, we 81 
compared several RL algorithms, which differed in the extent and in the way they implement state-dependent valuation 82 

(reference-dependence and range adaptation). In particular, we contrasted models implementing full, partial or no value 83 

normalization 29. We also evaluated models implementing state-dependent valuation at the decision stage (as opposed to the 84 
outcome evaluation stage) and implementing marginally decreasing utility (as proposed by Bernoulli)22. Overall, the 85 

normalization process was found to be partial, to occur at the valuation level, to progressively arise during learning and to be 86 

correlated with explicit understanding of the task structure (environmental). Finally, while being optimal in an efficient coding 87 

perspective, this normalization leads to irrational preference when options are extrapolated out from their original learning 88 
context.  89 

 90 

  91 
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Results 92 

Behavioral paradigm to challenge context-dependence 93 

Healthy subjects performed two variants of a probabilistic instrumental learning task with monetary rewards and losses. In 94 

those two variants, participants saw at each trial a couple of abstract stimuli (options) which were probabilistically paired with 95 
good or bad outcomes, and had to select the one they believed would be most beneficial for their payoff. The options were 96 

always presented in fixed pairs, which defined stable choice contexts. These contexts were systematically manipulated, so 97 

as to implement a 2x2 factorial design across two qualities of the option outcomes: outcome valence (reward or loss) and 98 
outcome magnitude (big; 1€; or small: 10c). In all contexts, the two options were associated with different, stationary, 99 

outcome probabilities (75% or 25%). The ‘favorable’ and ‘unfavorable’ options differ in their net expected value. The 100 

favorable option in the reward and big magnitude context is paired with a reward of 1€ with probability 75%, while the 101 

unfavorable option only 25% of the time. Likewise, the favorable option in the loss and small magnitude context is paired with 102 
a loss of 10 cents with probability 25%, while the unfavorable option 75% of the time (Figure 1). Subjects therefore had to 103 

learn to choose the options associated either with highest reward probability or those associated with lowest loss probability. 104 

After the last learning session, subjects performed a transfer test in which they were asked to indicate the option with the 105 
highest value, in choices involving all possible binary combinations — that is, including pairs of options that had never been 106 

associated during the task. Transfer test choices were not followed by feedback, to not interfere with subjects’ final estimates 107 

of option values. In the second variant of the experiment, an additional factor was added to the design: the feedback 108 

information about the outcomes (partial or complete) was manipulated to make this variant a 2x2x2 factorial design. In the 109 
partial context, participants were only provided with feedback about the option they chose, while in the complete context, 110 

feedback about the outcome of the non-chosen option was also provided.  111 

 112 
Outcome magnitude moderately affects learning performance 113 

In order to characterize the learning behavior of participants in our tasks, we first simply analyzed the correct response rate 114 

in the learning sessions, i.e., choices directed toward the most favorable stimulus (i.e. associated with the highest expected 115 

reward or the lowest expected loss). In all contexts, this average correct response rate was higher than chance level 0.5, 116 
signaling significant instrumental learning effects (T(59)=16.6, P<0.001). We also investigated the effects of our main 117 

experimental manipulations (outcome valence (reward/loss), outcome magnitude (big/small) and feedback information 118 

(partial/complete, Experiment 2 only)) (Table 1). Because there was no significant effect of the experiment (i.e., when 119 
explicitly entered as factor ‘Experiment’: F(59)=0.96, P>0.3), we polled the two experiments to assess the effects of common 120 

factors (outcome valence and magnitude). Replicating previous findings 19, we found that the outcome valence did not affect 121 

learning performance (F(59)=0.167, P>0.6), and that feedback information significantly modulated learning in Experiment 2 122 

(F(39)=7.4, P<0.01). Finally, we found that the outcome magnitude manipulation, which is a novelty of the present 123 
experiments, had a significant effect on learning performance (F(59)=9.09, P<0.004); Post-hoc test confirmed that across 124 

both experiments subjects showed significantly higher correct choice rate in the big-magnitude compared with the small-125 

magnitude contexts (T(59)>3.0, P<0.004), and similar correct choice rate in the reward compared to the losses contexts 126 
(T(59)=0.41, P>0.13). 127 

 128 

Option preferences in the transfer test cannot be explained by option expected value 129 

Following the analytical strategy used in previous studies 18,19, we next turned to the results from the transfer test, and 130 
analyzed the pattern of correct choice rates, i.e., the proportion of choices directed toward the most favorable stimulus (i.e., 131 

associated with the highest expected reward or the lowest expected loss). Overall, the correct choice rate in the transfer was 132 
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significantly higher than chance, thus providing evidence of significant value transfer and retrieval (T(59)>3.0, P<0.004). We 133 

also analyzed how our experimental factors (outcome valence (reward/loss), outcome magnitude (big/small) and option 134 

favorableness (i.e., being the symbol the most favorable of its pair during the learning sessions)) influenced the choice rate 135 

per symbol. The choice rate per symbol is the average frequency with which a given symbol is chosen in the transfer test, 136 
and can therefore be taken as a measure of the subjective preference for a given option. Consistent with significant value 137 

transfer and retrieval, the ANOVA revealed significant effects of outcome valence (F(59)=76, P<0.001) and option 138 

correctness (F(59)=203.5, P<0.001) indicating that – in average – symbols associated with favorable outcomes were 139 
preferred compared to symbols associated with less favorable ones. However, and in line with what we found in simpler 140 

contexts 19,28, the analysis of the transfer test revealed that option preference did not linearly follow the objective ranking 141 

based on their absolute expected value (Probability(Outcome) x Magnitude(Outcome)). For example, the favorable option of 142 

the reward/small context was chosen more often than the less favorable option of the reward/big context (0.71±0.03 vs 143 
0.41±0.04; T(59)=6.43, P<0.0001). Similarly, the favorable option of the loss/small magnitude context was chosen more 144 

often than the less favorable option of the reward/small context (0.42±0.03 vs 0.56±0.03; T(59)=2.88, P<0.006). Crucially, 145 

while the latter value inversion reflects reference-point dependence, as shown in previous studies 19,28, the former effect is 146 
new and could be a signature of a more global range-adaptation process.  147 

 148 

Delineating the computational hypothesis  149 

Although these overall choice patterns appear puzzling at first sight – since they would be classified as “irrational” from the 150 
point of view of the classical economic theory based on absolute values 30 –, we previously reported that similar seemingly 151 

irrational behavior and inconsistent results could be coherently generated and explained by state-dependent reinforcement-152 

learning models. To hypothesize this reasoning, we next turned to computational modeling to provide a parsimonious 153 
explanation of the present results. 154 

To do so, we fitted the behavioral data with several variations of standard RL models (see Methods). The first model is a 155 

standard Q-learning algorithm, referred to as ABSOLUTE. The second model is a modified version of the Q-learning model 156 

that encodes outcomes in a state-dependent manner: 157 
(1) 158 

𝑅!"# 𝑡 =
𝑅!"# 𝑡
𝑉 𝑠

 +max 0,
−𝑉 𝑠
𝑉 𝑠

 

where the state value V(s) is initialized to 0, takes the value of the first non-zero (chosen or unchosen) outcome in each 159 

context s, and then remains stable over subsequent trials. The first term of the question implements range adaptation 160 
(divisive normalization) and the second term reference point-dependence (subtractive normalization). As a result, 161 

favorable/unfavorable outcomes are encoded in a binary scale, despite their absolute scale. We refer to this model as 162 

RELATIVE, while highlighting here that this model extends and generalizes the so-called “RELATIVE model” employed in a 163 

previous study, since the latter only incorporated a reference-point-dependence subtractive normalization term, and not a 164 
range adaptation divisive normalization term  19.  165 

The third model, referred to as HYBRID, encodes the reward as a weighted sum of an ABSOLUTE and a RELATIVE reward: 166 
(2) 167 

𝑅!"#(𝑡) = 𝜔 ∗ 𝑅!"#(𝑡) + (1 − 𝜔) ∗ 𝑅!"#(𝑡) 

The weight parameter (ω) of the HYBRID model quantifies at the individual level the balance between absolute (ω=0.0) and 168 

relative value encoding (ω=1.0).  169 
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 170 

The fourth model, referred to as the UTILITY model, implements the economic notion of marginally decreasing subjective 171 

utility 17,22. Since our task included only two non-zero outcomes, we implemented the UTILITY model by scaling the big 172 

magnitude outcomes (|1€|) with a multiplicative factor (0.1<υ<1.0).  173 

 174 

Finally, the fifth model, referred to as the POLICY model, normalizes (range adaptation and reference point correction) 175 

values at the decision step (i.e., in the softmax), where the probability of choosing ‘a’ over ‘b’ is defined by: 176 
(3) 177 

𝑃! 𝑠, 𝑎 =  
1

1 +  𝑒
!! !,! !!! !,!
!! !,! !!! !,!

∗ !!
 

 178 

Model comparison favors the HYBRID model  179 

For each model, we estimated the optimal free parameters by likelihood maximization. The Bayesian Information Criterion 180 

(BIC) was then used to compare the goodness-of-fit and parsimony of the different models. We ran three different 181 
optimization and comparison procedures, for the different phases of the experiments: learning sessions only, transfer test 182 

only, and both tests. Thus we obtained a specific fit for each parameter and each model in the learning sessions, transfer 183 

test, and both. 184 
 185 

Overall (i.e., across both experiments and experimental phases), we found that the HYBRID model significantly better 186 

accounted for the data compared to the RELATIVE, the ABSOLUTE, the POLICY and the UTILITY models (HYB vs. ABS 187 

T(59)=6.35, P<0.0001; HYB vs. REL T(59)=6.07, P<0.0001; HYB vs. POL T(59)=6.79, P<0.0001; HYB vs. UTY T(59)=2.72, 188 
P<0.01). This result was robust across experiments and across experimental sessions (learning sessions vs. transfer test) 189 

(Table 3). In the main text we focus on discussing the ABSOLUTE and the RELATIVE models, which are nested within the 190 

HYBRID and therefore represent extreme cases (absent or complete) of value normalization. We refer to the 191 
Supplementary Materials for a detailed analysis of the properties of the POLICY and the UTILITY models, and the reasons 192 

of their rejections. 193 

 194 

Model simulations falsify the ABSOLUTE and the RELATIVE models 195 
Although model comparison unambiguously favored the HYBRID model, we next aimed to falsify the alternative models, 196 

using simulations 31. To do so, we compared the correct choice rate in the learning sessions to the model predictions of the 197 

three main models (ABSOLUTE, RELATIVE and HYBRID). We generated for each model and for each trial t the probability 198 
of choosing the most favorable option, given the subjects’ history of choices and outcomes, using the individual best-fitting 199 

sets of parameters. Concerning the learning sessions, we particularly focused on the magnitude effect (i.e., the difference in 200 

performance between big and small magnitude contexts). As expected, the ABSOLUTE model exacerbates the observed 201 

magnitude effect (simulations vs. data, T(59)=5.8, P<0.001). On the other side, the RELATIVE model underestimates the 202 
actual effect (simulations vs. data, T(59)=3.0, P<0.004). Finally (and unsurprisingly), the HYBRID model manages to 203 

accurately account for the observed magnitude effect (T(59)=0.93, P>0.35) (Figure 2 A-B). We subsequently compared the 204 

choice rate in the transfer test to the three models’ predictions. Both the ABSOLUTE and the RELATIVE models failed to 205 

correctly predict choice preference in the transfer test (Figure 2.C and Table S2). Crucially, both models failed to predict the 206 
choice rate of intermediate value options. The ABSOLUTE model predicted a quite linear option preference, predicting that 207 
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the transfer test choice rate should be highly determined by the expected utility of the options. On the other side, the 208 

RELATIVE model’s predictions of the transfer test option preferences were uniquely driven by the option context-dependent 209 

favorableness. Finally, choices predicted by the HYBRID model accurately captured the observed option preferences by 210 

predicting both an overall correlation between preferences and expected utility and the violation of the monotony of this 211 
relation concerning intermediate value options (Figure 2.D). To summarize, and similarly to what was observed in previous 212 

studies 18,19,29, choices in both the learning and transfer test could not be explained by assuming that option values are 213 

encoded in an absolute manner, nor by assuming that they are encoded in a fully context-dependent manner, but are 214 
consistent with a partial context dependence. In the subsequent sections we analyze the factors that affect value 215 

contextualization both within and between subjects.  216 

 217 

Relative value encoding emerges during learning 218 
Overall we found that a weighted mixture of absolute and relative value encoding (the HYBRID model) better explained the 219 

data compared to the “extreme” ABSOLUTE or RELATIVE models. However, this model comparison integrates over all the 220 

trials, leaving open the possibility that, while on average subjects displayed no neat preference for either of the two extreme 221 
models, this result may arise from averaging over different phases in which one of the models could still be preferred. To test 222 

this hypothesis, we analyzed the trial-by-trial likelihood difference between the RELATIVE and the ABSOLUTE model. This 223 

quantity basically measures which model better predicts the data in a given trial: if positive, the RELATIVE model better 224 

explains the data, if negative, the ABSOLUTE model does. We submitted the trial-by-trial likelihood difference during a 225 
learning session to a repeated measure ANOVA with ‘trial’ (1:80) as within-subject factor. This analysis showed a significant 226 

effect of trial indicating that the evidence for the RELATIVE and the ABSOLUTE model evolves over time (F(79)=6.2, P<2e-227 

16). Post-hoc tests revealed two big clusters of trials with non-zero likelihood difference: a very early cluster (10 trials from 228 
the 4th to the 14th) and a very late one (17 trials from the 62th to the 78th). To confirm this results, we averaged across 229 

likelihood difference in the first half (1:40 trials) and in the second half (41:80 trials). In the first half we found this differential 230 

to be significantly negative, indicating that the ABSOLUTE model better predicted subjects’ behavior (T(59)=2.1, P=0.036). In 231 

contrast, in the second half we found this differential to be significantly positive, indicating that the RELATIVE model better 232 
predicted subjects’ behavior (T(59)=2.1, P=0.039). Furthermore, a direct comparison between the two phases also revealed 233 

a significant difference (T(59)=3.9, P=0.00005) (Figure 3.A-B). Finally, consistent with a progressively increasing likelihood 234 

of the RELATIVE compared the ABSOLUTE model during the learning sessions, we found that the weight parameter (ω) of 235 

the HYBRID model obtained from the transfer test (0.50±0.05) was numerically higher compared to that of the learning 236 

sessions (0.44±0.05) (Table S1).  237 

 238 
Counterfactual information favors relative value learning  239 

The two experiments differed in that in the second one (Experiment 2) half of the trials were complete feedback trials. In 240 

complete feedback trials, subjects were presented with the outcomes of both the chosen and the forgone options. In line with 241 

the observation that information concerning the forgone outcome promotes state-dependent valuation both at the behavioral 242 
and neural levels 18,32, we tested whether or not the presence of such “counterfactual” feedbacks affects the balance 243 

between absolute and relative value learning. To do so, we compared the negative log-likelihood difference between the 244 

RELATIVE and the ABSOLUTE model separately for the two experiments. Note that since the two models have the same 245 
number of free parameters, they can be directly compared using the log-likelihood. In Experiment 2 (where 50% of the trials 246 

were “complete feedback” trials) we found this differential to be significantly positive, indicating that the RELATIVE model 247 
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better fits the data (T(39)=2.5, P=0.015). In contrast, in Experiment 1 (where 0% of the trials were “complete feedback” trials), 248 

we found this differential to be significantly negative, indicating that the ABSOLUTE model better fits the data (T(19)=2.9, 249 

P=0.001). Furthermore, a direct comparison between the two experiments also revealed a significant difference (T(58)=3.9, 250 

P=0.0002) (Figure 3.C). Accordingly, we also found the weight parameter (ω) of the HYBRID model to be significantly higher 251 

in Experiment 2 compared to Experiment 1 (T(58)=2.8, P=0.007) (Figure 3.D). Finally, consistently with reduced relative 252 

value learning, we found that the correct choice difference between the 1€ and the 0.1€ contexts in Experiment 1 (mean: 253 

+0.10; range: -0.24/+0.51) was 189.5% of that observed in Experiment 2 (mean: +0.05; range: -0.32/+0.40).  254 
 255 

Explicit understanding of task structure is linked to relative value encoding  256 

In our learning protocol the fact that options were presented in fixed pairs (i.e. contexts) has to be discovered by subjects, 257 
because the information was not explicitly given in the instructions and the contexts were not visually cued. In between the 258 

learning and the transfer phases subjects were asked whether or not they believed that options were presented in fixed pairs 259 

and how many pairs there were (in the second session). Concerning the first question (“fixed pairs”), 71.7% of subjects 260 

responded correctly. Concerning the second question (“pairs number”), 50.0% of subjects responded correctly and the 261 
average number of pairs was 3.60±0.13, which significantly underestimated the true value (four: T(59)=3.0, P=0.0035). To 262 

test whether or not the explicit knowledge of the subdivision of the learning task in discrete choice contexts was correlated 263 

with the propensity to learn relative values, we calculated the correlation between the number of correct responses in the 264 

debriefing (0, 1 or 2) and the weight parameter (ω) of the HYBRID model. We found a positive and significant correlation 265 

(R2=0.11, P=0.009) (direct comparison of the weight parameter (ω) between subjects with 0 vs. 2 correct responses in the 266 

debriefing: T(37)=2.8, P=0.0087) (Figure 3.E). To confirm this result, we ran the reciprocal analysis, by splitting subjects into 267 

two groups according to their weight parameter and we found that subjects with ω>0.5 had a significantly higher number of 268 

correct responses in the debriefing compared to subjects with ω<0.5 (T(58)=3.0, P=0.0035) (Figure 3.F). 269 

 270 

Rational and irrational consequences of relative value encoding  271 

Previous behavioral analyses, as well as model comparison results, showed that a mixture of relative and absolute value 272 

learning (the HYBRID model) explained subjects’ behavior. In particular, during the learning sessions, subjects displayed a 273 
correct choice difference between the 1€ and the 0.1€ contexts smaller than that predicted by the ABSOLUTE model. During 274 

the transfer test, the response pattern indicated, consistent with the RELATIVE model, “correct” options with lower expected 275 

utility were often preferred to “incorrect” options with higher expected utility. To formally test the hypothesis that relative value 276 
learning is positively associated with correct choice in the learning phase (i.e., rational) and negatively associated with 277 

correct choice (i.e., choice of the option with the highest absolute value) in the transfer phase (i.e., irrational), we tested the 278 

correlation between correct choice rates in these two phases and the weight parameter (ω), which quantifies the balance 279 

between the ABSOLUTE (ω=0.0) and RELATIVE models (ω=1.0). Consistent with this idea we found a positive and 280 

significant correlation between the weight parameter and the correct choice rate in the 0.1€ contexts (R2=0.19, P=0.0005) 281 

and a negative and significant correlation between the same parameter and the correct choice rate in the transfer test 282 
(R2=0.42, P=0.00000003) (Figure 3.G-H). This means that, the better a subject was at picking the correct option during the 283 

learning phase (rational behavior), the least often she would pick the option with the highest absolute value during the test 284 

phase (irrational behavior). 285 

286 
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Discussion 287 

In the present paper, we investigated state-dependent valuation in human reinforcement learning. In particular, we adapted a 288 

task designed to address the reference-dependence 19 to include an additional manipulation of the magnitude of outcomes, 289 

in order to investigate range-adaptation 26. In the learning sessions, analyses of behavioral data showed that the 290 
manipulation of outcome valence had a significant effect on learning performance, with high-magnitude outcomes inducing 291 

better learning compared to low-magnitude outcomes. On the contrary, and in line with what we reported previously 19, the 292 

manipulation of outcome valence had no such effect. In the transfer test, participants exhibited seemingly irrational 293 
preferences, sometimes preferring options that had objectively lower expected values than other options. Crucially, these 294 

irrational preferences are compatible with state-dependent valuation.  295 

 296 

State-dependent (or context-dependent) valuation has been ascribed to a large number of different behavioral, neural and 297 
computational manifestations 16. Under this rather general umbrella, reference-dependence and range-adaptation constitute 298 

two specific, and in principle dissociable, mechanisms: on the one hand, reference-dependence is the mechanism through 299 

which, in a context where monetary losses are frequent, loss avoidance (an affective neural event) is experienced as a 300 
positive outcome. On the other hand, range-adaptation is the mechanism through which, in contexts with different outcome 301 

magnitudes (i.e., different affective saliency), high-magnitude and low-magnitude outcomes are experienced similarly. 302 

 303 

In order to formally and quantitatively test for the presence of these two components of state-dependent valuation in our 304 
experimental data, we used computational modelling. Our model space included two ‘extreme’ models: the ABSOLUTE and 305 

the RELATIVE models. The ABSOLUTE model learns the context-independent – absolute – value of available options. In 306 

contrast, the RELATIVE model implements both reference-dependence and range-adaptation (‘full’ adaptation; 29). These 307 
two ‘extreme’ models predict radically different choice patterns in both the learning sessions and the transfer test. While the 308 

ABSOLUTE model predicts a big effect of outcome magnitude in the learning sessions and rational preferences in the 309 

transfer test, the RELATIVE model predicts no magnitude effect and highly irrational preferences in the transfer test. 310 

Specifically, according to the RELATIVE model, the choices in the transfer test are not affected by the outcome valence or by 311 
the outcome magnitude, but dominated by options’ context-dependent favorableness factor. Comparison between model 312 

simulations and experimental data falsified both models 31, since in both the learning sessions and in the transfer test, 313 

subjects performance lied in between the predictions of the ABSOLUTE and RELATIVE models. To account for this pattern 314 
we designed a HYBRID model. The HYBRID model implements a trade-off between the absolute and relative learning 315 

modules, which is governed by an additional free parameter (‘partial adaptation’; 29). Owing to this partial adaptation, the 316 

HYBRID model accurately accounts for the performance in the learning sessions and for the preferences expressed in the 317 

transfer test, including the preference inversion patterns.  318 
 319 

Using model comparison, we attempted to provide a specific description of the process at stake in our task, and ruled out 320 

alternative accounts of normalization. Crucially, normalization can be implemented as an adaptation over time of the 321 
valuation mechanism to account for the distribution of option values encountered in successive choices, or as a time-322 

independent decision mechanism limited to the values of options considered in one choice event 24,33. In the present case, 323 

model comparison favored the HYBRID model which implements a time-adapting value normalization against the POLICY 324 

model which implements a time-independent decision normalization. This result derives from the fact that during the learning 325 
sessions, the POLICY model uses a divisive normalization at the moment of choice to level the learning performance in 326 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295022doi: bioRxiv preprint 

https://doi.org/10.1101/295022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rational and irrational consequences of state-dependence valuation 
 

 10 

different contexts (e.g. big and small magnitudes), while still relying on learning absolute values 25. Therefore, these absolute 327 

values cannot produce the seemingly irrational preferences observed in the transfer test.  328 

 329 

The idea that the magnitude of available outcomes is somewhat rescaled by decision-makers is the cornerstone of the 330 
concept of utility 22. In economics, this magnitude normalization is considered a stable property of individuals, and typically 331 

modelled with a marginally decreasing utility function whose parameters reflect individual core preferences 34,35 This 332 

approach was implemented in the UTILITY model, present in our model space. However, this model did not provide a 333 
satisfactory account of the behavioral data, and hence was not favored by the model-comparison approach. Similarly to the 334 

case of the POLICY model, this result derives from the fact that the UTILITY model cannot account for the emergence of 335 

reference-dependence, which is necessary to produce preference reversals between the symbols of opposite valence in the 336 

transfer test. Crucially, correct choice rate during the learning sessions were equally well predicted by the UTILITY and the 337 
HYBRID models, thus highlighting the importance of using a transfer test, where options are extrapolated from original 338 

contexts, to challenge computational models of value learning and encoding 19,36,37.  339 

 340 
Overall, our model comparison (based on both goodness-of-fit criteria and simulation-based falsification) favored the 341 

HYBRID model, which indicates that the pattern of choices exhibited by our subjects in the learning sessions and in the 342 

transfer test is most probably the result of a trade-off between absolute and relative values. In the HYBRID model, this trade-343 

off was implemented by a subject-specific weight parameter (ω), which quantified the relative influence of the normalized 344 
versus absolute value-learning modules. A series of subsequent analyses revealed that several relevant factors affect this 345 

trade-off. First, we showed using an original trial-by-trial model comparison that the trade-off between absolute value-346 

learning and normalized value learning implemented by the HYBRID model is progressive and gradual. This is an important 347 
novelty compared to previous work which only suggested such progressivity by showing that value rescaling was dependent 348 

of progressively acquired feedback information (18). Note that learning normalized value ultimately converges to learning 349 

which option of a context is best, regardless of its valence or relative value compared to the alternative option. Second, and 350 

in line with the idea that information concerning the forgone outcome promotes state dependent valuation 18,32, we also found 351 
that the relative weight of the normalized-value learning module (ω) increased when more information was available 352 

(counterfactual feedback). Finally, individuals whose pattern of choices was indicative of a strong influence of the normalized 353 

value learning module (i.e., with higher ω) appeared to have a better understanding of the task, assessed in the debriefing. 354 
Overall, these findings suggest that value normalization is the results of a ‘high-level’ – or ‘model-based’ – process through 355 

which outcome information is not only used to update action values, but also to build an explicit representation of the 356 

embedding context where outcomes are experienced. Consistent with this interpretation, value normalization has recently 357 

been shown to be degraded by manipulations imposing a penalty for high-level costly cognitive functions, such as high 358 
memory load conditions in economic decision-making tasks 38. One can also speculate that value contextualization should be 359 

impaired under high cognitive load 39 and when outcome information is made unconscious 40. Future research using multi-360 

tasking and visual masking could address these hypotheses 41. An additional feature of the design suggests that this value 361 
normalization is an active process. In our paradigm the different choice contexts were presented in an interleaved manner, 362 

meaning that a subject could not be presented with the same context more than a few times in a row. Therefore, contextual 363 

effects could not be ascribed to slow and passive habituation (or sensitization) processes.  364 

 365 
Although the present results, together with converging evidence in economics and psychology, concordantly point that state-366 

dependent valuation is needed to provide a satisfactory account of human behavior, there is still an open debate concerning 367 
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the exact implementation of such contextual influences. In paradigms where subjects are systematically presented with full 368 

feedback information, it would seem that subjects simply encode the difference between obtained and forgone outcome, thus 369 

parsimoniously achieving full context-dependence without explicitly representing and encoding state value 18,32. However, 370 

such models cannot be easily and effectively adapted to tasks where only partial feedback information is available. In these 371 
tasks, context-dependence has been more efficiently implemented by assuming separate representational structures for 372 

action and state values which are then used to center action-specific prediction errors 19,20. In the present paper, we 373 

implemented this computational architecture in the HYBRID model, which builds on a partial adaptation scheme between an 374 
ABSOLUTE and a RELATIVE model. Although descriptive by nature, such hybrid models are commonly used in multi-step 375 

decision-making paradigms, e.g., to implement trade-offs between model-based and model free learning 42–44, because they 376 

allow to readily quantify the contributions of different learning strategies, and to straightforwardly map to popular dual-377 

process accounts of decision-making 45,46. In this respect, future studies adapting the present paradigm for functional 378 
imaging will be crucial to assess whether absolute and relative (i.e., reference-point centered and range adapted) outcome 379 

values are encoded in different regions (dual valuation), or whether contextual information is readily integrated with outcome 380 

values in a single brain region (partial adaptation). However, it should be noted that previous studies using similar paradigms, 381 
consistently provided support for the second hypothesis, by showing that contextual information is integrated in a brain 382 

valuation system encompassing both the ventral striatum and the ventral prefrontal cortex, which therefore represent 383 

‘partially adapted’ values 19,20,29. This is corroborated by similar observations from electrophysiological recordings of single 384 

neurons in monkeys 26,27,47,48.  385 
 386 

As in our previous study 19,28, we also manipulated outcome valence in order to create ‘gain’ and ‘loss’ decision frames. 387 

While focusing on the results related to the manipulation of outcome magnitude, which represented the novelty of the present 388 
design, we nonetheless replicated previous findings indicating that subjects perform equally well in both decision frames and 389 

that this effect is parsimoniously explained assuming relative value encoding. This robust result contradicts both standard 390 

reinforcement principles and behavioral economic results. In the context of animal learning literature, while Thorndike’s 391 

famous law of effect parsimoniously predicts reward maximization in a ‘gain’ decision frame, it fails to explain punishment 392 
minimization in the ‘loss’ frame. Mower elegantly formalized this issue (49 ‘how can a shock that is not experienced, i.e., 393 

which is avoided, be said to provide […] a source of […] satisfaction?’) and proposed the two-factor theory that can be seen 394 

as an antecedent of our relative value-learning model. In addition, the gain/loss behavioral symmetry is surprising with 395 
respects to behavioral economic theory because it contradicts the loss aversion principle 17. In fact, if ‘losses loom larger 396 

than gains’, one would predict a higher correct response rate in the ‘loss’ compared to the ‘gain’ domain in our task. Yet, 397 

such deviations to standard behavioral economic theory are not infrequent when decisions are based on experience rather 398 

than description 50, an observation referred to as the “experience/description gap” 51,52. While studies of the 399 
“experience/description gap” typically focus on deviations regarding attitude risky and rare outcomes, our and other groups’ 400 

results indicate that a- less documented but nonetheless - robust instance of the experience/description gap is precisely the 401 

absence of loss aversion 3,53.  402 
 403 

To conclude, state-dependent valuation, defined as the combination of reference-point dependence and range-adaptation, is 404 

a double-edged sword of value-based learning and decision-making. Reference-point dependence provides obvious 405 

beneficial behavioral consequences in punishment avoidance contexts and range-adaptation allows to perform optimally 406 
when decreasing outcome magnitudes. The combination of these two mechanisms (implemented in the HYBRID model) is 407 

therefore accompanied with satisfactory learning performance in all proposed contexts. However, these beneficial effects on 408 
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learning performance are traded-off against possible suboptimal preferences and decisions, when options are extrapolated 409 

from their original context. Crucially, our results show that state-dependent valuation remains only partial. As a consequence,  410 

subjects under-performed in the learning sessions relative to full context-dependent strategies (RELATIVE model), as well as 411 

in the transfer test relative to absolute value strategies (ABSOLUTE model). These findings support the idea that bounded 412 
rationality may not only arise from intrinsic limitations of the brain computing capacity, but also from the fact that different 413 

situations require different valuation strategies to achieve optimal performance. Given the fact that humans and animals 414 

often interact with changing and probabilistic environments, apparent bounded rationality may simply be the result of the 415 
effort for being able to achieve a good level of performance in a variety of different contexts. These results shed new light on 416 

the computational constraints shaping everyday reinforcement learning abilities in humans, most-likely set by evolutionary 417 

forces to optimally forage in changing environments 36. 418 

 419 
 420 

421 
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Methods 422 

Experimental subjects 423 

We tested 60 subjects (39 females; aged 22.3±3.3 years). Subjects were recruited via Internet advertising in a local mailing-424 

list dedicated to cognitive science-related activities. We experienced no technical problems, so we were able to include all 60 425 
subjects. The research was carried out following the principles and guidelines for experiments including human participants 426 

provided in the declaration of Helsinki (1964, revised in 2013). The local Ethical Committee approved the study and subjects 427 

provided written informed consent prior to their inclusion. To sustain motivation throughout the experiment, subjects were 428 
given a bonus dependent on the actual money won in the experiment (average money won: 3.73±0.27, against chance 429 

T(59)=13.9, P<0.0001).  430 

 431 

Behavioral protocol 432 
Subjects performed a probabilistic instrumental learning task adapted from previous imaging and patient studies 19. Subjects 433 

were first provided with written instructions, which were reformulated orally if necessary. They were explained that the aim of 434 

the task was to maximize their payoff and that seeking monetary rewards and avoiding monetary losses were equally 435 
important. For each experiment, subjects performed two learning sessions. Cues were abstract stimuli taken from the 436 

Agathodaimon alphabet. Each session contained four novel pairs of cues. The pairs of cues were fixed, so that a given cue 437 

was always presented with the same other cue. Thus, within sessions, pairs of cues represented stable choice contexts. 438 

Within sessions, each pair of cues was presented 20 times for a total of 80 trials. The four cue pairs corresponded to the four 439 
contexts (reward/big magnitude, reward/small magnitude, loss/big magnitude and loss/small magnitude). Within each pair, 440 

the two cues were associated to a zero and a non-zero outcome with reciprocal probabilities (0.75/0.25 and 0.25/0.75). On 441 

each trial, one pair was randomly presented on the left and the right side of a central fixation cross. Pairs or cues were 442 
presented in a pseudo-randomized and unpredictable manner to the subject (intermixed design). The side in which a given 443 

cue was presented was also pseudo-randomized, such that a given cue was presented an equal number of times in the left 444 

and the right of the central cue. Subjects were required to select between the two cues by pressing one of the corresponding 445 

two buttons, with their left or right thumb, to select the leftmost or the rightmost cue, respectively, within a 3000ms time 446 
window. After the choice window, a red pointer appeared below the selected cue for 500ms. At the end of the trial, the cues 447 

disappeared and the selected one was replaced by the outcome (“+1.0€”,“+0.1€”, “0.0€”, “-0.1€” or “-1.0€”) for 3000ms. In 448 

Experiment 2, in the complete information contexts (50% of the trials), the outcome corresponding to the unchosen option 449 
(counterfactual) was displayed. A novel trial started after a fixation screen (1000ms, jittered between 500-1500ms). After the 450 

two learning sessions, subjects performed a transfer test. This transfer test involved only the 8 cues (2*4 pairs) of the last 451 

session, which were presented in all possible binary combinations (28, not including pairs formed by the same cue) (see also 452 
18). Each pair of cues was presented 4 times, leading to a total of 112 trials. Instructions for the transfer test were provided 453 
orally after the end of the last learning session. Subjects were explained that they would be presented with pairs of cues 454 

taken from the last session, and that all pairs would not have been necessarily displayed together before. On each trial, they 455 

had to indicate which of the cues was the one with the highest value by pressing on the buttons as in the learning task. 456 
Subjects were also explained that there was no money at stake, but encouraged to respond as they would have if it were the 457 

case. In order to prevent explicit memorizing strategies, subjects were not informed that they would have to perform a 458 

transfer test until the end of the second (last) learning sessions. Timing of the transfer test differed from that of the learning 459 

sessions in that the choice was self-paced and in the absence of outcome phase. During the transfer test, the outcome was 460 
not provided in order not to modify the option values learned during the learning sessions. Between the leaning sessions and 461 

the transfer test subjects were interviewed in order to probe the extent of their explicit knowledge of the task’s structure. 462 
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More precisely the structured interview assessed: 1) whether or not the subjects were aware about the cues being presented 463 

in fixed pairs (choice contexts); 2) how many choice contexts they believed were simultaneously present in a learning 464 

session. The experimenter recorded the responses, but provided no feedback about their correctness in order to not affect 465 

subjects’ performance in the transfer test.  466 
 467 

Model-free analyses 468 

For the two experiments, we were interested in three different variables reflecting subjects’ learning: (1) correct choice rate 469 
(i.e. choices directed toward highest expected reward or the lowest expected loss) during the learning task of the experiment. 470 

Statistical effects were assessed using multiple-way repeated measures ANOVAs with feedback valence, feedback 471 

magnitude, and feedback information (in Experiment 2 only) as within-subject factors; (2) correct choice rate during the 472 

transfer test, i.e., choosing the option with the highest absolute expected value (each symbol has a positive or negative 473 
absolute expected value, calculated as Probability(outcome) x Magnitude(outcome)); and (3) choice rate of the transfer test 474 

(i.e., the number of times an option is chosen, divided by the number of times the option is presented). The variable 475 

represents the value attributed to one option, i.e., the preference of the subjects for each of the symbols. Transfer test choice 476 
rates were submitted to multiple-way repeated measures ANOVAs, to assess the effects of option favorableness (being the 477 

most advantageous option of the pair), feedback valence and feedback magnitude as within-subject factors. Post-hoc tests 478 

were performed using one-sided, one-sample t-tests. As a control analysis, additional post-hoc tests were performed against 479 

chance. All statistical analyses were performed using Matlab (www.mathworks.com). 480 
 481 

Model space 482 

We analyzed our data with extensions of the Q-learning algorithm 4,54. The goal of all models was to find in each choice 483 
context (or state) the option that maximizes the expected reward R.  484 

 485 

At trial t, option values of the current context s are updated with the Rescorla-Wagner rule 5: 486 
( 4 ) 487 

𝑄!!! 𝑠, 𝑐 = 𝑄! 𝑠, 𝑐 +  𝛼!𝛿!,! 

𝑄!!! 𝑠, 𝑢 = 𝑄! 𝑠, 𝑢 +  𝛼!𝛿!,! 

 488 

 489 

where𝛼!  is the learning rate for the chosen (c) option and 𝛼!  the learning rate for the unchosen (u) option, i.e. the 490 

counterfactual learning rate. 𝛿!  and 𝛿! are prediction error terms calculated as follows: 491 
( 5 ) 492 

𝛿!,! = 𝑅!(𝑡) − 𝑄!(𝑠, 𝑐) 

𝛿!,! = 𝑅!(𝑡) − 𝑄!(𝑠, 𝑢) 

 493 

𝛿!  is updated in both partial and complete feedback contexts and 𝛿! is updated in the complete feedback context only 494 

(Experiment 2, only). 495 
 496 

We modelled subjects’ choice behavior using a softmax decision rule representing the probability for a subject to choose one 497 

option a over the other option b: 498 
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( 6 ) 499 

𝑃! 𝑠, 𝑎 =  
1

1 +  𝑒
!! !,! !!!(!,!)

!

 

where β is the temperature parameter. High temperatures cause the action to be all (nearly) equi-probable. Low 500 
temperatures cause a greater difference in selection probability for actions that differ in their value estimates 4. 501 

 502 

 503 
We compared four alternative computational models: the ABSOLUTE model, which encodes outcomes in an absolute scale 504 

independently of the choice context in which they are presented; the RELATIVE model which encodes outcomes on a binary 505 

(correct/incorrect) scale, relative to the choice context in which they are presented 55; the HYBRID model, which encodes 506 

outcomes as a weighted sum of the absolute and relative value; the POLICY model, which encodes outcome in an absolute 507 
scale, but implements divisive normalization in the policy.  508 

 509 

ABSOLUTE model 510 
The outcomes are encoded as the subjects see them as feedback. A positive outcome is encoded as its “real” positive value 511 

(in euros) and a negative outcome is encoded as its “real” negative value (in euros): 512 

𝑅!"# 𝑡  ∈ −1.0€ ,−0.1€ , 0.0€ , 0.1€ , 1.0€ . 513 
 514 

RELATIVE model 515 

The outcomes (both chosen and unchosen) are encoded on a context-dependent correct/incorrect relative scale. The model 516 
assumes the effective outcome value to be adapted to the range of the outcomes present in a given context. The option 517 

values are no longer calculated in an absolute scale, but relatively to their choice context value: in the delta-rule, the correct 518 

option is updated with a reward of 1 and the incorrect option is updated with a reward of 0. To determine the context of 519 
choice, the model uses a state value V(s) stable over trials, initialized to 0, which takes the value of the first non-zero 520 

(chosen or unchosen) outcome in each context s. 521 

 522 
( 7 ) 523 

𝑅!"#(𝑡) =
𝑅!"#(𝑡)
𝑉(𝑠)

 +max 0,
−𝑉(𝑠)
𝑉(𝑠)

 

 524 
 525 

 526 
Thus, the outcomes (chosen and unchosen) are now normalized to a context-dependent correct/incorrect encoding: 527 

𝑅!"#(𝑡)  ∈ 0 , 1 . The chosen and unchosen option values and prediction errors are updated with the same rules as in the 528 
ABSOLUTE model. 529 

 530 
HYBRID model 531 

At trial t the prediction errors of the chosen and unchosen options are updated as a weighted sum of the absolute and 532 

relative outcomes: 533 

 534 
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( 8 ) 535 

𝑅!"#(𝑡) = 𝜔 ∗ 𝑅!"#(𝑡) + (1 − 𝜔) ∗ 𝑅!"#(𝑡) 
 536 

 537 

 538 

where ω is the individual weight. At each trial t, the model independently encodes both outcomes as previously described 539 

and updates the final HYBRID outcome: 𝑅!"# 𝑡 =  
𝑅!"# 𝑡   𝑖𝑓 𝜔 = 0
𝑅!"# 𝑡   𝑖𝑓 𝜔 = 1. The chosen and unchosen option values and 540 

prediction errors are updated with the same rules as in the ABSOLUTE model. 541 
 542 

POLICY model 543 

We also considered a fourth POLICY model that encodes option values as the ABSOLUTE model and normalizes them in 544 

the softmax rule, i.e., at the decision step 25,26,47:  545 
( 9 ) 546 

𝑃! 𝑠, 𝑎 =  
1

1 +  𝑒
!! !,! !!!(!,!)
!! !,! !!!(!,!)

∗ !!
 

 547 

UTILITY model 548 

Finally, we considered a fifth UTILITY model, which implements the economic notion of marginally decreasing subjective 549 

utility 17,22. The big magnitude outcomes ( 𝑅  = 1) are re-scaled with a multiplicative factor 0.1 < υ < 1.0: 550 
( 10 ) 551 

𝑅!"# 𝑡 = υ ∗ 𝑅!"# 𝑡    𝑖𝑓 𝑅 = 1 
 552 

 553 

Model fitting, comparison and simulation 554 

Specifically for the learning sessions, transfer test, and both, we optimized model parameters, the temperature 𝛽, the factual 555 

learning rate 𝛼! , the counterfactual learning rate 𝛼!  (in Experience 2 only) and the weight 𝜔 (in the HYBRID model only), by 556 

minimizing the negative log likelihood 𝐿𝐿!"#  using Matlab's fmincon function, initialized at starting points of 1 for the 557 
temperature and 0.5 for the learning rates and the weight. As a quality check we replicated this analysis using multiple 558 

starting points and this did not change the results (S Table 4). We computed at the individual level the Bayesian Information 559 

Criterion (BIC) using, for each model, its number of free parameters 𝑑! (note that the Experiment 2 has an additional 560 

parameter 𝛼!) and the number of trials 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 (note that this number of trials varies with the optimization procedure: 561 
learning sessions only, 160, transfer test only, 112, or both, 272): 562 
( 11 ) 563 

𝐵𝐼𝐶 = 2 ∗ 𝐿𝐿!"# + log 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 ∗ 𝑑! 

 564 
Model estimates of choice probability were generated trial-by-trial using the optimal individual parameters. We made 565 

comparisons between predicted and actual choices with a one-sample t-test and tested models' performances out of the 566 

sample by assessing their ability to account for the transfer test choices. On the basis of model-estimate choice probability, 567 

we calculated the log-likelihood of learning sessions and transfer test choices that we compared between computational 568 
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models. Finally, we submitted the model-estimate transfer-test choice probability to the same statistical analyses as the 569 

actual choices (ANOVA and post-hoc t-test; within-simulated data comparison) and we compared modeled choices to the 570 

actual data. In particular, we analyzed actual and simulated correct choice rates (i.e., the proportions of choices directed 571 

toward the most advantageous stimulus) and compared transfer-test choices for each symbol with a sampled t-test between 572 
the behavioral choices and the simulated choices. 573 

 574 

 575 
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 689 
Figure 1: Experimental design and normalization process (A) Learning task with 4 different contexts: reward/big, 690 

reward/small, loss/small, loss/big. Each symbol is associated with a probability (P) of gaining or losing an amount of money 691 

or magnitude (M). M varies as a function of the choice contexts (reward seeking: +1.0€ or +0.1€; loss avoidance: -1.0€ or -692 
0.1€; small magnitude: +0.1€ or -0.1€; big magnitude: +1.0€ or -1.0€). (B) The graph schematizes the transition from 693 

absolute value encoding (where values are negative in the loss avoidance contexts and smaller in the small magnitude 694 

contexts) to relative value encoding (complete adaptation as in the RELATIVE model), where favorable and unfavorable 695 
options have similar values in all contexts, thanks to both reference-point and range adaptation.  696 
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698 
Figure 2: Behavioral results and model simulations. (A) Correct choice rate during the learning sessions. (B) Big 699 

magnitude contexts’ minus small magnitude contexts’ correct choice rate during the learning sessions. (C) and (D) Choice 700 

rate in the transfer test. Colored bars represent the actual data. Black (RELATIVE), white (ABSOLUTE), and grey (HYBRID) 701 

dots represent the model-predicted choice rate. White stars indicate significant difference compared to zero **p<0.01. Green 702 
arrows indicate significant differences between actual and predicted choices at p<0.001.  703 

 704 

 705 
 706 

  707 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295022doi: bioRxiv preprint 

https://doi.org/10.1101/295022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rational and irrational consequences of state-dependence valuation 
 

 24 

708 
Figure 3: Computational properties and behavioral correlates of value normalization. (A) Likelihood difference (from 709 

model fitting) between the ABSOLUTE and the RELATIVE models over the 80 trials of the task sessions. A negative 710 
likelihood difference means that the ABSOLUTE model is the best-fitting model for the trial and a positive likelihood 711 

difference means that the RELATIVE model is the best-fitting model for the trial. Green dots: likelihood difference 712 

significantly different from 0 (P<0,05). (B) Likelihood difference between the ABSOLUTE and the RELATIVE models over the 713 

first part of the task (40 first trials) and the last part (40 last trials). (C) Likelihood difference between the ABSOLUTE and the 714 
RELATIVE models for the two experiments. A negative likelihood difference means that the ABSOLUTE model is the best-715 

fitting model for the experiment and a positive likelihood difference means that the RELATIVE model is the best-fitting model 716 

for the experiment. (D) Subject-specific free parameter weight (ω) comparison for the two experiments. (E) Subject-specific 717 
free parameter weight (ω) as a function of correct debriefing for the two questions (“fixed pairs” and “number of pairs”). (F) 718 

Debriefing as a function of the weight parameter. (G) and (H) Correct choice rate as a function of subjects’ weight parameter 719 

in the learning sessions and the transfer test for both Experiment 1 and Experiment 2. One dot corresponds to one 720 

participant (N=60); green lines represent the linear regression calculations. ***p<0.001, **p<0.01, *p<0.05, t-test.  721 
 722 

 723 
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 728 

Table 1: Correct choice rate of the learning sessions as a function of task factors in the Experiment 1, Experiment 2 and both 729 

experiments. 730 
 Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60) 
 F-val P-val F-val P-val F-val P-val 

Val      0,002 0,969 0,285 0,597 0,167 0,684 

Inf - - 7,443 **0,0095 - - 

Mag 4,872 *0,0398 4,267 *0,0456 9,091 **0,00378 

Val x Inf - - 1,037 0,315 - - 

Val x Mag 4,011 0,0597 0,08 0,779 1,755 0,19 

Inf x Mag - - 0,006 0,939 - - 

Val x Inf x Mag - - 0,347 0,559 - - 

 731 

Table 2: Choice rate of the transfer test as a function of task factors and option correctness in the Experiment 1, Experiment 732 

2 and both experiments.  733 

 Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60) 
  F-val P-val F-val P-val F-val P-val 

Valence 33,42 ***1,43e-05 43,78 ***7,23e-08 76 ***3,38e-12 

Favorableness 57,66 ***3,6e-07 149,5 ***6,46e-15 203,5 ***<2e-16 

Magnitude 2,929 0,103 4,225 *0,0466 0,525 0,472 

Val x Corr 4,039 0,0589 6,584 *0,0142 10,8 **0,00171 

Val x Mag 11,68 **0,00289 3,565 0,0665 11,55 **0,00122 

Corr x Mag 10,8 **0,00388 0,441 0,51 4,131 *0,0466 

Val x Corr x Mag 8,241 **0,00979 1,529 0,224 7,159 **0,00964 
 734 

Table 3: BICs as a function of the dataset used for parameter optimization (Learning sessions, Transfer test or Both) and the 735 
computational model. 736 

 Experiment 1 (N=20) Experiment 2 (N=40) Both Experiments (N=60) 

 
Learning 
sessions 
(nt=160) 

Transfer 
test 

(nt=112) 

Both 
(nt=272) 

Learning 
sessions 
(nt=160) 

Transfer 
test 

(nt=112) 

Both 
(nt=272) 

Learning 
sessions 
(nt=160) 

Transfer 
test 

(nt=112) 

Both 
(nt=272) 

ABSOLUTE 
(df=2/3) 

179.8±5.9 113.6±5.7 295.1±9.9 190.9±5.9 126.9±4.1 325.4±6.5 187.2±3.8 122.4±3.4 315.3±5.6 

RELATIVE 
(df=2/3) 

193.3±4.5 135.8±5.1 329.6±8.0 185.1±5.6 121.1±4.0 306.0±7.3 187.9±4.0 126.0±3.3 313.9±5.7 

HYBRID (df=3/4) 178.3±6.0 109.3±5.0 284.6±9.1 181.5±5.8 105.8±4.1 290.5±8.0 180.5±4.3 106.9±3.2 288.5±6.1 

POLICY (df=2/3) 185.4±6.9 123.7±6.3 311.0±12.2 190.1±4.9 139.4±3.9 334.6±6.5 188.5±3.9 134.2±3.4 326.7±6.0 

UTILITY (df=3/4) 173.9±6.5 107.5±6.3 282.2±10.8 183.4±5.6 123.1±4.5 310.1±7.1 180.2±4.3 117.9±3.8 300.8±6.2 
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