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Introductory paragraph

The inclusion of genetic data in large studies has enabled the discovery of genetic
contributions to complex traits and their application in applied analyses including those using
genetic risk scores (GRS) for the prediction of phenotypic variance. If genotypes show
structure by location and coincident structure exists for the trait of interest, analyses can be
biased. Having illustrated structure in an apparently homogeneous collection, we aimed to a)
test for geographical stratification of genotypes in UK Biobank and b) assess whether
stratification might induce bias in genetic association analysis.

We found that single genetic variants are associated with birth location within UK Biobank
and that geographic structure in genetic data could not be accounted for using routine
adjustment for study centre and principal components (PCs) derived from genotype data.
We found that GRS for complex traits do appear geographically structured and analysis
using GRS can yield biased associations. We discuss the likely origins of these observations

and potential implications for analysis within large-scale population based genetic studies.
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Main

Many recent and ongoing research programmes aim to systematically identify genetic
contributions to complex traits and undertake applied epidemiological analyses using
genotype data. Irrespective of source, latent structure within a dataset can be very important
when performing these analysis, as structural alignment between ancestry and genotypes,
health outcomes and geography has potential to induce artefactual relationships®. Current
methods to account for structure include proxy measurement and adjustment for latent

structure within datasets (mainly using PCs or measures of actual geographic location®*).

Recent developments in resources, applications and understanding warrant a re-exploration
of latent structure in datasets. Prior to 2015, very large samples were only achieved by
aggregation of smaller studies whose structural properties and geographical footprints were
neither detectable within single studies nor coordinated across the collection of studies. Now
analysis can be undertaken in very large individual collections with the capacity to capture a
single geographical footprint, such as UK Biobank®. With increased sample size and
statistical power, there is now potential to discover a broader range of genetic effects that
might conceivably capture characteristics of the structural properties or geographical
footprint of the dataset. This sits in the context of a growing appreciation of fine-scale

population structure within the British population®.

These changing circumstances are relevant for applied epidemiological analyses which have
developed substantially with their exploitation of reliable genetic association results. A good
example of this is Mendelian randomization, which aims to escape confounding in
observational associations by using genetic variation to proxy risk factors of interest’. Recent
literature has focused on maximising the use of the current wave of genetic association
evidence and accounting for undesirable pleiotropic effects of single variants®. This activity,

however, has largely assumed that structure is addressed during the discovery of associated
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genetic variants. Under-appreciated structure in genetic datasets challenges the assumption

that genetic instruments are not related to potentially confounding features®.

As an exemplar, we examined whether there is previously under-appreciated structure in a
well understood, ethnically and geographically homogenous resource. In the Avon
Longitudinal Study of Parents and Children (ALSPAC)'***, we studied mothers who were
recruited during pregnancy in the Bristol area (South West UK) in the early 1990s. We
undertook chromosome painting12 to describe fine-scale relatedness between each mother
and each of the regions of the Peopling of the British Isles (PoBlI) projectG. We summarised
each mother’s ancestral lineage as a mixture of the PoBI regions, allowing us to estimate the
educational attainment that those regions would have, were the ALSPAC mothers’ education
levels explained by this variation. In doing this a pattern for lower educational attainment in
lineages originating from the regions immediately surrounding Bristol (Figure 1) and higher
educational attainment in more geographically distant lineages was observed. Distant
lineages are likely only represented in ALSPAC by individuals or families who had migrated,
and we anticipate that the educational attainment of people who migrate for economic
reasons differs from people who do not. Educational attainment is therefore aligned to subtle
genetic differences even in this apparently geographically and ethnically homogenous

population and this is coincident with axes of ancestry.

The structure in ALSPAC was detected here using a method which is highly sensitive to
ancestry. With greater power, it is entirely possible the same phenomena may become
detectable in more routine analytical procedures. We therefore turned to UK Biobank, an
exceptional resource containing a catalogue of health, disease and genotype data of almost

half a million participants®*?

Conceptually the UK Biobank is analogous to a super-imposition
of multiple ALSPACSs, each of which recruited participants living near a study assessment

centre. This design gives UK Biobank the capacity to represent a broad spectrum of UK
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ancestry and structure, but is also sensitive to important sampling phenomena including self-
selection. The hurdles of location and attendance (less than 6% of individuals contacted by
UK Biobank chose to participate’*) are likely to influence the nature of the resultant
participant collection and are related to behaviours with heritable contributions®. This may

16,17

create collider biases which have the ability to induce association between otherwise

independent variables.

We examined whether genotypes are structured using genome-wide association studies
(GWAS) for North/South and East/West axes of birth location (on a metre grid scale from an
origin South West of the UK) using PLINK'®. Analysis of genetic data was performed within
individuals of white British ancestry with non-missing data on birth location (h=321,439).
GWAS for birth location identified that single variants are associated with geography within
UK Biobank. An unadjusted model produced distorted and inflated plots with evidence for
association at variants across the autosome. After adjustment for genotyping array, 40 PCs
and a factor variable representing UK Biobank assessment centre single variants remained

associated with birth location (figure S1).

Rather than using single genetic variants, empirical epidemiological analyses often use
genetic risk scores (GRS)'*%. As exemplars, we took genetic variants and weightings
associated with educational attainment, height and body mass index (BMI) from published
genome-wide meta- analyses®*?*. Using an approach that is widespread in applied

analyses, we derived weighted and unweighted GRS for the three traits based on variants
with p<5e-08 and p<le-05 in the discovery sample. We used general additive models® in
the ‘mgcv’ package (version 1.8)% within R (version 3.3.1)%, to test for non-linear
relationships between GRS and geographical terms. All GRS tested were associated with
birth location in an unadjusted model and a model that adjusted only for genotyping array.
These associations attenuated but were not extinguished in models incorporating adjustment

for 40 PCs and study centre, especially for educational attainment and North location at
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birth, where statistical adjustment had little impact on the fitted geographical distribution of

the GRS (figure 2, table 1).

Having found evidence for association between genotypic variation and geography, we used
general additive models to test for non-linear relationships between four exemplar complex
traits and geography. Reported household income, measured BMI, reported age at
completion of full time education and reported number of siblings showed strong evidence
for geographical stratification (p<2e-16 for non-linear relationship between observed traits

and axes of birth location).

We noted that structure in genotypes and phenotypes appeared geographically co-incident
(example figure S2), which led us to explore the potential role of geography in confounding
applied analysis. We tested for linear association between GRS and complex traits and
examined whether the inclusion of non-linear terms for birth location as covariates altered
the results, again using general additive models. These relationships changed in magnitude
with the addition of non-linear terms for birth location (table 2), suggesting a role for residual
confounding by geographical location. For example, the relationship between genetically
predicted BMI and household income (pounds sterling per year per 1 standard deviation
(SD) increase in GRS for BMI) changed from -335 in the unadjusted model to -251 (adjusted
for 40 PCs and study location) to -229 (adjusted for 40 PCs study location and non-linear
terms for birth location). Birth location captures neither the full extent of variation in fine
ancestral structure (which predicts GRS) nor the full extent of geographically structured
social and economic differences (which predict income). It is possible that these adjusted
estimates therefore contain residual confounding and that the true impact of biases within

this sample is larger than these results suggest.

As an alternative way to demonstrate the potential impact of such bias, we analysed

simulated geographically-stratified complex traits which preserved coarse geographical
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variance in observed traits whilst removing direct genotype-phenotype effects. This analysis
produced associations between GRS and complex traits even in the absence of direct
genetic effects on biology, suggesting GRS predict geographical location within the UK

Biobank sample (online methods and table S1).

The presence of structure within the genetic data of UK Biobank has several potential
explanations, including a legacy of ancient ancestral groups that are not fully admixed®?’, a

consequence of non-random mating or polygenic selection®®*

, a study artefact induced by
selection bias'’ or a combination of all these explanations. Regardless of origin,
unaddressed structure in this sample is sufficient to mean that predictions based on GRS
are capable of inducing associations where there is little or no direct effect. Recent evidence
from an investigation in the USA® also illustrates associations between GRS and complex
traits at the ecological level. Now manifest, this property should be added to the growing list
of limitations to naive use of GRS - including horizontal pleiotropy’, high false discovery

rate®?, association with coarse ancestral groups>® and prediction of inter-generational

phenotypes which complicates interpretation®.

The ability of very large studies to detect effects indistinguishable from artefactual biases or
ancestral differences demands reworked approaches to exploit®, or at least account for,
structure. Exciting recent developments aim to improve statistical models®® or leverage
information from family-based study designs for unbiased inference®. Until such methods
have developed further, the truth is that a thorough understanding of the properties of
genotypic and phenotypic data and impact of study design will remain critical in allowing

reasonable inference.
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Figure Legends

Figure 1: Within-UK ancestry predicts migration that confounds education: Estimated educational
attainment of the UK, when seen only through the ALSPAC cohort based in Bristol. Scores are 1.
Vocational, 2: CSEs, 3: O-levels, 4: A-levels, 5: degree. The predicted mean education for each region
is given, along with 95% confidence intervals estimated by bootstrap resampling of individuals. Each

region is coloured by predicted mean education. See online methods for details.

Figure 2: Fitted spline regression plots showing the non-linear distribution of GRS for educational
attainment (weighted version, including variants with p<1.0e-05) in minimally adjusted model (left)
and model after adjustment for 40 principal components and study centre (right). The centre of
major population centres is marked for reference. The shaded area represents 95% confidence

intervals
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Table 1 — Relationship between GRS and birth location within UK Biobank.

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

P value for association between GRS and geographical term

Weighted GRS

Unweighted GRS

Model 1 | Model 2 Model 3 Model 4 Model 1 ‘ Model 2 Model 3 Model 4
Educational attainment
North component 2e-16 <2e-16 6.4e-06 6.7e-06 <2e-16 <2e-16 1.3e-09 1.6e-06
East component <2e-16 <2e-16 1.5e-09 6.0e-11 <2e-16 <2e-16 7.5e-14 1.3e-11
x Height
?'J North component <2e-16 <2e-16 1.3e-05 0.14 <2e-16 <2e-16 4.6e-06 0.13
3 East component <2e-16 <2e-16 0.00021 0.095 <2e-16 <2e-16 3.4e-05 0.046
I~y Body mass index
North component 9.7e-07 9.9e-07 0.063 0.40 0.0013 0.0012 0.0032 0.58
East component 0.0036 0.0035 0.24 0.93 0.053 0.054 0.032 0.47
Educational attainment
North component <2e-16 <2e-16 <2e-16 <2e-16 7.6e-11 8.5e-11 0.012 0.16
East component <2e-16 <2e-16 <2e-16 <2e-16 9.7e-12 8.9e-12 0.0021 0.041
Iy Height
?'_, North component <2e-16 <2e-16 5.9e-05 0.16 <2e-16 <2e-16 0.00025 0.17
3 East component <2e-16 <2e-16 0.00014 0.051 <2e-16 <2e-16 7.2e-05 0.014
o Body mass index
North component 2.4e-09 2.5e-09 0.023 0.019 2.4e-10 2.6e-10 0.0029 0.074
East component 1.4e-13 1.7e-13 0.134 0.34 <2e-16 <2e-16 0.020 0.14

Table contents — p value for non-linear association between component of birth location and genetic

risk score. For all models n=321,439. Statistical adjustment was performed as follows: model 1 —no

adjustment; model 2 — adjustment for genotyping array only; model 3 — adjustment for genotyping

array, 10 PCs and study participation centre; model 4 — adjustment for genotyping array, 40 PCs and

study participation centre.
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Table 2 - Linear relationships between observed traits and genetic risk scores in UK Biobank.

Observed trait (unit N Weighted GRS Unweighted GRS
per 1SD increase in Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
GRS)
GRS for educational attainment
Household income 276, 1066 1062 874 835 1454 1446 1200 1140
(£/year) 779 (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16)
Body mass index 336, -0.112 -0.111 -0.101 -0.097 -0.151 -0.150 -0.132 -0.129
(kg/m?) 031 | (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) <2e-16 (<2e-16) (<2e-16)
Age at completion of | 228, 0.0878 0.0877 0.0844 0.0831 0.12 0.119 0.112 0.109
full time education 886 (<2e-16) (< 2e-16) (< 2e-16) (< 2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16)
(years)
Number of siblings 332, -0.0250 -0.0250 -0.0258 -0.0253 -0.038 -0.0382 -0.0293 -0.0279
(persons) 037 (<2e-16) (<2e-16) (< 2e-16) (< 2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16)
GRS for height
Household income 276, 522 515 418 406 515 509 419 405
779 | (<2e-16) (<2e-16) (1.8e-14) (2.7e-13) (<2e-16) (<2e-16) (1.7e-14) (2.9e-13)
Body mass index 336, -0.129 -0.128 -0.112 -0.116 -0.122 -0.121 -0.105 -0.109
031 | (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16)
Age at completion of | 228, 0.0350 0.0348 0.0289 0.0263 0.0349 0.0347 0.0286 0.0265
full time education 886 (9.4e-09) (1.1e-08) (2.0e-06) (2.0e-05) (1.1e-08) (1.2e-08) (2.6e-06) (1.8e-05)
Number of siblings 332, -0.0249 -0.0248 -0.0130 -0.0119 -0.0264 -0.0263 -0.0136 -0.0127
037 | (<2e-16) (< 2e-16) (8.1e-06) (7.2e-05) (<2e-16) (< 2e-16) (3.0e-06) (2.1e-05)
GRS for body mass index
Household income 276, -335 -325 -251 -229 -304 -294 -212 -190
779 (1.8e-09) (5.2e-09) (4.0e-06) (3.4e-05) (4.7e-08) (1.3e-07) (0.00010) (0.0057)
Body mass index 336, 0.612 0.611 0.606 0.606 0.549 0.547 0.541 0.541
031 | (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16) (<2e-16)
Age at completion of 228, -0.0219 -0.0216 -0.0201 -0.0187 -0.0231 -0.0227 -0.0201 -0.0187
full time education | 886 | (0.00032) | (0.00040) (0.00092) (0.0025) (0.00016) | (0.00020) (0.00096) (0.0024)
Number of siblings 332, 0.0107 0.0105 0.00783 0.00750 0.00130 0.00129 0.00850 0.00807
037 | (0.00030) (0.00036) (0.0071) (0.011) (1.0e-05) (1.3e-05) (0.0035) (0.0068)

GRS = genetic risk score; PC = principal component; SD = standard deviation. The field contents are
beta coefficients per 1 SD increase in GRS, with p-values for the linear association, testing the null
hypothesis of no linear association between each observed trait and GRS in brackets. Statistical
adjustment was performed as follows: model 1 — no adjustment; model 2 — adjustment for
genotyping array only; model 3 — adjustment for genotyping array, 40 PCs and study participation
centre; model 4 —adjustment for genotyping array, 40 PCs, study participation centre and non-linear

regression terms for North and East axes of birth location.
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