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Abstract

The mobile antibiotic resistance gene blaime-1 is clinically important and has a synonymous
AAA:AAG lysine codon usage bias of 73:27. This bias is like that seen in experimentally
determined highly expressed genes in Escherichia coli and Acinetobacter baumanii, but
quite different from that seen in Pseudomonas aeruginosa (26:74 AAA:AAG). Here we
show that, paradoxically, shifting the AAA:AAG lysine codon bias to 8:92 in blaivp-1
expressed from a natural promoter results in significantly more IMP-1 production in all
three species. Sequential site directed mutagenesis revealed that increased IMP-1
production occurs following removal of an AAA,AAA double lysine codon and that
otherwise, lysine codon usage had no observable impact on IMP-1 production. We
conclude that ribosomal slippage at this poly-adenosine region reduces efficient
translation of IMP-1 and that punctuating the region with guanine reduces ribosomal

slippage and increases IMP-1 production.
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Introduction

Synonymous codon usage bias (SCUB) is a term describing the common finding that
organisms favour the use of certain triplet codons in DNA to encode certain amino acids.
Since SCUB varies between organisms, and between different genes in a single organism,
the implication is that optimal SCUB varies between different organisms, and that certain
genes are selected to be closer to the optimal SCUB than others (1). One dominant
hypothesis is that highly expressed genes have “optimised” SCUB and that this is selected
because optimal codons are translated more quickly and/or more efficiently than sub-
optimal ones. This is particularly important when the demand for a protein is high (1).
Indeed, it is well known that SCUB optimization — adapting the SCUB of a recombinant gene
to match that of highly expressed genes —increases recombinant protein production in a
heterologous host (2). The success of this methodological approach has been used to
advance the translationally-selective hypothesis to explain SCUB. However, most codon
usage optimization procedures involve the over-expression of recombinant genes using
hyper-strong, inducible promoters and high copy number vectors, with a desire to make a
single protein represent a high percentage of total protein in the cell (3). This is not likely to
reflect the situation encountered by a gene in a natural setting with a natural promoter on

the chromosome or a low copy number plasmid.

SCUB is particularly relevant in the context of horizontal gene transfer. Whilst sub-optimal
SCUB is not always seen in horizontally acquired genes, depending on their origins, for those
that are sub-optimal, selective pressure is expected to be applied over time to optimise
SCUB; a process referred to as “codon usage amelioration” (4). Antibiotic resistance in

bacteria is one of the most pressing threats to human health and horizontal gene transfer is
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one of the most important means for a bacterium to acquire antibiotic resistance (5). It is
evident that many mobile genetic elements are of low guanine plus cytosine (GC) content
and carry a related SCUB biased towards low GC codons (6). So, in this context, the impact
of SCUB on gene expression is not only academic, but it is also of significant practical
interest. The aim of the work reported in this paper was to test the hypothesis that SCUB
change can affect the absolute amount of active protein produced in a predictable manner
using a natural plasmid system and an intermediate strength natural promoter using a

clinically important, mobile antibiotic resistance gene.

Results and Discussion

The blame-1 metallo-B-lactamase-encoding gene cassette, which confers resistance to the
carbapenems, a class of “last resort” antibiotics, has a GC content of 39% (7). However, it
has been found widely among Gram-negative bacteria with varying genomic GC contents
(8). For example, it is commonly found in Escherichia coli and other Enterobacteriaceae
which have genomic GCs of =50%. Accordingly, if SCUB affects translational efficiency
and/or rate, one would expect the amount if IMP-1 enzyme should be seen to increase in
Enterobacteriaceae if the SCUB of blaime-1 is ameliorated to match the optimal SCUB of this
family, as represented by E. coli. To test this, specific imipenemase activity was measured in
extracts of E. coli MG1655 transformants carrying pHIMP or pHEcIMP, being the cloned
wild-type or E. coli SCUB optimised blaive-1 gene cassette, respectively, each under the
control of an identical, natural, intermediate-strength integron promoter, and each ligated
into a broad host-range, low copy number vector derived from a natural antibiotic

resistance plasmid: RK2 (9). We can confirm that pHIMP is a truly natural expression system
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because imipenemase activity in an MG1655 transformant carrying pNIMP (the natural
blaime-1 encoding plasmid) and MG1655(pHIMP) were the same (Figure 1). If the hypothesis
being tested is correct, it was expected that optimisation of blavpe-1 to a SCUB closer to
optimal in E. coli genes would increase IMP-1 production relative to wild-type. However, this
was not observed. The pHEcIMP variant synthesised to match the “optimal” SCUB of E. coli
presumed highly expressed genes (ribosomal protein and translation elongation factor
genes) based on the OPTIMIZER algorithm (10) was expressed at lower levels than than the

wild-type gene (p<0.0001) (Figure 1).

It was considered possible that the effect seen here is due to stability changes at the 5’ end
of the codon-optimised blaimp-1 MRNA. Strong regions of secondary structure at the 5’ ends
of mMRNA molecules are likely to cause ribosomal occlusion leading to the exposure of mRNA
to nuclease digestion (11). Furthermore, it has previously been shown that synonymous
mutations that increase mRNA secondary structure (high folding energy) at the beginning of
the transcript can reduce protein production by inhibiting the initiation and initial phase of
translation elongation (12-14). It was confirmed that codon optimization increased the
energy required to unfold the mRNA. The Gibbs free energy value of the whole mRNA
molecule was -183 (wild type blavp-1) changing to -229 for the E. coli codon optimised
variant. Just looking at the 5’ third of the mRNA, which is thought to be particularly
important, the folding energy calculated showed the same effect: moving from -50 for wild-

type blawvp-1 to -67 for the E. coli variant.

Figure 1 shows evidence, therefore, that codon optimization can have negative effects on
gene expression in a natural expression system, but it was considered of interest to see how

much of a change in IMP-1 production would occur upon site-directed mutation of
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individual codons. Twenty six of 246 (10.6%) of IMP-1’s amino acids are lysine. The lysine
codon AAA is in the majority in blawvp-1 (19/26; 73%) and AAG accounts for the rest. Rather
than relying on theoretical lists of “highly expressed genes” to define the “optimal” SCUB for
lysine codons in blaivpe-1, we measured protein abundance using LC-MS/MS proteomics. In so
doing we defined the 20 most highly abundant proteins in three test species during growth
under the conditions we would also use to test IMP-1 production (Tables 1-3). Analysis of
lysine SCUB in the genes encoding these 20 proteins from each species revealed an AAA
percentage of 84% for Acinetobacter baumannii, 80% for E. coli and 24% for Pseudomonas
aeruginosa (Tables 4-6). We sub-cloned the wild-type blaivp-1 gene from pHIMP into the
pSU18 cloning vector and used site directed mutagenesis to dramatically reduced the AAA
lysine codon usage of blajme-1 in the resultant pSUHIMP-WT plasmid to 2/26 or 8% AAA in
plasmid pSUHIMP-KV. Plasmids were used to transform an E. coli clinical isolate to
chloramphenicol resistance. The wild-type and lysine codon-variant blavp-1 genes were also
sub-cloned into the broad host-range vector pUBYT, generating pUBYTHIMP-WT and
pUBYTHIMP-KV, which were used to transform P. aeruginosa PAO1 or A. baumannii CIP 70-
10 to kanamycin resistance. We then used proteomics to measure the abundance of IMP-1
in these transformants, which was normalised using the abundance of vector-encoded Cat
(in E. coli pSUHIMP-WT and -KV transformants) or AphA (in A. baumannii and P. aeruginosa
pUBYTHIMP-WT and -KV transformants) to take into consideration plasmid copy number
and protein loading. Our expectation given the hypothesis that SCUB is selected based on
translation rate or efficiency was that as AAA usage was reduced to 2/26 from a wild-type
position of 19/26, which is close to optimal in A. baumannii (22/26) and E. coli (21/26) there
would be a reduction in IMP-1 production. The case in P. aeruginosa was not so clear, given

that the optimal AAA usage in this species is 6/26. Here, the variant is closer to optimal than
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the wild-type gene, so we might expect an increase in IMP-1 production. We did see this: a
1.5-fold increased normalised IMP-1 production in PAO1(pUBYTHIMP-KV) compared with
PAO1(pUBYTHIMP-WT), p=0.04 for an unpaired t-test, n=3. However, the variant also
supported higher IMP-1 protein production in E. coli (2.2-fold, p=0.005 n=3) and A.

baumannii (3.2-fold, p=0.002, n=3) (Figure 2).

These data show that the simple idea of optimization based on average SCUB — even when
that average is taken from highly expressed genes confirmed by proteomics — is rather
naive. The codons in an mRNA affect its folding, which affects its stability and the rate of
translation initiation and elongation; local and global charged tRNA levels affect translation
elongation rate, and this must be optimised and even varied during the translation of an
mMRNA to allow accurate protein folding (11-14). Our finding of increased IMP-1 production
when AAG lysine codons dominate is not due to relative tRNA abundance since there is only
one lysine-tRNA, which recognises both AAA and AAG codons (15). Lysine tRNA/codon
specific nucleases have been reported in E. coli (16), and it is conceivable that AAA/tRNA
interactions preferably promote mRNA cleavage, but the effect we report was seen in three
very distinct species, and there is no evidence that AAG/anticodon interactions mean less
cleavage, even in E. coli (16). The most likely explanation for our findings is a report that
duplicate AAA lysine codons lead to ribosomal sliding and increased aberrant translation of
an mRNA in E. coli (17). We analysed the concatenated sequence data for the genes
encoding the 20 most abundant proteins in E. coli and found that there are eleven AAA,AAA
double lysine codons, comprising 7.8% of all AAA codons. In contrast there are eleven
AAA,AAG or AAG,AAA and two AAG,AAG double lysine codons and one AAG,AAG,AAG triple

lysine codon found amongst these 20 genes, comprising 26.1% of all AAG codons. This
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suggests that there is selective pressure for the inclusion of AAG codons preferentially
where two or more lysines are encoded together. Within the 17 AAA to AAG mutations
made in our lysine codon modified blawp-1 gene (Figure 3) one is part of an AAA,AAA double
lysine codon, with both codons being converted into AAG in the same mutagenesis step
(mutations 6 and 7). To test the specific effects of this mutagenesis step, we measured
imipenemase activity in cell extracts of E. coli MG1655 transformants carrying pSUHIMP
variants having an accumulating number of AAA to AAG mutations, from 1 to 17, starting at
the 5’ end of the gene. Figure 4 shows that carrying blame-1 with 6 or more mutations gives
levels of IMP-1 enzyme activity not significantly different from that provided by pSUHIMP-
KV, having all 17 mutations (p>0.1). Importantly, introduction of mutations 6 and 7, where
IMP-1 enzyme activity significantly increases from basal (p<0.03) is the point at which the
AAA,AAA double lysine codon is converted to AAG,AAG. Therefore, based on previously
published work using in vitro translation experiments (17), we conclude that there is
ribosomal slippage at the AAA,AAA run located in the blaime-1 MRNA, reducing the amount
of active IMP-1 protein produced. Breaking up this run with AAG codons means more
correct translation and so more IMP-1 enzyme activity. Importantly, we see this effect in all
three species tested, despite their divergence. There is no evidence for mutation in the
AAA,AAA run in any blamp-1 variant sequence in the Genbank nucleotide sequence database,
according to blastn, so the increased IMP-1 enzyme production stimulated by this mutation
is seemingly not under strong selective pressure in vivo. However, there are two IMP
variants where the second lysine codon in this run has been mutated in a non-synonymous

way. The most common of these is IMP-22 (18).
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In conclusion, codon “optimisation” and mutations that change SCUB to be more closely
aligned or more distantly aligned to highly expressed genes in multiple bacteria do not
guarantee higher levels of gene expression. Indeed, for synonymous lysine codon changes,
the increase in IMP B-lactamase production when SCUB was moved further from “optimal”
is paradoxical and is most likely to be cause by reduced aberrant protein production that
occurs when AAA codons are present in duplicate (17). Care should therefore be taken when
interpreting the potential impact of synonymous mutations that affect codon usage in
horizontally acquired genes carried on natural plasmids and expressed from native

promoters without experimental determination of the effect of these mutations on protein

abundance or some phenotypic proxy thereof.

Experimental

Bacterial Strains

Bacterial strains used in the study were E. coli TOP10 (Invitrogen), MG1655 (19) and a clinical
isolate from urine (a gift from Dr Mandy Wooton, Public Health Laboratory for Wales); P.

aeruginosa PAO1 (20) and A. baumanii CIP 70-10 (21)

Molecular Biology

The blavp-1 gene was amplified using PCR. Template DNA was extracted from P. aeruginosa
clinical isolate 206-3105A (a gift from Dr Mark Toleman, Department of Medical

Microbiology, Cardiff University) by suspending a loop-full of bacteria from a fresh Nutrient
Agar plate (Oxoid) in 100 ul of molecular biology grade water. The tube was then incubated
at 95°C for 15 min and centrifuged at 13,000 rpm for 10 min. The supernatant was removed

as a source of template DNA. The integron promoter type upstream of blaywvp-1 in isolate

9
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206-3105A is PcH1 (22), and there is a blaoxa-2 gene cassette downstream from blamp-1
(Genbank accession: AP012280.1). PCR used forward primers which were designed to
amplify from the 5’ end of the wild-type PcH1 promoter (5’-
ACCCAGTGGACATAAGCCTGTTCGGTTCGTAAACT-3’) into the 5’ end of the blaoxa-» gene
cassette, (5'-AGCGAAGTTGATATGTATTGTG-3’). Each PCR reaction mixture contained 20 ng
of template DNA, 0.4 umol of each primer, 12.5 ul of RedTaq PCR-ready reaction mix
(Sigma-Aldrich) and 8.5 pl of molecular biology grade water. PCR reactions were processed
in PTC-100 thermal cycler (Bio-Rad, UK) in 0.2 ml PCR tubes (Starlabs). PCR reaction cycles
were 10 min at 95°C, followed by 35 cycles of, 1 min denaturation at 95°C, 1 min annealing
at 58°C and 2 min extension at 72°C. The final step was an extension at 72°C for 10 min. The
PCR amplicon was TA cloned into the pCR2.1TOPO cloning vector (Invitrogen), removed with
EcoRl and ligated into EcoRl linearised RK2-derived vector pRW50 (9) to create the
recombinant plasmid pHIMP or the broad host range p15A derived vector pSU18 (23) to

create the recombinant plasmid pSUHIMP.

The E. coli codon optimized bla\vp-1 gene variant was designed using the program
OPTIMIZER (10) and the variant, including up- and down-stream sequences identical to
those seen in pHIMP was synthesized by GeneArt (Thermo-Fisher) and provided, cloned into
the cloning vector pMK as the vector pMKHECIMP. The optimised gene was amplified by PCR
using pMKHECIMP as template and cloned into pRW50, as described for the wild-type gene

to create the recombinant plasmid pHEcIMP.

Site directed mutagenesis was performed using the QuikChange® Lightning Site-Directed
Mutagenesis Kit (Agilent, UK) according to the manufacturer’s instructions and pSUHIMP as

the template. The 17 individual AAA to AAG mutations (Figure 3) were introduced in 14

10
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separate mutagenesis steps, each creating a variant with an increasing number of mutations
starting at the 5’ end of the gene. The primers were designed using the mutagenesis kit

manufacturer’s instructions and are shown in Table 7.

For transformation of A. baumannii and P. aeruginosa blaime-1 wild type and variants were
subcloned into vector pUBYT being the plasmid pYMAb2 (24) which we modified to remove
the OXA promotor region (located upstream of the multiple cloning site) by PCR
amplification using primers, 5'-GCAAGAAGGTGATGAATCTACA-3’ and 5’-
GTGGCAGCAGCCAACTCA-3’ followed by digestion with Xbal and ligation to produce a

circular product.

Measuring imipenemase specific activity in cell extracts

A volume of 0.5 ml of overnight nutrient bacterial broth culture was added to a 10 ml of
fresh nutrient broth which was incubated at 37°C with shaking until an ODgoo of 0.5-0.6 was
reached. The cells were then pelleted by centrifugation at 4,500 rpm for 10 min at 4°C. The
pellet was re-suspended in 1 ml of 50 mM HEPES (containing 100 uM ZnCl; at pH 7) and
transferred to a tube of lysing matrix B (Fisher Scientific, UK). The cells were lysed using a
Ribolyser (Hybaid, UK) at speed of 6.0 for 40 s followed by centrifugation at 13,000 rpm for
1 min to pellet cell debris. The supernatant was used for enzyme activity measurement.
Total protein concentration was determined using the Bio-Rad protein assay reagent
according to the manufacturer’s instructions. To measure the imipenemase activity in an
extract, 100 pl of extract was added to 900 ul of HEPES buffer (containing ZnCl,, as above)
and 0.1 mM imipenem. Change of absorbance was monitored at 299 nm over 10 min.

Specific enzyme activity (pmol imipenem hydrolysed per mg of protein per sec) in each

11
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extract was calculated using 7000 M as the extinction coefficient of imipenem and dividing

enzyme activity with the total amount of protein in each assay.

MRNA Secondary Structure Prediction

To assess the presence of significant secondary structure in the transcript of wild-type
blaime-1 and the E. coli SCUB optimized variant, the Mfold program
(http://unafold.rna.albany.edu/?g=mfold) was used to predict the folding of the mRNA

sequences.

Preparation of samples from cultured bacteria and proteomics analysis

Bacterial cultures were incubated 50 ml Nutrient Broth (Sigma) with shaking (160 rpm) at
37°C until ODeoo reached 0.6-0.8. Cells in cultures were pelleted by centrifugation (10 min,
4,000 x g, 4°C) and resuspended in 35 mL of 30 mM Tris-HCI, pH 8 and broken by sonication
using a cycle of 1 sec on, 1 sec off for 3 min at amplitude of 63% using a Sonics Vibracell VC-
505TM (Sonics and Materials Inc., Newton, Connecticut, USA). The sonicated samples were
centrifuged at 8,000 rpm (Sorvall RC5B PLUS using an SS-34 rotor) for 15 min at 4°C to pellet
intact cells and large cell debris and protein concentration in the supernatant was
determined using the Bio-Rad Protein Assay Reagent according to the manufacturer’s
instructions. One microgram of total protein was separated by SDS-PAGE using 11%
acrylamide, 0.5% bis-acrylamide (Bio-Rad) gels and a Bio-Rad Mini-Protein Tetracell
chamber model 3000X1. Gels were run at 150 V until the dye front had moved
approximately 1 cm into the separating gel. Proteins in gels were stained with Instant Blue
(Expedeon) for 5 min and de-stained in water. The 1 cm of gel lane containing each sample

was cut out and proteins subjected to in-gel tryptic digestion using a DigestPro automated

12
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260  digestion unit (Intavis Ltd). The resulting peptides were fractionated using an Ultimate 3000
261  nanoHPLC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific)
262  as previously described (25). The raw data files were processed and quantified using

263  Proteome Discoverer software v1.4 (ThermoScientific) and searched against the UniProt P.
264  aeruginosa PAO1 database (5563 proteins; UniProt accession UP000002438), the A.

265  baumannii ATCC 17978 database (3783 proteins; UniProt accession UP0006737) or the E.
266  coli MG1655 database (4307 proteins; UniProt accession UP000000625). The database file is
267  provided as supplementary data. Proteomic searches against the databases was were

268  performed using the SEQUEST (Ver. 28 Rev. 13) algorithm. Protein Area measurements were
269 calculated from peptide peak areas using the “Top 3” method (26) and were then used to
270  calculate the relative abundance of each protein. Proteins with fewer than three peptide

271 hits were excluded from the analysis.

272 Codon Usage Calculation

273  The open reading frames of the 20 most highly expressed genes in each species were
274  downloaded from Genbank and concatenated into a single reading frame. The codon usage
275  calculator (https://www.biologicscorp.com/tools/CodonUsageCalculator#.WrZ02IjFI12w) was

276  applied to this concatenated open reading frame using the standard genetic code table.
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362 Tables

363  Table 1: The 20 most highly abundant proteins in E. coli during growth in Nutrient Broth

Accession | Description Gene Mean
Name Abundance
(n=3)
POCE48 Elongation factor Tu b3980 6.184E+08
POA9B2 Glyceraldehyde-3-phosphate b1779 3.399E+08
dehydrogenase A

P69776 Major outer membrane lipoprotein Lpp b1677 2.654E+08
POA7)3 50S ribosomal protein L10 b3985 2.539E+08
P06996 Outer membrane protein C b2215 2.425E+08
P02359 30S ribosomal protein S7 b3341 2.357E+08
POA7R1 50S ribosomal protein L9 b4203 2.253E+08
POA7LO 50S ribosomal protein L1 b3984 2.219E+08
P60438 50S ribosomal protein L3 b3320 2.022E+08
POAG55 50S ribosomal protein L6 b3305 1.825E+08
POA910 Outer membrane protein A b0957 1.780E+08
POA7W1 | 30S ribosomal protein S5 b3303 1.752E+08
P62399 50S ribosomal protein L5 b3308 1.743E+08
POA6MS8 | Elongation factor G b3340 1.644E+08
POA7V8 30S ribosomal protein S4 b3296 1.642E+08
POA7R5 30S ribosomal protein S10 b3321 1.622E+08
POAG67 30S ribosomal protein S1 b0911 1.541E+08
POA7X3 30S ribosomal protein S9 b3230 1.486E+08
POA7)7 50S ribosomal protein L11 b3983 1.434E+08
POA7K2 50S ribosomal protein L7/L12 b3986 1.422E+08

364
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365 Table 2: The 20 most highly abundant proteins in P. geruginosa during growth in Nutrient

366 Broth
Accession | Description Gene Name Mean
Abundance
(n=3)
P09591 Elongation factor Tu PA4265 1.215E+09
P30718 60 kDa chaperonin PA4385 8.267E+08
Q9HWP9 | Uncharacterized protein PA4132 5.857E+08
Q9I12V5 Aconitate hydratase B PA1787 4.160E+08
P13794 Outer membrane porin F PA1777 3.949E+08
P05384 DNA-binding protein HU-beta PA1804 3.624E+08
Q9HVC4 | 50S ribosomal protein L25 PA4671 3.562E+08
Q9HWC6 | 50S ribosomal protein L1 PA4273 3.536E+08
Q9HWE1 | 30S ribosomal protein S3 PA4257 3.471E+08
Q9HWE7? | 50S ribosomal protein L5 PA4251 3.181E+08
Q9HZ71 30S ribosomal protein S1 PA3162 3.074E+08
Q9HWND5 | 50S ribosomal protein L3 PA4263 3.037E+08
Q9HWD1 | 30S ribosomal protein S7 PA4267 3.020E+08
Q9HWD6 | 50S ribosomal protein L4 PA4262 2.792E+08
Q9HWDS8 | 50S ribosomal protein L2 PA4260 2.691E+08
Q9HWFO | 50S ribosomal protein L6 PA4248 2.658E+08
Q9HWC7 | 50S ribosomal protein L10 PA4272 2.490E+08
Q9HVL6 50S ribosomal protein L21 PA4568 2.433E+08
082851 Elongation factor Ts PA3655 2.337E+08
052759 30S ribosomal protein S4 PA4239 2.276E+08
367
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Table 3: The 20 most highly abundant proteins in A. baumannii during growth in Nutrient

Broth
Accession | Description Gene Name Mean
Abundance
(n=3)
B71876 Outer membrane protein A AB57_3344 2.562E+08
B71359 50S ribosomal protein L7/L12 AB57_0368 1.138E+08
B2HZ92 50S ribosomal protein L18 AB57_3514 9.635E+07
BOVSP5 60 kDa chaperonin AB57_06545 | 9.230E+07
B7I1B16 Peroxiredoxin AB57_1341 8.615E+07
B7GWO08 | 30S ribosomal protein S3 AB57_3524 8.434E+07
B71A20 50S ribosomal protein L15 AB57_3511 8.280E+07
B713K0 Elongation factor Ts AB57_2755 8.274E+07
B7H1K1 50S ribosomal protein L1 AB57_0366 7.769E+07
B716T2 Succinyl-CoA ligase [ADP-forming] subunit AB57_3123 7.753E+07
beta

B7IBC1 30S ribosomal protein S6 AB57_2509 7.533E+07
B711W2 ATP synthase subunit alpha AB57_0191 7.474E+07
B7IBK5 Chaperone protein DnaK AB57_0048 6.976E+07
B71A15 30S ribosomal protein S4 AB57_3506 6.646E+07
B711W4 ATP synthase subunit beta AB57 0193 6.254E+07
B71358 50S ribosomal protein L10 AB57_0367 6.189E+07
BOVQT3 50S ribosomal protein L6 AB57_3515 6.138E+07
B71AS9 50S ribosomal protein L19 AB57 3615 6.042E+07
B71A27 50S ribosomal protein L5 AB57_3518 5.886E+07
B7GYMS8 | Elongation factor G AB57_06485 | 5.795E+07
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371  Table 4: Codon Usage Table for 20 Most Highly Expressed Genes in E. coli

TTTF ©.18 5.7 ( 28) TCTS ©.4318.8 ( 93) TATY ©.19 5.0 ( 25) TGT C  ©.37 1.4 ( 7)
TTCF ©.82 25.8 ( 128) TCCS ©.3515.1 ( 75) TACY 0.81 21.4 ( 106) TGC C  0.63 2.4 (  12)
TTAL 0.03 1.8 ( 9) TCAS ©.02 0.8 ( 4) TAA* 0.95 3.8 ( 19) TGA *  0.05 0.2 ( 1)
TTG L(s) 0.3 1.8 ( 9) TCGS 0.0 0.2 ( 1) TAG * 0.00 0.8 ( @) TGGW 1.0 6.7 (  33)
CTTL @.e3 2.2 ( 11) CCTP ©.09 3.8 ( 15) CATH ©.26 3.8 ( 19) CGTR  ©.71 40.5 ( 201)
CTCL ©0.03 2.4 ( 12) CCCP 0.01 0.4 ( 2) CACH ©.7410.7 ( 53) CGCR 0.28 16.1 (  890)
CTAL ©0.00 0.0 ( @) CCAP ©0.14 4.6 ( 23) CAAQ ©0.12 4.0 ( 20) CGAR ©.00 0.0 ( 0)
CTG L(s) ©.88 63.3 ( 314) CCGP  ©.76 25.6 ( 127) CAGQ ©.88 30.1 ( 149) CGG R  ©0.01 0.4 ( 2)
ATTI 0.17 8.9 ( 44) ACTT 0.46 26.8 ( 129) AATN 0.08 3.6 ( 18) AGT S 0.05 2.0 (  10)
ATC I  ©.83 44.4 ( 220) ACC T  ©.49 27.6 ( 137) AACN  ©.92 39.1 ( 194) AGC S  ©.15 6.7 (  33)
ATAI 0.00 0.8 ( @) ACAT .04 2.0 ( 10) AM K ©0.8059.1 ( 293) AGAR ©.01 0.4 ( 2)
ATG M(s) 1.00 24.8 ( 119) ACG T  0.02 1.8 ( 5) AAGK ©0.2014.7 (  73) AGGR 0.00 0.0 ( 0)
GTTV  ©.5755.1 ( 273) GCT A  ©.51 54.5 ( 270) GATD ©.28 16.5 ( 82) GGT G  ©.59 53.2 (  264)
GTCV 0.6 5.8 ( 29) GCCA ©.07 7.5 ( 37) GACD ©.7242.0 ( 208) GGC G  ©.40 35.7 ( 177)
GTAV  0.28 27.8 ( 134) GCA A  ©.25 27.0 ( 134) GAAE ©.8156.9 ( 282) GGAG 0.00 0.4 ( 2)
GTGV 0.9 9.1 ( 45) GCGA ©.16 17.4 ( 86) GAGE ©.1913.3 ( 66) GGG G 0.01 0.8 ( a)

372

373  Codon usage for a concatenated sequence representing the open reading frames of the
374  genes encoding the 20 most abundant proteins, as shown in Table 1.

375  Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
376  sequence, (absolute usage in total sequence).
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377 Table 5: Codon Usage Table for 20 Most Highly Expressed Genes in P. aeruginosa

TITF  0.08 2.1 ( 11) TCTS 0.4 1.9 ( 18) TATY 0.07 1.4 ( 7) T6TC 0.03 0.2 ( 1)
TICF  ©0.92 25.6 ( 132) TCC S  ©.48 23.3 ( 120) TACY ©.9318.8 ( 97) TGC C  ©.97 5.2 (  27)
TTAL 0.00 0.2 ( 1) TCAS ©0.00 0.0 ( @) TAA* 0.75 2.9 ( 15) TGA *  0.20 0.8 ( 4)
TTG L(s) @.01 1.2 ( 6) TCGS ©.16 7.8 ( 48) TAG * 0.85 0.2 ( 1) TG W 1.08 5.0 (  26)
CTTL  o0.01 1.0 ( 5) CCTP ©.08 2.7 ( 14) CATH ©.24 4.3 ( 22) CGTR  0.44 29.3 ( 151)
cc L e.12 9.7 ( 58) CCCP 0.17 6.2 ( 32) CACH ©.76 13.4 ( 69) CGC R  ©.50 33.0 ( 170)
CTAL .00 0.4 ( 2) CCAP @.01 0.2 ( 1) CAAQ  ©.15 5.2 ( 27) CGAR  0.01 0.6 ( 3)
CTG L(s) ©.84 66.5 ( 343) CCG P  ©.75 27.0 ( 139) CAGQ ©.8529.3 ( 151) CGGR ©.04 2.7 (  14)
ATTI 0.09 4.8 ( 25) ACTT ©.12 5.2 ( 27) AATN 0.8 2.5 ( 13) AGTS 0.82 1.2 ( 6)
ATCI  ©.91 48.3 ( 249) ACCT  ©.8537.1 ( 191) AACN  ©.92 306.5 ( 157) AGC S  ©.30 14.4 (  74)
ATAI 0.00 0.0 ( ) ACAT 0.01 0.4 ( 2) AMAK 0.2417.1 ( 88) AGAR  0.00 0.2 ( 1)
ATG M(s) 1.00 23.3 ( 120) ACGT  ©.02 0.8 ( 4) AAG K  ©.76 55.5 ( 286) AGG R  ©.00 0.2 ( 1)
GTTV  0.2020.80 ( 103) GCT A  ©.27 29.5 ( 152) GAT D  ©.22 11.6 ( 60) GGT G  ©.35 32.2 (  166)
GTCV  0.42 42.1 ( 217) GCC A  ©.5155.7 ( 287) GACD ©.78 41.9 ( 216) GGC G  ©.62 56.7 (  292)
GTAV  0.1212.86 ( 62) GCAA 0.8 8.3 ( 43) GAAE ©.5743.1 ( 222) GGAG 0.1 1.0 ( 5)
GTGV  ©.27 26.8 ( 138) GCG A  ©.14 15.1 ( 78) GAGE  ©.43 32.6 ( 168) GGG G 0.2 1.9 (  10)

378

379 Codon usage for a concatenated sequence representing the open reading frames of the
380 genes encoding the 20 most abundant proteins, as shown in Table 2.

381  Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
382  sequence, (absolute usage in total sequence).
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383  Table 6: Codon Usage Table for 20 Most Highly Expressed Genes in A. baumannii

TITF ©.31 8.9 ( 53) TCTS ©.5624.5 ( 146) TATY ©.46 1.9 ( 65) TGT C  ©.80 3.4 (  20)
TICF  ©.69 20.1 ( 120) TCC S  0.01 0.5 ( 3) TACY ©.5412.6 ( 75) TGC C  0.20 0.8 ( 5)
TTAL ©.37 28.5 ( 178) TCAS ©.19 8.4 ( 5@) TAA* 1.8 3.4 ( 20) TGA * 0.80 0.8 ( )
TTG L(s) ©.19 14.9 ( 89) TC6 S ©0.85 2.2 ( 13) TAG * ©.00 0.0 ( @) TGG W 1.e0 3.7 (  22)
CTTL  ©.37 28.5 ( 178) CCTP  ©.3511.9 ( 71) CATH ©.16 1.7 ( 18) CGT R  ©.88 46.5 (  277)
cTc L e.e2 1.3 ( 8) CCCP 0.80 0.0 ( @) CACH ©.84 8.9 ( 53) CGCR ©.11 5.7 (  34)
CTAL ©.83 2.4 ( 14) CCAP  ©.55 18.6 ( 111) CAAQ  ©.82 33.4 ( 199) CGAR 0.00 0.8 ( )
CTG L(s) @.82 1.2 ( 7) CCGP ©.89 3.2 ( 19) CAGQ ©.18 7.2 ( 43) CGGR  ©.00 8.2 ( 1)
ATT I ©.43 27.7 ( 165) ACT T  ©.64 34.7 ( 207) AATN ©.20 7.4 ( 44) AGT S @.e4 1.8 (  11)
ATC I ©.57 37.2 ( 222) ACCT @.e4 2.2 ( 13) AACN  ©.80 30.4 ( 181) AGC S .15 6.4 (  38)
ATAI  0.08 0.9 ( @) ACAT  0.2815.3 ( 91) AAMA K  ©.84 61.4 ( 366) AGAR  ©.01 8.3 ( 2)
ATG M(s) 1.08 24.8 ( 143) ACGT 0.03 1.7 ( 10) AAGK .16 11.9 ( 71) AGGR  ©0.80 0.0 ( 0)
GTTV  ©.55 47.5 ( 283) GCT A  ©.54 63.9 ( 381) GATD ©.44 24.8 ( 148) GGT G  ©.80 69.1 ( 412)
GTCV @.83 2.9 ( 17) GCA @.82 1.8 ( 11) GACD  ©.56 31.4 ( 187) GGC G  ©.18 15.4 (  92)
GTAV  ©.35 30.2 ( 180) GCAA ©.28 33.@ ( 197) GAAE  ©.84 65.7 ( 392) GGAG .82 1.3 ( 8)
GTGV 0.7 5.7 ( 34) GGA ©.16 18.8 ( 112) GAGE .16 12.7 ( 76) GGG G  ©.80 0.3 ( 2)

384

385  Codon usage for a concatenated sequence representing the open reading frames of the
386  genes encoding the 20 most abundant proteins, as shown in Table 3.

387  Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
388 sequence, (absolute usage in total sequence).
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Table 7: Primers used for Site Directed Mutagenesis

Primer Name Primer Sequence Variant
a78g_F 5'-CGCAGCAGAGTCTTTGCCAGATTTAAAGATTGAAAAGCTTGAT-3' M1
al53g F 5'-GTGGGGCGTTGTTCCTAAGCATGGTTTGGTGG-3' M2
a2leg F 5'-GACACTCCATTTACGGCTAAGGATACTGAAAAGTTAGTCAC-3' M3
a26l1g_a267g F | 5'-TGGTTTGTGGAGCGTGGCTATAAGATAAAGGGCAGCATTTCC-3' M4,5
a375g_a378g_F | 5'-CAAATGAACTGCTTAAGAAGGACGGTAAGGTTCAAGCCAC-3' M6,7
a435g ad44l1g F | 5'-GGCTAGTTAAGAATAAGATTGAAGTTTTTTATCCAGGCCCG-3' M8,9
a510g_F 5'-GGTTTGGTTGCCTGAAAGGAAGATATTATTCGGTGGTTGTTTT-3' M10
ab37g F 5'-CGGTGGTTGTTTTATTAAGCCGTACGGTTTAGGCAATTTGG-3' M11
a597g F 5'-CTTGGCCAAAGTCCGCCAAGTTATTAAAGTCCAAATATGG-3' M13
abl2g F 5'-CGCCAAGTTATTAAAGTCCAAGTATGGTAAGGCAAAACTGGTT-3' M14
a627g F 5'-CCAAGTATGGTAAGGCAAAGCTGGTTGTTCCAAGTCA-3' M15
a675g_F 5'-GACGCATCACTCTTGAAGCTTACATTAGAGCAGGC-3' M16
a729g F 5'-GTTAAACGAAAGTAAAAAACCATCAAAGCCAAGCAACTAAATTTC-3' | M17 (KV)

24



https://doi.org/10.1101/294173
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/294173; this version posted April 3, 2018. The copyright holder for this preprint (which was not

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

Figure Legends

Figure 1: Impact of codon usage “optimisation” on IMP-1 enzyme activity in E. coli.

IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of
E. coli MG1655 carrying empty vector pRW50, or this vector with the wild-type (pHIMP) or
codon-optimised (pHEcIMP) blamp-1 gene, each expressed from a hybrid strength integron
promoter; or carrying a natural IMP-1 encoding plasmid originally from P. aeruginosa, which
is the source of the cloned blaivp-1 and upstream/promoter sequence (pNIMP). Data are

means +/- Standard Deviation, n=4.

Figure 2. Impact of AAA to AAG lysine codon conversion on IMP-1 protein production.

IMP-1 protein abundance in clinical isolates of P. aeruginosa, A. baumannii and E. coli
carrying the cloned wild-type blavp-1 gene (WT) and a variant having 17 AAA to AAG
mutations (MUT). Protein abundance was measured in sonicated cell extracts and
normalised using the abundance of the dominant selectable marker protein for the cloning
vector carrying blap-1. This was, for E. coli, where pSU18 was the cloning vector, Cat
(chloramphenicol acetyl transferase) and for P. aeruginosa and A. baumannii, where pUBYT
was the cloning vector, AphA (aminoglycoside [Kanamycin] phosphotransferase). Data are

means +/- Standard Error of the Mean, n=3.

Figure 3. AAA to AAG lysine codon conversions in blaiwp-1

The 17 AAA lysine codons converted to AAG are marked and sequentially numbered in the
blalMP-1 coding sequence. In some cases, two adjacent mutations were made at using a
single primer in the same mutagenesis step, and are labelled as such: M x,y where x and y

represent the two sequential mutations.
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413  Figure 4. Impact of sequential AAA to AAG lysine codon conversion on IMP-1 production in
414  E. coli

415  IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of
416  E. coli MG1655 carrying blaive-1 cloned using pSU18 with one to seventeen AAA to AAG

417  mutations; each mutagenesis step being shown in figure 3. Some steps involved two

418  adjacent mutations, e.g. M4,5. Data are means +/- Standard Deviation, n=4.

419
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