

1 **Synonymous lysine codon usage modification in a mobile antibiotic resistance gene**
2 **similarly alters protein production in bacterial species with divergent lysine codon usage**
3 **biases because it removes a duplicate AAA lysine codon.**

4

5 **Mohammed Alorabi^{1,2}, Aisha M. AlAmri^{1,3}, Yuiko Takebayashi¹, Kate J. Heesom⁴ and**
6 **Matthew B. Avison^{1*}.**

7

8 **¹School of Cellular & Molecular Medicine, University of Bristol. United Kingdom.**

9 **²College of Sciences, Taif University, Taif, Kingdom of Saudi Arabia.**

10 **³College of Applied Medical Sciences, Imam Abdurahman Bin Faisal University.**

11 **Dammam. Kingdom of Saudi Arabia.**

12 **⁴Bristol Proteomics Facility, University of Bristol. United Kingdom**

13

14 ***Correspondence: Matthew B. Avison, School of Cellular & Molecular Medicine,**
15 **Biomedical Sciences Building, University Walk, Bristol. BS81TD. UK. bimba@bris.ac.uk.**
16 **+44(0)1173312063.**

17 **Abstract**

18 **The mobile antibiotic resistance gene *bla*_{IMP-1} is clinically important and has a synonymous**
19 **AAA:AAG lysine codon usage bias of 73:27. This bias is like that seen in experimentally**
20 **determined highly expressed genes in *Escherichia coli* and *Acinetobacter baumanii*, but**
21 **quite different from that seen in *Pseudomonas aeruginosa* (26:74 AAA:AAG). Here we**
22 **show that, paradoxically, shifting the AAA:AAG lysine codon bias to 8:92 in *bla*_{IMP-1}**
23 **expressed from a natural promoter results in significantly more IMP-1 production in all**
24 **three species. Sequential site directed mutagenesis revealed that increased IMP-1**
25 **production occurs following removal of an AAA,AAA double lysine codon and that**
26 **otherwise, lysine codon usage had no observable impact on IMP-1 production. We**
27 **conclude that ribosomal slippage at this poly-adenosine region reduces efficient**
28 **translation of IMP-1 and that punctuating the region with guanine reduces ribosomal**
29 **slippage and increases IMP-1 production.**

30

31

32 **Introduction**

33 Synonymous codon usage bias (SCUB) is a term describing the common finding that
34 organisms favour the use of certain triplet codons in DNA to encode certain amino acids.
35 Since SCUB varies between organisms, and between different genes in a single organism,
36 the implication is that optimal SCUB varies between different organisms, and that certain
37 genes are selected to be closer to the optimal SCUB than others (1). One dominant
38 hypothesis is that highly expressed genes have “optimised” SCUB and that this is selected
39 because optimal codons are translated more quickly and/or more efficiently than sub-
40 optimal ones. This is particularly important when the demand for a protein is high (1).
41 Indeed, it is well known that SCUB optimization – adapting the SCUB of a recombinant gene
42 to match that of highly expressed genes – increases recombinant protein production in a
43 heterologous host (2). The success of this methodological approach has been used to
44 advance the translationally-selective hypothesis to explain SCUB. However, most codon
45 usage optimization procedures involve the over-expression of recombinant genes using
46 hyper-strong, inducible promoters and high copy number vectors, with a desire to make a
47 single protein represent a high percentage of total protein in the cell (3). This is not likely to
48 reflect the situation encountered by a gene in a natural setting with a natural promoter on
49 the chromosome or a low copy number plasmid.
50 SCUB is particularly relevant in the context of horizontal gene transfer. Whilst sub-optimal
51 SCUB is not always seen in horizontally acquired genes, depending on their origins, for those
52 that are sub-optimal, selective pressure is expected to be applied over time to optimise
53 SCUB; a process referred to as “codon usage amelioration” (4). Antibiotic resistance in
54 bacteria is one of the most pressing threats to human health and horizontal gene transfer is

55 one of the most important means for a bacterium to acquire antibiotic resistance (5). It is
56 evident that many mobile genetic elements are of low guanine plus cytosine (GC) content
57 and carry a related SCUB biased towards low GC codons (6). So, in this context, the impact
58 of SCUB on gene expression is not only academic, but it is also of significant practical
59 interest. The aim of the work reported in this paper was to test the hypothesis that SCUB
60 change can affect the absolute amount of active protein produced in a predictable manner
61 using a natural plasmid system and an intermediate strength natural promoter using a
62 clinically important, mobile antibiotic resistance gene.

63

64 **Results and Discussion**

65 The *bla_{IMP-1}* metallo-β-lactamase-encoding gene cassette, which confers resistance to the
66 carbapenems, a class of “last resort” antibiotics, has a GC content of 39% (7). However, it
67 has been found widely among Gram-negative bacteria with varying genomic GC contents
68 (8). For example, it is commonly found in *Escherichia coli* and other Enterobacteriaceae
69 which have genomic GCs of ≈50%. Accordingly, if SCUB affects translational efficiency
70 and/or rate, one would expect the amount of IMP-1 enzyme should be seen to increase in
71 Enterobacteriaceae if the SCUB of *bla_{IMP-1}* is ameliorated to match the optimal SCUB of this
72 family, as represented by *E. coli*. To test this, specific imipenemase activity was measured in
73 extracts of *E. coli* MG1655 transformants carrying pHIMP or pH_EcIMP, being the cloned
74 wild-type or *E. coli* SCUB optimised *bla_{IMP-1}* gene cassette, respectively, each under the
75 control of an identical, natural, intermediate-strength integron promoter, and each ligated
76 into a broad host-range, low copy number vector derived from a natural antibiotic
77 resistance plasmid: RK2 (9). We can confirm that pHIMP is a truly natural expression system

78 because imipenemase activity in an MG1655 transformant carrying pNIMP (the natural
79 *bla_{IMP-1}* encoding plasmid) and MG1655(pHIMP) were the same (**Figure 1**). If the hypothesis
80 being tested is correct, it was expected that optimisation of *bla_{IMP-1}* to a SCUB closer to
81 optimal in *E. coli* genes would increase IMP-1 production relative to wild-type. However, this
82 was not observed. The pHEclIMP variant synthesised to match the “optimal” SCUB of *E. coli*
83 presumed highly expressed genes (ribosomal protein and translation elongation factor
84 genes) based on the OPTIMIZER algorithm (10) was expressed at lower levels than than the
85 wild-type gene (p<0.0001) (**Figure 1**).

86 It was considered possible that the effect seen here is due to stability changes at the 5' end
87 of the codon-optimised *bla_{IMP-1}* mRNA. Strong regions of secondary structure at the 5' ends
88 of mRNA molecules are likely to cause ribosomal occlusion leading to the exposure of mRNA
89 to nuclease digestion (11). Furthermore, it has previously been shown that synonymous
90 mutations that increase mRNA secondary structure (high folding energy) at the beginning of
91 the transcript can reduce protein production by inhibiting the initiation and initial phase of
92 translation elongation (12-14). It was confirmed that codon optimization increased the
93 energy required to unfold the mRNA. The Gibbs free energy value of the whole mRNA
94 molecule was -183 (wild type *bla_{IMP-1}*) changing to -229 for the *E. coli* codon optimised
95 variant. Just looking at the 5' third of the mRNA, which is thought to be particularly
96 important, the folding energy calculated showed the same effect: moving from -50 for wild-
97 type *bla_{IMP-1}* to -67 for the *E. coli* variant.

98 **Figure 1** shows evidence, therefore, that codon optimization can have negative effects on
99 gene expression in a natural expression system, but it was considered of interest to see how
100 much of a change in IMP-1 production would occur upon site-directed mutation of

101 individual codons. Twenty six of 246 (10.6%) of IMP-1's amino acids are lysine. The lysine
102 codon AAA is in the majority in *bla*_{IMP-1} (19/26; 73%) and AAG accounts for the rest. Rather
103 than relying on theoretical lists of "highly expressed genes" to define the "optimal" SCUB for
104 lysine codons in *bla*_{IMP-1}, we measured protein abundance using LC-MS/MS proteomics. In so
105 doing we defined the 20 most highly abundant proteins in three test species during growth
106 under the conditions we would also use to test IMP-1 production (**Tables 1-3**). Analysis of
107 lysine SCUB in the genes encoding these 20 proteins from each species revealed an AAA
108 percentage of 84% for *Acinetobacter baumannii*, 80% for *E. coli* and 24% for *Pseudomonas*
109 *aeruginosa* (**Tables 4-6**). We sub-cloned the wild-type *bla*_{IMP-1} gene from pHIMP into the
110 pSU18 cloning vector and used site directed mutagenesis to dramatically reduced the AAA
111 lysine codon usage of *bla*_{IMP-1} in the resultant pSUHIMP-WT plasmid to 2/26 or 8% AAA in
112 plasmid pSUHIMP-KV. Plasmids were used to transform an *E. coli* clinical isolate to
113 chloramphenicol resistance. The wild-type and lysine codon-variant *bla*_{IMP-1} genes were also
114 sub-cloned into the broad host-range vector pUBYT, generating pUBYTHIMP-WT and
115 pUBYTHIMP-KV, which were used to transform *P. aeruginosa* PA01 or *A. baumannii* CIP 70-
116 10 to kanamycin resistance. We then used proteomics to measure the abundance of IMP-1
117 in these transformants, which was normalised using the abundance of vector-encoded Cat
118 (in *E. coli* pSUHIMP-WT and -KV transformants) or AphA (in *A. baumannii* and *P. aeruginosa*
119 pUBYTHIMP-WT and -KV transformants) to take into consideration plasmid copy number
120 and protein loading. Our expectation given the hypothesis that SCUB is selected based on
121 translation rate or efficiency was that as AAA usage was reduced to 2/26 from a wild-type
122 position of 19/26, which is close to optimal in *A. baumannii* (22/26) and *E. coli* (21/26) there
123 would be a reduction in IMP-1 production. The case in *P. aeruginosa* was not so clear, given
124 that the optimal AAA usage in this species is 6/26. Here, the variant is closer to optimal than

125 the wild-type gene, so we might expect an increase in IMP-1 production. We did see this: a
126 1.5-fold increased normalised IMP-1 production in PA01(pUBYTHIMP-KV) compared with
127 PA01(pUBYTHIMP-WT), $p=0.04$ for an unpaired t-test, $n=3$. However, the variant also
128 supported higher IMP-1 protein production in *E. coli* (2.2-fold, $p=0.005$ $n=3$) and *A.*
129 *baumannii* (3.2-fold, $p=0.002$, $n=3$) (**Figure 2**).

130 These data show that the simple idea of optimization based on average SCUB – even when
131 that average is taken from highly expressed genes confirmed by proteomics – is rather
132 naïve. The codons in an mRNA affect its folding, which affects its stability and the rate of
133 translation initiation and elongation; local and global charged tRNA levels affect translation
134 elongation rate, and this must be optimised and even varied during the translation of an
135 mRNA to allow accurate protein folding (11-14). Our finding of increased IMP-1 production
136 when AAG lysine codons dominate is not due to relative tRNA abundance since there is only
137 one lysine-tRNA, which recognises both AAA and AAG codons (15). Lysine tRNA/codon
138 specific nucleases have been reported in *E. coli* (16), and it is conceivable that AAA/tRNA
139 interactions preferably promote mRNA cleavage, but the effect we report was seen in three
140 very distinct species, and there is no evidence that AAG/anticodon interactions mean less
141 cleavage, even in *E. coli* (16). The most likely explanation for our findings is a report that
142 duplicate AAA lysine codons lead to ribosomal sliding and increased aberrant translation of
143 an mRNA in *E. coli* (17). We analysed the concatenated sequence data for the genes
144 encoding the 20 most abundant proteins in *E. coli* and found that there are eleven AAA,AAA
145 double lysine codons, comprising 7.8% of all AAA codons. In contrast there are eleven
146 AAA,AAG or AAG,AAA and two AAG,AAG double lysine codons and one AAG,AAG,AAG triple
147 lysine codon found amongst these 20 genes, comprising 26.1% of all AAG codons. This

148 suggests that there is selective pressure for the inclusion of AAG codons preferentially
149 where two or more lysines are encoded together. Within the 17 AAA to AAG mutations
150 made in our lysine codon modified *bla_{IMP-1}* gene (**Figure 3**) one is part of an AAA,AAA double
151 lysine codon, with both codons being converted into AAG in the same mutagenesis step
152 (mutations 6 and 7). To test the specific effects of this mutagenesis step, we measured
153 imipenemase activity in cell extracts of *E. coli* MG1655 transformants carrying pSUHIMP
154 variants having an accumulating number of AAA to AAG mutations, from 1 to 17, starting at
155 the 5' end of the gene. **Figure 4** shows that carrying *bla_{IMP-1}* with 6 or more mutations gives
156 levels of IMP-1 enzyme activity not significantly different from that provided by pSUHIMP-
157 KV, having all 17 mutations ($p>0.1$). Importantly, introduction of mutations 6 and 7, where
158 IMP-1 enzyme activity significantly increases from basal ($p<0.03$) is the point at which the
159 AAA,AAA double lysine codon is converted to AAG,AAG. Therefore, based on previously
160 published work using in vitro translation experiments (17), we conclude that there is
161 ribosomal slippage at the AAA,AAA run located in the *bla_{IMP-1}* mRNA, reducing the amount
162 of active IMP-1 protein produced. Breaking up this run with AAG codons means more
163 correct translation and so more IMP-1 enzyme activity. Importantly, we see this effect in all
164 three species tested, despite their divergence. There is no evidence for mutation in the
165 AAA,AAA run in any *bla_{IMP-1}* variant sequence in the Genbank nucleotide sequence database,
166 according to blastn, so the increased IMP-1 enzyme production stimulated by this mutation
167 is seemingly not under strong selective pressure *in vivo*. However, there are two IMP
168 variants where the second lysine codon in this run has been mutated in a non-synonymous
169 way. The most common of these is IMP-22 (18).

170 In conclusion, codon “optimisation” and mutations that change SCUB to be more closely
171 aligned or more distantly aligned to highly expressed genes in multiple bacteria do not
172 guarantee higher levels of gene expression. Indeed, for synonymous lysine codon changes,
173 the increase in IMP β -lactamase production when SCUB was moved further from “optimal”
174 is paradoxical and is most likely to be caused by reduced aberrant protein production that
175 occurs when AAA codons are present in duplicate (17). Care should therefore be taken when
176 interpreting the potential impact of synonymous mutations that affect codon usage in
177 horizontally acquired genes carried on natural plasmids and expressed from native
178 promoters without experimental determination of the effect of these mutations on protein
179 abundance or some phenotypic proxy thereof.

180

181 **Experimental**

182 Bacterial Strains

183 Bacterial strains used in the study were *E. coli* TOP10 (Invitrogen), MG1655 (19) and a clinical
184 isolate from urine (a gift from Dr Mandy Wootton, Public Health Laboratory for Wales); *P.*
185 *aeruginosa* PA01 (20) and *A. baumanii* CIP 70-10 (21)

186 Molecular Biology

187 The *bla_{IMP-1}* gene was amplified using PCR. Template DNA was extracted from *P. aeruginosa*
188 clinical isolate 206-3105A (a gift from Dr Mark Toleman, Department of Medical
189 Microbiology, Cardiff University) by suspending a loop-full of bacteria from a fresh Nutrient
190 Agar plate (Oxoid) in 100 μ l of molecular biology grade water. The tube was then incubated
191 at 95°C for 15 min and centrifuged at 13,000 rpm for 10 min. The supernatant was removed
192 as a source of template DNA. The integron promoter type upstream of *bla_{IMP-1}* in isolate

193 206-3105A is Pch1 (22), and there is a *bla*_{OXA-2} gene cassette downstream from *bla*_{IMP-1}
194 (Genbank accession: AP012280.1). PCR used forward primers which were designed to
195 amplify from the 5' end of the wild-type Pch1 promoter (5'-
196 ACCCAGTGGACATAAGCCTGTTGGTCGTAAACT-3') into the 5' end of the *bla*_{OXA-2} gene
197 cassette, (5'-AGCGAAGTTGATATGTATTGTG-3'). Each PCR reaction mixture contained 20 ng
198 of template DNA, 0.4 μ mol of each primer, 12.5 μ l of RedTaq PCR-ready reaction mix
199 (Sigma-Aldrich) and 8.5 μ l of molecular biology grade water. PCR reactions were processed
200 in PTC-100 thermal cycler (Bio-Rad, UK) in 0.2 ml PCR tubes (Starlabs). PCR reaction cycles
201 were 10 min at 95°C, followed by 35 cycles of, 1 min denaturation at 95°C, 1 min annealing
202 at 58°C and 2 min extension at 72°C. The final step was an extension at 72°C for 10 min. The
203 PCR amplicon was TA cloned into the pCR2.1TOPO cloning vector (Invitrogen), removed with
204 EcoRI and ligated into EcoRI linearised RK2-derived vector pRW50 (9) to create the
205 recombinant plasmid pHIMP or the broad host range p15A derived vector pSU18 (23) to
206 create the recombinant plasmid pSUHIMP.

207 The *E. coli* codon optimized *bla*_{IMP-1} gene variant was designed using the program
208 OPTIMIZER (10) and the variant, including up- and down-stream sequences identical to
209 those seen in pHIMP was synthesized by GeneArt (Thermo-Fisher) and provided, cloned into
210 the cloning vector pMK as the vector pMKHEcIMP. The optimised gene was amplified by PCR
211 using pMKHEcIMP as template and cloned into pRW50, as described for the wild-type gene
212 to create the recombinant plasmid pHEcIMP.

213 Site directed mutagenesis was performed using the QuikChange® Lightning Site-Directed
214 Mutagenesis Kit (Agilent, UK) according to the manufacturer's instructions and pSUHIMP as
215 the template. The 17 individual AAA to AAG mutations (**Figure 3**) were introduced in 14

216 separate mutagenesis steps, each creating a variant with an increasing number of mutations
217 starting at the 5' end of the gene. The primers were designed using the mutagenesis kit
218 manufacturer's instructions and are shown in **Table 7**.

219 For transformation of *A. baumannii* and *P. aeruginosa* *bla*_{IMP-1} wild type and variants were
220 subcloned into vector pUBYT being the plasmid pYMAb2 (24) which we modified to remove
221 the OXA promotor region (located upstream of the multiple cloning site) by PCR
222 amplification using primers, 5'-GCAAGAAGGTGATGAATCTACA-3' and 5'-
223 GTGGCAGCAGCCAACTCA-3' followed by digestion with XbaI and ligation to produce a
224 circular product.

225 Measuring imipenemase specific activity in cell extracts

226 A volume of 0.5 ml of overnight nutrient bacterial broth culture was added to a 10 ml of
227 fresh nutrient broth which was incubated at 37°C with shaking until an OD₆₀₀ of 0.5-0.6 was
228 reached. The cells were then pelleted by centrifugation at 4,500 rpm for 10 min at 4°C. The
229 pellet was re-suspended in 1 ml of 50 mM HEPES (containing 100 µM ZnCl₂ at pH 7) and
230 transferred to a tube of lysing matrix B (Fisher Scientific, UK). The cells were lysed using a
231 Ribolyser (Hybaid, UK) at speed of 6.0 for 40 s followed by centrifugation at 13,000 rpm for
232 1 min to pellet cell debris. The supernatant was used for enzyme activity measurement.
233 Total protein concentration was determined using the Bio-Rad protein assay reagent
234 according to the manufacturer's instructions. To measure the imipenemase activity in an
235 extract, 100 µl of extract was added to 900 µl of HEPES buffer (containing ZnCl₂, as above)
236 and 0.1 mM imipenem. Change of absorbance was monitored at 299 nm over 10 min.
237 Specific enzyme activity (pmol imipenem hydrolysed per mg of protein per sec) in each

238 extract was calculated using 7000 M⁻¹ as the extinction coefficient of imipenem and dividing
239 enzyme activity with the total amount of protein in each assay.

240 mRNA Secondary Structure Prediction

241 To assess the presence of significant secondary structure in the transcript of wild-type
242 *bla_{IMP-1}* and the *E. coli* SCUB optimized variant, the Mfold program
243 (<http://unafold.rna.albany.edu/?q=mfold>) was used to predict the folding of the mRNA
244 sequences.

245 Preparation of samples from cultured bacteria and proteomics analysis

246 Bacterial cultures were incubated 50 ml Nutrient Broth (Sigma) with shaking (160 rpm) at
247 37°C until OD₆₀₀ reached 0.6-0.8. Cells in cultures were pelleted by centrifugation (10 min,
248 4,000 × g, 4°C) and resuspended in 35 mL of 30 mM Tris-HCl, pH 8 and broken by sonication
249 using a cycle of 1 sec on, 1 sec off for 3 min at amplitude of 63% using a Sonics Vibracell VC-
250 505TM (Sonics and Materials Inc., Newton, Connecticut, USA). The sonicated samples were
251 centrifuged at 8,000 rpm (Sorvall RC5B PLUS using an SS-34 rotor) for 15 min at 4°C to pellet
252 intact cells and large cell debris and protein concentration in the supernatant was
253 determined using the Bio-Rad Protein Assay Reagent according to the manufacturer's
254 instructions. One microgram of total protein was separated by SDS-PAGE using 11%
255 acrylamide, 0.5% bis-acrylamide (Bio-Rad) gels and a Bio-Rad Mini-Protein Tetracell
256 chamber model 3000X1. Gels were run at 150 V until the dye front had moved
257 approximately 1 cm into the separating gel. Proteins in gels were stained with Instant Blue
258 (Expedeon) for 5 min and de-stained in water. The 1 cm of gel lane containing each sample
259 was cut out and proteins subjected to in-gel tryptic digestion using a DigestPro automated

260 digestion unit (Intavis Ltd). The resulting peptides were fractionated using an Ultimate 3000
261 nanoHPLC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific)
262 as previously described (25). The raw data files were processed and quantified using
263 Proteome Discoverer software v1.4 (ThermoScientific) and searched against the UniProt *P.*
264 *aeruginosa* PA01 database (5563 proteins; UniProt accession UP000002438), the *A.*
265 *baumannii* ATCC 17978 database (3783 proteins; UniProt accession UP0006737) or the *E.*
266 *coli* MG1655 database (4307 proteins; UniProt accession UP000000625). The database file is
267 provided as supplementary data. Proteomic searches against the databases was were
268 performed using the SEQUEST (Ver. 28 Rev. 13) algorithm. Protein Area measurements were
269 calculated from peptide peak areas using the “Top 3” method (26) and were then used to
270 calculate the relative abundance of each protein. Proteins with fewer than three peptide
271 hits were excluded from the analysis.

272 **Codon Usage Calculation**

273 The open reading frames of the 20 most highly expressed genes in each species were
274 downloaded from Genbank and concatenated into a single reading frame. The codon usage
275 calculator (<https://www.biologicscorp.com/tools/CodonUsageCalculator#.WrZ02ljFl2w>) was
276 applied to this concatenated open reading frame using the standard genetic code table.

277

278 **Funding**

279 This work was funded by grant MR/N013646/1 to M.B.A. and K.J.H. from the Antimicrobial
280 Resistance Cross Council Initiative supported by the seven United Kingdom research councils.

281 A

282 Additional support came from a grant to M.B.A. from the British Society for Antimicrobial
283 Chemotherapy. M.A. and A.M.A were both supported by Postgraduate Scholarships from the
284 Cultural Bureau of the Kingdom of Saudi Arabia.

285

286 **Transparency Declaration**

287 None to declare – All authors.

288

289 **References**

- 290 1. Supek F. The Code of Silence: Widespread Associations Between Synonymous Codon
291 Biases and Gene Function. *J Mol Evol.* 2016;82:65-73.
- 292 2. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O. Codon
293 optimization can improve expression of human genes in *Escherichia coli*: A multi-
294 gene study. *Protein Expr Purif.* 2008;59:94-102.
- 295 3. Hannig G, Makrides SC. Strategies for optimizing heterologous protein expression in
296 *Escherichia coli*. *Trends Biotechnol.* 1998;16:54-60.
- 297 4. Medrano-Soto A, Moreno-Hagelsieb G, Vinuesa P, Christen JA, Collado-Vides J.
298 Successful lateral transfer requires codon usage compatibility between foreign genes
299 and recipient genomes. *Mol Biol Evol.* 2004;21:1884-94.
- 300 5. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen
301 LB, Savelkoul PH, Wolffs PF. Dissemination of Antimicrobial Resistance in Microbial
302 Ecosystems through Horizontal Gene Transfer. *Front Microbiol.* 2016;7:173.
- 303 6. Rocha EP, Danchin A. Base composition bias might result from competition for
304 metabolic resources. *Trends Genet.* 2002;18:291-4.

305 7. Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F, Kato
306 N. Molecular characterization of an enterobacterial metallo beta-lactamase found in
307 a clinical isolate of *Serratia marcescens* that shows imipenem resistance. *Antimicrob
308 Agents Chemother.* 1994;38:71-8.

309 8. Walsh TR. Clinically significant carbapenemases: an update. *Curr Opin Infect Dis.*
310 2008;21:367-71.

311 9. Lodge J, Fear J, Busby S, Gunasekaran P, Kamini NR. Broad host range plasmids
312 carrying the *Escherichia coli* lactose and galactose operons. *FEMS Microbiol Lett.*
313 1992;74:271-6.

314 10. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S. OPTIMIZER: a web server for
315 optimizing the codon usage of DNA sequences. *Nucleic Acids Res.* 2007;35:W126-31.

316 11. lost I, Dreyfus M. The stability of *Escherichia coli lacZ* mRNA depends upon the
317 simultaneity of its synthesis and translation. *EMBO J.* 1995;14:3252-61.

318 12. Jacques N, Dreyfus M. Translation initiation in *Escherichia coli*: old and new
319 questions. *Mol Microbiol.* 1990;4:1063-7.

320 13. Mohsen AW, Vockley J. High-level expression of an altered cDNA encoding human
321 isovaleryl-CoA dehydrogenase in *Escherichia coli*. *Gene.* 1995;160:263-7.

322 14. Nilsson LO, Mannervik B. Improved heterologous expression of human glutathione
323 transferase A4-4 by random silent mutagenesis of codons in the 5' region. *Biochim
324 Biophys Acta.* 2001;1528:101-6.

325 15. Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in *E. coli*
326 is largely determined by tRNA competition. *RNA.* 2007;13:87-96.

327 16. Meidler R, Morad I, Amitsur M, Inokuchi H, Kaufmann G. Detection of anticodon
328 nuclease residues involved in tRNALys cleavage specificity. *J Mol Biol.* 1999;287:499-
329 510.

330 17. Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R.
331 Ribosomes slide on lysine-encoding homopolymeric A stretches. *Elife.* 2015;4. doi:
332 10.7554/eLife.05534.

333 18. Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R,
334 Amicosante G, Perilli M. Identification of *bla*(IMP-22) in *Pseudomonas* spp. in urban
335 wastewater and nosocomial environments: biochemical characterization of a new
336 IMP metallo-enzyme variant and its genetic location. *J Antimicrob Chemother.*
337 2009;63:901-8.

338 19. Guyer MS, Reed RR, Steitz JA, Low KB. Identification of a sex-factor-affinity site in *E.*
339 *coli* as gamma delta. *Cold Spring Harb Symp Quant Biol.* 1981;45:135-40.

340 20. Holloway BW. Genetic recombination in *Pseudomonas aeruginosa*. *J Gen Microbiol.*
341 1955;13:572-81.

342 21. Bouvet PJM, Grimont PAD. Taxonomy of the genus *Acinetobacter* with the
343 recognition of *Acinetobacter baumannii* sp. nov., *Acinetobacter haemolyticus* sp.
344 nov., *Acinetobacter johnsonii* sp. nov. and *Acinetobacter junii* sp. nov. and emended
345 descriptions of *Acinetobacter calcoaceticus* and *Acinetobacter lwoffii*. *Int J Syst
346 Bacteriol* 1986;36:228-240.

347 22. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. Inverse correlation between promoter
348 strength and excision activity in class 1 integrons. *PLoS Genet.* 2010;6:e1000793.

349 23. Bartolomé B, Jubete Y, Martínez E, de la Cruz F. Construction and properties of a
350 family of pACYC184-derived cloning vectors compatible with pBR322 and its
351 derivatives. *Gene*. 1991;102:75-8.

352 24. Kuo SC, Yang SP, Lee YT, Chuang HC, Chen CP, Chang CL, Chen TL, Lu PL, Hsueh PR,
353 Fung CP. Dissemination of imipenem-resistant *Acinetobacter baumannii* with new
354 plasmid-borne *bla*OXA-72 in Taiwan. *BMC Infect Dis*. 2013;13:319

355 25. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T,
356 Heesom KJ, Avison MB. Envelope proteome changes driven by RamA overproduction
357 in *Klebsiella pneumoniae* that enhance acquired β -lactam resistance. *J Antimicrob
358 Chemother*. 2018;73:88-94.

359 26. Silva JC, Gorenstein M V, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification
360 of proteins by LCMSE: a virtue of parallel MS acquisition. *Mol Cell Proteomics*.
361 2006;5:144-156.

362 **Tables**

363 **Table 1:** The 20 most highly abundant proteins in *E. coli* during growth in Nutrient Broth

Accession	Description	Gene Name	Mean Abundance (n=3)
POCE48	Elongation factor Tu	b3980	6.184E+08
POA9B2	Glyceraldehyde-3-phosphate dehydrogenase A	b1779	3.399E+08
P69776	Major outer membrane lipoprotein Lpp	b1677	2.654E+08
POA7J3	50S ribosomal protein L10	b3985	2.539E+08
P06996	Outer membrane protein C	b2215	2.425E+08
P02359	30S ribosomal protein S7	b3341	2.357E+08
POA7R1	50S ribosomal protein L9	b4203	2.253E+08
POA7L0	50S ribosomal protein L1	b3984	2.219E+08
P60438	50S ribosomal protein L3	b3320	2.022E+08
POAG55	50S ribosomal protein L6	b3305	1.825E+08
POA910	Outer membrane protein A	b0957	1.780E+08
POA7W1	30S ribosomal protein S5	b3303	1.752E+08
P62399	50S ribosomal protein L5	b3308	1.743E+08
POA6M8	Elongation factor G	b3340	1.644E+08
POA7V8	30S ribosomal protein S4	b3296	1.642E+08
POA7R5	30S ribosomal protein S10	b3321	1.622E+08
POAG67	30S ribosomal protein S1	b0911	1.541E+08
POA7X3	30S ribosomal protein S9	b3230	1.486E+08
POA7J7	50S ribosomal protein L11	b3983	1.434E+08
POA7K2	50S ribosomal protein L7/L12	b3986	1.422E+08

364

365 **Table 2:** The 20 most highly abundant proteins in *P. aeruginosa* during growth in Nutrient

366 Broth

Accession	Description	Gene Name	Mean Abundance (n=3)
P09591	Elongation factor Tu	PA4265	1.215E+09
P30718	60 kDa chaperonin	PA4385	8.267E+08
Q9HWP9	Uncharacterized protein	PA4132	5.857E+08
Q9I2V5	Aconitase hydratase B	PA1787	4.160E+08
P13794	Outer membrane porin F	PA1777	3.949E+08
P05384	DNA-binding protein HU-beta	PA1804	3.624E+08
Q9HVC4	50S ribosomal protein L25	PA4671	3.562E+08
Q9HWC6	50S ribosomal protein L1	PA4273	3.536E+08
Q9HWE1	30S ribosomal protein S3	PA4257	3.471E+08
Q9HWE7	50S ribosomal protein L5	PA4251	3.181E+08
Q9HZ71	30S ribosomal protein S1	PA3162	3.074E+08
Q9HWD5	50S ribosomal protein L3	PA4263	3.037E+08
Q9HWD1	30S ribosomal protein S7	PA4267	3.020E+08
Q9HWD6	50S ribosomal protein L4	PA4262	2.792E+08
Q9HWD8	50S ribosomal protein L2	PA4260	2.691E+08
Q9HWF0	50S ribosomal protein L6	PA4248	2.658E+08
Q9HWC7	50S ribosomal protein L10	PA4272	2.490E+08
Q9HVL6	50S ribosomal protein L21	PA4568	2.433E+08
O82851	Elongation factor Ts	PA3655	2.337E+08
O52759	30S ribosomal protein S4	PA4239	2.276E+08

367

368 **Table 3:** The 20 most highly abundant proteins in *A. baumannii* during growth in Nutrient

369 Broth

Accession	Description	Gene Name	Mean Abundance (n=3)
B7I876	Outer membrane protein A	AB57_3344	2.562E+08
B7I359	50S ribosomal protein L7/L12	AB57_0368	1.138E+08
B2HZ92	50S ribosomal protein L18	AB57_3514	9.635E+07
B0VSP5	60 kDa chaperonin	AB57_06545	9.230E+07
B7IB16	Peroxiredoxin	AB57_1341	8.615E+07
B7GW08	30S ribosomal protein S3	AB57_3524	8.434E+07
B7IA20	50S ribosomal protein L15	AB57_3511	8.280E+07
B7I3K0	Elongation factor Ts	AB57_2755	8.274E+07
B7H1K1	50S ribosomal protein L1	AB57_0366	7.769E+07
B7I6T2	Succinyl-CoA ligase [ADP-forming] subunit beta	AB57_3123	7.753E+07
B7IBC1	30S ribosomal protein S6	AB57_2509	7.533E+07
B7I1W2	ATP synthase subunit alpha	AB57_0191	7.474E+07
B7IBK5	Chaperone protein DnaK	AB57_0048	6.976E+07
B7IA15	30S ribosomal protein S4	AB57_3506	6.646E+07
B7I1W4	ATP synthase subunit beta	AB57_0193	6.254E+07
B7I358	50S ribosomal protein L10	AB57_0367	6.189E+07
B0VQT3	50S ribosomal protein L6	AB57_3515	6.138E+07
B7IAS9	50S ribosomal protein L19	AB57_3615	6.042E+07
B7IA27	50S ribosomal protein L5	AB57_3518	5.886E+07
B7GYM8	Elongation factor G	AB57_06485	5.795E+07

370

371 **Table 4:** Codon Usage Table for 20 Most Highly Expressed Genes in *E. coli*

TTT F	0.18	5.7 (28)	TCT S	0.43	18.8 (93)	TAT Y	0.19	5.0 (25)	TGT C	0.37	1.4 (7)
TTC F	0.82	25.8 (128)	TCC S	0.35	15.1 (75)	TAC Y	0.81	21.4 (106)	TGC C	0.63	2.4 (12)
TTA L	0.03	1.8 (9)	TCA S	0.02	0.8 (4)	TAA *	0.95	3.8 (19)	TGA *	0.05	0.2 (1)
TTG L(s)	0.03	1.8 (9)	TCG S	0.00	0.2 (1)	TAG *	0.00	0.0 (0)	TGG W	1.00	6.7 (33)
CTT L	0.03	2.2 (11)	CCT P	0.09	3.0 (15)	CAT H	0.26	3.8 (19)	CGT R	0.71	40.5 (201)
CTC L	0.03	2.4 (12)	CCC P	0.01	0.4 (2)	CAC H	0.74	10.7 (53)	CGC R	0.28	16.1 (80)
CTA L	0.00	0.0 (0)	CCA P	0.14	4.6 (23)	CAA Q	0.12	4.0 (20)	CGA R	0.00	0.0 (0)
CTG L(s)	0.88	63.3 (314)	CCG P	0.76	25.6 (127)	CAG Q	0.88	30.1 (149)	CGG R	0.01	0.4 (2)
ATT I	0.17	8.9 (44)	ACT T	0.46	26.0 (129)	AAT N	0.08	3.6 (18)	AGT S	0.05	2.0 (10)
ATC I	0.83	44.4 (220)	ACC T	0.49	27.6 (137)	AAC N	0.92	39.1 (194)	AGC S	0.15	6.7 (33)
ATA I	0.00	0.0 (0)	ACA T	0.04	2.0 (10)	AAA K	0.80	59.1 (293)	AGA R	0.01	0.4 (2)
ATG M(s)	1.00	24.0 (119)	ACG T	0.02	1.0 (5)	AAG K	0.20	14.7 (73)	AGG R	0.00	0.0 (0)
GTT V	0.57	55.1 (273)	GCT A	0.51	54.5 (270)	GAT D	0.28	16.5 (82)	GGT G	0.59	53.2 (264)
GTC V	0.06	5.8 (29)	GCC A	0.07	7.5 (37)	GAC D	0.72	42.0 (208)	GGC G	0.40	35.7 (177)
GTA V	0.28	27.0 (134)	GCA A	0.25	27.0 (134)	GAA E	0.81	56.9 (282)	GGA G	0.00	0.4 (2)
GTG V	0.09	9.1 (45)	GCG A	0.16	17.4 (86)	GAG E	0.19	13.3 (66)	GGG G	0.01	0.8 (4)

372

373 Codon usage for a concatenated sequence representing the open reading frames of the
374 genes encoding the 20 most abundant proteins, as shown in Table 1.
375 Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
376 sequence, (absolute usage in total sequence).

377 **Table 5:** Codon Usage Table for 20 Most Highly Expressed Genes in *P. aeruginosa*

TTT F	0.08	2.1 (11)	TCT S	0.04	1.9 (10)	TAT Y	0.07	1.4 (7)	TGT C	0.03	0.2 (1)
TTC F	0.92	25.6 (132)	TCC S	0.48	23.3 (120)	TAC Y	0.93	18.8 (97)	TGC C	0.97	5.2 (27)
TTA L	0.00	0.2 (1)	TCA S	0.00	0.0 (0)	TAA *	0.75	2.9 (15)	TGA *	0.20	0.8 (4)
TTG L(s)	0.01	1.2 (6)	TCG S	0.16	7.8 (40)	TAG *	0.05	0.2 (1)	TGG W	1.00	5.0 (26)
CTT L	0.01	1.0 (5)	CCT P	0.08	2.7 (14)	CAT H	0.24	4.3 (22)	CGT R	0.44	29.3 (151)
CTC L	0.12	9.7 (50)	CCC P	0.17	6.2 (32)	CAC H	0.76	13.4 (69)	CGC R	0.50	33.0 (178)
CTA L	0.00	0.4 (2)	CCA P	0.01	0.2 (1)	CAA Q	0.15	5.2 (27)	CGA R	0.01	0.6 (3)
CTG L(s)	0.84	66.5 (343)	CCG P	0.75	27.0 (139)	CAG Q	0.85	29.3 (151)	CGG R	0.04	2.7 (14)
ATT I	0.09	4.8 (25)	ACT T	0.12	5.2 (27)	AAT N	0.08	2.5 (13)	AGT S	0.02	1.2 (6)
ATC I	0.91	48.3 (249)	ACC T	0.85	37.1 (191)	AAC N	0.92	30.5 (157)	AGC S	0.30	14.4 (74)
ATA I	0.00	0.0 (0)	ACA T	0.01	0.4 (2)	AAA K	0.24	17.1 (88)	AGA R	0.00	0.2 (1)
ATG M(s)	1.00	23.3 (120)	ACG T	0.02	0.8 (4)	AAG K	0.76	55.5 (286)	AGG R	0.00	0.2 (1)
GTT V	0.20	20.0 (103)	GCT A	0.27	29.5 (152)	GAT D	0.22	11.6 (60)	GGT G	0.35	32.2 (166)
GTC V	0.42	42.1 (217)	GCC A	0.51	55.7 (287)	GAC D	0.78	41.9 (216)	GGC G	0.62	56.7 (292)
GTA V	0.12	12.0 (62)	GCA A	0.08	8.3 (43)	GAA E	0.57	43.1 (222)	GGG G	0.01	1.0 (5)
G TG V	0.27	26.8 (138)	GCG A	0.14	15.1 (78)	GAG E	0.43	32.6 (168)	GGG G	0.02	1.9 (10)

378

379 Codon usage for a concatenated sequence representing the open reading frames of the
380 genes encoding the 20 most abundant proteins, as shown in Table 2.
381 Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
382 sequence, (absolute usage in total sequence).

383 **Table 6:** Codon Usage Table for 20 Most Highly Expressed Genes in *A. baumannii*

TTT F	0.31	8.9 (53)	TCT S	0.56	24.5 (146)	TAT Y	0.46	10.9 (65)	TGT C	0.80	3.4 (20)
TTC F	0.69	20.1 (120)	TCC S	0.01	0.5 (3)	TAC Y	0.54	12.6 (75)	TGC C	0.20	0.8 (5)
TTA L	0.37	28.5 (170)	TCA S	0.19	8.4 (50)	TAA *	1.00	3.4 (20)	TGA *	0.00	0.0 (0)
TTG L(s)	0.19	14.9 (89)	TCG S	0.05	2.2 (13)	TAG *	0.00	0.0 (0)	TGG W	1.00	3.7 (22)
CTT L	0.37	28.5 (170)	CCT P	0.35	11.9 (71)	CAT H	0.16	1.7 (10)	CGT R	0.88	46.5 (277)
CTC L	0.02	1.3 (8)	CCC P	0.00	0.0 (0)	CAC H	0.84	8.9 (53)	CGC R	0.11	5.7 (34)
CTA L	0.03	2.4 (14)	CCA P	0.55	18.6 (111)	CAA Q	0.82	33.4 (199)	CGA R	0.00	0.0 (0)
CTG L(s)	0.02	1.2 (7)	CCG P	0.09	3.2 (19)	CAG Q	0.18	7.2 (43)	CGG R	0.00	0.2 (1)
ATT I	0.43	27.7 (165)	ACT T	0.64	34.7 (207)	AAT N	0.20	7.4 (44)	AGT S	0.04	1.8 (11)
ATC I	0.57	37.2 (222)	ACC T	0.04	2.2 (13)	AAC N	0.80	30.4 (181)	AGC S	0.15	6.4 (38)
ATA I	0.00	0.0 (0)	ACA T	0.28	15.3 (91)	AAA K	0.84	61.4 (366)	AGA R	0.01	0.3 (2)
ATG M(s)	1.00	24.0 (143)	ACG T	0.03	1.7 (10)	AAG K	0.16	11.9 (71)	AGG R	0.00	0.0 (0)
GTT V	0.55	47.5 (283)	GCT A	0.54	63.9 (381)	GAT D	0.44	24.8 (148)	GGT G	0.80	69.1 (412)
GTC V	0.03	2.9 (17)	GCC A	0.02	1.8 (11)	GAC D	0.56	31.4 (187)	GGC G	0.18	15.4 (92)
GTA V	0.35	30.2 (180)	GCA A	0.28	33.0 (197)	GAA E	0.84	65.7 (392)	GGA G	0.02	1.3 (8)
GTG V	0.07	5.7 (34)	GCG A	0.16	18.8 (112)	GAG E	0.16	12.7 (76)	GGG G	0.00	0.3 (2)

384

385 Codon usage for a concatenated sequence representing the open reading frames of the
386 genes encoding the 20 most abundant proteins, as shown in Table 3.
387 Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total
388 sequence, (absolute usage in total sequence).

389 **Table 7:** Primers used for Site Directed Mutagenesis

Primer Name	Primer Sequence	Variant
a78g_F	5'-CGCAGCAGAGTCTTGCCAGATTAAAGATTGAAAAGCTTGAT-3'	M1
a153g_F	5'-GTGGGGCGTTGTCCTAACGATGGTTGGTGG-3'	M2
a216g_F	5'-GACACTCCATTACGGCTAACGGATACTGAAAAGTTAGTCAC-3'	M3
a261g_a267g_F	5'-TGGTTGTGGAGCGTGGCTATAAAGATAAAGGGCAGCATTCC-3'	M4,5
a375g_a378g_F	5'-CAAATGAAC TGCTTAAGAAGGACGGTAAGGTTCAAGCCAC-3'	M6,7
a435g_a441g_F	5'-GGCTAGTTAACGAAATAAGATTGAAGTTTTATCCAGGCCG-3'	M8,9
a510g_F	5'-GGTTGGTGCCTGAAAGGAAGATATTATTGGTGGTTGTTT-3'	M10
a537g_F	5'-CGGTGGTTGTTTATTAAGCCGTACGGTTAGGCAATTGG-3'	M11
a597g_F	5'-CTTGGCCAAAGTCCGCCAACGTTATTAAAGTCCAAATATGG-3'	M13
a612g_F	5'-CGCCAAGTTATTAAAGTCCAAGTATGGTAAGGCAAAACTGGTT-3'	M14
a627g_F	5'-CCAAGTATGGTAAGGCAAAGCTGGTTGTTCCAAGTCA-3'	M15
a675g_F	5'-GACGCATCACTCTGAAGCTTACATTAGAGCAGGC-3'	M16
a729g_F	5'-GTTAACGAAAGTAAAAAACATCAAAGCCAAGCAACTAAATTTC-3'	M17 (KV)

390

391 **Figure Legends**

392 **Figure 1: Impact of codon usage “optimisation” on IMP-1 enzyme activity in *E. coli*.**

393 IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of
394 *E. coli* MG1655 carrying empty vector pRW50, or this vector with the wild-type (pHIMP) or
395 codon-optimised (pHEcIMP) *bla*_{IMP-1} gene, each expressed from a hybrid strength integron
396 promoter; or carrying a natural IMP-1 encoding plasmid originally from *P. aeruginosa*, which
397 is the source of the cloned *bla*_{IMP-1} and upstream/promoter sequence (pNIMP). Data are
398 means +/- Standard Deviation, n=4.

399 **Figure 2. Impact of AAA to AAG lysine codon conversion on IMP-1 protein production.**

400 IMP-1 protein abundance in clinical isolates of *P. aeruginosa*, *A. baumannii* and *E. coli*
401 carrying the cloned wild-type *bla*_{IMP-1} gene (WT) and a variant having 17 AAA to AAG
402 mutations (MUT). Protein abundance was measured in sonicated cell extracts and
403 normalised using the abundance of the dominant selectable marker protein for the cloning
404 vector carrying *bla*_{IMP-1}. This was, for *E. coli*, where pSU18 was the cloning vector, Cat
405 (chloramphenicol acetyl transferase) and for *P. aeruginosa* and *A. baumannii*, where pUBYT
406 was the cloning vector, AphA (aminoglycoside [Kanamycin] phosphotransferase). Data are
407 means +/- Standard Error of the Mean, n=3.

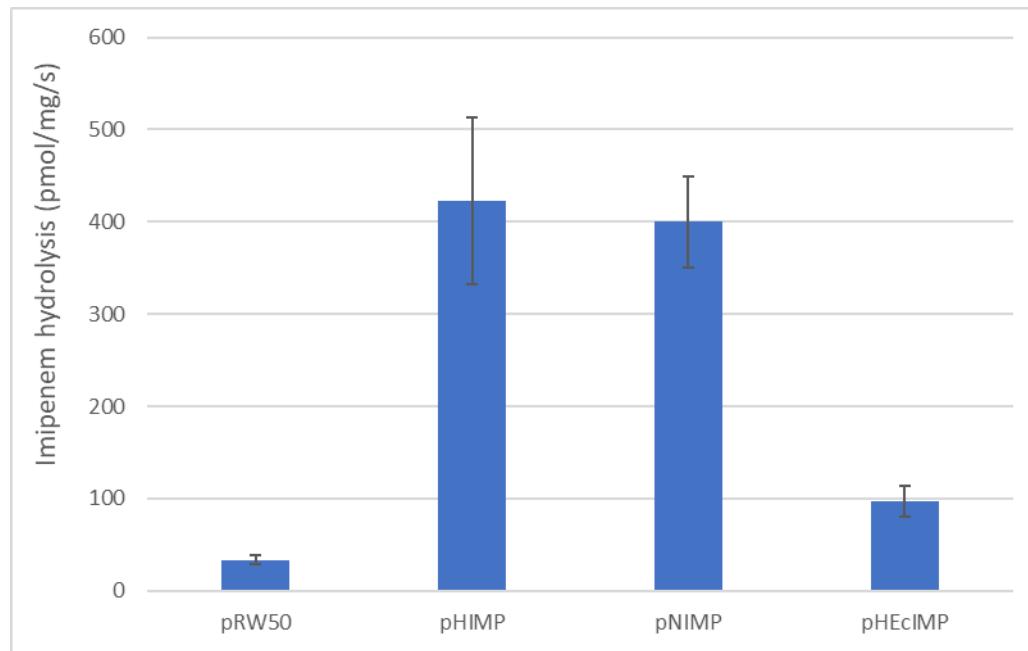
408 **Figure 3. AAA to AAG lysine codon conversions in *bla*_{IMP-1}**

409 The 17 AAA lysine codons converted to AAG are marked and sequentially numbered in the
410 *bla*_{IMP-1} coding sequence. In some cases, two adjacent mutations were made at using a
411 single primer in the same mutagenesis step, and are labelled as such: M x,y where x and y
412 represent the two sequential mutations.

413 **Figure 4. Impact of sequential AAA to AAG lysine codon conversion on IMP-1 production in**

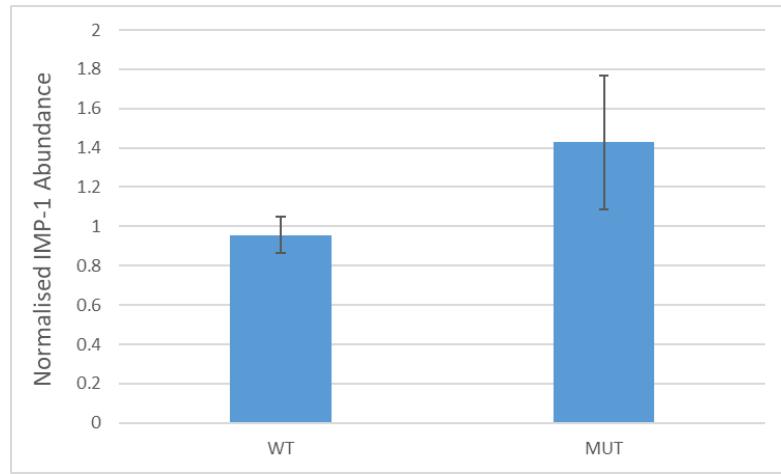
414 ***E. coli***

415 IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of

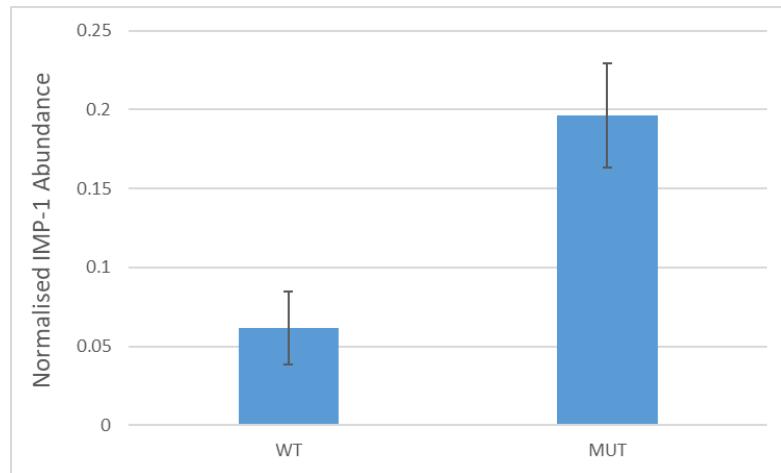

416 *E. coli* MG1655 carrying *bla*_{IMP-1} cloned using pSU18 with one to seventeen AAA to AAG

417 mutations; each mutagenesis step being shown in figure 3. Some steps involved two

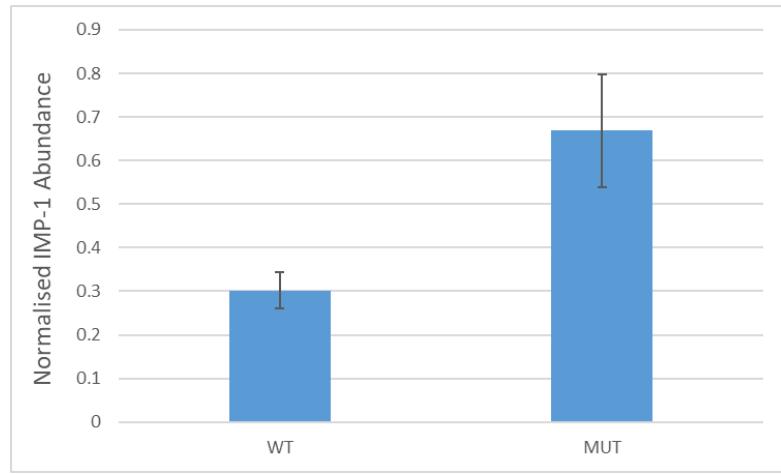
418 adjacent mutations, e.g. M4,5. Data are means +/- Standard Deviation, *n*=4.


419

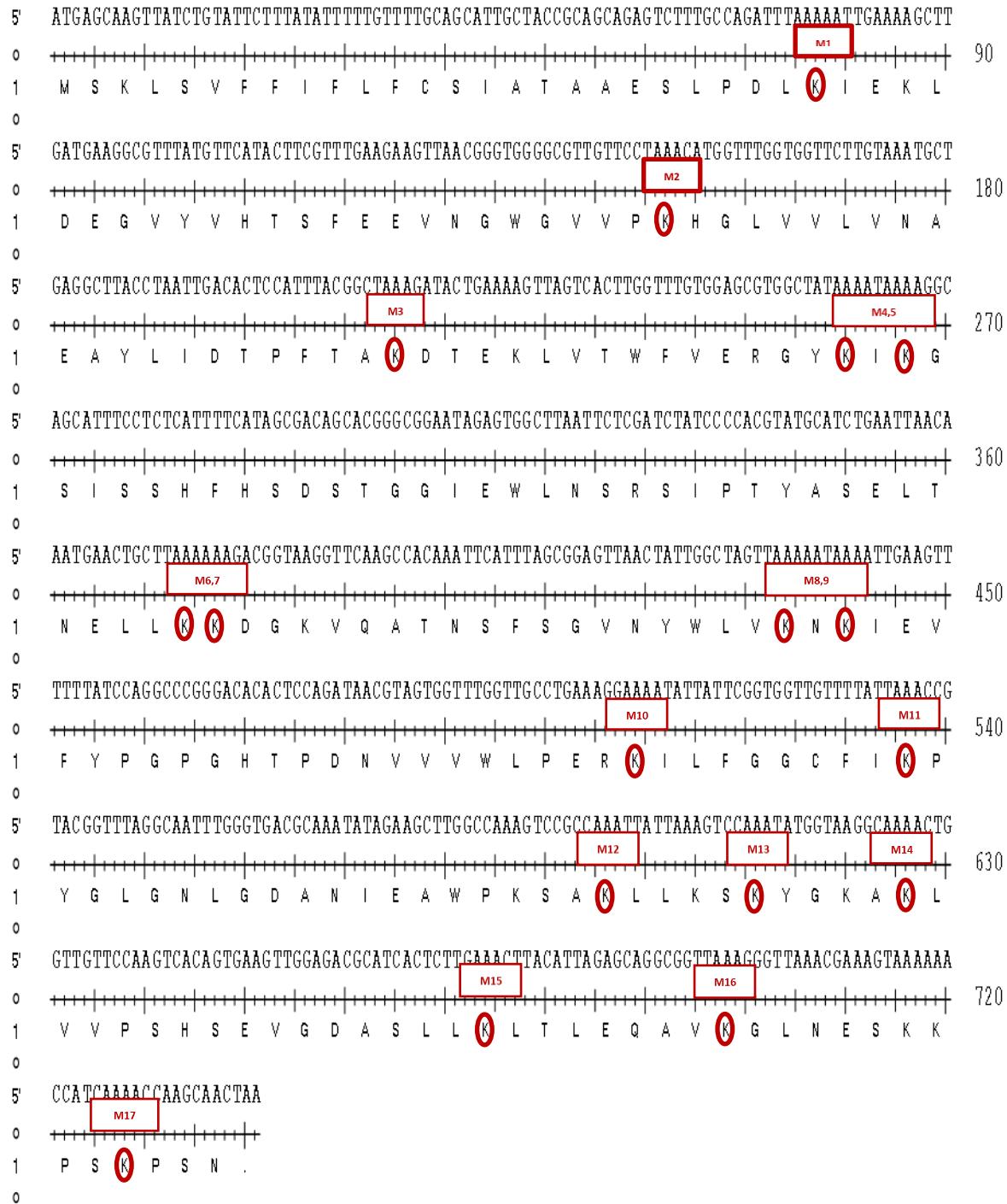
420 **Figure 1**


422 **Figure 2**

423 *P. aeruginosa*.

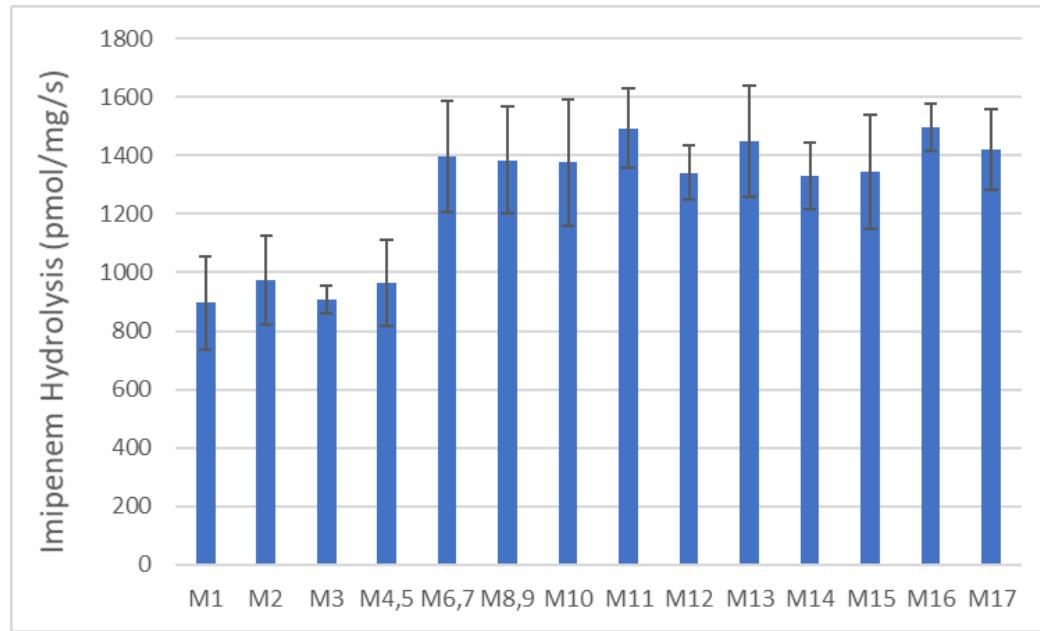

424

425 *A. baumannii*


426

427 *E. coli*

428


429 **Figure 3.**

430

431 **Figure 4.**

432

