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Abstract

Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological
disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting
brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration
of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By
integrating multi-modal intracranial recordings and diffusion tensor imaging from patients with drug-resistant epilepsy, we test
hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate
the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas
with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the
brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and
markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving
cognition.

1. Introduction

Novel neurotechnologies capable of perturbing the physio-
logical state of neural systems are rapidly gaining popularity
for their potential to treat neurological disease and psychiatric
disorders [87]. Chronically implantable devices that stimulate
the human brain are clinically approved to treat Parkinson’s
disease, essential tremor, dystonia, epilepsy, and obsessive-
compulsive disorder and have been investigated for major de-
pressive disorder and Tourette syndrome [66]. Recent human
studies have investigated the ability for direct stimulation of
cortical and subcortical structures to modulate biomarkers of
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memory [35, 47], visual perception [80, 97], language produc-
tion [31], somatosensory perception [73], sensorimotor func-
tion [96], and subjective experience [37]. While neurostimula-
tion is a promising interventional approach to modulate brain
state, current practices of calibrating where, when, and how to
stimulate the brain are “open-loop” and limited in efficacy –
relying on manual and periodic tuning of device parameters to
optimize therapy [71]. Automated, “closed-loop” approaches
would augment the capability of current stimulation devices
to dynamically adjust parameters based on the physiological
state of the brain network, monitored in real-time [88]. Un-
doubtedly, the translational prospect of neurostimulation to ma-
nipulate brain networks that generate abnormal rhythms, dys-
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rhythmias, or bursts of activity associated with dysfunction is
promising. However, critical gaps in knowledge hinder the de-
velopment of a robust control policy for next-generation im-
plantable devices.

How does the architecture of the neural system mediate the
effect of neurostimulation on neurophysiology and behavior?
Network control theory [77] provides a mathematical frame-
work for mapping the influence of a control signal on the dy-
namics of an interconnected system. When combined with
graph modelling tools from network neuroscience [10], where
nodes represent discrete brain regions and edges represent the
structural connections between brain regions, control theoretic
approaches can elucidate how the brain’s structural architec-
ture of white matter fiber pathways shapes its ability to navi-
gate through a repertoire of dynamical states [42]. Theoretical
rules of controllability prescribe the trajectories through state
space elicited by a given control signal [42, 15, 41], and begin
to explain why one brain network may be more or less influen-
tial on brain dynamics than another [59]. Recent efforts to test
control theoretic predictions of the relationship between con-
trollability and brain activity have relied on in silico models
in which neuronal ensembles are interlinked by structural con-
nections measured by human neuroimaging [72]. Despite the
promising convergence between theory and model simulation,
empirical stimulation data bridging network control and neuro-
physiology are lacking.

Network control theory accounts for the structural connec-
tions that convey modulated brain activity to downstream re-
gions in the network; however, it does not account for the func-
tional rules that govern whether communication between brain
regions can occur at a specific point in time. At the millimeter-
scale, synchronous oscillations in the local field potential are
thought to actively gate the transfer of information across the
network [29, 27, 82, 38, 18] and are commonly observed dur-
ing higher-order cognitive processing [26]. A functional (rather
than structural) network representation of the coherence be-
tween different ensembles of neurons may capture dynamical
states of communication [46, 33]. The neurophysiologic in-
terpretation of these states can depend on the measured fre-
quency range of the functional network [8, 85], which in turn
implicates certain types of cells interacting over specific spatial
scales [60]. Prior studies have examined how these functional
networks may reconfigure during higher-order cognitive func-
tions such as learning new skills [11, 13, 12, 69], forming mem-
ories [20], attending to the environment [84], and processing
language [30]. Complimentary work also posits that reconfigu-
ration of functional networks may underlie neurophysiological
abnormalities in patients with epilepsy [58, 56], schizophrenia
[9, 19], Parkinson’s disease [81, 75], and stroke [95, 40]. While
these studies explain changes in functional network reconfigu-
ration when the brain is perturbed en masse, a rigorously quan-
tified map of functional network reconfiguration due to con-
trolled, focal perturbation has not been attained.

Here we seek to elucidate the network control principles by
which neurostimulation can alter function and behavior based
on constraints prescribed by structural connectivity and spon-
taneous functional interactions. We measure the electrocor-

ticogram (ECoG) in 94 drug-resistant epilepsy patients under-
going neurostimulation (Fig. 1a-b), and we construct struc-
tural networks from diffusion imaging data acquired in the
same individuals. We also construct functional networks before
and after individual stimulation trials using multitaper coher-
ence between sensors [79] in distinct frequency bands [63, 57]
(Fig. 1c), and we define brain state before and after stimula-
tion using a previously validated biomarker of memory [35].
We test four hypotheses. First, we hypothesize that the strength
and location of stimulation can differentially drive two separate
modes of global versus local control over functional architec-
ture [72]. Intuitively, stimulation to functional hubs – nodes
that tend to interact strongly with the rest of the network – may
have swiftly attenuated effects due to signal dispersion across
many downstream regions, while stimulation to non-hubs may
have more localized and targeted effects. Second, we hypothe-
size that regions with strong baseline functional interaction with
the stimulation site are more likely to exhibit altered hub prop-
erties following stimulation than brain regions with weak func-
tional interaction with the stimulation site, indicating a func-
tional conduit of stimulation. Third, based on prior data [16],
we hypothesize that these functional interactions – particularly
in high frequency bands – co-localize with structural white mat-
ter networks (Fig. 1d). Fourth, we hypothesize that neurostim-
ulation directed towards modal control points [42, 77], which
tend to be structural non-hubs of a patient’s white matter net-
work thereby minimizing signal dispersion, facilitate a stronger
shift in dynamical state associated with memory encoding, a
function that is altered in patients with epilepsy [45, 94, 1]. Col-
lectively, these analyses will supply a roadmap of the impact of
neurostimulation on network physiology, mediated by network
structure, and provide fundamental mechanistic insight into the
influence of neurostimulation on behavioral state.

2. Results

2.1. Neurostimulation drives localized and distributed func-
tional network reconfiguration.

We first ask the question, “How does neurostimulation alter
the architecture of functional brain networks?” Based on recent
theoretical insights on the costs of forming and breaking con-
nections in structural and functional brain networks [17, 21, 2],
we expect stimulation to heterogeneously affect existing coher-
ent interactions, strengthening some and weakening others. To
test these expectations, we study three measures of network re-
configuration: two at the topological scale of nodes and one at
the topological scale of edges (Fig. 2a). At the node scale, we
first compute the strength, or average coherence, for each net-
work node during the pre-stim epoch and post-stim epoch for
each of the four coherence frequency bands. We next exam-
ine the change in the mean of node strengths and the change in
the variance of node strengths between the pre-stim epoch and
the post-stim epoch. Intuitively, a change in the mean of node
strengths quantifies the likelihood that nodes exhibit greater
frequency-specific functional interaction following stimulation,
and a change in the variance of node strengths quantifies the

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2018. ; https://doi.org/10.1101/292748doi: bioRxiv preprint 

https://doi.org/10.1101/292748
http://creativecommons.org/licenses/by-nd/4.0/


a

stimulated 
electrode pair

c Functional Network

Electrocorticography (ECoG)

high gamma
95-105 Hz

low gamma
30-40 Hz

alpha / theta
5-15 Hz

beta
15-25 Hz

-30.0 0.0 0.5 T T+1.0 T+3.0
Time (sec)

EC
oG

 S
en

so
rs

 (n
od

es
)

0

N

. .
 . 

. .

pre-stim post-stimstim
b Neurostimulation Timeline

baseline inter-stim

Tr
ia

l 1
Ba

se
lin

e

no
de

s nodes

pre-stim

post-stim

Tr
ia

l T Multitaper Coherence
0.0 1.0

Structural Network

Quantitative Anisotropy
1.00.0

d

no
de

s nodes

whole brain tractography

T+0.5

Figure 1: Measuring network response to targeted, intracranial neurostimulation. (a) We record the electrocorticogram (ECoG) in 94 patients with drug-
resistant epilepsy across 8 clinical institutions using intracranial sensors implanted in cortical and subcortical brain structures. To evoke a network response, we
stimulate adjacent electrode pairs using a charge-balanced, biphasic current source with a square waveform of variable amplitude, frequency, and duration. (b) For
each experimental session, we select a stimulation location and collect the following epochs of ECoG activity: (i) thirty seconds of baseline activity before any
stimulation is given, (ii) one half-second of activity before a stimulation trial, and (iii) two consecutive and non-overlapping half-second windows of activity after
a stimulation trial. A stimulation trial is defined by a combination of pulse frequency, amplitude, and duration, and consecutive stimulation trials are separated by
an inter-stimulation interval drawn from a uniform random distribution ranging from 2.75 seconds to 3.25 seconds. (c) We measure the impact of neurostimulation
on functional network architecture by constructing dynamic graph models in which intracranial sensors are represented by nodes and the functional interactions
between intracranial sensors are represented by edges. To infer functional interactions, we calculate the multitaper coherence between each pair of ECoG signals
in non-overlapping, half-second time windows for each baseline epoch, pre-stimulation epoch, and post-stimulation epoch in the following four frequency bands:
(i) alpha/theta (5-15 Hz), (ii) beta (15-25 Hz), (iii) low gamma (30-40 Hz), and (iv) high gamma (95-105 Hz) [63, 57]. (d) To examine how structural connectivity
constrains functional network reconfiguration to neurostimulation, we also construct a static graph model of the brain’s structural network by applying deterministic
tractography to each subject’s diffusion tensor imaging data.
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likelihood that nodes exhibit greater heterogeneity in their de-
gree of functional interaction with other nodes in the network.
At the edge scale, we compute the configuration similarity [58]:
a Pearson correlation between the vector of coherence weights
during the pre-stim epoch and the vector of coherence weights
during the post-stim epoch. Similarity values near 0 imply
a greater change in the configuration of network coherences,
and values near 1 imply a lesser change in the configuration of
network coherences. We confirmed that the topological mea-
surements at the node scale capture different reconfiguration
phenomenon than the topological measurements at the edge
scale by observing weak relationships between changes in the
mean and variance of node strengths to configuration similarity
(Fig. S1).

Next, we test our expectation that stimulation heteroge-
neously affects existing coherent interactions, strengthening
some and weakening others. We first study changes in the mean
and variance of node strengths between the pre-stim epoch
and post-stim epoch for each of the four coherence frequency
bands (Fig. 2b,c). Using a Wilcoxon rank-sum test and Bonfer-
roni correction for multiple comparisons, we examine whether
node-level changes in the network 100ms after stimulation off-
set are any greater than passive changes observed over an equal
duration of spontaneous activity at baseline, before any stimu-
lation, across stimulation sessions over subjects. We find that
stimulation leads to a significantly greater change in the mean
of node strengths than expected at baseline in the alpha/theta
band (Z(247) = 11448, p = 0.001) and to a non-significant
change in the beta band (Z(247) = 14006, p = 0.68), in the
low gamma band (Z(247) = 13131, p = 0.13), and in the high
gamma band (Z(247) = 14883, p = 1.0). We also find that stim-
ulation leads to a significantly greater change in the variance of
node strengths than expected at baseline in the alpha/theta band
(Z(247) = 10660, p = 0.0001) and to a non-significant change
in the beta band (Z(247) = 13422, p = 0.24), in the low gamma
band (Z(247) = 14137, p = 0.84), and in the high gamma band
(Z(247) = 14086, p = 0.76). We find that these effects indeed
persist and possibly strengthen in the beta band and low gamma
band at least 600ms after stimulation offset (Fig. S2b,c). These
results demonstrate that stimulation amenably alters functional
network organization in lower alpha/theta band frequencies (5–
15 Hz) at the node scale. Specifically, we observe that nodes
generally exhibit an increase in low frequency interaction fol-
lowing neurostimulation. However, changes in node strengths
are also heterogeneously distributed across nodes in the net-
work.

We next ask whether stimulation may still alter functional
network topology at the edge scale. Using a Wilcoxon rank-
sum test and Bonferroni correction for multiple comparisons,
we examine whether configurational changes in the network
edges 100ms after stimulation offset are any greater than the
passive change observed over an equal duration of spontaneous
activity at baseline, before any stimulation, across stimulation
sessions over subjects. We find that stimulation leads to a
significantly lower configuration similarity (greater reconfig-
uration) than expected at baseline in the high gamma band
(Z(247) = 9252, p = 2.3×10−6) and to a non-significant change

in the alpha/theta band (Z(247) = 13543, p = 1.0), in the beta
band (Z(247) = 12820, p = 1.0), and in the low gamma band
(Z(247) = 13502, p = 1.0). We find that these effects indeed
persist at least 600 ms after stimulation offset (Fig. S2d). These
results demonstrate that stimulation amenably alters functional
network organization in high gamma band frequencies (95–105
Hz) at the edge scale. Specifically, we observe that functional
interactions undergo a change in their configurational pattern in
high frequencies following neurostimulation.

2.2. Input energy differentially modulates topological scale of
functional network response.

Building on our observations of a complex, frequency-
dependent network response to stimulation, we next ask, “Do
properties of the stimulation signal, such as amplitude, pulse
frequency, and duration, influence the extent of functional net-
work reconfiguration?” To answer this question, we iteratively
cycle through stimulation parameters for each consecutive trial
(Fig. 3a), and we compute the stimulation energy as the prod-
uct between the three parameters (Fig. 3b). Based on prior
observations of a relationship between stimulation energy and
volume of tissue activated [25], we hypothesize that stronger
stimulation input into the functional network will lead to more
widespread change in functional architecture than weaker stim-
ulation input, presumably by penetrating the network along
short axonal fibers in the gray matter and long myelinated fibers
in the white matter.

To test this hypothesis, we first compute a within-session
Spearman’s ρ correlation between stimulation energy and the
three measures of functional network reconfiguration (change
in mean of node strengths, change in variance of node strengths,
and configuration similarity) for the four coherence frequency
bands (Fig. 3c-e). Using a one sample t-test and Bonferroni
correction for multiple comparisons, we test whether increas-
ing stimulation energy drives greater node-level changes in the
network 100ms after stimulation offset (Fig. 3c,d). We find that
greater stimulation energy leads to a significant decrease in the
mean of node strengths in the low gamma band (t(247) = −2.5,
p = 0.048) and in the high gamma band (t(247) = −6.3,
p = 4.4 × 10−9), and to a non-significant change in the al-
pha/theta band (t(247) = 1.5, p = 0.56) and in the beta band
(t(247) = 0.6, p = 1.0). We also find that greater stimula-
tion energy leads to a significant decrease in the variance of
node strengths in the high gamma band (t(247) = −5.9, p =

5.8 × 10−8), and to a non-significant change in the alpha/theta
band (t(247) = 1.0, p = 1.0), in the beta band (t(247) = −0.6,
p = 1.0), and in the low gamma band (t(247) = −1.7, p = 0.32).
We find that these effects indeed persist in the high gamma band
at least 600ms after stimulation offset (Fig. S3c,d). Our re-
sults indicate a robust dependence of high frequency functional
reorganization at the scale of network nodes on stimulation
strength. Specifically, greater stimulation energy disrupts and
decreases cohesive node-level interactions in high frequency
bands. We did not observe a similar disruption in node-level
architecture in the lower frequency bands.

Logically, we next ask whether stimulation energy similarly
alters the edge-level architecture of the network. Using a one

4

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2018. ; https://doi.org/10.1101/292748doi: bioRxiv preprint 

https://doi.org/10.1101/292748
http://creativecommons.org/licenses/by-nd/4.0/


a

Pr
e-

St
im

Po
st

-S
tim

Mean of Node Strength Variance of Node Strength Similarity of Edge Configuration

Δ
 M

ea
n 

N
od

e 
St

re
ng

th
 (r

el
. b

as
e.

)

0.00

0.04

-0.04

5-15
Hz

15-25
Hz

30-40
Hz

95-105
Hz

Δ
 V

ar
. N

od
e 

St
re

ng
th

 (r
el

. b
as

e.
)

0.000

0.004

0.002

-0.002

5-15
Hz

15-25
Hz

30-40
Hz

95-105
Hz

5-15
Hz

15-25
Hz

30-40
Hz

95-105
Hz

Si
m

lr.
 E

dg
e 

C
on

fig
ur

at
io

n 
(re

l. 
ba

se
.)

0.0

0.1

-0.2

-0.1

***** ***

b c d

Figure 2: Control of frequency-specific functional network topology. (a) Does stimulation induce network reconfiguration at the scale of network nodes or at
the scale of network edges? Shown here are different forms of network reconfiguration: two forms at the node scale and one form at the edge scale. At the node
scale, stimulation may increase or decrease the overall functional interactions of a node with other nodes in the network, resulting in a change in the mean of node
strengths and/or a change in the variance, or heterogeneity, of node strengths in the network. At the edge scale, stimulation may alter the configurational pattern of
functional interactions underlying functional network topology. We measure edge scale change by computing a configuration similarity metric [58] of the pattern of
network coherences between the pre-stim trial and the post-stim trial; values near 1 (or 0) imply a lesser (or greater) change in network configuration. (b) Difference
in the change in mean of node strengths between stim epochs and baseline epochs. Change in the mean of node strengths is significantly greater during stimulation
epochs than baseline epochs in the alpha/theta band (p < 0.01, corrected). (c) Difference in the change in variance of node strengths between stim epochs and
baseline epochs. Change in the variance of node strengths is significantly greater during stimulation epochs than baseline epochs in the alpha/theta band (p < 0.001,
corrected). Stimulation alters low frequency organization of the functional network at the scale of network nodes. (d) Difference in the configuration similarity of
network edges between stim epochs and baseline epochs. Reconfiguration of functional interactions is significantly greater during stimulation epochs than baseline
epochs in the high gamma band (p < 0.001, corrected). Stimulation alters high frequency organization of the functional network at the scale of network edges. Each
observation is the average across epochs within a stimulation session of a single subject. Solid lines represent the median, and dashed lines represent the first and
third quartiles. *p < 0.05, **p < 0.01, ***p < 0.001.
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sample t-test and Bonferroni correction for multiple compar-
isons, we test whether increasing stimulation energy drives
greater configurational change in the network edges 100ms af-
ter stimulation offset (Fig. 3e). We find that greater stimu-
lation energy leads to a significant decrease in the configura-
tion similarity (greater reconfiguration) in the alpha/theta band
(t(247) = −3.2, p = 0.005) and in the high gamma band
(t(247) = −2.0, p = 0.044), and to a non-significant change in
the beta band (t(247) = −1.7, p = 0.33) and in the low gamma
band (t(247) = −1.0, p = 1.0). We find that these effects dis-
sipate 600ms after stimulation offset (Fig. S3e). Our results
indicate that greater stimulation energy drives greater reconfig-
uration of the functional topology in both low frequency bands
and high frequency bands. Critically, we find that stimulation
strength only explains immediate edge-level reconfiguration of
network topology and does not exhibit a relationship with later
stage edge-level reconfiguration.

Combined with our earlier findings, our analysis demon-
strates that greater stimulation energy alters high frequency net-
work architecture at the scale of network nodes and network
edges. Specifically, we find that the strength of stimulation
drives decreased high frequency coherence between network
nodes, by presumably redistributing coherent edges across the
network and reducing the variance in node strengths. Con-
versely, less stimulation energy may increase node strengths in
high frequency networks by driving less topological reconfig-
uration of the network edges and simply reinforcing existing
functional interactions. In the low frequency, alpha/theta net-
work, stimulation energy did not significantly influence node-
level organization but did drive greater reconfiguration of finer-
scale edge architecture – suggesting that low-frequency node-
level architecture may be hypersensitive to stimulation to the
extent that stimulation strength plays a minimal role.

2.3. Stimulation of baseline hubs vs. nonhubs has differential
effects on the network.

We next build upon our analysis of the influence of stimu-
lation parameters on functional network topology by similarly
investigating the role of 248 unique stimulation locations over
94 subjects in the functional brain network (83 depth locations
and 165 surface locations, Fig. 4a; see Fig. S5 for regional
distribution of stimulation location). We specifically ask, “Do
functional hubs drive more widespread reconfiguration of the
functional network than functionally isolated brain areas?” To
answer this question, we measure the node strength as the mean
coherence of the stimulation node to all other nodes at baseline.
We hypothesize that stimulation of a stronger functional hub
will lead to greater dispersion of input energy throughout the
network, driving a homogenous network response; stimulation
of a weaker functional hub will lead to more targeted disper-
sion of input energy to a subset of network nodes, driving a
heterogenous network response (Fig. 4b).

To test this hypothesis, we first compute a Spearman’s ρ cor-
relation between baseline node strength of the stimulation re-
gion and the average of each of the three measures of functional
network reconfiguration (change in the mean of node strengths,
change in the variance of node strengths, and the configuration

similarity) for the four coherence frequency bands (Fig. 4c-e).
Using a Bonferroni correction for multiple comparisons, we test
whether greater node strength of the stimulation region drives
greater node-level changes in the network 100ms after stimula-
tion offset, over stimulation sessions across subjects (Fig. 4c,d).
We find that stimulation node strength does not significantly
influence the mean of node strengths in the alpha/theta band
(ρ(246) = −0.02, p = 1.0), in the beta band (ρ(246) = −0.02,
p = 1.0), in the low gamma band (ρ(246) = −0.06, p = 1.0),
or in the high gamma band (ρ(246) = −0.03, p = 1.0). We
also find that the stimulation node does not significantly in-
fluence the variance of node strengths in the alpha/theta band
(ρ(246) = −0.05, p = 1.0), in the beta band (ρ(246) = −0.03,
p = 1.0), in the low gamma band (ρ(246) = −0.14, p = 0.09),
or in the high gamma band (ρ(246 = −0.11, p = 0.3). We
also do not observe these effects after 600ms following stimula-
tion offset (Fig. S4c,d). Our results indicate that baseline node
strength does not play an influential role in altering large-scale
organization of network nodes.

We next ask whether the strength of the stimulation node
can differentially drive reconfiguration of edge-level architec-
ture of the network. Using a Bonferroni correction for mul-
tiple comparisons, we test whether greater node strength of
the stimulation region drives greater configurational change in
the network edges 100ms after stimulation offset, over stimu-
lation sessions across subjects (Fig. 4e). We find that greater
stimulation node strength leads to a significantly greater con-
figuration similarity (lower reconfiguration) in the low gamma
band (ρ(246) = 0.17, p = 0.03) and in the high gamma band
(ρ(246) = 0.58, p = 2.2 × 10−22), and to a non-significant
change in the alpha/theta band (ρ(246) = 0.01, p = 1.0) and
in the beta band (ρ(246) = 0.13, p = 0.2). We find that these
effects persist in the low gamma band and in the high gamma
band, and that they strengthen in the beta band at least 600ms
after stimulation offset (Fig. S4e). These results suggest that
the functional topology of the stimulation region significantly
impacts the pattern of coherent interactions in low and high
gamma coherence frequency bands. Specifically, stimulation
of weaker functional hubs tends to drive a greater change in the
pattern of coherent interactions in low gamma networks and in
high gamma networks. Critically, we find that a location-based
rule for using stimulation to control the distributed reconfigu-
ration of functional interactions is most robust for high gamma
networks thought to reflect activity associated with synaptic in-
put and short-range interactions.

Combined with our earlier findings on the negative relation-
ship between stimulation energy and edge reconfiguration, our
findings suggest that stimulation of stronger functional hubs
may lead to greater attenuation of the stimulation energy and
drive less edge-level reconfiguration than stimulation of weaker
functional hubs. Another possible explanation for our findings
is that stronger coherent interactions between stimulated hub
nodes and the remaining nodes in the network mechanistically
constrain the network response to stimulation – which we as-
sess next.
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Figure 3: Dose-dependent response of network reconfiguration to stimulation. (a) To examine the effect of stimulation energy on network reconfiguration, we
vary the amplitude, pulse frequency, and duration of the square-wave input. (b) We quantify the total input energy delivered during a stimulation trial as the product
between the amplitude, pulse frequency, and duration. Here, we show the three-dimensional plane of input parameters that contribute to the overall stimulation
energy. (c) Distribution of correlations between the stimulation energy and the change in mean of node strengths. Correlations are significantly negative in the low
gamma band (p < 0.05, corrected) and in the high gamma band (p < 0.001, corrected). (d) Distribution of correlations between the stimulation energy and the
change in variance of node strengths. Correlations are significantly negative in the high gamma band (p < 0.001, corrected). Greater stimulation energy decreases
node-level interactions in high-frequency networks and leads to a more homogenous distribution of node strengths in the network. (e) Distribution of correlations
between the stimulation energy and the configuration similarity. Correlations are significantly negative in the alpha/theta band (p < 0.01, corrected) and in the high
gamma band (p < 0.05, corrected). Greater stimulation energy leads to lower configuration similarity (greater edge reconfiguration) in both the low frequency and
high frequency networks. For high frequency networks, the extent of edge-level reconfiguration may subserve a finer-scale mechanism for node-level alterations in
functional network topology. Each observation is the correlation across epochs within a stimulation session of a single subject. Solid lines represent the median,
and dashed lines represent first and third quantiles. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4: Functional hubs constrain topological response to stimulation. (a) Distribution of 248 stimulation locations sampled across 94 subjects. (b) To
examine the effect of stimulation location on the reconfiguration of functional network topology, we measure the node strength of the stimulation region during the
baseline epoch – before any stimulation is delivered – for each coherence frequency band. Intuitively, nodes with low strength (left) tend to be functionally isolated
and exhibit weak coherence with the other nodes in the network, while nodes with high strength (right) tend to be functional hubs and exhibit strong coherence with
the other nodes in the network. We expect that stimulation of strong functional hubs will lead to a homogenous change in network topology, and we conversely
expect that stimulation of weak functional hubs will lead to a heterogenous change in network topology. (c) Correlation between the stimulation node strength and
the change in mean of node strengths. We find no significant relationship between the stimulation node strength and the change in mean of node strengths in any
frequency band. (d) Correlation between the stimulation node strength and the change in variance of node strengths. We find no significant relationship between
the stimulation node strength and the change in variance of node strengths. (e) Correlation between the stimulation node strength and the configuration similarity.
Correlations are significantly positive in the low gamma band (p < 0.05, corrected) and in the high gamma band (p < 0.001, corrected). Greater stimulation node
strength leads to greater configuration similarity (lower edge reconfiguration) in high frequency networks. Correlations are computed over stimulation sessions
across subjects. *p < 0.05, **p < 0.01, ***p < 0.001.
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2.4. Baseline coherence of stimulation target with other re-
gions constrains future network response.

Our findings in the previous section point to an important
role of the baseline functional network in constraining the net-
work response to stimulation. Logically, a stimulation node that
exhibits stronger coherence with one set of brain regions may
be more likely to convey the stimulation input to these brain
regions than to another set of brain regions with which it ex-
hibits weaker coherence. We therefore next test the hypothesis
that the baseline coherence between the stimulation node and a
downstream node predicts the probability that the downstream
node will be evoked during a stimulation trial (Fig. 5a). In other
words, a stronger baseline coherence between the stimulation
node and the downstream node may facilitate a greater magni-
tude change in the node strength of the downstream node.

To address this hypothesis, we first compute the within-
session mean and variance of the magnitude change in node
strength. For each session, we next compute the Spearman’s
ρ correlation between the set of baseline coherence values be-
tween the stimulation node and the downstream nodes and the
mean of the magnitude changes in node strength of each down-
stream node (Fig. 5b). Intuitively, positive correlation values
imply that stronger baseline coherence between the stimula-
tion node and the downstream nodes predicts greater magni-
tude change in node strength across stimulation epochs. Us-
ing a Wilcoxon rank-sum test and Bonferroni correction for
multiple comparisons, we find a significant positive correlation
values in the alpha/theta band (Z(247) = 4986, p = 0.003),
in the beta band (Z(247) = 2092, p = 5.4 × 10−15), in the
low gamma band (Z(247) = 2355, p = 1.4 × 10−13) and we
find a non-significant positive trend in the high gamma band
(Z(247) = 5928, p = 0.19). We also assess the Spearman’s
ρ correlation between the set of baseline coherence values be-
tween the stimulation node and the downstream nodes and the
variance of the magnitude changes in node strength of each
downstream node (Fig. 5b). We find a significantly positive
correlation in the beta band (Z(247) = 2721, p = 9.9 × 0−11)
and in the low gamma band (Z(247) = 2997, p = 2.0 × 10−10),
and we find a non-significant positive trend in the alpha/theta
band (Z(247) = 5993, p = 0.24) and in the high gamma band
(Z(247) = 6340, p = 0.72). We find that these effects persist
in the alpha/theta band, in the beta band, and in the low gamma
band and strengthen in the high gamma band at least 600ms
after stimulation offset (Fig. S6b,c).

Our findings are consistent with the hypothesis that the base-
line functional network topology involving the stimulation node
may be used to predict the downstream network regions that
are most influenced by stimulation. We also find that this pre-
dictive capacity is dependent on the frequency band of the co-
herent measurement: the likelihood of modulating the coher-
ent interactions of a downstream node is less predictable for
higher frequencies. This finding suggests that the direct coher-
ence between a stimulation node and a downstream node may
be more influential in conveying stimulation input to the down-
stream node for lower coherence frequency bands. Our analysis
provides critical insight into mechanisms of node-level flexibil-
ity, or the ability for a network region to dynamically alter its

level of interaction with other regions in the network. Specifi-
cally, stronger baseline coherence between the stimulation node
and a downstream node tends to predict greater variability with
which the downstream node changes its level of interaction with
the rest of the network within a stimulation session. Such a rule
can guide more principled targeting of network structures to
amenably drive flexible reconfiguration of the functional net-
work.

2.5. Unifying stimulation and functional reconfiguration with
network control theory.

We lastly seek to integrate our observations on stimulation-
driven reconfiguration of functional brain networks with first
principles theory. Network control theory provides a mathe-
matical framework to model changes in the state of a complex
system under a set of constraints prescribed by the structure of
that system [77, 98]. For brain networks, network control the-
ory offers an opportunity to model the logical progression of
a stimulus input into an anatomically-defined structural brain
network, the traversal of that input through the network, the re-
sulting change in inter-regional communication, and an accom-
panying shift in the dynamical state of the brain that accommo-
dates a change in behavior (Fig. 6a) [42, 41, 72, 78, 59]. The
structural topology of the network may confer important con-
trol properties to a complex system such as modal controllabil-
ity, which enables a system to move from its current dynamical
state to more difficult-to-reach dynamical states through an effi-
cient expenditure of energy resources [42, 77, 4]. Recent theo-
retical inquiry into the relationship between brain structure and
function during stimulation posited that stimulation of the struc-
tural brain network’s modal controllers may drive a heteroge-
nous change in functional architecture [72]. However, exper-
imental evidence linking the network control theoretic model
to brain stimulation and its influence on functional architecture
and dynamical brain state via the structural brain network is
lacking.

In this study, we have so far shown that stimulation drives
a rich and complex functional network response that is depen-
dent on the stimulation input energy and the stimulation input
location. While the input energy drives the magnitude of func-
tional reconfiguration, the baseline coherence of the input loca-
tion constrains the spatial specificity of the functional reconfig-
uration. Yet, how does baseline network topology in the vicinity
of the stimulation region relate to the modal control strategy put
forth by structural control theory? To answer this question, we
construct structural brain networks by applying deterministic
tractography to diffusion tensor imaging data that are parcel-
lated into 1015 anatomically-defined, cortical and subcortical
regions of interest (ROI) [28] in a subset of 14 participants (see
Methods; the other participants did not have diffusion tensor
imaging data). We next assign the intracranial ECoG sensors
for a subject to their nearest anatomical ROI based on the short-
est spatial distance between a sensor and the ROI centroids.
We then measure the structural connectivity between anatom-
ical ROIs and the modal controllability of each anatomical ROI
in the structural network, and we assign these values to the in-
tracranial sensors based on their proximity to the nearest ROI.
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Figure 5: Predicting downstream modulation of regional coherence. (a) We hypothesize that the baseline strength of coherent interactions between the stimulation
node (red) and network nodes away from the stimulation node (black) predicts the likelihood that these downstream nodes will be evoked due to stimulation.
Intuitively, a weak baseline coherence between the stimulation node and a downstream network node is less likely to modulate the mean coherence of the downstream
node (left), and a strong baseline coherence between the stimulation node and a downstream network node is more likely to modulate the mean coherence of the
downstream node (right). To test this hypothesis, we first quantify the magnitude change in node strength within each stimulation session. We next compute
Spearman’s ρ correlation between the mean (and variance) of change in downstream node strength across stimulation trials and the baseline coherence between the
stimulation node and the downstream nodes. (b) Distribution of correlations between the mean of change in downstream node strength and the baseline coherence
between the stimulation node and the downstream nodes, for each of the four coherence frequency bands. We find a significantly positive correlation in the
alpha/theta band (p < 0.01, corrected), in the beta band (p < 0.001, corrected), and in the low gamma band (p < 0.001, corrected). These results suggest that
baseline functional network topology involving the stimulation node predicts downstream modulation in node strength. (c) Distribution of correlations between
the variance of change in downstream node strength and the baseline coherence between the stimulation node and the downstream nodes. We find a significantly
positive correlation in the beta band (p < 0.001, corrected) and in the low gamma band (p < 0.001, corrected). These results suggest that baseline functional
network topology involving the stimulation node predicts the flexibility with which a downstream node may alter its interactions with other nodes in the network.
Each observation is the correlation within a stimulation session of a single subject. Solid lines represent the median, and dashed lines represent the first and third
quantiles. *p < 0.05, **p < 0.01, ***p < 0.001.
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To establish a clear relation between structural connectivity
and baseline functional connectivity (measured by coherence),
we calculate the configuration similarity between the pattern of
structural connections and the pattern of baseline coherent in-
teractions between intracranial sensors, for each coherence fre-
quency band and each subject (Fig. 6b). Using a one sample
t-test, we test the null hypothesis that the configuration sim-
ilarity is equal to zero. We observe non-significant, negative
trends between structural connectivity and baseline coherence
in the alpha/theta band (t(13) = −1.7, p = 0.11, uncorrected),
in the beta band (t(13) = −1.5, p = 0.16, uncorrected), in
the low gamma band (t(13) = −2.2, p = 0.04), and in the
high gamma band (t(13) = −2.4, p = 0.03). Our results im-
ply that stronger structural connections are generally associated
with weaker coherent interactions, most saliently in higher fre-
quency bands that typically reflect local, bottom-up processing
associated with synaptic input.

Based on the result that structural connectivity weakly con-
strains baseline coherent interactions between brain regions, we
ask whether a control strategy motivated by modal controllabil-
ity of the structural brain network predicts stimulation-driven
reconfiguration of the functional network topology. To answer
this question, we first calculate the modal controllability for
the brain region in each stimulation session across subjects.
We next compute the Spearman’s ρ correlation between modal
controllability of the stimulated brain region and the average,
within-session configuration similarity. Using Bonferroni cor-
rection for multiple comparisons, we find a significant posi-
tive correlation between modal controllability and configura-
tion similarity in the beta band (ρ(24) = 61, p = 0.003), in the
low gamma band (ρ(24) = 0.65, p = 0.001), and in the high
gamma band (ρ(24) = 0.59, p = 0.005), and we find a non-
significant positive trend in the alpha/theta band (ρ(24) = 0.47,
p = 0.05). These effects persist at least 600ms after stimula-
tion offset (Fig. S7a). These results imply that stimulation of
stronger modal controllers drives lower reconfiguration of the
coherent interactions in the functional network. To contextual-
ize these findings, we draw upon the well-established positive
relationship between modal controllability and structurally iso-
lated brain regions [42]. By targetting strong modal controllers
in the structural brain network, stimulation modulates struc-
turally isolated brain areas and drives lower functional recon-
figuration than stimulation of weak modal controllers in struc-
turally connected brain areas.

Notably, our results demonstrate a complex and frequency-
specific link between structural topology and functional topol-
ogy – weak structural connections tend to span between brain
areas with stronger, high frequency functional interactions and
stimulation of modal controllers in structurally isolated brain
regions tends to limit the extent of functional network reconfig-
uration. Combined with earlier findings, we put forth a putative
sequence of physiological events associated with modal con-
trol in which stimulation of strong modal controllers activates
strong, local functional hubs that drive less functional reconfig-
uration of network-wide edges (Fig. 4e) and greater change in
the node strengths of functionally connected, downstream brain
regions (Fig. 5b). In contrast, stimulation of weak modal con-

trollers activates weaker, functionally isolated regions that drive
distributed functional reconfiguration of network-wide edges
(Fig. 4e). While these findings establish a link between network
control and functional reconfiguration, they do not establish a
link between network control and changes in dynamical brain
state.

To experimentally examine the relationship between the
modal controllability of the stimulation region and the shift in
dynamical brain state following stimulation, we leverage a pre-
viously documented and validated binary classifier of neural ac-
tivity into good and poor episodic memory encoding states [35].
Specifically, we first train the classifier to discriminate between
successful and unsuccessful word recall trials during a delayed
free recall task using features based on spectral power of ECoG
activity. We next evaluate the classifier on ECoG activity during
the pre-stim epoch and the post-stim epoch of each stimulation
trial and compute the change in probability of being in a good
memory encoding state. We calculate the correlation between
the modal controllability of the stimulation region and the av-
erage, within-session change in probability of being in a good
memory state over stimulation trials (Fig. 6d). We find a sig-
nificant positive correlation (Pearson’s r(17) = 0.49, p = 0.03).
These findings imply that the push towards better memory en-
coding states is associated with stimulation of strong modal
controllers that are theoretically positioned to push the brain
to more energetically unfavorable and distant brain states.

Collectively, our study reveals a link between brain struc-
ture and brain function that is grounded in network control the-
ory. Using the network control framework, we uncover the im-
portant role of stimulation on reconfiguration of functional ar-
chitecture that accounts for anatomical constraints on network
dynamics via the topology of structural network connectivity.
Critically, we find that brain networks may use a modal control
strategy during transitions between difficult-to-reach dynami-
cal states, which is associated with a reconfiguration in the lo-
calized coherence of individual network nodes to the broader
functional brain network.

3. Discussion

Here, we addressed the hypothesis that direct stimulation
of cortical and subcortical structures alters the architecture of
functional brain networks and shifts the dynamical brain state in
accord with control strategies identified by applying tools from
network control theory to electrophysiological and structural
brain imaging data. In human epilepsy patients, we measured
coherent patterns of ECoG activity thought to underlie coordi-
nated functional interactions and we mapped how these interac-
tions vary with neurostimulation parameters. We observed that
stimulation drives two modes of functional reconfiguration: the
first mode involves distributed changes in the pattern of func-
tional interactions across the network, and the second mode in-
volves preferentially localized changes in the functional inter-
actions associated with select brain regions. Notably, the mode
of reconfiguration may be strategically selected based on the
strength and location of stimulation. When we stimulated brain
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Figure 6: Using neurostimulation to bridge structure, function, and behavior. (a) Network control theory can model dynamical state changes due to external
input and structural constraints on the system. Consider a stimulation input to the structural brain network (left). This input would evoke a functional response
constrained by the architecture of the structural network (middle) and shift the brain from one state to another state (right). Previous studies posit that structural
topology of the input region – modal controllability – plays a critical role in the energy required to move between different dynamical states [42, 77]. Specifically,
stronger modal controllers may lead to more distant transitions across an energy landscape than weaker modal controllers (right). Here, we demonstrate a critical
link between stimulation of the structural brain network, the evoked functional network response, and changes in dynamical state associated with behavior. Briefly,
we use a previously published biomarker of brain state based on a logistic regression-based classifier of neural activity associated with positive memory encoding
[35]. (b) Distribution of the configuration similarity between structural connectivity and baseline functional connectivity in four coherence frequency bands. Each
observation is a single subject. Solid lines represent the median, and dashed lines represent the first and third quantiles. We find negative trends in the configuration
similarity between structural connectivity and baseline functional connectivity in the low gamma band (p < 0.05, uncorrected) and in the high gamma band
(p < 0.05, uncorrected). (c) Correlation between the modal controllability of the stimulated brain region and the average functional configuration similarity across
stimulation sessions. We find a significant positive correlation in the beta band (p < 0.01, corrected), in the low gamma band (p < 0.01, corrected), and in the high
gamma band (p < 0.01, corrected). This result implies that stimulation of modal controllers leads to less network-wide reconfiguration of functional interactions.
(d) We find a significant positive correlation between the average change in classifier likelihood of positive memory encoding state during stimulation trials and the
modal controllability of stimulated nodes based on the structural brain network (p < 0.05). This result implies that stimulation of structural brain regions that are
more capable of pushing the brain to difficult-to-reach dynamical states is associated with an increased likelihood of reaching a positive memory encoding state after
stimulation. *p < 0.05, **p < 0.01, ***p < 0.001.

12

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2018. ; https://doi.org/10.1101/292748doi: bioRxiv preprint 

https://doi.org/10.1101/292748
http://creativecommons.org/licenses/by-nd/4.0/


regions with weak structural connections to the rest of the net-
work, we tended to invoke a modal control strategy marked by
a modulation of the functional hubness of downstream brain re-
gions and a large change in dynamical brain state.

3.1. Predictors of functional reconfiguration: Implications for
brain network control

The field of network neuroscience has long sought to under-
stand how the rigid and interconnected anatomy of the struc-
tural brain network shapes interactions amongst functionally-
specialized brain areas, which may change from moment to
moment and drive cognition and behavior [70, 44, 43, 76].
Tools from network control theory [65, 77, 89] have enabled
researchers to identify controllability rules that prescribe how
the dynamical state of a neural system can change based solely
on the structural topology of the system [15, 42, 59, 41, 90, 98].
Structural controllability rules account for network interactions
that can occur, but they do not account for finer-scale functional
constraints that dictate whether these interactions will occur at
a point in time [65, 89]. Previous studies have incorporated
these functional constraints into the study of network control
by using neurophysiologically-inspired dynamical mean-field
models [50, 91, 72], which require estimation of biologically
plausible parameters.

In contrast to these studies, we used a data-driven, perturba-
tive approach for inferring rules of functional network recon-
figuration. By focally stimulating brain tissue at the millimeter-
scale, we mapped changes in the statistical interdependencies
between brain regions. We note that there is a subtle distinc-
tion in the statistical methods used here to measure bidrec-
tional, synchronized interactions and statistical methods used
elsewhere to measure directed, effective functional interactions
[39, 64, 14]. We found that the observed change in statistical
interdependency can be predicted by baseline levels measured
before any stimulation is delivered. That is, a brain region that
exhibits a strong, spontaneous functional interaction with the
stimulated brain region is more likely to be modulated dur-
ing stimulation than a brain region with a weak, spontaneous
functional interaction with the stimulated brain region. In the
long standing debate regarding the validity of functional net-
work models to explain causal dynamics [51], these data pro-
vide compelling evidence in favor of a mechanism in which the
functional network may causally convey the influence of stim-
ulation on one brain region to other strongly interacting brain
regions. Our findings implicate a strategy for the functional
control of brain networks in which (i) stimulation of function-
ally isolated brain regions leads to spatially focal and strong
downstream functional reconfiguration, and (ii) stimulation of
functionally hub-like brain regions leads to spatially diffuse and
weak downstream functional reconfiguration.

To relate rules for functional control to theoretical predic-
tions from structural controllability, we bridged electrophysi-
ological data with structural brain imaging data. Confirming
results from prior studies on controllability in healthy subjects
[42, 90], in epilepsy subjects we found that brain regions with
structurally weak connections tend to be strong modal con-
trollers, which facilitate more difficult transitions in brain state.

Stimulations of structurally weak modal control points lead to
strong, local change of functional architecture in a mean-field
model of neuron population dynamics [72]. In contrast, here
we demonstrated that stimulation of modal control points leads
to widespread, weak change in functional architecture due to
the presence of strong functional hubs in the stimulated brain
regions. We identified two potential explanations for the dis-
tinction between the model simulation and our empirical obser-
vations. First, the in silico model assumes identical biophysi-
cal parameters across different neuronal ensembles distributed
across the brain network, which may limit the reproducibility
of detailed spatial and temporal dynamics that would other-
wise be expressed in vivo and measured by intracranial ECoG
sensors. Second, the in silico model accounts for structural
connectivity between neuronal ensembles using diffusion imag-
ing, which measures white-matter fiber pathways spanning long
distances but does not capture gray-matter pathways spanning
short distances [92] and synaptic microarchitecture responsible
for plasticity over varying time scales [86]. When combined
with additional data demonstrating a moderate relationship be-
tween white-matter connectivity and correlated ECoG dynam-
ics [16], our findings suggest that non white-matter structural
connectivity and other physiological factors may contribute to
the reconfiguration of functional network architecture.

3.2. Physiological interpretations of altered functional topol-
ogy

Neuronal synchronization is purported to play a crucial role
in facilitating interareal communication between ensembles of
neurons [29, 27, 82, 38, 18]. Fries (2015) [38] proposed that
rhythmic oscillations in the local field potential give rise to
states of excitability depending on the temporal position during
an oscillatory cycle – two different ensembles of neurons are
able to reliably transfer information between one another when
they are mutually excitable, or exhibit oscillations that are in-
phase. Equally important to communication is the frequency
of the oscillation – higher frequency bands (γ) are thought to
facilitate communication of bottom-up input over short dis-
tances and lower frequency bands (θ, α, β) are thought to facili-
tate communication of top-down processes over long distances
[38, 60].

Notably, we found that stimulation parameters may be tuned
to selectively modulate different regions and spatial extents of
the functional network. Stimulation energy tends to provide
greater control over reconfiguration of lower frequency net-
works, and stimulation location tends to provide greater con-
trol over reconfiguration of higher frequency networks. Specif-
ically, we observed that the strength of the stimulation input
has a greater effect on functional reconfiguration in lower fre-
quency bands than in higher frequency bands, suggesting that
stimulation parameters such as amplitude, pulse frequency, and
duration may play an important role in the modulation of long-
range, top-down functional interactions. We speculate that
a stronger stimulation input may be more likely to penetrate
wider spatial extent of cortex and heterogenously modulate net-
work excitability at low frequencies [38]. We also observed
that the location of the stimulation input has a greater effect
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on functional reconfiguration in higher frequency bands than in
lower frequency bands, suggesting that the hubness of the stim-
ulated brain region may play an import role in the modulation of
short-range, bottom-up functional interactions. Intuitively, we
expect that brain regions involved in bottom-up communication
associated with broadly conveying sensory input to higher order
cortices might also be more sensitive to modulations via stimu-
lation than brain regions involved in top-down communication.

3.3. Methodological considerations and future work
We chose to perform a network analysis of intracranial data

during neurostimulation, rather than a univariate analysis of in-
dividual activations. Our decision enabled us to examine the
influence of neurostimulation on the distributed and intercon-
nected physiology of the human brain, which is in line with
previous in silico modelling work [72]. A wealth of impor-
tant studies have teased apart the effective connectivity between
brain regions using neurostimulation to generate cortico-cortico
evoked potentials (CCEPs) [54, 55, 68]. In a departure from
these studies on effective connectivity, we test the novel hy-
pothesis that neurostimulation can predictively perturb inter-
areal statistical dependencies underlying distributed brain func-
tion. Our study is motivated by recent hypotheses on the role of
coherent synchronization in neuronal communication. With the
maturation of network analysis tools that enable simultaneous
tracking of dynamic network architecture and dynamic activity
[74], we envision future studies where we investigate the poten-
tial for neurostimulation to selectively modulate brain activity
or perturb functional network architecture.

We also chose to examine static changes in the functional
network architecture aggregated over many repeated trials of
neurostimulation. This approach gave us the ability to examine
the statistical robustness of network reconfiguration – and to ad-
dress questions such as “Are some brain regions more likely to
change their functional interactions than other brain regions?”
And “How are these brain regions associated with the stimu-
lated brain region?” In future studies, we aim to understand
how stimulation influences the functional brain network from
one moment in time to the next, as a function of brain state. For
instance, does stimulation during the beginning of a coherent
oscillatory cycle influence network architecture differently than
stimulation during the middle of a coherent oscillatory cycle?
This temporal mapping could inform control strategies to steer
functional brain network reconfiguration in real-time.

Approaches for recording and interrogating intracranial elec-
trophysiology are inherently limited by spatial coverage of the
ECoG sensors, which is determined during the management of
a patient’s epilepsy. This sampling bias leads to a varied rep-
resentation of the functional brain network between individual
patients. While it is not yet possible to record from the entirety
of the human brain using ECoG, we mitigated this shortcoming
by taking key steps in our analysis. First, we used a statistically
robust approach for characterizing the network-impact of stim-
ulation in individual patients. We computed separate measures
of topology for each patient’s functional brain network, which
enabled us to account for individual variability in sensor place-
ment and physiological state. Our data demonstrated a set of

functional rules for network reconfiguration that fundamentally
depend on topological characteristics of the stimulated brain
area that can vary within and between patients. Second, we
used a large dataset consisting of ninety four epilepsy patients,
allowing us to account for a range of individual variability in
functional brain network architecture that is often not possible
in studies of human electrophysiology.

4. Conclusions

Here we mapped, for the first time, the impact of targeted
neurostimulation on distributed functional architecture in the
human brain. We demonstrated that network physiology can be
predictably altered based on control theoretic rules that account
for structural and functional organization of the brain network.
Our results provide a causal, quantified description of the influ-
ence of structure and function on dynamical brain state. Our
findings have significant translational implications in strategiz-
ing stimulation-based therapy based on a combination of be-
havioral biomarkers and neurophysiology.
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6. Methods

6.1. Study cohort

Ninety four patients undergoing intracranial EEG monitor-
ing as part of clinical treatment for drug-resistant epilepsy were
included in this study. Data were collected as part of a multi-
center project designed to assess the effects of electrical stimu-
lation on memory-related brain function. Data analyzed in this
study were collected at the following centers: Thomas Jeffer-
son University Hospital (N = 23), University of Texas South-
western (N = 23), Mayo Clinic (N = 17), National Insti-
tutes of Health (N = 11), Dartmouth-Hitchcock Medical Center
(N = 9), Hospital of the University of Pennsylvania (N = 6),
Columbia University Medical Center (N = 4), Emory Univer-
sity Hospital (N = 1). The research protocol was approved
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by the institutional review board (IRB) at each hospital and in-
formed consent was obtained from each participant.

6.2. Anatomical Localization of Intracranial Electrodes

Patients undergoing surgical treatment for medically-
refractory epilepsy believed to be of neocortical origin un-
derwent implantation of intracranial electrodes to localize the
seizure onset zone. These procedures were applied after presur-
gical evaluation with scalp EEG recording of ictal epochs, MRI,
PET and neuropsychological testing suggested that focal corti-
cal resection may be a therapeutic option. Patients were then
deemed candidates for implantation of intracranial electrodes
to better define epileptic networks. Electrode configurations
spanned the surface of the cortex (linear and two-dimensional
arrays, each sensor is 2.3 mm diameter spaced 10 mm apart)
and subcortical depth (each sensor is 1.5-10 mm apart). All
electrode configurations were planned by a multidisciplinary
team of neurologists and neurosurgeons at each of the eight
medical centers.

Electrodes were anatomically localized using separate pro-
cessing pipelines for surface and depth electrodes. To localize
depth electrodes we first labeled hippocampal subfields and me-
dial temporal lobe cortices in a pre-implant, 2 mm thick, coro-
nal T2-weighted MRI using the automatic segmentation of hip-
pocampal subfields (ASHS) multi-atlas segmentation method
[102]. We additionally used whole brain segmentation to local-
ize depth electrodes not in medial temporal lobe cortices. We
next co-registered a post-implant CT with the pre-implant MRI
using Advanced Normalization Tools (ANTs) [5]. Electrodes
visible in the CT were then localized within sub-regions of the
medial temporal lobe by a pair of neuroradiologists with exper-
tise in medial temporal lobe anatomy. The neuroradiologists
performed quality checks on the output of the ASHS/ANTs
pipeline. To localize subdural electrodes, we first extracted the
cortical surface from a pre-implant, volumetric, T1-weighted
MRI using Freesurfer [36]. We next co-registered and localized
subdural electrodes to cortical regions using an energy mini-
mization algorithm [34]. For patient imaging in which auto-
matic localization failed, the neuroradiologists performed man-
ual localization of the electrodes.

6.3. Electrophysiological Data Acquisition and Stimulation
Mapping Protocol

The electrocorticogram (ECoG) was recorded and digitized
at 500 Hz, 512 Hz, 1000 Hz, 1024 Hz, or 2000 Hz depending
on clinical considerations at each medical center. Signals were
recorded using a referential montage with the reference elec-
trode, chosen by the clinical team, distant to the site of seizure
onset.

To study the response of the electrocorticogram to neurostim-
ulation, we used a mapping procedure in which stimulation was
delivered to cortical and subcortical brain regions – patients
were not instructed to engage in any other task before or dur-
ing stimulation. Prior to the start of each mapping session, we
selected a pair of adjacent electrodes for stimulation by priori-
tizing electrodes in brain regions thought to be associated with

memory function. For each mapping session, we selected a
new stimulation site and patients underwent one or several map-
ping sessions depending on their availability for testing and the
monitoring needs of the clinicians. Prior to the start of a map-
ping session, we recorded thirty seconds of ECoG activity as
a baseline epoch. During a mapping session, we performed
several stimulation trials in which a single trial consisted of
the following epochs: (i) a half-second pre-stimulation epoch,
(ii) a stimulation epoch with variable duration, two consecu-
tive and non-overlapping half-second post-stimulation epochs,
and an inter-stimulation epoch with variable duration. During
each stimulation trial, we delivered stimulation using charge-
balanced, biphasic, rectangular pulses with a pulse width of 300
ms and the following parameters uniformly selected from dis-
crete distributions: pulse frequency (10, 25, 50, 100, 200 Hz),
pulse amplitude (maximum safe amplitude minus 0, 0.5, 1 mA;
range of 0.125–3.0 mA across subjects), stimulation duration
(250, 500, 1000 ms), and inter-stimulation interval (2750–3250
ms). These stimulation parameter ranges were chosen to be
well below the accepted safety limits for charge density [83]
and ECoG was continuously monitored for afterdischarges by a
trained neurologist.

To eliminate confounding effects of stimulation on signal
quality and saturation, we disregarded ECoG data collected dur-
ing the stimulation epoch and the 100 msec following stimula-
tion offset. We also employ a conservative electrode screening
procedure, in which we discard non-stimulated channels that
exhibit evidence of stimulation-related artifact. Specifically,
before re-referencing to a common average reference, we use
a paired t-test to compare the distribution of mean signal am-
plitude during the pre-stimulation epoch to the distribution of
mean signal amplitude during the post-stimulation epoch, for
each electrode across stimulation trials. Using a Bonferroni un-
corrected p-value threshold of 0.05, we discard electrodes that
exhibit significantly elevated raw, mean signal amplitude during
each stimulation session.

We analyzed ECoG data collected during the baseline, pre-
stimulation, and post-stimulation epochs. The post-stimulation
epoch following 100ms of a buffer period, was split into two
consecutive and non-overlapping segments, 0.5 seconds in du-
ration to assess delayed effects of stimulation – we refer to the
first segment as the 100ms response and the second segment as
the 600ms response. We compared stimulation-related change
in neural activity to spontaneous change in neural activity by
dividing the baseline epoch into segments equal in duration as
the pre-stimulation segment and the post-stimulation segments.
To control for the effect of time, we re-sampled segments with
time-spacing equal to the length of time between the end of
the pre-stimulation epoch and the start of the post-stimulation
epoch. To account for the impact of stimulation current on the
recording properties of the intracranial sensors, we removed the
stimulated electrodes from all analyses of the pre-stimulation
and post-simulation epochs – we retained the stimulated elec-
trodes for all analyses of the baseline epoch.
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6.4. Constructing Frequency-Based Functional Brain Net-
works

ECoG signals were divided into 0.5s, non-overlapping, time-
windows – the baseline epoch consisted of sixty time win-
dows spanning thirty seconds, the pre-stimulation epoch con-
sisted of one time window per stimulation trial, and the post-
stimulation epoch consisted of two time windows per stim-
ulation trial (100-600ms post-stimulation and 600ms-1100ms
post-stimulation). We applied a common average reference
to the artifact-free ECoG signal before constructing functional
networks [93, 62, 63, 24, 57].

To measure functional interactions between ECoG signals in
each time window, we computed spectral coherence, which is
a measure of correlation between the power spectra of two sig-
nals within a frequency range. Prior studies have shown that co-
herence is largely independent of the shape of the power spec-
trum in ECoG signals [23, 22, 93], and underlies different forms
of synchronous interactions between neural populations [60].
We constructed functional networks in each time-window using
multitaper coherence estimation, which defines a graph edge
between electrode pairs (graph nodes) as the power spectral
similarity of signal activity over a specific frequency band.We
applied the mtspec Python implementation [79] of multitaper
coherence estimation with time-bandwidth product of five and
eight tapers in accord with related studies [63]. This proce-
dure resulted in a symmetric adjacency matrix A(t, f ) with size
N × N, where N is the number of network nodes, or electrode
sensors, t is the time window, and f is the frequency band. In
this study, we examined network activity in the following four
frequency bands: α/θ (5–15 Hz), β (15–25 Hz), low-γ (30–40
Hz), high-γ (95–105 Hz). These frequency ranges cover tra-
ditional oscillatory classes and have been previously examined
for their network topology [63, 57].

An alternate representation of the symmetric, square adja-
cency matrix A(t, f ) is a configuration vector Â(t, f ), which
tabulates all N × N pairwise interactions. Due to symmetry of
the adjacency matrix, we unravel the upper triangle of A, result-
ing in the weights of E =

N(N−1)
2 functional interactions. Thus,

Â(t, f ) is a vector of size E.

6.5. Metrics of Functional Network Topology

In this study, we investigated the effect of neurostimulation
on functional network architecture at the scale of network nodes
and at the scale of network edges. At the node scale, we first
quantified the change in the node strength – a measure of func-
tional “hubness” – of individual network nodes. Specifically,
we computed the node strength as ki(t, f ) = 1

N−1
∑

j∈N Ai j(t, f ),
where k is the strength of node i and Ai j is the edge weight
between nodes i and j. Based on the time-dependent set of
node strengths in the network, we computed the change in
the mean of node strengths between time windows and the
change in the variance of node strengths between time win-
dows. To assess the magnitude of change in node strength
for a node between time windows tn and tm, we calculated
∆ki(tn,m, f ) = abs(ki(tm, f ) − ki(tn, f )).

At the edge scale, we quantified the amount of change in
the configurational pattern of the network edges, or coherences,
as described previously in [58]. Specifically, we computed the
configuration similarity between configuration vectors Â(tn, f )
and Â(tm, f ), where tn and tm are two different time windows,
using the Pearson correlation test statistic. Two vectors with a
Pearson correlation value closer to 0 are more dissimilar in their
configurational pattern of network edges than two vectors with
a Pearson correlation value closer to 1.

For the stimulation epoch, we computed global and local net-
work metrics between the pre-stimulation time window and the
post-stimulation time window of a stimulation trial. For the
baseline epoch, we computed global and local network metrics
between time windows separated by an equal length of time as
the duration of stimulations in the associated stimulation ses-
sion.

6.6. Diffusion Tensor Imaging Acquisition and Preprocessing

We collected diffusion tensor imaging data for a subset of pa-
tients from Thomas Jefferson University Hospital (N = 11) and
Hospital of the University of Pennsylvania (N = 3) and vali-
dated our analysis of the functional network response to neu-
rostimulation.

All scans at Thomas Jefferson University Hospital were ac-
quired with a 3T Philips Achieva with an 8-channel head coil
using an echo-planar diffusion-weighted technique. The diffu-
sion scan was 62-directional with a b-value of 3000s/mm2 and
TE/TR = 98/7251 ms. The matrix size was 96 × 96 and the
slice number was 52. The field of view was 230 × 230mm2 and
the slice thickness 2.5mm. Acquisition time was 496 sec per
DTI scan.

All scans at the Hospital of the University of Pennsylva-
nia were acquired with a 3T Siemens Tim Trio with a 32-
channel head coil using an echo-planar diffusion-weighted
technique. The diffusion scan was 116-directional with a b-
value of 2000s/mm2 and TE/TR = 117/4180 ms. The matrix
size was 96 × 96 and the slice number was 92. The field of
view was 210 × 210mm2 and the slice thickness 1.5mm. Ac-
quisition time was 506 sec per DTI scan.

Based on recent evidence that diffusion imaging is highly
sensitive to subject movement [101] and to directional eddy
currents [49], we processed data using the FMRIB Software Li-
brary [48]. We first created individual masks of the patient brain
using BET [67]. We next simultaneously corrected for motion
effects and eddy current distortions by applying the EDDY cor-
rection tool [3] to the diffusion scans and a b = 0 image col-
lected at the beginning of the scan.

We next reconstructed orientation density functions (ODFs)
of the diffusion imaging in each voxel. Specifically, we used
DSI Studio (http://www.dsi-studio.labsolver.org) and general-
ized q-sampling imaging (GQI) [100] to compute the quanti-
tative anisotropy (QA) [99] in each voxel. To conduct fiber
tractography on the reconstructed diffusion images, we used
DSI Studio to generate 1,000,000 streamlines with a maximum
turning angle of 35◦ [6] and a maximum length of 500mm [32].
We next defined the structural brain network using the stream-
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lines linking N = 1015 large-scale cortical and subcortical re-
gions extracted from the Lausanne atlas included in the Con-
nectome Mapping Toolkit [28], consistent with previous work
[7, 6, 44, 43, 42, 41, 72]. We summarized these measure-
ments in a symmetric and weighted structural adjacency matrix
S whose entries S i j reflect the structural connectivity (quantita-
tive anisotropy) between region i and region j.

We localized electrodes in native subject T1-weighted MRI
space to the Lausanne anatomical space by using ANTs [5] to
register the subject’s T1 image to the subject’s diffusion B0 im-
age via affine transformation and also register the subject’s T1
image to MNI space (also native Lausanne space) using a non-
linear warp.

6.7. Metrics of Structural Controllability

To study the architectural constraints of the structural brain
network with the functional network response to neurostimu-
lation, we adopted a control theoretic approach known as net-
work controllability. Briefly, the controllability of a networked
system refers to its ability to be driven to specific dynami-
cal states upon external input [53]. Recent research efforts
have made substantial progress in the development of quanti-
tative heuristics to characterize different strategies for control
[77, 78]. These approaches are now being applied to brain
imaging data to understand how structural brain network topol-
ogy constrains function and behavior [42, 15, 41, 90, 59].

In line with these prior studies, we employ a simplified noise-
free linear discrete-time and time-invariant model of network
dynamics:

x(t + 1) = Ax(t) + BKuK (t), (1)

where x : R≥0 → RN describes the state (i.e. voltage, firing
rate, BOLD signal) of brain regions over time. Thus, the state
vector x has length N, where N is the number of brain regions
in the connectome parcellation, and the value of xi describes
the brain activity state of that region. The diagonal elements of
the matrix A satsify Aii = 0. Prior to calculating controllability
values, we divide A by 1 + ξ0(A), where ξ0(A) is the largest
singular value of A. The input matrix BK identifies the control
point K in the brain, where K = k1, ..., km and

BK = [ek1 · · · ekm ], (2)

and ei denotes the i-th canonical vector of dimension N. The
input uK : R≥0 → RM denotes the control strategy.

One control strategy that we investigate in this study is modal
controllability – the ability of a network region to feasibly con-
trol all the dynamical modes of a system [77]. To calculate
the modal controllability of an anatomical brain region, we first
computed the eigenvector matrix V = [vi j] of the structural net-
work adjacency matrix S – intuitively, vi j encodes the ability
to control the j-th dynamical mode from region i [52]. Based
on our previous work, we defined φi =

∑
j∈N(1 − λ2

j (S))v2
i j as a

scaled measure of the controllability of all N dynamical modes
λ1(S), . . . , λN(S) from brain region i [77, 42, 72, 90]. Brain re-
gions with high modal controllability are versatile in their abil-
ity to control all dynamical modes of the network and brain re-
gions with low modal controllability are specific in their ability
to control a subset of dynamical modes of the network.

To provide additional insight into the topological properties
of structural control points, we evaluated the structural “hub-
ness” of each brain region by computing the structural node
strength as ki = 1

N−1
∑

j∈N S i j – similar to the calculation for
functional node strength specified earlier.

6.8. Mapping Intracranial Electrodes to Anatomical Brain Re-
gions

To relate structural controllability to functional network
topology of the stimulated electrodes, we first computed met-
rics of the structural network topology for 463 brain regions de-
fined by the Lausanne anatomical parcellation. The advantage
of computing these measures using the anatomical parcellation
is the ability to account for whole-brain structural connectivity,
including areas that are not directly sampled by the intracranial
electrodes. We next assigned intracranial electrodes to the Lau-
sanne brain regions based on a nearest voxel approach. Specif-
ically, we identified the voxel closest to the electrode and as-
signed the electrode to the brain region containing that voxel.
Based on this assignment, we associated values of each struc-
tural network metric to the intracranial electrodes.

6.9. Detection of Brain States Associated with Memory Encod-
ing

We examined stimulation-driven changes in dynamical brain
state using a classifier of neural activity associated with mem-
ory encoding processes that was previously validated on data
collected during behavioral experimentation with the same pa-
tients recruited in this study [35, 61]. Briefly, in these prior
studies a logistic regression classifier was trained to discrim-
inate memory encoding-related changes in spectral power in
eight logarithmically-spaced frequency bands across intracra-
nial electrodes that are predictive of whether a word was later
remembered or forgotten during a free-recall task [35, 61]. In
this study, we evaluated the trained memory encoding state
classifier on task-free stimulation data of the same patients by
measuring spectral power during the pre-stimulation epoch and
the post-stimulation epoch, and by computing the change in
probability of good memory encoding state for each stimula-
tion trial. We next calculated the average change in probability
of good memory encoding state across all stimulation trials of
each stimulation mapping session of each patient.
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