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Abstract

D-amino acid probes label cell wall peptidoglycan at both the poles and sidewall of pole-growing
mycobacteria. Since peptidoglycan assembly along the cell periphery could provide a rapid,
growth-independent means by which to edit the cell wall, we sought to clarify the precise
metabolic fates of these probes. b-amino acid monopeptides were incorporated into
peptidoglycan by L,D-transpeptidase remodeling enzymes to varying extents. Dipeptides were
incorporated into cytoplasmic precursors. While dipeptide-marked peptidoglycan synthesis at
the poles was associated with cell elongation, synthesis along the periphery was highly
responsive to cell wall damage. Our observations suggest a post-expansion role for
peptidoglycan assembly along the mycobacterial sidewall and provide a conceptual framework

for understanding cell wall robustness in the face of polar growth.
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Introduction

Model, rod-shaped organisms such as Escherichia coli and Bacillus subtilis elongate across a
broad swath of the cell (1, 2). Mycobacterial cells, by contrast, extend from narrower polar
regions (3-9). Circumscription of growth to discrete zones poses spatial challenges to the
bacterial cell. For example, if polar growth and division are the only sites of cell wall synthesis in
mycobacteria, the entire lateral surface of the cell must be inert (3, 10-12). Such an expanse of

non-renewable surface could leave the cell vulnerable to environmental or immune insults.

Since cell wall peptidoglycan synthesis is critical for bacterial replication, it is often used to
localize the sites of growth and division. Intriguingly, D-amino acid probes, which in other
species have been shown to incorporate into peptidoglycan (1, 11, 13), label both the poles and
sidewall of mycobacteria (5, 13-17). The localization of these molecules is supported by the
detection of peptidoglycan synthetic enzymes at the mycobacterial cell tips and periphery (5, 9,
18-20). However, both intracellular and extracellular incorporation pathways have been
characterized or hypothesized for D-amino acid probes, complicating the interpretation of
labeling patterns (21). Intracellular uptake implies that the probe enters the biosynthetic pathway
at an early stage, and therefore marks nascent cell wall. Extracellular incorporation, on the other
hand, suggests that the probe enters the pathway at a later stage and/or is part of enzymatic
remodeling of the macromolecule in question. The extent to which peptidoglycan synthesis and
remodeling are linked is not clear (10, 22, 23) and may vary with species and external milieu. In
Mycobacterium tuberculosis, for example, there is indirect but abundant data that suggest that
there is substantial cell envelope remodeling during infection when growth and peptidoglycan

synthesis are presumed to be slow or nonexistent (7).

An intracellular metabolic tagging method for the cell wall would be an ideal tool for determining
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whether tip-extending mycobacteria can synthesize peptidoglycan along their lateral surfaces.
At least two pieces of evidence suggest that D-alanine-D-alanine dipeptide probes are
incorporated into peptidoglycan via the cytoplasmic MurF ligase (24, 25). First, derivatives of D-
alanine-D-alanine rescue the growth of Chlamydia trachomatis treated with D-cycloserine, an
antibiotic that inhibits peptidoglycan synthesis by inhibiting the production and self-ligation of D-
alanine in the cytoplasm (24). Second, B. subtilis cells stripped of mature peptidoglycan by
lysozyme treatment retain a small amount of dipeptide-derived fluorescence (25). While these
data are suggestive, formal demonstration of intracellular incorporation requires direct evidence
that the probe labels peptidoglycan precursors. More broadly, better characterization of the
metabolic fate of probes would increase the precision of conclusions that can be drawn from

labeling experiments (26, 27).

Here we sought to delineate cell wall synthesis from remodeling in Mycobacterium smegmatis
and M. tuberculosis. Monopeptide D-amino acid probes chiefly reported peptidoglycan
remodeling by L,D-transpeptidases while dipeptides marked lipid-linked peptidoglycan
precursors. All of the probes tested labeled the poles and sidewall of mycobacteria, indicating
that cell wall metabolism in these regions comprises both synthetic and remodeling reactions.
While peptidoglycan assembly along the mycobacterial periphery did not support obvious
surface expansion, it was greatly enhanced by cell wall damage. Such activity may allow editing

of a complex, essential structure at timescales faster than those permitted by polar growth.

Results

Metabolic labeling of mycobacterial envelope comprises asymmetric polar gradients.

Mycobacteria have been shown to expand from their poles (3-9) but published micrographs

suggest that D-amino acid probes may label both the poles and sidewall of these organisms (5,
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13-17). Metabolic labeling can be achieved by a one-step process, in which the fluorophore is
directly appended to the probe, or a two-step process in which a small chemical tag on the D-
amino acid is detected by subsequent reaction with a fluorescent reactive partner ((21), Figure
1A). We first reexamined the localization of various D-amino acid probes reported in the
literature, including RADA (11), which is directly conjugated to 5-carboxytetramethylrhodamine,
and the two-step alkyne-D-alanine (alkDA or EDA, (11, 13)), and alkyne-D-alanine-D-alanine
(alkDADA or EDA-DA, (24); we use the metabolic labeling nomenclature originally adopted in
(28)) which we detected by copper-catalyzed azide-alkyne cycloaddition (CUAAC) after fixation
(Figures 1B, 1C). After M. smegmatis cells were incubated for ~10% generation in probe, high
resolution and quantitative microscopy revealed that they had asymmetric, bidirectional
gradients of fluorescence that emanated from the poles and continued along the sidewall
(Figure 2A). Polar gradients of dipeptide labeling were also apparent in live cells when we
detected azido-D-alanine-D-alanine (azDADA or ADA-DA, (24)) incorporation by either CUAAC
(using low copper, bio-friendly reaction conditions ((29), Figure 2—figure supplement 1A) or
by copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC, Figure 2—figure

supplement 1B).

The mycobacterial cell envelope is comprised of covalently-bound peptidoglycan,
arabinogalactan and mycolic acids, as well as intercalated glycolipids and a thick capsule ((30),
Figure 1B). Assembly of the envelope layers has long been presumed to be spatially
coincident. This is largely based on biochemical data suggesting that ligation of arabinogalactan
to peptidoglycan occurs concurrently with crosslinking of the latter by transpeptidases (31). We
and others have found that cytoplasmic enzymes that mediate arabinogalactan and
mycomembrane synthesis are enriched at the poles but also present along the periphery of the
cell (5, 32, 33), as is metabolic labeling by OalkTMM and NalkTMM ((34-36), Figure 2A).

OalkTMM and NalkTMM are trehalose monomycolate derivatives that predominantly mark
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covalent mycolates and trehalose dimycolate, respectively, in the mycomembrane (Figure 1B,
(36)). Since the azido and alkynyl groups on the different probes are not orthogonal to each
other (Figure 1C), we opted to compare peptidoglycan and mycomembrane labeling patterns by
using RADA as a fiducial marker. The cell pole with brighter RADA fluorescence also had more
alkDADA or OalkTMM labeling (Figure 2B), suggesting that the polar orientation of
peptidoglycan and mycomembrane metabolism is coincident. We then compared the
fluorescence intensity profiles of cells that had been individually labeled with the probes, and
found similar, average distributions of RADA, alkDADA and OalkTMM at the poles and

peripheries of the cells (Figure 2C).

We next sought to address whether the cell envelope of the related M. tuberculosis is also
labeled in polar gradients. We previously showed that alkDA incorporates into the cell surface of
the organism (13) but were unable to stain the entire population of bacteria. To investigate the
origin of labeling heterogeneity, we first tested whether the structure of fluorophore (Figure 1B)
influenced probe incorporation by incubating M. tuberculosis in HADA, NADA or RADA and
assessing population fluorescence by flow cytometry. HADA and NADA incubation yielded well-
defined fluorescent populations (Figure 2—figure supplement 2A). RADA also labeled the
entire M. tuberculosis population, albeit with greater cell-to-cell variability in fluorescence
intensity. Given that M. tuberculosis incorporates fluorescent probes HADA and NADA relatively
evenly across the population, we hypothesized that the apparent heterogeneity that we
previously observed for alkDA labeling (13) was the result of an inefficient CUAAC ligation. We
obtained modest improvements by changing the reaction conditions, more specifically, by
swapping the BTTP ligand (29, 37) for the TBTA ligand, altering the ratio of ligand:Cu(l) and
increasing the azide label concentration. We also switched our detection moiety to an azide
appended to hydroxycoumarin, the same small, uncharged fluorophore as the one-step HADA

probe (Figure 1B). Under our optimized conditions we detected azido-coumarin fluorescence
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from ~15-20% of cells that had been incubated in alkDA, alkDADA or OalkTMM (Figure 2—

figure supplements 2B, 2C).

Although unable to achieve homogenous M. tuberculosis labeling with two-step envelope
probes, we decided to test whether the sites of envelope labeling in the limited fluorescent
subpopulation resemble those of M. smegmatis. HADA, alkDADA and OalkTMM tagging all
produced cells that had a mixture of sidewall and polar fluorescence (Figure 2—figure
supplement 2C) but exhibited a higher degree of cell-to-cell variability compared to M.
smegmatis. Quantitation of HADA fluorescence showed that peptidoglycan metabolism
comprised asymmetric polar gradients when averaged across the population (Figure 2D). We
next asked whether there was a cell-wide difference in labeling distribution in M. tuberculosis
compared to M. smegmatis. We arbitrarily defined the dimmer polar region as the first 25% of
the cell length, the sidewall as the middle 50%, and the brighter polar region as the final 25%. In
a cell with perfect, circumferential labeling, the ratio of dim pole:sidewall:fast pole in a cell would
be 25:50:25. Since HADA labeled a large proportion of M. tuberculosis (Figure 2—figure
supplement 2A) and was more resistant to photobleaching than NADA, we compared these
ratios for HADA in septating and non-septating M. smegmatis and M. tuberculosis labeled for
~10% generation time (Figure 2D). For M. smegmatis, the ratios were 15:38:47 for non-
septating cells and 17:39:43 for septating cells, while for M. tuberculosis, they were 21:47:32
and 17:56:27 for M. tuberculosis. These data suggest that a greater proportion of peptidoglycan
labeling in M. tuberculosis likely occurs along the cell periphery than in M. smegmatis, although

we cannot rule out a differential contribution of cyan autofluorescence in the two species (38).

Intracellular and extracellular pathways of b-amino acid probe incorporation in
mycobacteria. Since the cell periphery is not known to support surface expansion in

mycobacteria (3-9), we sought to characterize the molecular processes that underlie b-amino
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acid labeling patterns. OalkTMM and NalkTMM are inserted directly by the extracellular Antigen
85 complex into the mycomembrane (36). However, there are three potential pathways by which
D-amino acid probes might incorporate into mycobacterial peptidoglycan (21, 39, 40): an
intracellular, biosynthetic route and two extracellular routes, mediated by D,D-transpeptidase or
L,D-transpeptidase remodeling enzymes (Figure 3A). Peptidoglycan remodeling, particularly by
the L,D-transpeptidases abundantly encoded in the mycobacterial genome, may not strictly
correlate with synthesis of the biopolymer (10, 11, 22, 23). Therefore, we sought to distinguish

the different routes of incorporation for D-amino acid probes in mycobacteria.

It seemed possible that the chemical structure of the derivative (Figure 1B) and/or number of
labeling steps (Figure 1A) might influence probe uptake, so we first tested the labeling
sensitivity of a panel of D-amino acid derivatives to antibiotics that inhibit potential incorporation
routes (Figure 3A). We also assessed OalkTMM and the D-alanine-D-alanine dipeptide probe,
the latter of which has been proposed to tag the peptidoglycan of other species via the
cytoplasmic MurF ligase (Figures 3A, figure supplement 1, (24, 25)). D-cycloserine is a cyclic
analog of D-alanine that inhibits the D-alanine racemase (Alr) and ligase (DdIA) in mycobacteria
(41). Together with the B-lactamase inhibitor clavulanate, B-lactams like ampicillin block D,D-
transpeptidases and D,D-carboxypeptidases. Broader-spectrum carbapenems such as
imipenem additionally inhibit L,D-transpeptidases (42). We also included vancomycin, an
antibiotic that interferes with transpeptidation and transglycosylation by steric occlusion, to
control for general defects in periplasmic peptidoglycan assembly. We empirically determined a
time frame of drug treatment that did not compromise M. smegmatis viability (Figure 3—figure
supplement 2). Within this time frame, labeling for all single residue D-amino acid probes
decreased significantly in response to imipenem or D-cycloserine treatment (Figure 3B). By
contrast, labeling by the dipeptide probe was relatively resistant to these antibiotics. Neither

vancomycin nor ampicillin had a clear effect on labeling by any of the probes, indicating that cell
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death, disruption of peptidoglycan polymerization, and abrogration of D,D-transpeptidation do
not explain the metabolic incorporation differences. OalkTMM labeling was sensitive to D-
cycloserine, but not to imipenem nor ampicillin, suggesting that transfer of mycolates to

arabinogalactan may require peptidoglycan precursor synthesis but not transpeptidation.

To test whether distinct mechanisms of probe incorporation were inhibited by D-cycloserine and
imipenem, we performed a chemical epistasis experiment. We first examined the effect of
different drug concentrations on alkDA incorporation (Figure 3C). Treatment with either D-
cycloserine or imipenem, but not ampicillin, resulted in dose-dependent inhibition of the probe-
derived fluorescence that plateaued at approximately half of untreated levels. We then
assessed the combined effect of D-cycloserine and imipenem by Bliss independence (43), a
commonly used reference model for predicting drug-drug interactions based on the dose
response for the individual drugs. This method is most appropriate when dual inhibition
proceeds via distinct mechanisms e.g. activity against different molecules, enzymes or
pathways (44). The effects of D-cycloserine and imipenem on alkDA incorporation were the
same or slightly greater than the potencies predicted by the antibiotics individually (Figure 3D).
The primarily-additive nature of these antibiotics in the Bliss independence model is consistent
with the idea that D-cycloserine and imipenem block distinct pathways of alkDA incorporation,
and therefore that the probe incorporates into mycobacterial peptidoglycan via both cytoplasmic

and L,D-transpeptidase routes.

RADA and NADA labeling were more sensitive to imipenem than HADA and alkDA (Figure 3B),
at multiple concentrations of drug (Figure 3E). To test whether the probes were differentially
incorporated by L,D-transpeptidases, we knocked out three of the six enzymes encoded in the
M. smegmatis genome. We chose to focus on LdtA, LdtB and LdtE since the M. tuberculosis

homologs (Ldtur1, Ldtyre, and Ldtyrs, respectively) have been shown in vitro to have both cross-
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linking and D-amino acid exchange activity and to be inhibited by imipenem (45). RADA and
NADA fluorescence decreased by ~80-85% the absence of IdtABE, and this effect was
complemented by the expression of IdtA alone (Figure 3F). We observed a more moderate
effect on HADA and alkDA labeling, which were decreased by ~40-60%. Collectively these data
suggest that: 1. RADA and NADA probes primarily report L,D-transpeptidase activity,
tetrapeptide substrate, or both, and 2. HADA and alkDA likely label via both cytoplasmic and

L,D-transpeptidase routes.

Dipeptide D-amino acid probe incorporates into mycobacterial peptidoglycan precursors.
Since RADA labeling in mycobacteria is largely indicative of L,D-transpeptidase activity (Figure
3) and occurs at the poles and along the sidewall (Figure 2), we surmise that peptidoglycan is
remodeled at both of these locations. We wished to determine whether remodeling was
coincident with biopolymer synthesis but were limited by the multiple incorporation routes of
alkDA and HADA (Figure 3). Dipeptide D-amino acid probes have been proposed to report
peptidoglycan synthesis in other species via a cytoplasmic, MurF-dependent pathway (Figures
3A, figure supplement 1, (24, 25)). Consistent with this notion, and in contrast to the
monopeptide probes, alkDADA labeling was relatively stable to imipenem treatment (Figures
3B, 3E) and inefficiently incorporated (Figure 4—supplement 1). Thus we were surprised to
observe that overall labeling by alkDADA decreased in the absence of LdtA, LdtB, LdtE or
combinations thereof (Figure 4—supplement 2A). The reduction in signal occurred primarily at
the poles (Figure 4—supplement 2B) yet loss of the enzymes did not impair bacterial growth
(Figure 4—supplement 3). As we do not yet understand the mechanistic basis for this
observation, we sought to directly test the hypothesis that dipeptide probes incorporate into

peptidoglycan precursors.

10
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D-alanine is produced in mycobacteria by Alr, the D-alanine racemase (Figure 3—figure
supplement 1). The molecule is linked to a second D-alanine by DdIA, the D-alanine ligase, and
the resulting dipeptide is added to the UDP-MurNAc-tripeptide by MurF. If the alkDADA probe is
able to label mycobacterial peptidoglycan via MurF, addition of the molecule to the growth
medium should rescue a mutant that is unable to make D-alanine-D-alanine. We first
constructed an alr deletion mutant in M. smegmatis and verified that growth is rescued by
exogenous D-alanine but not by alkDA (Figure 4A). Although our antibiotic data suggest that
alkDA is incorporated into peptidoglycan in part via a cytoplasmic pathway (Figure 3), the
inability of this probe to rescue growth was not surprising given the substrate specificities of DdI
and MurF (46) and inefficient synthesis of UDP-MurNAc-pentapeptide with D-amino acids other
than alanine (39). In contrast to the alkDA results, we were able to rescue alr with either D-

alanine-D-alanine or its alkynyl derivative (Figure 4A).

We considered the possibility that alkDADA may be digested by a D,D-carboxypeptidase prior to
incorporation. This would result in the release of both unlabeled D-alanine and alkDA, the first of
which could account for alr growth rescue (Figure 4A). We reasoned that a more precise gauge
for MurF-dependent incorporation of the intact probe would be whether it could support the
replication of a strain unable to ligate D-alanine to itself. Therefore, we confirmed that alkDADA
rescues the growth of a temperature-sensitive ddIA mutant (47) at the non-permissive

temperature (Figure 4B).

Our genetic data supported a MurF-dependent pathway of alkDADA incorporation into
peptidoglycan. If true, the probe should be present in precursors such as lipid | and lipid Il
(Figure 3—figure supplement 1). To test this hypothesis, we first optimized for mycobacteria a
recently-reported protocol for detecting lipid-linked precursors (48, 49). We extracted lipidic

species from M. smegmatis and exchanged endogenous D-alanines for biotin-D-lysine (BDL) in

11
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vitro using purified Staphylococcus aureus enzyme PBP4, a promiscuous D,D-transpeptidase
(48). Biotinylated species were separated by SDS-PAGE and detected by horseradish
peroxidase-conjugated streptavidin. We detected a biotin-linked, low molecular weight band that
is reduced upon D-cycloserine treatment and accumulates when the lipid Il flippase MurJ (MviN,
(50)) is depleted or vancomycin is added (Figure 5A), conditions that have been shown to
dramatically enhance precursor detection in other species (48, 49). These data strongly suggest
that the BDL-marked species are lipid-linked peptidoglycan precursors. We next turned our
attention to detecting lipid I/ll from M. smegmatis incubated with alkDADA. Initially we were
unable to identify alkDADA-labeled species from organic extracts of wildtype M. smegmatis that
had been subjected to CUAAC ligation with picolyl azide biotin (Figure 5B). We reasoned that
the proportion of labeled precursors might be below our limit of detection. Accordingly, we
repeated the experiment in the Aalr background and found that we could clearly detect a low
molecular-weight species band that accumulated with vancomycin treatment (Figure 5B, top)
and that ran at the same size as BDL-labeled material (Figure 5B, bottom). We were also able
to identify a low molecular weight species from Aalr incubated with azDADA that was revealed
by either CUAAC or SPAAC ligation to alkyne- or cyclooctyne-biotin, respectively (Figure 5C).
Taken together, our genetic and biochemical experiments show that the alkDADA and azDADA

probes insert into mycobacterial peptidoglycan precursors by a MurF-dependent route.

Fluorescent vancomycin and penicillin-binding proteins localize to the poles and
sidewall in mycobacteria. The final, lipid-linked peptidoglycan precursor lipid Il is synthesized
by MurG on the cytoplasmic side of the plasma membrane then flipped to the periplasm and
polymerized (Figure 3—figure supplement 1, (51)). We previously showed that MurG fused to
two different fluorescent proteins and expressed under two different promoters is present at
both the poles and periphery of M. smegmatis (5). Labeling by alkDADA marks similar

subcellular locations even with pulses as short as ~1% generation time (Figure 5—figure

12
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supplement 1). These data suggest that lipid-linked peptidoglycan precursors are synthesized
at lateral sites in addition to their expected localization at the poles. However, our standard
experimental protocol for detecting envelope labeling is to perform CuAAC on fixed cells.
Because formaldehyde fixation can permeabilize the plasma membrane to small molecules,
labeled material may be intracellular, extracellular or both. Dipeptide labeling could therefore
read out lipid I/l on the cytoplasmic face of the plasma membrane, uncrosslinked lipid Il on the

periplasmic side, or polymerized peptidoglycan.

To shed light on the potential fate(s) of peptidoglycan precursors made at different subcellular
sites, we first stained live mycobacterial cells with fluorescent vancomycin. This reagent binds
uncrosslinked peptidoglycan pentapeptides and does not normally cross the plasma membrane.
Pentapeptide monomers are a low abundant species in M. tuberculosis, M. abscessus and M.
leprae peptidoglycan (42, 52-54), suggesting that fluorescent vancomycin primarily reports
extracellular, lipid-linked precursors in this genus. Labeling of M. smegmatis with this probe
revealed both revealed both polar and lateral patches (Figure 5—figure supplement 2) as
previously noted (8). This observation suggests that at least some of the peptidoglycan

precursors present along the periphery of the mycobacterial cell are flipped to the periplasm.

We next sought to address whether these molecules could be used to build the peptidoglycan
polymer. Transglycosylases from both the PBP (penicillin-binding proteins) and SEDS (shape,
elongation, division, and sporulation) families stitch peptidoglycan precursors into the existing
meshwork (Figure 3—figure supplement 1, (14, 32, 51, 55-58)). If peptidoglycan precursors
are polymerized along the lateral surface of the mycobacterial cell, at least a subset of these
periplasmic enzymes must be present at the sidewall to assemble the biopolymer. Two
conserved PBPs in mycobacteria are likely responsible for most of the peptidoglycan

polymerization required for cell viability, PonAl and PonA2 (7, 19, 59). Published images of
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PonAl-mRFP and PonAl-mCherry localization suggested that the fusion proteins might
decorate the mycobacterial sidewall in addition to the cell tips (9, 18, 19), but the resolution of
the micrographs did not allow for definitive assignment. Therefore, we first verified the
localization of PonA1l-mRFP. We found that a subset of this fusion protein indeed homes to the

lateral cell surface (Figure 5—figure supplement 3A).

We were concerned that overexpression of PonAl-mRFP causes aberrant polar morphology
and is toxic to M. smegmatis (18, 19) and about the propensity of mCherry to cluster (60). Since
our attempts to produce PonAl fusions with different fluorescent proteins were unsuccessful,
we opted to take a complementary, activity-based approach. Fluorescent derivatives of B-lactam
antibiotics bind specifically and covalently to PBPs, and therefore have been used to image
active enzyme in both protein gels and intact cells (61). Our images of whole cells labeled with
Bocillin, a BODIPY conjugate of penicillin, were in agreement with those from a previous
publication (20), and seemed to indicate that Bocillin binds both the poles and sidewall of M.
smegmatis (Figure 5—figure supplements 3B, 3C). However, given the hydrophobicity of the
BODIPY dye, we considered the possibility that Bocillin might nonspecifically associate with the
greasy mycomembrane. Fluorescence across the cell surface was diminished by pre-treating
cells with the B-lactam ampicillin, which prevents peptidoglycan assembly by binding to PBPs,
but not D-cycloserine, which inhibits peptidoglycan synthesis in a PBP-independent manner
(Figure 5—figure supplements 3B, 3C). These experiments suggest that at least some of the
sidewall labeling of Bocillin is specific, and therefore, that PBPs are present and active in these

locations.

Expansion of the mycobacterial envelope is concentrated at the poles. Our data indicate
that peptidoglycan precursors are made and likely polymerized both at the poles and sidewall.

Peptidoglycan synthesis is often presumed to mark sites of bacterial cell growth. However,
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dispersed elongation has not been reported in mycobacteria. Accordingly we performed a pulse
chase experiment to test whether cell expansion correlates with sites of metabolic labeling. After
marking peptidoglycan with RADA, we tracked labeled and unlabeled cell surface during 15 min
(~10% generation time) of outgrowth. While we cannot rule out sidewall expansion below our
limit of detection, the fluorescence dilution in this experiment was consistent with previous
reports ((3-5, 7, 14, 62) and restricted to the mycobacterial poles (Figure 5—figure

supplement 4).

Muramidase treatment increases peptidoglycan synthesis along the sidewall. What is the
function of peptidoglycan assembly that does not directly contribute to physical expansion of the
cell? We hypothesized that one role of growth-independent cell wall synthesis might be repair.
More specifically, we reasoned that insertion of peptidoglycan building blocks directly along the
cell periphery would enable a real-time, comprehensive response to damage (Figure 6A). Cell
wall repair that is restricted to sites of mycobacterial growth, by contrast, would be confined to
the poles and renew the cell surface only after several generations. Extended incubation of M.
smegmatis (~48 hours) with the peptidoglycan-degrading enzyme lysozyme substantially
decreases colony-forming units (63). We have also shown that spheroplasts generated by
combined glycine and lysozyme treatment lack peptidoglycan (64). Together these data indicate
that the enzyme is able to access and damage peptidoglycan in intact cells. We challenged M.
smegmatis for 30 minutes in a mixture of lysozyme and mutanolysin, another enzyme that has
been extensively used for in vitro digestion of peptidoglycan. After washing away the enzyme
we assessed the sites of peptidoglycan synthesis by alkDADA labeling. Pre-treatment by the
muramidases clearly shifted the fluorescence from the brighter pole towards the sidewall
(Figure 6B). These data indicate that mycobacteria reallocate peptidoglycan assembly away
from the faster-growing pole and towards the periphery upon damage to the cell wall (Figure

6A).
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Discussion

In this work we aimed to address the seemingly discrepant observations that, on the one hand,
mycobacteria expand from their tips (Figure 5—figure supplement 4, (3-5, 7, 14)), and on the
other, metabolically-labeled cell wall and synthetic enzymes are detectable at both the poles
and along the sidewall (Figures 2, 5—figure supplement 3, (5, 9, 18-20)). The first step to
resolving this conundrum was to unambiguously identify sites of peptidoglycan synthesis.
Although the b-amino acid probes that we and others have developed for peptidoglycan labeling
have been extensively used for marking the cell wall (21), in most cases it has not been clear
whether they report the location(s) of cytoplasmic synthesis, periplasmic exchange, or a
combination of processes. Here we show that in M. smegmatis the metabolic fate of
monopeptide probes is partially dependent on the substituent; whereas NBD and TAMRA-
conjugated D-amino acids are primarily exchanged into mycobacterial peptidoglycan by L,D-
transpeptidases, their alkyne and coumarin-conjugated counterparts appear to incorporate by
both extracellular and intracellular pathways (Figure 3). In the future, biochemical analysis of
peptidoglycan composition will allow better quantitation of probe incorporation via different

uptake pathways (39).

We show that dipeptide probes rescue the growth of a DdIA mutant (Figure 4B) and incorporate
into lipid-linked peptidoglycan precursors (Figures 5B, 5C). To our knowledge, this is the first
direct demonstration that peptidoglycan precursors can be metabolically labeled in vivo without
radioactivity. Labeling by alkDADA unexpectedly decreased in the absence of L,D-
transpeptidases (Figure 4—figure supplement 2). Unlike the monopeptide probes, however,
alkDADA-derived fluorescence was stable to pre-treatment with imipenem, an antibiotic that

targets this class of enzymes (Figure 3, (42)). These data suggest that the dipeptide is unlikely
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to be a direct substrate for L,D-transpeptidases. It is possible that D,D-carboxypeptidases cleave
a small proportion of alkDADA prior to incorporation and release D-alanine and alkDA. In this
scenario, apparent alkDADA labeling in M. smegmatis may be a combination of intracellular
alkDADA incorporation via MurF (Figures 4, 5), extracellular alkDA incorporation by L,D-
transpeptidases (Figure 3), and more limited intracellular alkDA incorporation by DdIA/MurF
(Figure 3). This model is consistent with the promiscuous targeting of mycobacterial D,D-
carboxypeptidases by carbapenems (42) and the ~2000-fold more efficient incorporation of
alkDA compared to alkDADA (Figure 4—figure supplement 1). Alternatively or additionally,
alkDADA may be degraded abiotically or by other enzymes such as L,D-carboxypeptidases.
Finally, loss of L,D-transpeptidases may introduce global alterations in peptidoglycan
metabolism. Importantly, despite differences in overall fluorescence between dipeptide-labeled
wildtype and AIdtABE (Figure 4—figure supplement 1A), sidewall fluorescence was preserved
in the mutant (Figure 4—figure supplement 1B). In aggregate our data strongly suggest that

the mycobacterial periphery is a site of active peptidoglycan synthesis.

The lateral surface of mycobacteria does not appear to contribute to cell elongation under
normal growth conditions (Figure 5—figure supplement 4, (3-5, 7, 14)) but nevertheless hosts
a substantial portion of envelope synthesis and remodeling. The intracellular difference in signal
between the poles reflected relative elongation rates, as the RADA-bright cell tip, which
coincides with the alkDADA- and OalkTMM-bright cell tip (Figure 2B) grows faster than the
RADA-dim cell tip (Figure 5—figure supplement 4). The 2-3-fold ratio of fast/bright:slow/dim
pole fluorescence roughly corresponds to previous estimates of intracellular differences in polar
elongation (3, 9). Compared to M. smegmatis, the distribution of HADA labeling in M.
tuberculosis is shifted away from the fast pole towards the periphery (Figure 2D). Diminished
polarity and asymmetry is also apparent in the sub-population of M. tuberculosis that is labeled

by alkDADA and OalkTMM (Figure 2—figure supplement 2C). Our data are in agreement with
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the heterogeneity in polar dominance observed previously for M. tuberculosis (15). Although we
cannot rule out a contribution from cyan autofluorescence, these experiments also suggest that
sidewall envelope metabolism may be even more prominent in M. tuberculosis than in M.

smegmatis, comprising half of the total cell output.

What is the physiological role for cell wall synthesis that does not directly contribute to growth or
division? It is possible that peptidoglycan assembly along the lateral surface of the
mycobacterial cell is simply a byproduct of synthetic enzymes that are en route to the polar
elongasome or the divisome. Having active enzymes at the ready could enable efficient
coordination between cell growth and septation. We think that this model is less likely, however,
given the energetic cost of producing complex macromolecules and the known limits on the
steady-state pools of lipid-linked peptidoglycan precursors (65). Instead we propose that cell
wall synthesis along the periphery could allow mycobacteria to edit what would otherwise be an
inert surface (Figure 6A). Peptidoglycan and mycomembrane metabolism in this region may
thicken or fill in the gaps of envelope that was initially deposited at the poles or the septum and
enable the bacterium to correct stochastic defects and repair damage. In support of this model,
we find that cell wall synthesis along the sidewall is enhanced upon exposure to peptidoglycan-
degrading enzymes (Figure 6B). More broadly, the ability to tailor the entire cell surface, not
just the ends, should enable rapid adaptation to external stimuli. Such activity may be
particularly important for M. tuberculosis, a slow-growing organism that must survive a hostile,

nutrient-poor environment.

Materials and Methods

Key Resources Table
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Reagent type Desig- | Source or | Identifier | Additional information
(species) or nation | reference | s
resource
Strain (M. M. NC_0085 Wildtype M. smegmatis
smegmatis smeg | 96in
mc2155) matis | GenBank
genetic reagent | Aalr This paper The mutant was generated by
(M. smegmatis) recombineering protocols described in
DOI: 10.1038/nmeth996 and DOI:
10.1007/978-1-4939-2450-9_10; see the
methods section for further detail.
genetic reagent | AldtA | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtB | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtE | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtAE | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtBE | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtBA | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | AldtAB | doi:10.110 Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) | E 1/291823 SPH) and Dr. Hesper Rego (Yale Med)
genetic reagent | MurJ doi: Obtained from Dr. Chris Sassetti (U Mass
(M. smegmatis) | (MviN) | 10.1126/s Med)
cisignal.20
02525.
genetic reagent | ddIAts | doi: Obtained from Dr. Graham Hatfull (U Pitt)
(M. smegmatis) 10.1128/J
B.182.23.
6854-
6856.2000
genetic reagent | pTetOl | doi: Obtained from Dr. Eric Rubin (Harvard
(M. smegmatis) | dtA 10.1101/2 SPH) and Dr. Hesper Rego (Yale Med)
91823
genetic reagent | ARD1 | 10.1016/j]. Obtained from Dr. Bill Jacobs (Einstein
(M. ApanC | vaccine.2 Med)
tuberculosis) D 006.05.09
7
other (RADA) RADA | doi: Synthesized by Tocris Bioscience (Bristol,
10.1002/a United Kingdom) following referenced
nie.20120 protocols
6749; doi:
10.1038/n
prot.2014.
197
other (NADA) NADA | doi: Synthesized by Tocris Bioscience (Bristol,
10.1002/a United Kingdom) following referenced
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nie.20120 protocols
6749; doi:
10.1038/n
prot.2014.
197
other (HADA) HADA | doi: Synthesized by Tocris Bioscience (Bristol,
10.1002/a United Kingdom) following referenced
nie.20120 protocols
6749; doi:
10.1038/n
prot.2014.
197
other (alkyne-D- | alkDA | Thermo Cat#
alanine) (EDA) | Fisher, AC441225
Waltham, | 000
MA
other (alkyne-D- | alkDA | doi: Synthesized by the Chemical Synthesis
alanine-D- DA 10.1038/n Core Facility at Albert Einstein College of
alanine) (EDA | ature1289 Medicine (NY, USA) following the
DA) 2 referenced protocols
other (azido-D- | azDA | doi: Synthesized by the Chemical Synthesis
alanine-D- DA 10.1038/n Core Facility at Albert Einstein College of
alanine) (ADA | ature1289 Medicine (NY, USA) following the
DA) 2 referenced protocols
other (O-alkyne- | OalkT | doi:
trehalose MM 10.1002/a
monomycolate) nie.20150
9216
other (N-alkyne- | NalkT | doi:
trehalose MM 10.1002/a
monomycolate) nie.20150
9216
software, MATL | This paper Scripts designed for MATLAB to analyze
algorithm AB the fluorescence profiles along a cell body
(MATLAB codes from data collected in Oufti (doi:
codes) 10.1111/mmi.13264).
Fmoc-D- BDL Chem- Cat# Deprotected as described in doi:
Lys(biotinyl)-OH | precur | Impex 16192 10.1021/ja508147s to yield BDL
sor Internation
al
PBP4 plasmid PBP4 | doi: Obtained from Dr. Suzanne Walker
10.1021/ja (Harvard Med)
508147s

Bacterial strains and culture conditions. mc?155 M. smegmatis and ARD1 ApanCD M.

tuberculosis (66) were grown at 37 °C in Middlebrook 7H9 growth medium (BD Difco, Franklin

Lakes, NJ) supplemented with glycerol, Tween 80 and ADC (M. smegmatis) or OADC and 50
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pg/ml pantothenic acid (M. tuberculosis). The Aalr strain was further supplemented with 1 mM D-

alanine. The ddIA® strain was grown in 7H9-ADC at 30 °C or 37 °C as specified.

Cell envelope labeling. Probes used in this study include (i) fluorescent b-amino acids HADA,
NADA and RADA (Tocris Bioscience, Bristol, United Kingdom) (ii) alkDA (R-propargylglycine,
Thermo Fisher, Waltham, MA) (iii) alkDADA and azDADA (Chemical Synthesis Core Facility,
Albert Einstein College of Medicine, Bronx, NY) and (iv) OalkTMM and NalkTMM, synthesized
as described previously (36). The labeling procedures were performed with modifications from
(11, 13, 36). Unless otherwise indicated, mid-log M. smegmatis or M. tuberculosis were labeled
with 500 uM HADA, 25 pM NADA or RADA, 50 uM alkDA, 1 or 2 mM alkDADA, 50 uM
OalkTMM or 250 uM NalkTMM for 15 min or 2 hours, respectively. In some cases M. smegmatis
was preincubated +/- antibiotics at different fold-MIC (MICs = 80 ug/mL D-cycloserine, 8 pg/mL
ampicillin (with 5 pg/mL clavulanate), 0.5 pg/mL imipenem (with 5 pg/mL clavulanate), 6 ug/mL
vancomycin) or +/- 500 pg/mL lysozyme and 500 U/mL mutanolysin for 30 min then grown for
an additional 15 min in the presence of the probes. Cultures were then centrifuged at 4 °C,
washed in pre-chilled PBS containing 0.05% Tween 80 and 0.01% BSA (PBSTB) and fixed for
10 min in 2% formaldehyde at room temperature (RT). After two washes in PBSTB, the bacterial
pellets were resuspended in half of the original volume of freshly-prepared CuAAC solution in
PBSTB (13) containing either AF488 picolyl azide or carboxyrhodamine 110 (CR110) azide
(Click Chemistry Tools, Scottsdale, AZ) or 3-azido-7-hydroxycoumarin (Jena Biosciences, Jena,
Germany). For M. tuberculosis experiments and in Figure 2—figure supplement 1A, we used
a modified, low-copper CuAAC reaction protocol: 200 uM CuSO, and 800 uM BTTP (Chemical
Synthesis Core Facility, Albert Einstein College of Medicine, Bronx, NY) were pre-mixed then
added to PBSTB. Immediately before resuspending the pellets, 2.5 mM freshly prepared sodium
ascorbate and 300 pM 3-azido-7-hydroxycoumarin were added to the mixture. After 30-60 min

gentle agitation at RT, cultures were washed once with PBSTB, once with PBS and
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resuspended in PBS for imaging or flow cytometry analysis (FITC, BV510, and Texas Red
channels on a BD DUAL LSRFortessa, UMass Amherst Flow Cytometry Core Facility). NHS
ester dye labeling and fluorescent vancomycin labeling were performed as described (3, 6). M.
tuberculosis was post-fixed with 4% formaldehyde overnight at RT prior to removing from the
biosafety cabinet. For Bocillin labeling experiments, 500 uL of mid-log M. smegmatis was
washed once in PBST and resuspended in PBST containing 5 ug/mL clavulanate. Bacteria were
then pre-incubated or not with 50 pg/mL ampicillin or D-cycloserine at RT with gentle agitation.
After 15 min, 50 yg/mL Bocillin FL (Thermo Fisher) was added and cultures were incubated for
an additional 30 min. They were then washed three times in PBST and imaged live on agar

pads.

Genetic manipulation. The Aalr M. smegmatis strain was generated using standard
recombineering methods (67, 68). 500 bp up and downstream of alr were cloned on either side
of the hygF cassette flanked with loxP sites. After induction of recET, transformation and
subsequent selection on hygromycin and 1 mM D-alanine, PCR was used to confirm the
presence of the correct insert. Strains were then cured of the hyg® cassette by transformation
with an episomal plasmid carrying the Cre recombinase and a sucrose negative selection

marker. Strains were cured of this plasmid by repeated passaging in the presence of sucrose.

M. smegmatis lacking IdtA, IdtB and/or IdtE were generously provided by Dr. Kasia Baranowski,
Dr. Eric Rubin and Dr. Hesper Rego and are described in bioRxiv
https://doi.org/10.1101/291823. Briefly, strains were constructed by recombineering to replace
the endogenous copies with zeocin or hygromycin resistance cassettes flanked by loxP sites as
previously described above (14). Once the knock-outs were verified by PCR, the antibiotic

resistance cassettes were removed by the expression of Cre recombinase. To complement
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AIdtABE, a copy of IdtA was under the constitutive TetO promoter on a kanamycin marked

vector (CT94) that integrates at the L5 phage integration site of the chromosome.

Microscopy. Fixed bacteria were imaged either by conventional fluorescence microscopy
(Nikon Eclipse E600, Nikon Eclipse Ti or Zeiss Axioscope Al with 100x objectives) or by

structured illumination microscopy (Nikon SIM-E/A1R with SR Apo TIRF 100x objective).

Microscopy analysis. Images were processed using FIJI (69) and cells were outlined and
segmented using Oulfti (70). Fluorescence signals of each cell were detected using Oufti and
analyzed using custom-written MATLAB codes. The fluorescence intensities that we report here
have been normalized by cell area. We distinguished septating from non-septating cells using
the probe fluorescence profile along the long cell axis. We used the peakfinderprogram (71) to
identify peaks in the labeling profile. Because our probes label both the cell poles as well as the
septum, septating cells were those that had three peaks in their labeling profile, with the middle
peak positioned between 30% and 70% along the normalized long cell axis. Non-septating cells

were identified as having only two peaks.

Detection of lipid-linked peptidoglycan precursors. To detect endogenous lipid-linked
peptidoglycan precursors, we adopted the assay developed in (48) with some modifications. M.
smegmatis was inoculated in 100 mL of 7H9 medium and grown to mid-log phase at 37 °C.
Where applicable, MurJ was depleted by 8 hours of anhydrotetracycline-induced protein
degradation as described (50). The bacteria were then divided into 25 mL cultures that were
subjected or not to freshly-prepared 80 pug/mL vancomycin and/or 10 ug/mL D-cycloserine. After
one hour of incubation at 37 °C, bacteria were collected by centrifugation and cell pellets were
normalized by wet weight. 200-300 mg wet pellet was resuspended in 500 pL 1% glacial acetic

acid in water. 500 pL of the resuspended pellet mixture was transferred into a vial containing
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500 uL of chloroform and 1 mL of methanol and kept at room temperature (RT) for 1-2 hours
with occasional vortexing. The mixture was then centrifuged at 21,000x g for 10 min at RT and
the supernatant was transferred into a vial containing 500 uL of 1% glacial acetic acid in water
and 500 pL chloroform, and vortexed for 1 min. After centrifugation at 900x g for 2 min at RT,
three phases were distinguishable: aqueous, an interface, and organic. We collected the lipids
from the organic phase and from the interface and concentrated it under nitrogen. Organic
extracts were resuspended in 12 puL of DMSO and then incubated with purified S. aureus PBP4
and biotin-D-lysine (BDL,; deprotected from Fmoc-D-Lys(biotinyl)-OH; Chem-Impex
International) as described (48). Upon completion of the BDL exchange reaction, 10 pL of 2X
loading buffer was added to the vials. Contents were boiled at 95 °C for 5 min then run on an
18% SDS polyacrylamide gel. Biotinylated species were transferred to a PVDF membrane,
blotted with streptavidin-HRP (diluted 1:10,000, Thermo-Fisher) and visualized in an

ImageQuant system (GE Healthcare).

To detect lipid-linked precursors that had been metabolically labeled with alkDADA or azDADA,
growth of the Aalr strain was initially supported by the inclusion of 2 mM D-alanine-D-alanine
(Sigma-Aldrich) in the 7H9 medium. Aalr bacteria were harvested and washed twice in sterile
PBST prior to resuspension in 100 mL of pre-warmed medium. Both wildtype and Aalr M.
smegmatis were incubated in 0.5-1 mM of alkDADA or azDADA for 1 hour then harvested as
described above. Organic extracts from metabolically-labeled cultures were subjected to
CUAAC reaction by adding, in order and in a non-stick vial: 2 pL of PBST, 1 puL of 5 mM CuSOQ,,
1 pL of 20 mM BTTP, 1 L of freshly-prepared 50 mM sodium ascorbate, 3 pL of 10 mM picolyl
azide biotin or alkyne biotin (Click Chemistry Tools), and 2 yL of the organic extract. The

reaction was incubated for one hour at RT with gentle shaking prior to detecting as above.
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Figure Legends

Figure 1. Cell envelope metabolic labeling in mycobacteria.

A, Schematic of one and two step metabolic labeling. Top, a cell envelope precursor or ‘probe’
bearing a reactive group is incorporated into the envelope by the endogenous enzymatic
machinery of the cell. The presence of the probe is then revealed by a chemical reaction with a
label that bears a complementary reactive group. Bottom, in some cases the probe can be pre-
labeled, bypassing the chemical ligation step and embedding the detection moiety directly into

the macromolecule. Yellow star, fluorophore. See (21) for more details.

B, Probes used in this work to mark the mycobacterial envelope. See text for details. Colored
and black chemical structures denote probes used in one and two step labeling, respectively.

MM, mycomembrane; AG, arabinogalactan; PG, peptidoglycan; PM, plasma membrane.

C, Xand Y reactive partners used in this work for two step labeling as shown in A. CUAAC,

copper-catalyzed azide-alkyne cycloaddition; SPAAC, strain-promoted azide-alkyne

cycloaddition.

Figure 2. Asymmetric polar gradients of cell envelope metabolic labeling in

mycobacteria.
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A, M. smegmatis was incubated for 15 min (~10% generation) in the indicated probe, then
washed and fixed. Alkynyl probes were detected by CUAAC with azido-CR110 and cells were

imaged by structured illumination microscopy.

B, M. smegmatis dual labeled with RADA and alkDADA, left, or RADA and OalkTMM, right, and

imaged by conventional fluorescence microscopy.

C, M. smegmatis was labeled as in B and cellular fluorescence was quantitated for cells without
(top; 77<n<85) or with (bottom; 9<n<51) visible septa for RADA, OalkTMM and alkDADA. Signal
was normalized to cell length and to total fluorescence intensity. Cells were oriented such that

the brighter pole is on the right hand side of the graph.

D, M. smegmatis (Msm) and M. tuberculosis (Mtb) were labeled with HADA for 15 min and 2
hours, respectively, then washed and fixed. Fluorescence was quantitated as in C for cells
without (top; 34<n<42) and with (bottom; 9<n<31) visible septa. We defined the dim pole (dp;
dark purple) as the sum of the fluorescence intensity over the first 25% of the cell; the sidewall
(sw; medium purple) as the sum from 25% to 75%; and the bright pole (bp; light purple) as the

sum over the final 25% of the cell. Fluor distrib, fluorescence distribution. AU, arbitrary units.

Figure 3. Multiple pathways of b-amino acid probe incorporation in M. smegmatis.

A, Schematic of the theoretical routes of D-amino acid (DA) and D-alanine D-alanine (DADA)

probe incorporation. LDT, L,D-transeptidase, DDT, D,D-transpeptidase (DDTSs). For more details

on the peptidoglycan synthesis pathway, see Figure 3—figure supplement 1.
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B, Sensitivity of HADA (blue), NADA (green), RADA (red), alkDA (light grey), alkDADA (dark
grey) and OalkTMM (black) to antibiotics. Imi, imipenem + clavulanate; amp, ampicillin +
clavulanate; dcs, D-cycloserine; vanc, vancomycin. M. smegmatis was pretreated or not with the
indicated antibiotics at 2X MIC for 30 min then incubated an additional 15 min in the presence of
probe. The bacteria were then washed and fixed. The alkyne-bearing probes were detected by
CUuAAC with azido-CR110 and quantitated by flow cytometry. Experiment was performed 3-4
times in triplicate. For each biological replicate, the averaged median fluorescence intensities
(MFI) of the drug-treated samples were divided by the MFI of untreated bacteria. Data are
expressed as the average percentage of untreated labeling across the biological replicates.

Error bars, +/- standard deviation.

C, Effect of antibiotic dose on alkDA-derived fluorescence. M. smegmatis was pretreated or not
with drugs at the fold-MIC indicated and labeled as in B. Experiment was performed 3 times in
triplicate. For each biological replicate, the averaged MFI of the control (no drug, no alkDA but
subjected to CUAAC) was subtracted from the averaged MFI of the drug-treated sample. This
was then divided by the averaged MFI of untreated control (no drug but incubated in alkDA and
subjected to CUAAC) from which the control MFI had also been subtracted. Data are expressed
as the average percentage of untreated labeling across the biological replicates. Error bars, +/-

standard deviation.

D, Left, combined effects of imipenem and D-cycloserine on alkDA-derived fluorescence. M.
smegmatis was pretreated or not with the drugs at the fold-MIC indicated and labeled as in B.
Experiment was performed twice in triplicate with similar results. One data set is shown. The
percent of untreated labeling was calculated as in C and subtracted from 100 to obtain the
percent inhibition. Right, Bliss interaction scores for each pair of doses in left-hand graph were

calculated as (E+Ep-EEp)/E|p Where E, is the effect of imipenem at dose i, Ep is the effect of D-
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cycloserine at dose d and E,pis the observed effect of the drugs at dose i and dose d.
Combinations that produce Bliss scores greater than, equal to, or less than 1 are respectively

interpreted as antagonistic, additive, or synergistic interactions.

E, Dose-dependent effect of imipenem on alkDADA (grey), HADA (blue) and RADA (red)
labeling. M. smegmatis was pretreated or not with imipenem at the fold-MIC indicated and
labeled as in B. Experiment was performed 3 times in triplicate and one representative data set
is shown. For each technical replicate, the averaged median fluorescence intensities (MFI) of
the drug-treated samples were divided by the averaged MFI of untreated bacteria. Data are
expressed as the average percentage of untreated labeling across the technical replicates.

Error bars, +/- standard deviation.

F, Wildtype M. smegmatis pre-treated or not with 2X MIC imipenem and untreated AldtABE and
complement (c IdtABE) were labeled with alkDA (white), HADA (blue), NADA (green) or RADA
(red) and processed as in B. Experiment was performed 2-10 times in triplicate. Representative

data from one of the biological replicates is shown here. Error bars, +/- standard deviation.

Figure 4. alkDADA rescues the growth of D-alanine racemase (Alr) and ligase (DdIA)

mutants.

alkDADA probe supports the growth of Aalr, A, or temperature-sensitive ddIA®, B. Wildtype
(white bars) and Aalr (grey bars), B, or ddIA® (grey bars), were grown in the presence or
absence of exogenous D-alanine, D-alanine- D-alanine or alkynyl derivatives thereof. Error bars,
+/- standard deviation. Significant differences compared to Aalr no D-alanine (#, second bar

from left), A, or ddIA® at 42 °C no D-alanine-D-alanine (#, fourth bar from left), B, One-way
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ANOVA with Dunnett’s test, are shown for 3-4 biological replicates. ***, p < 0.005, ****,

p<0.0005.

Figure 5. alkDADA and azDADA incorporate into lipid-linked peptidoglycan precursors.

A, Detection of lipid-linked peptidoglycan precursors from organic extracts of M. smegmatis.
Endogenous D-alanines were exchanged for biotin-D-lysine (BDL) via purified S. aureus PBP4.
Biotinylated species detected by blotting with streptavidin-HRP. MurJ (MviN) depletion strain
was incubated in anhydrotetracycline (atc) to induce protein degradation. Other strains were
treated with vancomycin (vanc), D-cycloserine (dcs) or a combination prior to harvesting. Wt,
wildtype; blank, no sample run; no extract, BDL and PBP4 alone ?, organic extract from MurJ-

atc; °, organic extract from MurJ+atc; hk, heat-killed.

B, Detection of lipid-linked peptidoglycan precursors labeled by alkDADA in vivo. Wildtype and
Aalr strains were incubated in alkDADA and treated or not with the indicated antibiotics prior to
harvest. Alkyne-tagged species from organic extracts were ligated to picolyl azide biotin via
CUuAAC then detected as in A. BDL/PBP4, endogenous precursors from MurJ+atc were

subjected to in vitro exchange reaction as in A.
C, Detection of lipid-linked peptidoglycan precursors labeled by azDADA in vivo. Aalr was
incubated in azDADA. Azide-tagged species from organic extracts were ligated to DIFO-biotin

via SPAAC or to alkyne biotin via CUAAC then detected as in A.

Figure 6. Peptidoglycan synthesis is redistributed to the sidewall upon cell wall damage.

34


https://doi.org/10.1101/292607
http://creativecommons.org/licenses/by-nc-nd/4.0/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

bioRxiv preprint doi: https://doi.org/10.1101/292607; this version posted July 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

A, Model for the spatial organization of peptidoglycan (PG) synthesis and repair with respect to

mycobacterial growth and division. Left, regions of cell surface that expand are highlighted in

blue. Middle and right, areas of peptidoglycan precursor synthesis are highlighted in orange.

B, M. smegmatis was pretreated or not with lysozyme and mutanolysin for 30 min then
incubated an additional 15 min in the presence of alkDADA. The bacteria were then washed
and fixed and subjected to CUAAC with azido-CR110. Images obtained by conventional
fluorescence microscopy were quantified for 25<n<40 cells as in Figure 2 except that i. signal
was not normalized to total fluorescence intensity, only to cell length, and ii. cells with and
without visible septa were analyzed together. Experiment was performed twice with similar
results. dp, dim pole (dark purple); sw, sidewall (medium purple); bp, bright pole (light purple).

Fluor distrib, fluorescence distribution. AU, arbitrary units.

Supplemental Figure Legends

Figure 2—figure supplement 1. Metabolic labeling by azDADA comprises polar gradients

in live M. smegmatis.

Bacteria were labeled with azDADA for 15 min and subjected to either A, low copper CUAAC

(with BTTP ligand), or B, SPAAC. Longer arrow, polar labeling. Short arrow, sidewall labeling.

Figure 2—figure supplement 2. Heterogeneous envelope probe labeling in M.

tuberculosis.
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A, M. tuberculosis was incubated for 2 hrs in NADA (green), HADA (blue) or RADA (red),
washed and fixed. Fluorescence was assessed by flow cytometry. Note the cyan

autofluorescence in middle panel.

B, M. tuberculosis was labeled with an amine-reactive dye (NHS488, black) then incubated or
not for 2 hrs with HADA (dark blue), alkDA, alkDADA or OalkTMM. Alkynyl probes (light blue)
and no probe control cells (grey) were detected by CUAAC with azido-coumarin. NHS488
labeling is heterogeneous and results in two distinct populations. While HADA labels both
NHS488-positive and -negative bacteria, the two-step envelope probes preferentially

incorporate into NHS488-positive M. tuberculosis.

C, Fluorescence microscopy of HADA, alkDADA and OalkTMM-labeled bacteria in B. Envelope

labeling is apparent both along the sidewall, where it colocalizes with NHS488, as well as at the

cell poles, where it does not. Dotted white lines highlight cell contours.

Figure 3—figure supplement 1. Schematic of peptidoglycan synthesis in mycobacteria.

TPase, transpeptidase.

Figure 3—figure supplement 2. Antibiotics do not cause obvious cell death in 45 min.

M. smegmatis cultures were treated with 2X MIC of indicated antibiotics for 45 min, washed,

and 10-fold serial dilutions were spotted onto LB agar.

Figure 4—figure supplement 1. alkDA labels at much lower concentrations than

alkDADA.
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M. smegmatis were labeled with 2 mM of alkDADA (dark grey) or different concentrations of
alkDA (light grey) for 15 min then fixed and subjected to CUAAC. MFI, median fluorescence
intensity from which the control (no probe but subjected to CUAAC) was subtracted. Error bars,

+/- standard deviation.

Figure 4—figure supplement 2. Loss of LdtA, LdtB and/or LdtE decreases both RADA

and alkDADA labeling.

A, Wildtype and Idt strains were labeled with RADA (red) or alkDADA (grey) for 30 min, then
washed and fixed. alkDADA detected by CUAAC with azido-CR 110. Fluorescence was
guantitated by flow cytometry. Data are expressed as percentage of untreated wildtype labeling
as in Figure 3B. Experiment was performed 4-11 times in triplicate. Error bars, +/- standard
deviation. Differences within RADA- and alkDADA-labeled strains are significant at p < 0.005,

one-way ANOVA comparison of log;, data for biological replicates.

B, Wildtype (dark green) and AIdtABE (light green) M. smegmatis were labeled with alkDADA for
15 min, then washed, fixed and subjected to CUAAC with azido-CR110 prior to imaging.
Fluorescence was quantitated for 40<n<70. Signal was normalized by cell length and brighter
poles oriented to the right-hand side of the graph. AU, arbitrary units. Experiment repeated twice

with similar results. Representative images at right.

Figure 4—figure supplement 3. Loss of LdtA, LdtB and LdtE do not cause a growth

defect in M. smegmatis.

Culture turbidity increases at the same rate for wildtype and AIdtABE growing in 7H9 medium.
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Figure 5—figure supplement 1. Short incubation in alkDADA results in polar and sidewall

labeling.

Structured illumination microscopy of M. smegmatis incubated in alkDADA for 2 min then

washed, fixed and subjected to CUAAC with azido-CR110. Arrows highlight sidewall signal.

Figure 5—figure supplement 2. Fluorescent vancomycin (vanc-fl) labeling at poles and

sidewall.

M. smegmatis were incubated in the fluorescent antibiotic for 3 hrs or ~one doubling. Longer

arrow, polar labeling. Short arrow, sidewall labeling.

Figure 5—figure supplement 3. Penicillin-binding proteins are present along

mycobacterial cell periphery.

A, M. smegmatis merodiploid expressing PonA1-mRFP imaged by structured illumination

microscopy. Arrows highlight sidewall signal.

B, Bocillin labeling of live M. smegmatis pre-treated or not with ampicillin or b-cycloserine. No

Boc, autofluorescence; no abx, no antibiotic.

C, Quantitation of cellular fluorescence for B. 60<n<180. Signal was normalized by cell length

and brighter poles oriented to the right-hand side of the graph. AU, arbitrary units.

Figure 5—figure supplement 4. Physical expansion of the mycobacterial cell is confined

to the poles and occurs more rapidly at the RADA-bright tip.
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M. smegmatis were incubated in RADA for 15 min, washed and grown for O or 15 min in the
absence of probe. Images obtained by conventional fluorescence microscopy, left, were

4 quantified for 24<n<41 cells, right, as in Figure 5—figure supplement 3C. Magnification of the
5 dim and bright pole quantitation are shown above the main graph. Distances between local

6 maxima are expressed as percentage of total, normalized cell length. Experiment was

7  performed twice with similar results. dp, dim pole; sw, sidewall; bp, bright pole. AU, arbitrary

8 units.
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Figure 1. Cell envelope metabolic labeling in mycobacteria. A, Schematic of one and two step metabolic labeling. Top, a cell
envelope precursor or ‘probe’ bearing a reactive group is incorporated into the envelope by the endogenous enzymatic machinery of
the cell. The presence of the probe is then revealed by a chemical reaction with a label that bears a complementary reactive group.
Bottom, in some cases the probe can be pre-labeled, bypassing the chemical ligation step and embedding the detection moiety
directly into the macromolecule. Yellow star, fluorophore. See (21) for more details. B, Probes used in this work to mark the
mycobacterial envelope. See text for details. Colored and black chemical structures denote probes used in one and two step
labeling, respectively. MM, mycomembrane; AG, arabinogalactan; PG, peptidoglycan; PM, plasma membrane. C, X and Y reactive
partners used in this work for two step labeling as shown in A. CUAAC, copper-catalyzed azide-alkyne cycloaddition; SPAAC, strain-
promoted azide-alkyne cycloaddition.
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Figure 2. Asymmetric polar gradients of cell envelope metabolic labeling in mycobacteria. A, M. smegmatis was incubated for
15 min (~10% generation) in the indicated probe, then washed and fixed. Alkynyl probes were detected by CUAAC with azido-CR110
and cells were imaged by structured illumination microscopy. B, M. smegmatis dual labeled with RADA and alkDADA, left, or RADA
and OalkTMM, right, and imaged by conventional fluorescence microscopy. C, M. smegmatis was labeled as in B and cellular
fluorescence was quantitated for cells without (top; 77<n<85) or with (bottom; 9<n<51) visible septa for RADA, OalkTMM and
alkDADA. Signal was normalized to cell length and to total fluorescence intensity. Cells were oriented such that the brighter pole is
on the right hand side of the graph. D, M. smegmatis (Msm) and M. tuberculosis (Mtb) were labeled with HADA for 15 min and 2
hours, respectively, then washed and fixed. Fluorescence was quantitated as in C for cells without (top; 34<n<42) and with (bottom;
9<n<31) visible septa. We defined the dim pole (dp; dark purple) as the sum of the fluorescence intensity over the first 25% of the
cell; the sidewall (sw; medium purple) as the sum from 25% to 75%; and the bright pole (bp; light purple) as the sum over the final
25% of the cell. Fluor distrib, fluorescence distribution. AU, arbitrary units.
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Figure 3. Multiple pathways of D-amino acid probe incorporation in M. smegmatis.

A, Schematic of the theoretical routes of D-amino acid (DA) and D-alanine D-alanine (DADA) probe incorporation. LDT, L,D-
transeptidase, DDT, D,D-transpeptidase (DDTs). For more details on the peptidoglycan synthesis pathway, see Fig. S3.

B, Sensitivity of HADA (blue), NADA (green), RADA (red), alkDA (light grey), alkDADA (dark grey) and OalkTMM (black) to
antibiotics. Imi, imipenem + clavulanate; amp, ampicillin + clavulanate; dcs, D-cycloserine; vanc, vancomycin. M. smegmatis was
pretreated or not with the indicated antibiotics at 2X MIC for 30 min then incubated an additional 15 min in the presence of probe.
The bacteria were then washed and fixed. The alkyne-bearing probes were detected by CuUAAC with azido-CR110 and quantitated
by flow cytometry. Experiment was performed 3-4 times in triplicate. For each biological replicate, the averaged median fluorescence
intensities (MFI) of the drug-treated samples were divided by the MFI of untreated bacteria. Data are expressed as the average
percentage of untreated labeling across the biological replicates. Error bars, +/- standard deviation.

C, Effect of antibiotic dose on alkDA-derived fluorescence. M. smegmatis was pretreated or not with drugs at the fold-MIC indicated
and labeled as in B. Experiment was performed 3 times in triplicate. For each biological replicate, the averaged MFI of the control
(no drug, no alkDA but subjected to CUAAC) was subtracted from the averaged MFI of the drug-treated sample. This was then
divided by the averaged MFI of untreated control (no drug but incubated in alkDA and subjected to CUAAC) from which the control
MFI had also been subtracted. Data are expressed as the average percentage of untreated labeling across the biological replicates.
Error bars, +/- standard deviation.

D, Left, combined effects of imipenem and D-cycloserine on alkDA-derived fluorescence. M. smegmatis was pretreated or not with
the drugs at the fold-MIC indicated and labeled as in B. Experiment was performed twice in triplicate with similar results. One data
set is shown. The percent of untreated labeling was calculated as in C and subtracted from 100 to obtain the percent inhibition.
Right, Bliss interaction scores for each pair of doses in left-hand graph were calculated as (E+Ey-E\E)/E, , where E, is the effect of
imipenem at dose /, Ej, is the effect of D-cycloserine at dose d and E, , is the observed effect of the drugs at dose / and dose d.
Combinations that produce Bliss scores greater than, equal to, or less than 1 are respectively interpreted as antagonistic, additive, or
synergistic interactions.

E, Dose-dependent effect of imipenem on alkDADA (grey), HADA (blue) and RADA (red) labeling. M. smegmatis was pretreated or
not with imipenem at the fold-MIC indicated and labeled as in B. Experiment was performed 3 times in triplicate and one
representative data set is shown. For each technical replicate, the averaged median fluorescence intensities (MFI) of the drug-
treated samples were divided by the averaged MFI of untreated bacteria. Data are expressed as the average percentage of
untreated labeling across the technical replicates. Error bars, +/- standard deviation.

F, Wildtype M. smegmatis pre-treated or not with 2X MIC imipenem and untreated AldtABE and complement (c IdtABE) were labeled
with alkDA (white), HADA (blue), NADA (green) or RADA (red) and processed as in B. Experiment was performed 2-10 times in
triplicate. Representative data from one of the biological replicates is shown here. Error bars, +/- standard deviation.
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Figure 4. alkDADA rescues the growth of D-alanine racemase (Alr) and ligase (DdIA) mutants.

alkDADA probe supports the growth of Aalr, A, or temperature-sensitive ddIA®, B. Wildtype (white bars) and Aalr (grey bars), B, or
ddIAts (grey bars), were grown in the presence or absence of exogenous D-alanine, D-alanine- D-alanine or alkynyl derivatives
thereof. Error bars, +/- standard deviation. Significant differences compared to Aalr no D-alanine (#, second bar from left), A, or ddIA®
at 42 °C no D-alanine-D-alanine (#, fourth bar from left), B, One-way ANOVA with Dunnett’s test, are shown for 3-4 biological
replicates. ***, p < 0.005, ****, p<0.0005.
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Figure 5. alkDADA and azDADA incorporate into lipid-linked peptidoglycan precursors.

A, Detection of lipid-linked peptidoglycan precursors from organic extracts of M. smegmatis. Endogenous D-alanines were exchanged
for biotin-D-lysine (BDL) via purified S. aureus PBP4. Biotinylated species detected by blotting with streptavidin-HRP. Murd (MviN)
depletion strain was incubated in anhydrotetracycline (atc) to induce protein degradation. Other strains were treated with vancomycin
(vanc), D-cycloserine (dcs) or a combination prior to harvesting. Wt, wildtype; blank, no sample run; no extract, BDL and PBP4 alone
a organic extract from MurJ- atc; , organic extract from MurJ+atc; hk, heat-killed.

B, Detection of lipid-linked peptidoglycan precursors labeled by alkDADA in vivo. Wildtype and Aalr strains were incubated in
alkDADA and treated or not with the indicated antibiotics prior to harvest. Alkyne-tagged species from organic extracts were ligated to
picolyl azide biotin via CUAAC then detected as in A. BDL/PBP4, endogenous precursors from Murd+atc were subjected to in vitro
exchange reaction as in A.

C, Detection of lipid-linked peptidoglycan precursors labeled by azDADA in vivo. Aalr was incubated in azDADA. Azide-tagged
species from organic extracts were ligated to DIFO-biotin via SPAAC or to alkyne biotin via CUAAC then detected as in A.
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Figure 6. Peptidoglycan synthesis is redistributed to the sidewall upon cell wall damage. A, Model for the spatial organization
of peptidoglycan (PG) synthesis and repair with respect to mycobacterial growth and division. B, M. smegmatis was pretreated or not
with lysozyme and mutanolysin for 30 min then incubated an additional 15 min in the presence of alkDADA. The bacteria were then
washed and fixed and subjected to CuUAAC with azido-CR110. Images obtained by conventional fluorescence microscopy were
quantified for 25<n<40 cells as in Fig. 2 except that i. signal was not normalized to total fluorescence intensity, only to cell length,
and ii. cells with and without visible septa were analyzed together. Experiment was performed twice with similar results. dp, dim pole
(dark purple); sw, sidewall (medium purple); bp, bright pole (light purple). Fluor distrib, fluorescence distribution. AU, arbitrary units.



