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Abstract

Inference of gene regulatory networks from gene expression data has been a
long-standing and notoriously difficult task in systems biology. Recently, single-cell
transcriptomic data have been massively used for gene regulatory network inference,
with both successes and limitations. In the present work we propose an iterative
algorithm called WASABI, dedicated to inferring a causal dynamical network from
time-stamped single-cell data, which tackles some of the limitations associated with
current approaches. We first introduce the concept of waves, which posits that the
information provided by an external stimulus will affect genes one-by-one through a
cascade, like waves spreading through a network. This concept allows us to infer the
network one gene at a time, after genes have been ordered regarding their time of
regulation. We then demonstrate the ability of WASABI to correctly infer small
networks, which have been simulated in silico using a mechanistic model consisting of
coupled piecewise-deterministic Markov processes for the proper description of gene
expression at the single-cell level. We finally apply WASABI on in vitro generated data
on an avian model of erythroid differentiation. The structure of the resulting gene
regulatory network sheds a fascinating new light on the molecular mechanisms
controlling this process. In particular, we find no evidence for hub genes and a much
more distributed network structure than expected. Interestingly, we find that a majority
of genes are under the direct control of the differentiation-inducing stimulus. In
conclusion, WASABI is a versatile algorithm which should help biologists to fully
exploit the power of time-stamped single-cell data.

Author summary

All cells have to make everyday decisions regarding their behavior in response to
changing environment. Such decisions result from the dynamical behavior of an
underlying gene regulatory network. Inferring the structure of such networks is an
inverse problem which has occupied the systems biology community for decades. We
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propose in the present work a divide-and-conquer strategy called WASABI, which splits
the potentially untractable global problem into much simpler subproblems. We show
that by adding one gene at a time, we can infer small networks, the behavior of which
has been simulated in silico using a mechanistic model which incorporates the
fundamentally probabilistic nature of the gene expression process. When applied to
real-life data, our algorithm sheds a new fascinating light onto the molecular control of
a differentiation process. It is our hope that WASABI will prove useful in helping
biologists to fully exploit the power of time-stamped single-cell data.

Introduction 1

It is widely accepted that the process of cell decision making results from the behavior 2

of an underlying dynamic gene regulatory network (GRN) [1]. The GRN maintains a 3

stable state but can also respond to external perturbations to rearrange the gene 4

expression pattern in a new relevant stable state, such as during a differentiation 5

process. Its identification has raised great expectations for practical applications in 6

network medicine [2] like somatic cells [3–5] or cancer cells reprogramming [6, 7]. The 7

inference of such GRNs has, however, been a long-standing and notoriously difficult task 8

in systems biology. 9

GRN inference was first based upon bulk data [8] using transcriptomics acquired 10

through micro array or RNA sequencing (RNAseq) on populations of cells. Different 11

strategies has been used for network inference including dynamic Bayesian 12

networks [9, 10], boolean networks [11–13] and ordinary differential equations 13

(ODE) [14] which can be coupled to Bayesian networks [15]. 14

More recently, single-cell transcriptomic data, especially RNAseq [16], have been 15

massively used for GRN inference (see [17,18] for recent reviews). The arrival of those 16

single-cell techniques led to question the fundamental limitations in the use of bulk data. 17

Observations at the single-cell level demonstrated that any and every cell population is 18

very heterogeneous [19–21]. Two different interpretations of the reasons behind 19

single-cell heterogeneity led to two different research directions: 20

1. In the first view, this heterogeneity is nothing but a noise that blurs a 21

fundamentally deterministic smooth process. This noise can have different origins, like 22

technical noise (“dropouts”) or temporal desynchronization as during a differentiation 23

process. This view led to the re-use of the previous strategies and was at the basis of 24

the reconstruction of a “pseudo-time” trajectory (reviewed in [22]). For example, 25

SingleCellNet [23] and BoolTraineR [24] are based on boolean networks with 26

preprocessing for cell clustering or pseudo-time reconstruction. Such asynchronous 27

Boolean network models have been successfully applied in [25]. Other probabilistic 28

algorithms such as SCOUP [26], SCIMITAR [27] or AR1MA1-VBEM [28] also use 29

pseudo-time reconstruction complemented with correlation analysis. ODE based 30

methods can be exemplified with SCODE [29] and InferenceSnapshot [30] algorithms 31

which also use pseudo-time reconstruction. 32

2. The other view is based upon a representation of cells as dynamical 33

systems [31,32]. Within such a frame of mind, “noise” can be seen as the manifestation 34

of the underlying molecular network itself. Therefore cell-to-cell variability is supposed 35

to contain very valuable information regarding the gene expression process [33]. This 36

view was advocated among others by [34], suggesting that heterogeneity is rooted into 37

gene expression stochasticity, and that cell state dynamic is a highly stochastic process 38

due to bursting that jumps discontinuously between micro-states. Dynamic algorithms 39

like SINCERITIES [35] are based upon comparison of gene expression distributions, 40

incorporating (although not explicitly) the bursty nature of gene expression. We have 41

recently described a more explicit network formulation view based upon the coupling of 42
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probabilistic two-state models of gene expression [36]. We devised a statistical hidden 43

Markov model with interpretable parameters, which was shown to correctly infer small 44

two-gene networks [36]. 45

Despite their contributions and successes, all existing GRN inference approaches are 46

confronted to some limitations: 47

1. The inference of interactions through the calculation of correlation between gene 48

expression, whether based upon or linear [27] or non-linear [26] assumptions, is 49

problematic. Such correlations can only reproduce events that have been previously 50

observed. As a consequence, predictions of GRN response to new stimulus or 51

modifications is not possible. Furthermore, correlation should not be mistaken for 52

causality. The absence of causal relationship severely hampers any predictive ability of 53

the inferred GRN. 54

2. The very possibility of making predictions relies upon our ability to simulate the 55

behavior of candidate networks. This implicitly implies that network topologies are 56

explicitly defined. Nevertheless, several inference algorithms [27–29,35] propose a set of 57

possible interactions with independent confidence levels, generally represented by an 58

interaction matrix. The number of possible actionable networks deduced from 59

combining such interactions is often too large to be simulated. 60

3. Regulatory proteins within a GRN are usually restricted to transcription factors 61

(TF), like in [24, 26–30]. Possible indirect interactions are completely ignored. A trivial 62

example is a gene encoding a protein that induces the nuclear translocation of a 63

constitutive TF. In this case, the regulator gene will indirectly regulate TF target genes, 64

and its effect will be crucial in understanding the GRN behavior. 65

4. Most single-cell inference algorithms rely upon the use of a single type of data, 66

namely transcriptomics. By doing so, they implicitly assume protein levels to be 67

positively correlated with RNA amounts, which has been proven to be wrong in case of 68

post-translational regulation (see [33] for an illustration in circadian clock). Besides, at 69

single-cell scale, mRNA and proteins typically have a poor linear correlation [34], even 70

in the absence of post-translational regulation. 71

5. The choices of biological assumptions are also important for the biological 72

relevance of GRN models. The use of statistical tools can be really powerful to handle 73

large-scale network inference problem with thousand of genes, but the price to pay is 74

loss of biological representativeness. By definition a model is a simplification of the 75

system, but when simplifying assumptions are induced by mathematical tools, like 76

linear [27–29,35] or binary (boolean) requirements [23, 24], the model becomes solvable 77

at the expense of its biological relevance. 78

In the present work we address the above limitations and we propose an iterative 79

algorithm called WASABI, dedicated to inferring a causal dynamical network from 80

time-stamped single-cell transcriptomic data, with the capability to integrate protein 81

measurements. In the first part we present the WASABI framework which is based upon 82

a mechanistic model for gene-gene interactions [36]. In the second part we benchmark 83

our algorithm using in silico GRNs with realistic gene parameter values. Finally we 84

apply WASABI on our in vitro data [37] and analyze the resulting GRN candidates. 85
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Results 86

Our goal is to infer causalities involved in GRN through analysis of dynamic 87

multi-scale/level data with the help of a mechanistic model [36]. We first present an 88

overview of the WASABI principles and framework. We then benchmark its ability to 89

correctly infer in silico-generated toy GRNs. Finally, we apply WASABI on our in vitro 90

data on avian erythroid differentiation model [38] to generate biologically relevant GRN 91

candidates. 92

WASABI inference principles and implementation 93

WASABI is a framework built on a novel inference strategy based on the concept of 94

“waves”. We posit that the information provided by an external stimulus will affect 95

genes one-by-one through a cascade, like waves spreading through a network (Fig 1-A). 96

This wave process harbors an inertia determined by mRNA and protein half-lives which 97

are given by their degradation rate. 98

By definition, causality is the link between cause and consequence, and causes 99

always precede consequences. This temporal property is therefore of paramount 100

importance for causality inference using dynamic data. In our mechanistic and 101

stochastic model of GRN [36] (detailed in Method section Fig 7), the cause corresponds 102

either to the protein of the regulating gene or a stimulus, which level modulates as a 103

consequence the promoter state switching rates kon (i.e. probability to switch from 104

inactive to active state) and koff (active to inactive) of the target gene. A direct 105

consequence of causality principle for GRNs is that a dynamical change in promoter 106

activity can only be due to a previous perturbation of a regulating protein or stimulus. 107

For example, assuming that the system starts at a steady-state, early activated genes 108

(referred to as early genes) can only be regulated by the stimulus, because it is the only 109

possible cause for their initial evolution. An illustration is given in Fig 1-A: gene A 110

initial variation can only be due to the stimulus and not by the feedback from gene C, 111

which will occur later. A generalization of these concepts is that for a given time after 112

the stimulus, we can infer the subnetwork composed exclusively by genes affected by the 113

spreading of information up to this time. Therefore we can infer iteratively the network 114

by adding one gene at a time (Fig 1-D) regarding their promoter wave time order 115

(Fig 1-B) and comparing with protein wave time of previous added genes (Fig 1-C). 116

For this, we need to estimate promoter and protein wave times for each gene and 117

then sort them by promoter wave time. We define the promoter activity level by the 118

kon/(kon + koff) ratio, which corresponds to the local mean active duration (Fig 1-B). 119

Promoter wave time is defined as the inflection time point of promoter activity level 120

where 50% of evolution between minimum and maximum is reached. Since promoter 121

activity is not observable, we estimate the inflection time point of mean RNA level from 122

single-cell transcriptomic kinetic data [37], and retrieve the delay induced by RNA 123

degradation to deduce promoter wave time. Protein wave times correspond to the 124

inflection point of mean protein level, which can be directly observed with our 125

proteomic data [39]. A detailed description of promoter and protein wave time 126

estimation can be found in the Method section. One should note that a gene can have 127

more than one wave time in case of non monotonous variation of promoter activity, due 128

to feedbacks (like gene A in our example) or incoherent feed-forward loop. 129

The WASABI inference process (Fig 1-C) takes advantage of the gene wave time 130

sorting by adopting a divide and conquer strategy. We remind that a main assumption 131

of our interaction model is the separation between mRNA and protein timescales [36]. 132

As a consequence, for a given interaction between a regulator gene and a regulated gene, 133

the regulated promoter wave time should be compatible with the regulator protein wave 134

time. At each step, WASABI proposes a list of possible regulators in order to reduce the 135
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Fig 1. WASABI at a glance. A) Schematic view of a GRN: the stimulus is
represented by a yellow flash, genes by blue circles and interactions by green (activation)
or red (inhibition) arrows. The stimulus-induced information propagation is represented
by blue arcs corresponding to wave times. Genes and interactions that are not affected
by information at a given wave time are shaded. At wave time 5, gene C returns
information on gene A and B by feedback interaction creating a backflow wave. B)
Promoter wave times: Promoter wave times correspond to inflections point of gene
promoter activity defined as the kon/(kon + koff) ratio. C) Protein wave times: Protein
wave times correspond to inflections point of mean protein level. D) Inference process.
Blue arrows represent interactions selected for calibration. Based on promoter waves
classification genes are iteratively added to sub-GRN previously inferred to get new
expanded GRN. Calibration is performed by comparison of marginal RNA distributions
between in silico and in vitro data. Inference is initialized with calibration of early
genes interaction with stimulus, which gives initial sub-GRN. Latter genes are added
one by one to a subset of potential regulators for which a protein wave time is close
enough to the added gene promoter wave time. Each resulting sub-GRN is selected
regarding its fit distance to in vitro data. If fit distance is too important sub-GRN can
be eliminated (red cross). An important benefit of this process is the possibility to
parallelize the sub-GRN calibrations over several cores, which results in a linear
computational time regarding the number of genes. Note that only a fraction of all
tested sub-GRN is shown.
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dimension of the inference problem. This list is limited to regulators with compatible 136

protein wave time within the range of 30 hours before and 20 hours after the promoter 137

wave time of the added regulated gene. This constraint has been set up from in silico 138

study (see next section). For example, in Fig 1, gene B can be regulated by gene A or 139

D since their protein wave time are close to gene B promoter wave time. Gene C can 140

be regulated by gene B or D, but not A because its protein wave time is too earlier 141

compared to gene C promoter wave time. 142

For new proposed interactions, a typical calibration algorithm can be used to finely 143

tune interaction parameter in order to fit simulated mRNA marginal distribution with 144

experimental marginal distribution from transcriptomic single-cell data. To avoid 145

over-fitting issues, only efficiency interaction parameter θi,j (Fig 7) is tuned. To 146

estimate fitting quality we define a GRN fit distance based on the Kantorovitch 147

distances between simulated and experimental mRNA marginal distributions (please 148

refer to Method section for a detailed description of interaction function and calibration 149

process). If the resulting fitting is judged unsatisfactory (i.e. GRN fit distance is greater 150

than a threshold), the sub-GRN candidate is pruned. For genes presenting several 151

waves, like gene A, each wave will be separately inferred. For example, gene A initial 152

increase is fitted during initialization step, but only the first experimental time points 153

during promoter activity increase will be used for calibration. Genes B and C regulated 154

after gene A up-regulation will be added to expand sub-GRN candidates. Finally, the 155

wave corresponding to gene A down-regulation is then fitted considering possible 156

interactions with previously added genes (namely gene B and C), which permits the 157

creation of feedback loops or incoherent feed-forward loops. 158

Positive feedback loops cannot be easily detected by wave analysis because they only 159

accelerate, and eventually amplify, gene expression. Yet, their inference is important for 160

the GRN behavior since they create a dynamic memory and, for example, may thus 161

participate to irreversibility of the differentiation process. To this end, we developed an 162

algorithm to detect the effect of positive feedback loops on gene distribution before the 163

iterative inference (see Supporting information). We modeled the effect of positive 164

feedback loops by adding auto-positive interactions. Note that such a loop does not 165

necessarily mean that the protein directly activates its own promoter: it simply means 166

that the gene is influenced by a positive feedback, which can be of different nature. For 167

example, in the GRN presented in Fig 1-A, genes B and C mutually create a positive 168

feedback loop. If this positive feedback loop is detected we consider that each gene has 169

its own auto-positive interaction as illustrated in Fig 1-C. Positive feedback loops could 170

also arise from the existence of self-reinforcing open chromatin states [40] or be due to 171

the fact that binding of one TF can shape the DNA in a manner that it promotes the 172

binding of the second TF [41]. 173

In silico benchmarking 174

We decided to first calibrate and then assess WASABI performance in a controlled and 175

representative setting. 176

Calibration of inference parameters 177

In the first phase we assessed some critical values to be used in the inference process. 178

We generate realistic GRNs (Fig2-A) where 20 genes from in vitro data were randomly 179

selected with associated in vitro estimated parameters (see Supporting information). 180

Interactions were randomly defined in order to create cascade networks with no 181

feedback nor auto-positive feedback as an initial assessment phase. 182

We limited ourselves to 4 network levels (with 5 genes at each level, see Fig2-A for 183

an example) because we observed that the information provided by the stimulus is 184
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Fig 2. Cascade in silico GRN A) Cascade GRN types are generated to study wave
dynamics. Genes correspond to in vitro ones with their estimated parameters. S1
corresponds to stimulus. Genes are identified by our list gene ID. B) Based on 10 in
silico GRN we compare promoter wave time of early genes (blue) with other genes (red).
Displayed are promoter waves with a wave time lower than 15h for graph clarity. C) For
each interactions of 10 in silico GRNs we compute the difference between estimated
regulated promoter wave time minus its regulator protein wave time. Distribution of
promoter/protein wave time difference is given for all interactions of all in silico GRNs.

almost completely lost after 4 successive interactions in the absence of positive feedback 185

loops. This is very likely caused by the fact that each gene level adds both some 186

intrinsic noise, due to the bursty nature of gene expression, as well as a filtering 187

attenuation effect due to RNA and protein degradation. 188

We first analyzed the special case of early genes that are directly regulated by the 189

stimulus (Fig2-B). Their promoter wave times were lower than all other genes but one. 190

Therefore we can identify early genes with good confidence, based on comparison of 191

their promoter wave time with a threshold. Given these in silico results, we then 192

decided in the WASABI pre-processing step to assume that genes with a promoter wave 193

time below 5h must be early genes, and that genes with a promoter wave time larger 194

than 7h can not be early genes. Interactions between the stimulus and intermediate 195

genes, with promoter wave times between 5h and 7h, have to be tested during the 196

inference iterative process and preserved or not. 197

We then assessed what would be the acceptable bounds for the difference between 198

regulator protein wave time and regulated gene promoter activity. 10 in silico cascade 199

GRNs were generated and simulated for 500 cells to generate population data from 200

which both protein and promoter wave times were estimated for each gene. Based on 201

these data, we computed the difference between estimated regulated promoter wave 202

time minus its regulator protein wave time for all interactions in all networks. The 203

distribution of these wave differences is given in Fig2-C. One can notice that some wave 204

differences had negative values. This is due to the shape of the Hill interaction function 205

(see eq3 in Method section) with a moderate transition slope (γ = 2). If the protein 206

threshold (which corresponds to typical EC50 value) is too close to the initial protein 207

level, then a slight protein increase will activate target promoter activity. Therefore, 208

promoter activity will be saturated before regulator protein level and thus the difference 209

of associated wave times is negative. This shows that one can accelerate or delay 210

information, depending on the protein threshold value. In order to be conservative 211

during the inference process, we set the RNA/Protein wave difference bounds to [−20h; 212

30h] in accordance with the distribution in Fig2-C. One should note that this range, 213

even if conservative, already removes two thirds of all possible interactions, thereby 214

reducing the inference complexity. 215

We finally observed that for interactions with genes harboring an auto-positive 216

feedback, wave time differences could be larger. In this case, wave difference bounds 217

were estimated to [−30h, 50h] (see supporting information). We interpret this 218

enlargement by an under-sampling time resolution problem since auto-positive feedback 219

results in a sharper transition. As a consequence, promoter state transition from 220
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inactive to active is much faster: if it happens between two experimental time points, 221

we cannot detect precisely its wave time. 222

Inference of in silico GRNs 223

WASABI was then tested for its ability to infer in silico GRNs (complete definition in 224

supporting information) from which we previously simulated experimental data for 225

mRNA and protein levels at single-cell and population scales. We first assessed the 226

simplest scenario with a toy GRN composed of two branches with no feedback (a 227

cascade GRN; Fig 3-A). The GRN was limited to 6 genes and to 3 levels in order to 228

reduce computational constraints. Nevertheless, even in such a simple case, the 229

inference problem is already a highly complex challenge with more than 1020 possible 230

directed networks. 231

Fig 3. In silico cascade GRN inference A) The cascade GRN. Genes parameters
were taken from in vitro estimations to mimic realistic behavior. Experimental data
were generated to obtain time courses of transciptomic data, at single-cell and
population scale, and also proteomic data at population scale. B) WASABI was run to
infer in silico cascade GRN and generated 88 candidates. A dot represents a network
candidate with its associated fit distance and inference quality (percentage of true
interactions). True GRN is inferred (red dot, 100% quality). Acceptable maximum fit
distance (green dashed line) corresponds to variability of true GRN fit distance. Its
computation is detailed in figure C. 3 GRN candidates (including the true one) have a
fit distance below threshold. C) Variability of true GRN fit distance (green dashed line
in figures B and C) is estimated as the threshold where 95% of true GRN fit distance is
below. Fit distance distribution is represented for true GRN (green) and candidates
(blue) for cascade in silico GRN benchmark. True GRNs are calibrated by WASABI
directed inference while candidates are inferred from non-directed inference. Fit
distance represents similitude between candidates generated data and reference
experimental data.

Wave times were estimated for each gene from simulated population data for RNA 232

and protein (data available in supporting information). Table 1 provides estimated 233

waves time for the cascade GRN. It is clear that the gene network level is correctly 234

reproduced by wave times. 235

We then ran WASABI on the generated data and obtained 88 GRN candidates 236

(Fig 3-B). The huge reduction in numbers (from 1020 to 88) illustrates the power of 237

WASABI to reduce complexity by applying our waves-based constraints. We defined 238

two measures for further assessing the relevance of our candidates: 239

1. Quality quantifies proportion of real interactions that are conserved in the 240

candidate network (see supporting information for a detailed description). A 100% 241

corresponds to the true GRN. 242

2. A fit distance, defined as the mean of the 3 worst gene fit distances, where gene 243

fit distance is the mean of the 3 worst Kantorovitch distances [42] among time points 244
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Table 1. Wave times. Promoter and protein wave times (in hours) estimated from in
silico simulated data.

GRN Gene Wpromoter Wprotein

4 4.12 12.99
1 4.26 22.33
5 15.19 45.50

Cascade 2 17.67 44.88
3 37.88 60.10
6 40.06 60.72

(see the Methods section). 245

We observed a clear trend that higher quality is associated with a lower fit distance 246

(Fig 3-B), which we denote as a good specificity. When inferring in vitro GRNs, one 247

does not have access to quality score, contrary to fit distance. Hence, having a good 248

specificity enables to confidently estimate the quality of GRN candidates from their fit 249

distance. Thus, this result demonstrates that our fit distance criterion can be used for 250

GRN inference. Nevertheless, even in the case of a purely in silico approach, quality 251

and fit distance can not be linked by a linear relationship. In other words, the best fit 252

distance can not be taken for the best quality (see below for other toy GRNs). This is 253

likely to be due to both the stochastic gene expression process as well as the estimation 254

procedure. We therefore needed to estimate an acceptable maximum fit distance 255

threshold for true GRN. For this, we ran directed inferences, where WASABI was 256

informed beforehand of the true interactions, but calibration was still run to calibrate 257

interaction parameters. We ran 100 directed inferences and defined the maximum 258

acceptable fit distance (Fig 3-C) as the distance for which 95% of true GRN fit distance 259

was below. This threshold could also be used as a pruning threshold (green dashed line 260

in Fig 3-B) in subsequent iterative inferences, thereby progressively reducing the 261

number of acceptable candidates. We then analyzed a situation where we added either 262

an auto-activation loop or a negative feedback (Fig 4-A and C and supporting 263

information for estimated wave times). 264

In both cases, GRN inference specificity was lower than for cascade network inference. 265

Nevertheless in both cases the true network was inferred and ranked among the first 266

candidates regarding their fit distance (Fig 4-B and D), demonstrating that WASABI is 267

able to infer auto-positive and negative feedback patterns. However there were more 268

candidates below the acceptable maximum fit distance threshold and there was no 269

obvious correlation between high quality and low fit distance. We think it could be due 270

to data under-sampling regarding the network dynamics (see upper and discussion). 271

In vitro application of WASABI 272

We then applied WASABI on our in vitro data, which consists in time stamped 273

single-cell transcriptomic [37] and bulk proteomic data [?] acquired during T2EC 274

differentiation [38], to propose relevant GRN candidates. 275

We first estimated the wave times (Fig 5). Promoter waves ranged from very early 276

genes regulated before 1h to late genes regulated after 60h. Promoter activity appeared 277

bimodal with an important group of genes regulated before 20h and a second group 278

after 30h. Protein wave distribution was more uniform from 10h to 60h, in accordance 279

with a slower dynamics for proteins. Remarkably, 10 genes harbored non-monotonous 280

evolution of their promoter activity with a transient increase. It can be explained by the 281

presence of a negative feedback loop or an incoherent feed-forward interaction. These 282
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Fig 4. In silico GRN with feedbacks A) Addition of one positive feedback onto
the cascade GRN. B) WASABI was run to infer in silico cascade GRN with a positive
feedback and generated 59 candidates, 31 of which having an acceptable fit distance.
See legend to Fig 3-B for details. C) Addition of one negative feedback onto the cascade
GRN. D) WASABI was run to infer in silico cascade GRN with a negative feedback and
generated 476 candidates, all of which having an acceptable fit distance. See legend to
Fig 3-B for details.

results demonstrate that real in vitro GRN exhibits distinguishable “waves”. 283

In order to limit computation time, we decided to further restrict the inference to 284

the most important genes in term of the dynamical behavior of the GRN. We first 285

detected 25 genes that are defined as early with a promoter time lower than 5h. We 286

then defined a second class of genes called “readout” which are influenced by the 287

network state but can not influence in return other genes. Their role for final cell state 288

is certainly crucial, but their influence on the GRN behavior is nevertheless limited. 41 289

genes were classified as readout so that 24 genes were kept for iterative inference, in 290

addition to the 25 early genes. 9 of these 24 genes have 2 waves due to transient 291

increase, which means that we have 33 waves to iteratively infer. 292

Fig 5. Promoter and protein wave time distributions. Distribution of in vitro
promoter (A) and protein (B) wave times for all genes estimated from RNA and
proteomic data at population scale. Counts represent number of genes. Note: a gene
can have several waves for its promoter or protein.
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In vitro GRN candidates 293

After running for 16 days using 400 computational cores, WASABI returned a list of 381 294

GRN candidates. Candidate fit distances showed a very homogeneous distribution (see 295

supporting information) with a mean value around 30, together with outliers at much 296

higher distances. Removing those outliers left us with 364 candidates. Compared to 297

inference of in silico GRN, in vitro fitting is less precise, as we could expect. But it is 298

an appreciable performance and it demonstrates that our GRN model is relevant. 299

We then analyzed the extent of similarities among the GRN candidates regarding 300

their topology by building a consensus interaction matrix (Fig6-A). The first 301

observation is that the matrix is very sparse (except for early genes in first raw and 302

auto-positive feedbacks in diagonal) meaning that a sparse network is sufficient for 303

reproducing our in vitro data. We also clearly see that all candidate GRNs share closely 304

related topologies. This is clearly obvious for early genes and auto-positive feedbacks. 305

Columns with interaction rates lower than 100% correspond to latest integrated genes in 306

the iterative inference process with gene index (from earlier to later) 70, 73, 89, 69 and 307

29. Results from existing algorithms are usually presented in such a form, where the 308

percent of interactions are plotted [27–29,35]. But one main advantage of our approach 309

is that it actually proposes real GRN candidates, which may be individually examined. 310

We therefore took a closer look at the “best” candidate network, with the lowest Fit 311

distance to the data (Fig6-B). We observed very interesting and somewhat unexpected 312

patterns: 313

1. Most of the genes (84%) with an auto-activation loop. As mentioned earlier, this 314

was a consensual finding among the candidate networks. It is striking because typical 315

GRN graphs found in the literature do not have such predominance of auto-positive 316

feedbacks. 317

2. A very large number of genes were found to be early genes that are under the 318

direct control of the stimulus. It is noticeable that most of them were found to be 319

inhibited by the stimulus, and to control not more than one other gene at one next level. 320

3. We previously described the genes whose product participates in the sterol 321

synthesis pathway, as being enriched for early genes [37]. This was confirmed by our 322

network analysis, with only one sterol-related gene not being an early gene. 323

4. Among 7 early genes that are positively controlled by the stimulus, 6 are 324

influenced by an incoherent feedforward loop, certainly to reproduce their transient 325

increase experimentally observed [37]. 326

5. One important general rule is that the network depth is limited to 3 genes. One 327

should note that this is not imposed by WASABI which can create networks with 328

unlimited depth. It is consistent with our analysis on signal propagation properties in in 329

silico GRN. If network depth is too large, signal is too damped and delayed to 330

accurately reproduce experimental data. 331

6. One do not see network hubs in the classical sense. The genes in the GRNs are 332

connected to at most four neighbors. The most impacting “node” is the stimulus itself. 333

7. One can also observe that the more one progress within the network, the less 334

consensual the interaction are. Adding the leaves in the inference process might help to 335

stabilize those late interactions. 336

Altogether those results show the power of WASABI to offer a brand-new vision of 337

the dynamical control of differentiation. 338

Discussion 339

In the present work we introduced WASABI as a new iterative approach for GRN 340

inference based on single-cell data. We benchmarked it on a representative in silico 341
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Fig 6. Inference from in vitro data A) In vitro interaction consensus matrix. Each
square in the matrix represents either the absence of any interaction, in black, or the
presence of an interaction, the frequency of which is color-coded, between the considered
regulator ID (row) and regulated gene ID (column). First row correspond to stimulus
interactions. B) Best candidate. Green: positive interaction; red: negative interaction;
plain lines: interactions found in 100% of the candidates; dashed lines: interaction
found only in some of the candidates; orange: genes the product of which participates to
the sterol synthesis pathway; purple: 5 last added genes during iterative inference.

environment before its application on in vitro data. 342

WASABI tackles GRN inference limitations 343

We are convinced that WASABI has the ability to tackle some general GRN inference 344

issues. 345

1. WASABI goes beyond mere correlations to infer causalities from time stamped 346
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data analysis as demonstrated on in silico benchmark (Fig3) even in the presence of 347

circular causations (Fig4), based upon the principle that the cause precedes the effect. 348

2. Contrary to most GRN inference algorithms [27–29,35] based upon the inference 349

of interactions, WASABI is network centered and generates several candidates with 350

explicitly defined networks topology (Fig6-B), which is required for prediction making 351

and simulation capability. Generating a list of interactions and their frequency from 352

such candidates is a trivial task (Fig6-A) whereas the reverse is usually not possible. 353

Moreover, WASABI explicitly integrates the presence of an external stimulus, which 354

surprisingly is never modeled in other approaches based on single-cell data analysis. It 355

could be very instrumental for simulating for example pulses of stimuli. 356

3. WASABI is not restricted to transcription factors (TFs). Most of the in vitro 357

genes we modeled are not TFs. This is possible thanks to the use of our mechanistic 358

model [36] which integrates the notion of timescale separation. It assumes that every 359

biochemical reaction such as metabolic changes, nuclear translocations or 360

post-translational modifications are faster than gene expression dynamics (imposed by 361

mRNA and protein half-life) and that they can be abstracted in the interaction between 362

2 genes. Our interaction model is therefore an approximation of the underlying 363

biochemical cascade reactions. This should be kept in mind when interpreting an 364

interaction in our GRN: many intermediaries (fast) reactions may be hidden behind this 365

interaction. 366

4. Optionally, WASABI offers the capability to integrate proteomic data to 367

reproduce translational or post-translational regulation. Our proteomic data [39] 368

demonstrate that nearly half of detected genes exhibit mRNA/protein uncoupling 369

during differentiation and allowed to estimate the time evolution of protein production 370

and degradation rates. Nevertheless, we are not fully explanatory since we do not infer 371

causalities of these parameters evolution. This is a source of improvement discussed 372

later. 373

5. We deliberately developed WASABI in a “brute force” computational way to 374

guarantee its biological relevance and versatility. This allowed to minimize simplifying 375

assumptions potentially necessary for mathematical formulations. During calibration, 376

we used a simple Euler solver to simulate our networks within model (1). This 377

facilitates addition of any new biological assumption, like post-translation regulations, 378

without modifying the WASABI framework, making it very versatile. Thanks to the 379

splitting and parallelization allowed by WASABI original gene-by-gene iterative 380

inference process, the inference problem becomes linear regarding the network size, 381

whereas typical GRN inference algorithms face combinatorial curse. This strategy also 382

allowed the use of High Parallel Computing (HPC) which is a powerful tool that 383

remains underused for GRN inference [23,43]. 384

WASABI performances, improvements and next steps 385

WASABI has been developed and tested on an in silico controlled environment before 386

its application on in vitro data. Each in silico network true topology was successfully 387

inferred. Cascade type GRN is perfectly inferred (Fig3) with an excellent specificity. 388

Auto-positive and negative feedback networks (Fig4) were also inferred, demonstrating 389

WASABI’s ability to infer circular causations, but specificity is lower. This might be 390

due to a time sampling of experimental data being longer than the network dynamic 391

time scale. Auto-positive feedback creates a switch like response, the dynamic of which 392

is much quicker than simple activation. Thus, to capture accurately auto-positive 393

feedback wave time, we should use high frequency time sample for RNA experimental 394

data during auto-positive feedback activation short period. For negative feedback 395

interactions, WASABI calibrated initial increase considering only first experimental time 396

points before feedback effect. Consequently, precision of first interaction was decreased 397
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and more false positive sub-GRN candidates were selected. Increasing the frequency of 398

experimental time sampling during initial phase should overcome this problem. 399

As it stands our mechanistic model is only accounting for transcriptional regulation 400

through proteins. It does not take into account other putative regulation level, 401

including translational or post-translational regulations, or regulation of the mRNA 402

half-life, although there is ample evidence that such regulation might be relevant [44,45]. 403

Provided that sufficient data is available, it would be straightforward to integrate such 404

information within the WASABI framework. For example, the estimation of the 405

degradation rates at the single-cell level for mRNAs and proteins has recently been 406

described [46], the distribution of which could then be used as an input into the 407

WASABI inference scheme. 408

Cooperativity and redundancies are not considered in the current WASABI 409

framework, so that a gene can only be regulated by one gene, except for negative 410

feedback or incoherent feedforward interactions. However, many experimentally curated 411

GRN show evidence for cooperations (2 genes are needed to activate a third gene) or 412

redundant interactions (2 genes independently activating a third gene) [47]. We 413

intentionally did not considered such multi-interactions because our current calibration 414

algorithm relies on the comparison of marginal distributions which are not sufficiently 415

informative for inferring cooperative effects. It is our belief that the use of joint 416

distribution of two genes or more should enable such inference. We previously developed 417

in our group a GRN inference algorithm which is based on joint distribution 418

analysis [36] but which does not consider time evolution. We are therefore planning to 419

integrate joint-distribution-based analyses within the WASABI framework in order to 420

improve calibration, by upgrading the objective function with measurement considering 421

joint-distribution comparison. 422

HPC capacities used during iterative inference impacts WASABI accuracy. Indeed 423

late iterations are supposed more discriminative than the first one because false GRN 424

candidates have accumulated too many wrong interactions so that calibration is not 425

able to compensate for errors. However, if the expansion phase is limited by available 426

computational nodes, the true candidate may be eliminated because at this stage 427

inference is not discriminative enough. Therefore improving computing performances 428

would represent an important refinement and we have initiated preliminary studies in 429

that direction [43]. 430

Nevertheless, despite all possible improvements, GRN inference will remain per se an 431

asymptotically solvable problem due to inferability limitations [48], intrinsic biological 432

stochasticity, experimental noise and sampling. This is why we propose a set of GRN 433

candidates with acceptable confidence level. A natural companion of the WASABI 434

approach would be a phase of design of experiments (DOE) specifically aiming at 435

selecting the most informative experiments to discriminate among the candidates. Such 436

DOE procedures have already been developed for GRN inference, but none of them 437

takes into account the mechanistic aspects and the stochasticity of gene 438

expression [48,49]. Extending the DOE framework to stochastic models is currently 439

being developed in our group. 440

New insights on typical GRN topology 441

The application of WASABI on our in vitro model of differentiation generated several 442

GRN candidates with a very interesting consensus topology (Fig6). 443

1. We can see that the stimulus (i.e. medium change [37]) is a central regulator of 444

our GRN. We are strongly confident with this result because initial RNA kinetic of 445

early genes can only be explained by fast regulation at promoter level several minutes 446

after stimulation. Proteins dynamics are way too slow to justify these early variations. 447
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2. 22 of the 29 inferred early genes are inhibited by the stimulus, while inhibitions 448

are only present in 7 of the 28 non-early interactions. Thus inhibitions are 449

overrepresented in stimulus-early genes interactions. An interpretation is that most of 450

genes are auto-activated and their inhibition requires a strong and long enough signal to 451

eliminate remaining auto-activated proteins. A constant and strong stimulus should be 452

very efficient for this role like in [32] where stimulus long duration and high amplitude is 453

required to overcome an auto-activation feedback effect. It could be very interesting in 454

that respect to assess how the network would respond to a temporary stimulus, 455

mimicking the commitment experiment described in [37] or [50]. 456

3. None of our GRN candidates do contain so-called “hubs genes” affecting in 457

parallel many genes, whereas existing GRN inferred generally present consequent 458

hubs [26,28,29,35] . A possible interpretation is that hub identifications is mostly a 459

by-product of correlation analysis. This interpretation is in line with the sparse nature 460

of our candidate networks, as compared to some previous network (see e.g. [25] or [51]). 461

This strongly departs with the assumption that small-world network might represent 462

“universal laws” [52]. 463

4. In order to reproduce non-monotonous gene expression variations, WASABI 464

inferred systematically incoherent feedforward pattern instead of “simpler” negative 465

feedback. This result is interesting because nothing in WASABI explain this bias since 466

in silico benchmarking proved that WASABI is able to infer simple negative feedbacks 467

(Fig4). Such “paradoxical components” have been proposed to provide robustness, 468

generate temporal pulses, and provide fold-change detection [53]. 469

5. WASABI candidates are limited in network depth by a maximum of 3 levels. We 470

did not include readout genes during inference but addition of these genes would only 471

increase GRN candidate depth by one level. GRN realistic candidates depth are thus 472

limited by 4 levels. This might be due to the fact that information can only be relayed 473

by limited number of intermediaries because of induced time delay, damping and noise. 474

Indeed, general mechanism of molecules production/degradation behaves exactly as a 475

low pass filter with a cutting frequency equivalent to the molecule degradation rate. 476

Furthermore, protein information will be transmitted at the promoter target level by 477

modulation of burst size and frequency, which are stochastic parameters, thereby adding 478

noise to the original signal. 479

Such a strong limitation for information carrying capacity in GRN is at stake with 480

long differentiation sequences, say from the hematopoietic stem cell to a fully 481

committed cell. In such a case, tens of genes will have to be sequentially regulated. This 482

might be resolved by the addition of auto-positive feedbacks. Such auto-positive 483

feedbacks will create a dynamic memory whereby the information is maintained even in 484

the absence of the initial information. An important implication is the loss of 485

correlation between auto-activated gene and its regulator gene. Consequently, all 486

algorithms based on stationary RNA single-cell correlation [26,27] will hardly catch 487

regulators of auto-activated genes. 488

Considering the importance of auto-positive feedback benefits on GRN information 489

transfert, it is therefore not surprising to see that more than 80% of our GRN genes 490

present auto-positive feedback signatures in their RNA distribution. Moreover, 491

experimentally observed auto-positive feedback influence is stronger in our in vitro 492

model than in our in silico models. Such a strong prevalence of auto-positive feedbacks 493

has also been observed in a network underlying germ cell differentiation [51]. As 494

mentioned earlier, care should be taken in interpreting such positive influences, which 495

very likely rely on indirect influences, like epigenomic remodeling. 496
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Materials and Methods 497

Mechanistic GRN model 498

Our approach is based on a mechanistic model that has been previously introduced 499

in [36] and which is summed-up in Fig 7. 500

Fig 7. GRN mechanistic and stochastic model. Our GRN model is composed of
coupled piecewise deterministic Markov processes. In this example 2 genes are coupled.
A gene i is represented by its promoter state (dashed box) which can switch randomly
from ON to OFF, and OFF to ON, respectively at kon,i and koff,i mean rate. When
promoter state is ON, mRNA molecules are continuously produced at a s0,i rate.
mRNA molecules are constantly degraded at a d0,i rate. Proteins are constantly
translated from mRNA at a s1,i rate and degraded at a d1,i rate. The interaction
between a regulator gene j and a target gene i is defined by the dependence of kon,i and
koff,i with respect to the protein level Pj of gene j and the interaction parameter θi,j .
Likewise, a stimulus (yellow flash) can regulate a gene i by modulating its kon,i and
koff,i switching rates with interaction parameter θi,0.

In all that follows, we consider a set of G interacting genes potentially influenced by 501

a stimulus level Q. Each gene i is described by its promoter state Ei = 0 (off) or 1 (on), 502

its mRNA level Mi and its protein level Pi. We recall the model definition in the 503

following equation, together with notations that will be extensively used throughout 504

this article. 505
Ei(t) : 0

kon−−→ 1, 1
koff−−→ 0

M ′i(t) = s0,iEi(t)− d0,iMi(t)

P ′i (t) = s1,iMi(t)− d1,iPi(t)
(1)

The first line in model (1) represents a discrete, Markov random process, while the 506

two others are ordinary differential equations (ODEs) describing the evolution of mRNA 507

and protein levels. Interactions between genes and stimulus are then characterized by 508

the assumption that kon and koff are functions of P = (P1, . . . , PG) and Q. The form 509

for kon is the following (for koff, replace θi,j by −θi,j): 510

kon(P,Q) =
kon min,i + kon max,iβiΦi(P,Q)

1 + βiΦi(P,Q)
(2)

Φi(P,Q) =
1 + eθi,0Q

1 +Q

G∏
j=1

1 + eθi,j
(
Pj

Hj

)γ
1 +

(
Pj

Hj

)γ (3)
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This interaction function slightly differs from [36] since auto-feedback is considered 511

as any other interactions and stimulus effect is explicitly defined. Exponent parameter 512

γ is set to default value 2. Interaction threshold Hj is associated to protein j. 513

Interaction parameters θi,j will be estimated during the iterative inference. Parameter 514

βi corresponds to GRN external and constant influence on gene to define its basal 515

expression: it is computed at simulation initialization in order to set kon and koff to 516

their initial value. From now on, we drop the index i to simplify our notation when 517

there is no ambiguity. 518
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Overview of WASABI workflow 519

WASABI framework is divided in 3 main steps. First, individual gene parameters 520

defined in model (1) (all except θ and H) are estimated before network inference from a 521

number of experimental data types acquired during T2EC differentiation. They include 522

time stamped single-cell transcriptomic [37], bulk transcription inhibition kinetic [37] 523

and bulk proteomic data [39]. In a second step, genes are sorted regarding their wave 524

times (see ”Results” section for a description of wave concept) estimated from the mean 525

of single cell transcriptomic data for promoter waves, and bulk proteomic data for 526

protein waves. Finally, network iterative inference step is performed from single 527

transcriptomic data, previously inferred gene parameters and sorted genes list. All 528

methods are detailed in following sections, an overview of workflow is given by Fig 8. 529

For T2EC in vitro application, tables of gene parameters and wave times are 530

provided in supporting information. For in silico benchmarking we assume that gene 531

parameters d0, d1, s1 are known. Single-cell data and bulk proteomic data are simulated 532

from in silico GRNs for time points 0, 2, 4 ,8, 24, 33, 48, 72 and 100h. 533

Fig 8. Parameters estimation workflow. Schematic view of WASABI workflow
with 3 main steps: (1) individual gene parameters estimation (red zone), (2) waves
sorting (green zone) and (3) network iterative interaction inference (blue zone). Wave
concept is introduced in ”Result” section. Model parameters (square boxes) are
estimated from experimental data (flasks) with a specific method (grey hexagones). All
methods are detailed in ”Method” section. Estimated data relative to waves are
represented by round boxes. Input arrows represent data required by methods to
compute parameters. There are 3 types of experimental data, (i) bulk transcription
inhibition kinetic (green flask), (ii) single-cell transcriptomic (blue flask) and (iii)
proteomic data (orange flask). Model parameters are specific to each gene, except for θ,
which is specific to a pair of regulator/regulated genes. Notations are consistent with
Eq(1), γauto represents exponent term of auto-positive feedback interaction. Only d0(t),
d1(t) and s1(t) are time dependent. One gene can have several wave times.

18/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2018. ; https://doi.org/10.1101/292128doi: bioRxiv preprint 

https://doi.org/10.1101/292128
http://creativecommons.org/licenses/by-nc-nd/4.0/


First step - Individual gene parameters estimation 534

Exponential decay fitting for mRNA degradation rate (d0) estimation 535

The degradation rate d0 corresponds to active decay (i.e. destruction of mRNA) plus 536

dilution due to cell division. The RNA decay was already estimated in [37] before 537

differentiation (0h), 24h and 72h after differentiation induction from population-based 538

data of mRNA decay kinetic using actinomycin D-treated T2EC (osf.io/k2q5b). Cell 539

division dilution rate is assumed to be constant during the differentiation process and 540

cell cycle time has been experimentally measured at 20h [38]. 541

Maximum estimator for mRNA transcription rate (s0) estimation 542

To infer the transcription rate s0, we used a maximum estimator based on single-cell 543

expression data generated in [37]. We suppose that the highest possible mRNA level is 544

given by s0/d0. Thus s0 corresponds to the maximum mRNA count observed in all cells 545

and time points multiplied by max
t

(d0(t)). 546

Method of moments and bootstrapping for range of promoter switching 547

rates (kon/off min/max) estimation 548

Dynamic parameters kon and koff are bounded respectively by constant parameters 549

[kon min; kon max] and [koff min; koff max] (see Eq (2)) which are estimated as follows from 550

time course single-cell transcriptomic data. Parameters s0 and d0(t) are supposed to be 551

previously estimated for each gene at time t. 552

Range parameters shall be compliant with constraints (Eq (4)) imposed by the 553

transcription dynamic regime observed in vitro. RNA distributions [37] have many 554

zeros, which is consistent with the bursty regime of transcription. There is no observed 555

RNA saturation in distributions. Moreover, all GRN parameters should also comply 556

with computational constraints. On the one hand, the time step dt used for simulations 557

shall be small enough regarding GRN dynamics to avoid aliasing (under-sampling) 558

effects. On the other hand, dt should not be too small to save computation time. These 559

constraints correspond to 560

kon < d0 < koff <
1

dt
(4)

and we deduce inequalities for ranges: 561

kon min < kon max < d0 < koff min < koff max <
1

dt
. (5)

We set the default value kon min to 0.001 h−1. Parameter kon max is estimated from 562

time course single-cell transcriptomic data after removing zeros. This truncation mimics 563

a distribution where gene is always activated, so that kon is close to its maximum value 564

kon max. With these truncated distributions, for each time point t, we estimate kon,t 565

using a moment-based method defined in [54]. We bootstrapped 1000 times to get a list 566

of kon,t,n with index n corresponding to bootstrap sample n. For each time point we 567

compute the 95% percentile of kon,t,n, then we consider the mean value of these 568

percentiles to have a first estimate of kon max. This kon max is then down and up limited 569

respectively between kon max lim min and kon max lim max given in Eq (6) to guarantee 570

that observed kon can be easily reached during simulations with reasonable values of 571

protein level (because of asymptotic behavior of interaction function). In other words 572

kon max shall not be too close from minimum or maximum observed kon considering 10% 573

margins. Finally, this limited kon max is up-limited by 0.5×max
t

(d0(t)) to guarantee a 574

50% margin with d0(t). 575
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kon max lim min =
max
t

(median
n

(kon,t,n))− 0.1× kon min

0.9

kon max lim max =
max
t

(median
n

(kon,t,n))− 0.9× kon min

0.1

(6)

Parameter koff min is set to max
t

(d0(t)) to comply with equation Eq (5). Parameter 576

koff max is estimated like kon max from time course single-cell transcriptomic data but 577

without zero truncation.For each time point t, we estimate koff,t using a moment-based 578

method defined in [54]. We bootstrapped 1000 times to get a list of koff,t,n with index n 579

corresponding to bootstrap sample n. For each time point we compute the 95% 580

percentile of koff,t,n, then we consider the mean value of these percentiles to have a first 581

estimate of koff max. This koff max is then down and up limited respectively between 582

koff max lim min and koff max lim max given in Eq (7) to guarantee that observed koff can 583

be easily reached during simulations with reasonable values of protein level (because of 584

asymptotic behavior of interaction function). In other words koff max shall not be too 585

close from minimum or maximum observed koff considering 10% margins. Finally, this 586

limited koff max is up-limited by 1/dt to guaranty simulation anti-aliasing. 587

koff max lim min =
max
t

(median
n

(koff,t,n))− 0.1× koff min

0.9

koff max lim max =
max
t

(median
n

(koff,t,n))− 0.9× koff min

0.1

(7)

ODE fitting for protein translation and degradation rates (d1, s1) estimation 588

Rates d1(t) and s1(t) are estimated from comparison of proteomic population kinetic 589

data [39] with RNA mean value kinetic data computed from single-cell data [37]. 590

Parameter d1(t) corresponds to protein active decay rate while total protein degradation 591

rate d1 tot(t) includes decay plus cell division dilution. Associated total protein half-life 592

is referred to as t1 tot(t). Parameters s1(t) and d1 tot(t) are estimated using a calibration 593

algorithm based on a maximum likelihood estimator (MLE) from package [55]. 594

Objective function is given by the Root Mean Squared Error function (provided by the 595

package) comparing experimental protein counts with simulated ones given by ODEs 596

from our model (1) with RNA level provided by experimental mean RNA data: 597

P ′(t) = s1(t)M(t)− d1(t)P (t)

52 out of our 90 selected genes were detected in proteomic data. 23 of these fit 598

correctly experimental data with a constant d1 and s1 during differentiation. 5 genes 599

were estimated with a variable s1(t) and a constant d1 to fit a constant protein level 600

with a decreasing RNA level. For the remaining 24 genes, protein level decreased while 601

RNA is constant, which is modeled with s1 constant and d1(t) variable. 602

For the genes that were not detected in our proteomic data we turned to the 603

literature [56] and found 13 homologous genes with associated estimation of d1 and s1. 604

For the remaining 25 genes, we estimated parameters with the following rationale: we 605

consider that the non-detection in the proteomic data is due to low protein copy 606

number, lower than 100. Moreover [56] proposed an exponential relation between s1 and 607

the mean protein level that we confirmed with our data (see supporting information), 608

resulting in the following definition: 609

s1 = 10−1.47 × P 0.81
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Linear regression was performed using the Python scipy.stats.linregress() method 610

from Scipy package with the following parameters: r2 = 0.55, slope = 0.81, 611

intercept = −1.47 and p = 2.97× 10−9. Therefore, if we extrapolate this relation for 612

low protein copy numbers assuming P < 100 copies, s1 should be lower than 1 613

molecule/RNA/hour. Assuming the relation 614

Prot = RNA× s1
d1 tot

between mean protein and RNA levels, we deduced a minimum value of d1 from mean 615

RNA level given by: d1 > RNA/100. We set s1 and d1 respectively to their maximum 616

and minimum estimated values. 617

Bimodal distribution likelihood for auto-positive feedback exponent (γauto) 618

estimation 619

We inferred the presence of auto-positive feedback by fitting an individual model for 620

each gene, based on [36]. The model is characterized by a Hill-type power coefficient. 621

The value of this coefficient was inferred by maximizing the model likelihood, available 622

in explicit form. The key idea is that genes with auto-positive feedback typically show, 623

once viewed on an appropriate scale, a strongly bimodal distribution during their 624

transitory regime. The interested reader may find some details in the supplementary 625

information file of [36], especially in sections 3.6 and 5.2. Note that such auto-positive 626

feedback may reflect either a direct auto-activation, or a strong but indirect positive 627

loop, potentially involving other genes. Estimated Hill-type power coefficients for in 628

silico and in vitro networks are provided in supporting information. 629

Second step - Waves sorting 630

Inflexion estimator for wave time estimation 631

Wave time for gene promoter Wprom and protein Wprot are estimated regarding their 632

respective mean trace E and P . Estimation differs depending on mean trace monotony. 633

In vitro wave times are provided in supporting information. 634

1) If the mean trace is monotonous (checked manually), it is smoothed by a 3rd 635

order polynomial approximation using method poly1d() from python numpy package. 636

Wave time is then defined as the inflection time point of polynomial function where 50% 637

of evolution between minimum and maximum is reached. 638

2) If the mean trace is not monotonous, it is approximated by a piecewise-linear 639

function with 3 breakpoints that minimizes the least square error. Linear interpolations 640

are performed using the polynomial.polyfit() function from python numpy package. 641

Selection of breakpoints is performed using optimize.brute() function from python numpy 642

package. 643

We obtained a series of 4 segments with associated breakpoints coordinate and slope. 644

Slopes are thresholded: if absolute value is lower than 0.2 it is considered null. Then, we 645

looked for inflection break times where segments with non null slope have an opposite 646

sign compare to the previous segment, or if previous segment has a null slope. Each 647

inflection break time corresponds to an initial effect of a wave. A valid time, when wave 648

effect applies, is associated and corresponds to next inflection break time or to the end 649

of differentiation. Thus, we obtained couples of inflection break time and valid time 650

which defined the temporal window of associated wave effect. For each wave window, if 651

mean trace variation between inflection break time and valid time is large enough (i.e., 652

greater than 20% of maximal variation during all differentiation process for the gene), a 653

wave time is defined as the time where half of mean trace variation is reached during 654

wave time window. 655
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Protein mean trace P is given by proteomic data if available, else it is computed from 656

simulation traces with 500 cells using the model with the parameters estimated earlier. 657

Promoter mean trace E is computed as follows from mean RNA trace (from single-cell 658

transcriptomic data) with time delay correction induced by mRNA degradation rate d0. 659

E(t) =
kon(t)

kon(t) + koff(t)
660

E

(
t− 1

d0(t)

)
=
d0
s0
×M(t)×

(
t− 1

d0(t)

)
Genes sorting 661

Genes are sorted regarding their promoter waves time Wprom. Genes with multiple 662

waves, in case of feedback for example, are present several times in the list. Moreover, 663

genes are classified by groups regarding their position in the network. Genes directly 664

regulated by the stimulus are called the early genes; Genes that regulates other genes 665

are defined as regulatory genes; Genes that do not influence other genes are identified as 666

readout genes. Note that genes can belong to several group. 667

We can deduce the group type for each gene from its wave time estimation. 668

Subsequent constraints have been defined from in silico benchmarking (see Results 669

section). A gene i belongs to one of these groups according to following rules: 670

� if Wprom < 5h then it is an early gene 671

� if Wprom < 7h then it could be an early gene or another types 672

� if max
i

(Wprom,i) + 30h < Wprot then it is a readout gene 673

� else it could be a regulatory or a readout gene 674

Third step - Network iterative inference 675

Interaction threshold (H) 676

Interaction threshold H is estimated for each protein. It corresponds to mean protein 677

level at 25% between minimum and maximum mean protein level observed during 678

differentiation by in silico simulations: 679

H = Pmin + 0.25(Pmax − Pmin)

We choose the value of 25% to maximize the amplitude variation of kon and koff of 680

gene target induced by the shift of the regulator protein level from its minimal to 681

maximal value (see Eq(2)). 682

Iterative calibration algorithm (θi,j) 683

The following algorithm gives a global overview of the iterative inference process: 684

Generate EARLY network(): In a first step we calibrate the interactions between 685

early genes and stimulus (θi,0) to obtain an initial sub-GRN. Calibration algorithm 686

Calibrate() is defined below. 687

List genes sorted by Wave time: This list is computed prior to iterative inference 688

(see previous subsection). 689
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Algorithm 1 WASABI GRN iterative inference

1: List GRN candidates = Generate EARLY network()
2: for Gene, Wave in List genes sorted by Wave time do
3: for GRN in List GRN candidates() do
4: List new GRN to calibrate = Get all possible interaction(GRN, Gene, Wave)
5: for New GRN in New GRN List do
6: Calibrate(New GRN)

7: List GRN candidate = Select Best New GRN()

Get all possible interaction(GRN, Gene, Wave): For each GRN candidate we 690

estimate all possible interactions with the new gene and prior regulatory genes, or 691

stimulus, regarding their respective promoter wave and protein wave with the following 692

logic: if promoter wave is lower than 7h, interaction is possible between stimulus and 693

the new gene. If the difference of promoter wave minus protein wave is between −20h 694

and +30h, then there is a possible interaction between the new gene and regulatory 695

gene. Note: if WASABI is run in “directed” mode, only the true interaction is returned. 696

Calibrate(New GRN): For interaction parameter calibration we used a Maximum 697

Likelihood Estimator (MLE) from package spotpy [55]. The goal is to fit simulated 698

single-cell gene marginal distribution with in vitro ones tuning efficiency interaction 699

parameter θi,j . For in silico study we defined GRN Fit distance as the mean of the 3 700

worst gene-wise fit distances. For in vitro study we defined GRN Fit distance as the 701

mean of the fit distances of all genes. Gene-wise fit distance is defined as the mean of 702

the 3 higher Kantorovitch distances [42] among time points. For a given time point and 703

a given gene, the Kantorovitch fit distance corresponds to a distance between marginal 704

distributions of simulated and experimental expression data. At the end of calibration 705

the set of interaction parameter θi,j with associated GRN Fit distance is returned. 706

Select Best New GRN() We fetch all GRN calibration fitting outputs from remote 707

servers and select best new GRNs to be expanded for next iteration updating list of 708

List GRN candidate. New networks candidates are limited by number of available 709

computational cores. 710

GRN simulation 711

We use a basic Euler solver with fixed time step (dt = 0.5h) to solve mRNA and protein 712

ODEs [36]. The promoter state evolution between t and t+ dt is given by a Bernoulli 713

distributed random variable 714

E(t+ dt) = Bernoulli(p(t))

drawn with probability p(t) depending on current kon, koff and promoter state: 715

p(t) = E(t)e−dt(kon+koff) +
kon

kon + koff

(
1− e−dt(kon+koff)

)
.

Time-dependent parameters like d0, d1 and s1 are linearly interpolated between 2 716

points. The stimulus Q is represented by a step function between 0 and 1000 at t = 0h. 717

Simulation starts at t = −60h to ensure convergence to steady state before the stimulus 718

is applied. Parameters kon and koff are given by Eq (2). 719
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