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Abstract

Inference of gene regulatory networks from gene expression data has been a
long-standing and notoriously difficult task in systems biology. Recently, single-cell
transcriptomic data have been massively used for gene regulatory network inference,
with both successes and limitations. In the present work we propose an iterative
algorithm called WASABI, dedicated to inferring a causal dynamical network from
time-stamped single-cell data, which tackles some of the limitations associated with
current approaches. We first introduce the concept of waves, which posits that the
information provided by an external stimulus will affect genes one-by-one through a
cascade, like waves spreading through a network. This concept allows us to infer the
network one gene at a time, after genes have been ordered regarding their time of
regulation. We then demonstrate the ability of WASABI to correctly infer small
networks, which have been simulated in silico using a mechanistic model consisting of
coupled piecewise-deterministic Markov processes for the proper description of gene
expression at the single-cell level. We finally apply WASABI on in vitro generated data
on an avian model of erythroid differentiation. The structure of the resulting gene
regulatory network sheds a fascinating new light on the molecular mechanisms
controlling this process. In particular, we find no evidence for hub genes and a much
more distributed network structure than expected. Interestingly, we find that a majority
of genes are under the direct control of the differentiation-inducing stimulus. In
conclusion, WASABI is a versatile algorithm which should help biologists to fully
exploit the power of time-stamped single-cell data.

Author summary

All cells have to make everyday decisions regarding their behavior in response to
changing environment. Such decisions result from the dynamical behavior of an
underlying gene regulatory network. Inferring the structure of such networks is an
inverse problem which has occupied the systems biology community for decades. We
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propose in the present work a divide-and-conquer strategy called WASABI, which splits
the potentially untractable global problem into much simpler subproblems. We show
that by adding one gene at a time, we can infer small networks, the behavior of which
has been simulated in silico using a mechanistic model which incorporates the
fundamentally probabilistic nature of the gene expression process. When applied to
real-life data, our algorithm sheds a new fascinating light onto the molecular control of
a differentiation process. It is our hope that WASABI will prove useful in helping
biologists to fully exploit the power of time-stamped single-cell data.

Introduction

It is widely accepted that the process of cell decision making results from the behavior
of an underlying dynamic gene regulatory network (GRN) [1]. The GRN maintains a
stable state but can also respond to external perturbations to rearrange the gene
expression pattern in a new relevant stable state, such as during a differentiation
process. Its identification has raised great expectations for practical applications in
network medicine [2] like somatic cells [3H5] or cancer cells reprogramming [61|7]. The
inference of such GRNs has, however, been a long-standing and notoriously difficult task
in systems biology.

GRN inference was first based upon bulk data [§] using transcriptomics acquired
through micro array or RNA sequencing (RNAseq) on populations of cells. Different
strategies has been used for network inference including dynamic Bayesian
networks [9;/10], boolean networks |11H13] and ordinary differential equations
(ODE) |14] which can be coupled to Bayesian networks [15].

More recently, single-cell transcriptomic data, especially RNAseq [16], have been
massively used for GRN inference (see |17.[18] for recent reviews). The arrival of those

single-cell techniques led to question the fundamental limitations in the use of bulk data.

Observations at the single-cell level demonstrated that any and every cell population is
very heterogeneous [19-21]. Two different interpretations of the reasons behind
single-cell heterogeneity led to two different research directions:

1. In the first view, this heterogeneity is nothing but a noise that blurs a
fundamentally deterministic smooth process. This noise can have different origins, like
technical noise (“dropouts”) or temporal desynchronization as during a differentiation
process. This view led to the re-use of the previous strategies and was at the basis of
the reconstruction of a “pseudo-time” trajectory (reviewed in [22]). For example,
SingleCellNet [23] and BoolTraineR [24] are based on boolean networks with
preprocessing for cell clustering or pseudo-time reconstruction. Such asynchronous
Boolean network models have been successfully applied in |25]. Other probabilistic
algorithms such as SCOUP [26], SCIMITAR [27] or ARIMA1-VBEM |28] also use
pseudo-time reconstruction complemented with correlation analysis. ODE based
methods can be exemplified with SCODE [29] and InferenceSnapshot [30] algorithms
which also use pseudo-time reconstruction.

2. The other view is based upon a representation of cells as dynamical
systems [31132]. Within such a frame of mind, “noise” can be seen as the manifestation
of the underlying molecular network itself. Therefore cell-to-cell variability is supposed
to contain very valuable information regarding the gene expression process [33]. This
view was advocated among others by [34], suggesting that heterogeneity is rooted into
gene expression stochasticity, and that cell state dynamic is a highly stochastic process
due to bursting that jumps discontinuously between micro-states. Dynamic algorithms
like SINCERITIES |[35] are based upon comparison of gene expression distributions,
incorporating (although not explicitly) the bursty nature of gene expression. We have
recently described a more explicit network formulation view based upon the coupling of
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probabilistic two-state models of gene expression [36]. We devised a statistical hidden a3
Markov model with interpretable parameters, which was shown to correctly infer small 4

two-gene networks [36]. 4

Despite their contributions and successes, all existing GRN inference approaches are 4
confronted to some limitations: a

1. The inference of interactions through the calculation of correlation between gene 4
expression, whether based upon or linear [27] or non-linear [26] assumptions, is a9
problematic. Such correlations can only reproduce events that have been previously 50
observed. As a consequence, predictions of GRN response to new stimulus or 51
modifications is not possible. Furthermore, correlation should not be mistaken for 52
causality. The absence of causal relationship severely hampers any predictive ability of  s3
the inferred GRN. 54

2. The very possibility of making predictions relies upon our ability to simulate the s
behavior of candidate networks. This implicitly implies that network topologies are 56
explicitly defined. Nevertheless, several inference algorithms [27H29|/35] propose a set of &
possible interactions with independent confidence levels, generally represented by an 58
interaction matrix. The number of possible actionable networks deduced from 50
combining such interactions is often too large to be simulated. 60

3. Regulatory proteins within a GRN are usually restricted to transcription factors e
(TF), like in |241]26H30]. Possible indirect interactions are completely ignored. A trivial

example is a gene encoding a protein that induces the nuclear translocation of a 63
constitutive TF. In this case, the regulator gene will indirectly regulate TF target genes, s
and its effect will be crucial in understanding the GRN behavior. 6

4. Most single-cell inference algorithms rely upon the use of a single type of data, 66
namely transcriptomics. By doing so, they implicitly assume protein levels to be 67

positively correlated with RNA amounts, which has been proven to be wrong in case of s
post-translational regulation (see [33] for an illustration in circadian clock). Besides, at o
single-cell scale, mRNA and proteins typically have a poor linear correlation [34], even 7o

in the absence of post-translational regulation. n

5. The choices of biological assumptions are also important for the biological 7
relevance of GRN models. The use of statistical tools can be really powerful to handle
large-scale network inference problem with thousand of genes, but the price to pay is 74
loss of biological representativeness. By definition a model is a simplification of the 7
system, but when simplifying assumptions are induced by mathematical tools, like 76
linear [27H29L[35] or binary (boolean) requirements [23}[24], the model becomes solvable =
at the expense of its biological relevance. 78

In the present work we address the above limitations and we propose an iterative 7
algorithm called WASABI, dedicated to inferring a causal dynamical network from 80
time-stamped single-cell transcriptomic data, with the capability to integrate protein 81

measurements. In the first part we present the WASABI framework which is based upon &
a mechanistic model for gene-gene interactions |36]. In the second part we benchmark
our algorithm using in silico GRNs with realistic gene parameter values. Finally we 8
apply WASABI on our in vitro data [37] and analyze the resulting GRN candidates. 85
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Results o
Our goal is to infer causalities involved in GRN through analysis of dynamic 87
multi-scale/level data with the help of a mechanistic model [36]. We first present an 8

overview of the WASABI principles and framework. We then benchmark its ability to s
correctly infer in silico-generated toy GRNs. Finally, we apply WASABI on our in vitro  «
data on avian erythroid differentiation model [38] to generate biologically relevant GRN  «

candidates. P
WASABI inference principles and implementation o
WASABI is a framework built on a novel inference strategy based on the concept of o
“waves”. We posit that the information provided by an external stimulus will affect %

genes one-by-one through a cascade, like waves spreading through a network (Fig A). %
This wave process harbors an inertia determined by mRNA and protein half-lives which o

are given by their degradation rate. o8

By definition, causality is the link between cause and consequence, and causes 9
always precede consequences. This temporal property is therefore of paramount 100
importance for causality inference using dynamic data. In our mechanistic and 101
stochastic model of GRN [36] (detailed in Method section Fig[7)), the cause corresponds 1
either to the protein of the regulating gene or a stimulus, which level modulates as a 103
consequence the promoter state switching rates ko, (i.e. probability to switch from 104
inactive to active state) and ko (active to inactive) of the target gene. A direct 105
consequence of causality principle for GRNs is that a dynamical change in promoter 106

activity can only be due to a previous perturbation of a regulating protein or stimulus. 107
For example, assuming that the system starts at a steady-state, early activated genes 108
(referred to as early genes) can only be regulated by the stimulus, because it is the only 10
possible cause for their initial evolution. An illustration is given in Fig[I}A: gene A 110
initial variation can only be due to the stimulus and not by the feedback from gene C, 1
which will occur later. A generalization of these concepts is that for a given time after 1
the stimulus, we can infer the subnetwork composed exclusively by genes affected by the 13
spreading of information up to this time. Therefore we can infer iteratively the network 1.

by adding one gene at a time (Fig D) regarding their promoter wave time order 115
(Fig B) and comparing with protein wave time of previous added genes (Fig C). 116

For this, we need to estimate promoter and protein wave times for each gene and 17
then sort them by promoter wave time. We define the promoter activity level by the 18
Kon/ (Kon + koff) Tatio, which corresponds to the local mean active duration (Fig[[}B). 1o
Promoter wave time is defined as the inflection time point of promoter activity level 120
where 50% of evolution between minimum and maximum is reached. Since promoter 121
activity is not observable, we estimate the inflection time point of mean RNA level from 1
single-cell transcriptomic kinetic data [37], and retrieve the delay induced by RNA 123
degradation to deduce promoter wave time. Protein wave times correspond to the 124
inflection point of mean protein level, which can be directly observed with our 125
proteomic data [39]. A detailed description of promoter and protein wave time 126

estimation can be found in the Method section. One should note that a gene can have 1
more than one wave time in case of non monotonous variation of promoter activity, due 1s
to feedbacks (like gene A in our example) or incoherent feed-forward loop. 120

The WASABI inference process (Fig C) takes advantage of the gene wave time 130
sorting by adopting a divide and conquer strategy. We remind that a main assumption 1
of our interaction model is the separation between mRNA and protein timescales [36]. 1z
As a consequence, for a given interaction between a regulator gene and a regulated gene, 13
the regulated promoter wave time should be compatible with the regulator protein wave 13
time. At each step, WASABI proposes a list of possible regulators in order to reduce the 13
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Fig 1. WASABI at a glance. A) Schematic view of a GRN: the stimulus is
represented by a yellow flash, genes by blue circles and interactions by green (activation)
or red (inhibition) arrows. The stimulus-induced information propagation is represented
by blue arcs corresponding to wave times. Genes and interactions that are not affected
by information at a given wave time are shaded. At wave time 5, gene C' returns
information on gene A and B by feedback interaction creating a backflow wave. B)
Promoter wave times: Promoter wave times correspond to inflections point of gene
promoter activity defined as the kon/(kon + kotr) ratio. C) Protein wave times: Protein
wave times correspond to inflections point of mean protein level. D) Inference process.
Blue arrows represent interactions selected for calibration. Based on promoter waves
classification genes are iteratively added to sub-GRN previously inferred to get new
expanded GRN. Calibration is performed by comparison of marginal RNA distributions
between in silico and in vitro data. Inference is initialized with calibration of early
genes interaction with stimulus, which gives initial sub-GRN. Latter genes are added
one by one to a subset of potential regulators for which a protein wave time is close
enough to the added gene promoter wave time. Each resulting sub-GRN is selected
regarding its fit distance to in vitro data. If fit distance is too important sub-GRN can
be eliminated (red cross). An important benefit of this process is the possibility to
parallelize the sub-GRN calibrations over several cores, which results in a linear

computational time regarding the number of genes. Note that only a fraction of all
tested sub-GRN is shown.
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dimension of the inference problem. This list is limited to regulators with compatible 136
protein wave time within the range of 30 hours before and 20 hours after the promoter 1
wave time of the added regulated gene. This constraint has been set up from in silico 13
study (see next section). For example, in Fig[l} gene B can be regulated by gene A or 1
D since their protein wave time are close to gene B promoter wave time. Gene C can 140
be regulated by gene B or D, but not A because its protein wave time is too earlier 141
compared to gene C' promoter wave time. 142

For new proposed interactions, a typical calibration algorithm can be used to finely s
tune interaction parameter in order to fit simulated mRNA marginal distribution with 14

experimental marginal distribution from transcriptomic single-cell data. To avoid 145
over-fitting issues, only efficiency interaction parameter 6, ; (Fig|7)) is tuned. To 146
estimate fitting quality we define a GRN fit distance based on the Kantorovitch 17
distances between simulated and experimental mRNA marginal distributions (please 148

refer to Method section for a detailed description of interaction function and calibration 1o
process). If the resulting fitting is judged unsatisfactory (i.e. GRN fit distance is greater s
than a threshold), the sub-GRN candidate is pruned. For genes presenting several 151
waves, like gene A, each wave will be separately inferred. For example, gene A initial 152
increase is fitted during initialization step, but only the first experimental time points  1s3
during promoter activity increase will be used for calibration. Genes B and C regulated 1ss
after gene A up-regulation will be added to expand sub-GRN candidates. Finally, the  1ss

wave corresponding to gene A down-regulation is then fitted considering possible 156
interactions with previously added genes (namely gene B and C'), which permits the 157
creation of feedback loops or incoherent feed-forward loops. 158

Positive feedback loops cannot be easily detected by wave analysis because they only 1
accelerate, and eventually amplify, gene expression. Yet, their inference is important for e
the GRN behavior since they create a dynamic memory and, for example, may thus 161
participate to irreversibility of the differentiation process. To this end, we developed an 12
algorithm to detect the effect of positive feedback loops on gene distribution before the 13
iterative inference (see Supporting information). We modeled the effect of positive 164
feedback loops by adding auto-positive interactions. Note that such a loop does not 165
necessarily mean that the protein directly activates its own promoter: it simply means 165
that the gene is influenced by a positive feedback, which can be of different nature. For 1
example, in the GRN presented in Fig[T}A, genes B and C mutually create a positive 1
feedback loop. If this positive feedback loop is detected we consider that each gene has 160
its own auto-positive interaction as illustrated in Fig[T[}C. Positive feedback loops could 17
also arise from the existence of self-reinforcing open chromatin states [40] or be due to
the fact that binding of one TF can shape the DNA in a manner that it promotes the 1

binding of the second TF [41]. 3
In silico benchmarking 174
We decided to first calibrate and then assess WASABI performance in a controlled and 15
representative setting. 176
Calibration of inference parameters 77
In the first phase we assessed some critical values to be used in the inference process. 178
We generate realistic GRNs (Fig2}A) where 20 genes from in vitro data were randomly 1o
selected with associated in vitro estimated parameters (see Supporting information). 180
Interactions were randomly defined in order to create cascade networks with no 181
feedback nor auto-positive feedback as an initial assessment phase. 182

We limited ourselves to 4 network levels (with 5 genes at each level, see FiA for 1
an example) because we observed that the information provided by the stimulus is 184
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Fig 2. Cascade in silico GRN A) Cascade GRN types are generated to study wave
dynamics. Genes correspond to in vitro ones with their estimated parameters. S1
corresponds to stimulus. Genes are identified by our list gene ID. B) Based on 10 in

silico GRN we compare promoter wave time of early genes (blue) with other genes (red).

Displayed are promoter waves with a wave time lower than 15h for graph clarity. C) For
each interactions of 10 in silico GRNs we compute the difference between estimated
regulated promoter wave time minus its regulator protein wave time. Distribution of
promoter/protein wave time difference is given for all interactions of all in silico GRNs.

almost completely lost after 4 successive interactions in the absence of positive feedback
loops. This is very likely caused by the fact that each gene level adds both some
intrinsic noise, due to the bursty nature of gene expression, as well as a filtering
attenuation effect due to RNA and protein degradation.

We first analyzed the special case of early genes that are directly regulated by the
stimulus (Fig2}B). Their promoter wave times were lower than all other genes but one.
Therefore we can identify early genes with good confidence, based on comparison of
their promoter wave time with a threshold. Given these in silico results, we then
decided in the WASABI pre-processing step to assume that genes with a promoter wave
time below 5h must be early genes, and that genes with a promoter wave time larger
than 7h can not be early genes. Interactions between the stimulus and intermediate
genes, with promoter wave times between 5h and 7h, have to be tested during the
inference iterative process and preserved or not.

We then assessed what would be the acceptable bounds for the difference between
regulator protein wave time and regulated gene promoter activity. 10 in silico cascade
GRNs were generated and simulated for 500 cells to generate population data from
which both protein and promoter wave times were estimated for each gene. Based on
these data, we computed the difference between estimated regulated promoter wave
time minus its regulator protein wave time for all interactions in all networks. The
distribution of these wave differences is given in Fig2lC. One can notice that some wave
differences had negative values. This is due to the shape of the Hill interaction function
(see eq3|in Method section) with a moderate transition slope (v = 2). If the protein
threshold (which corresponds to typical EC50 value) is too close to the initial protein
level, then a slight protein increase will activate target promoter activity. Therefore,
promoter activity will be saturated before regulator protein level and thus the difference
of associated wave times is negative. This shows that one can accelerate or delay
information, depending on the protein threshold value. In order to be conservative
during the inference process, we set the RNA /Protein wave difference bounds to [—20h;
30h] in accordance with the distribution in Fig2}C. One should note that this range,
even if conservative, already removes two thirds of all possible interactions, thereby
reducing the inference complexity.

We finally observed that for interactions with genes harboring an auto-positive
feedback, wave time differences could be larger. In this case, wave difference bounds
were estimated to [—30h, 50h] (see supporting information). We interpret this
enlargement by an under-sampling time resolution problem since auto-positive feedback
results in a sharper transition. As a consequence, promoter state transition from
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inactive to active is much faster: if it happens between two experimental time points,
we cannot detect precisely its wave time.

Inference of in silico GRNs

WASABI was then tested for its ability to infer in silico GRNs (complete definition in
supporting information) from which we previously simulated experimental data for
mRNA and protein levels at single-cell and population scales. We first assessed the
simplest scenario with a toy GRN composed of two branches with no feedback (a
cascade GRN; Fig A). The GRN was limited to 6 genes and to 3 levels in order to
reduce computational constraints. Nevertheless, even in such a simple case, the
inference problem is already a highly complex challenge with more than 10%° possible
directed networks.
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Fig 3. In silico cascade GRN inference A) The cascade GRN. Genes parameters

were taken from in vitro estimations to mimic realistic behavior. Experimental data
were generated to obtain time courses of transciptomic data, at single-cell and
population scale, and also proteomic data at population scale. B) WASABI was run to
infer in silico cascade GRN and generated 88 candidates. A dot represents a network
candidate with its associated fit distance and inference quality (percentage of true
interactions). True GRN is inferred (red dot, 100% quality). Acceptable maximum fit
distance (green dashed line) corresponds to variability of true GRN fit distance. Its
computation is detailed in figure C. 3 GRN candidates (including the true one) have a
fit distance below threshold. C) Variability of true GRN fit distance (green dashed line
in figures B and C) is estimated as the threshold where 95% of true GRN fit distance is
below. Fit distance distribution is represented for true GRN (green) and candidates
(blue) for cascade in silico GRN benchmark. True GRNs are calibrated by WASABI
directed inference while candidates are inferred from non-directed inference. Fit

distance represents similitude between candidates generated data and reference
experimental data.

Wave times were estimated for each gene from simulated population data for RNA
and protein (data available in supporting information). Table [1| provides estimated
waves time for the cascade GRN. It is clear that the gene network level is correctly
reproduced by wave times.

We then ran WASABI on the generated data and obtained 88 GRN candidates
(Fig B). The huge reduction in numbers (from 1020 to 88) illustrates the power of
WASABI to reduce complexity by applying our waves-based constraints. We defined
two measures for further assessing the relevance of our candidates:

1. Quality quantifies proportion of real interactions that are conserved in the
candidate network (see supporting information for a detailed description). A 100%
corresponds to the true GRN.

2. A fit distance, defined as the mean of the 3 worst gene fit distances, where gene
fit distance is the mean of the 3 worst Kantorovitch distances among time points
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Table 1. Wave times. Promoter and protein wave times (in hours) estimated from in
silico simulated data.

GRN Gene Wpromoter Wprotein

4 4.12 12.99
1 4.26 22.33
5 15.19 45.50
Cascade 2 17.67 44.88
3 37.88 60.10
6 40.06 60.72

(see the Methods section).

We observed a clear trend that higher quality is associated with a lower fit distance
(Fig B), which we denote as a good specificity. When inferring in vitro GRNs, one
does not have access to quality score, contrary to fit distance. Hence, having a good
specificity enables to confidently estimate the quality of GRN candidates from their fit
distance. Thus, this result demonstrates that our fit distance criterion can be used for
GRN inference. Nevertheless, even in the case of a purely in silico approach, quality
and fit distance can not be linked by a linear relationship. In other words, the best fit
distance can not be taken for the best quality (see below for other toy GRNs). This is
likely to be due to both the stochastic gene expression process as well as the estimation
procedure. We therefore needed to estimate an acceptable maximum fit distance
threshold for true GRN. For this, we ran directed inferences, where WASABI was
informed beforehand of the true interactions, but calibration was still run to calibrate
interaction parameters. We ran 100 directed inferences and defined the maximum
acceptable fit distance (Fig[3}C) as the distance for which 95% of true GRN fit distance
was below. This threshold could also be used as a pruning threshold (green dashed line
in Fig B) in subsequent iterative inferences, thereby progressively reducing the
number of acceptable candidates. We then analyzed a situation where we added either
an auto-activation loop or a negative feedback (Fig A and C and supporting
information for estimated wave times).

In both cases, GRN inference specificity was lower than for cascade network inference.

Nevertheless in both cases the true network was inferred and ranked among the first
candidates regarding their fit distance (Fig B and D), demonstrating that WASABI is
able to infer auto-positive and negative feedback patterns. However there were more
candidates below the acceptable maximum fit distance threshold and there was no
obvious correlation between high quality and low fit distance. We think it could be due
to data under-sampling regarding the network dynamics (see upper and discussion).

In vitro application of WASABI

We then applied WASABI on our in vitro data, which consists in time stamped
single-cell transcriptomic [37] and bulk proteomic data [?] acquired during T2EC
differentiation [38], to propose relevant GRN candidates.

We first estimated the wave times (Fig[5). Promoter waves ranged from very early
genes regulated before 1h to late genes regulated after 60h. Promoter activity appeared
bimodal with an important group of genes regulated before 20h and a second group
after 30h. Protein wave distribution was more uniform from 10h to 60h, in accordance
with a slower dynamics for proteins. Remarkably, 10 genes harbored non-monotonous
evolution of their promoter activity with a transient increase. It can be explained by the
presence of a negative feedback loop or an incoherent feed-forward interaction. These
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Fig 4. In silico GRN with feedbacks A) Addition of one positive feedback onto
the cascade GRN. B) WASABI was run to infer in silico cascade GRN with a positive
feedback and generated 59 candidates, 31 of which having an acceptable fit distance.
See legend to Fig B for details. C) Addition of one negative feedback onto the cascade
GRN. D) WASABI was run to infer in silico cascade GRN with a negative feedback and
generated 476 candidates, all of which having an acceptable fit distance. See legend to
Fig B for details.

results demonstrate that real in vitro GRN exhibits distinguishable “waves”.

In order to limit computation time, we decided to further restrict the inference to
the most important genes in term of the dynamical behavior of the GRN. We first
detected 25 genes that are defined as early with a promoter time lower than 5h. We
then defined a second class of genes called “readout” which are influenced by the
network state but can not influence in return other genes. Their role for final cell state
is certainly crucial, but their influence on the GRN behavior is nevertheless limited. 41
genes were classified as readout so that 24 genes were kept for iterative inference, in
addition to the 25 early genes. 9 of these 24 genes have 2 waves due to transient
increase, which means that we have 33 waves to iteratively infer.

A B

Counts
Counts

60 10 20 30 40 50 (]
Wave protein (h)

Wave promoter (h)

Fig 5. Promoter and protein wave time distributions. Distribution of in wvitro
promoter (A) and protein (B) wave times for all genes estimated from RNA and
proteomic data at population scale. Counts represent number of genes. Note: a gene
can have several waves for its promoter or protein.
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In vitro GRN candidates 203

After running for 16 days using 400 computational cores, WASABI returned a list of 381 2
GRN candidates. Candidate fit distances showed a very homogeneous distribution (see 20
supporting information) with a mean value around 30, together with outliers at much 2

higher distances. Removing those outliers left us with 364 candidates. Compared to 207
inference of in silico GRN, in vitro fitting is less precise, as we could expect. But it is 20
an appreciable performance and it demonstrates that our GRN model is relevant. 299

We then analyzed the extent of similarities among the GRN candidates regarding 300
their topology by building a consensus interaction matrix (FiA). The first 301
observation is that the matrix is very sparse (except for early genes in first raw and 302
auto-positive feedbacks in diagonal) meaning that a sparse network is sufficient for 303

reproducing our in vitro data. We also clearly see that all candidate GRNs share closely 0
related topologies. This is clearly obvious for early genes and auto-positive feedbacks. 305
Columns with interaction rates lower than 100% correspond to latest integrated genes in 30
the iterative inference process with gene index (from earlier to later) 70, 73, 89, 69 and o
29. Results from existing algorithms are usually presented in such a form, where the 308
percent of interactions are plotted [27129]35]. But one main advantage of our approach s
is that it actually proposes real GRN candidates, which may be individually examined. s

We therefore took a closer look at the “best” candidate network, with the lowest Fit su
distance to the data (FiB). We observed very interesting and somewhat unexpected s
patterns: 313

1. Most of the genes (84%) with an auto-activation loop. As mentioned earlier, this s
was a consensual finding among the candidate networks. It is striking because typical s

GRN graphs found in the literature do not have such predominance of auto-positive 316
feedbacks. 317

2. A very large number of genes were found to be early genes that are under the 318
direct control of the stimulus. It is noticeable that most of them were found to be 319
inhibited by the stimulus, and to control not more than one other gene at one next level. 3

3. We previously described the genes whose product participates in the sterol 21
synthesis pathway, as being enriched for early genes |37]. This was confirmed by our o
network analysis, with only one sterol-related gene not being an early gene. 323

4. Among 7 early genes that are positively controlled by the stimulus, 6 are 324
influenced by an incoherent feedforward loop, certainly to reproduce their transient 35
increase experimentally observed [37]. 226

5. One important general rule is that the network depth is limited to 3 genes. One s
should note that this is not imposed by WASABI which can create networks with 8
unlimited depth. It is consistent with our analysis on signal propagation properties in in 0
silico GRN. If network depth is too large, signal is too damped and delayed to 330
accurately reproduce experimental data. 331

6. One do not see network hubs in the classical sense. The genes in the GRNs are 33
connected to at most four neighbors. The most impacting “node” is the stimulus itself. s

7. One can also observe that the more one progress within the network, the less 33
consensual the interaction are. Adding the leaves in the inference process might help to s
stabilize those late interactions. 336

Altogether those results show the power of WASABI to offer a brand-new vision of 33
the dynamical control of differentiation. 338
Discussion -
In the present work we introduced WASABI as a new iterative approach for GRN 340
inference based on single-cell data. We benchmarked it on a representative in silico 301
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Fig 6. Inference from in vitro data A) In vitro interaction consensus matrix. Each
square in the matrix represents either the absence of any interaction, in black, or the
presence of an interaction, the frequency of which is color-coded, between the considered
regulator ID (row) and regulated gene ID (column). First row correspond to stimulus
interactions. B) Best candidate. Green: positive interaction; red: negative interaction;
plain lines: interactions found in 100% of the candidates; dashed lines: interaction
found only in some of the candidates; orange: genes the product of which participates to
the sterol synthesis pathway; purple: 5 last added genes during iterative inference.

environment before its application on in vitro data.

WASABI tackles GRN inference limitations

We are convinced that WASABI has the ability to tackle some general GRN inference
issues.
1. WASABI goes beyond mere correlations to infer causalities from time stamped
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data analysis as demonstrated on in silico benchmark (Fig3)) even in the presence of 347
circular causations (Fi7 based upon the principle that the cause precedes the effect. s
2. Contrary to most GRN inference algorithms [27-29}35] based upon the inference s

of interactions, WASABI is network centered and generates several candidates with 350
explicitly defined networks topology (FiB), which is required for prediction making s
and simulation capability. Generating a list of interactions and their frequency from 352
such candidates is a trivial task (FiA) whereas the reverse is usually not possible. 353
Moreover, WASABI explicitly integrates the presence of an external stimulus, which 354
surprisingly is never modeled in other approaches based on single-cell data analysis. It s
could be very instrumental for simulating for example pulses of stimuli. 356

3. WASABI is not restricted to transcription factors (TFs). Most of the in vitro 357
genes we modeled are not TFs. This is possible thanks to the use of our mechanistic 358
model [36] which integrates the notion of timescale separation. It assumes that every 350
biochemical reaction such as metabolic changes, nuclear translocations or 360

post-translational modifications are faster than gene expression dynamics (imposed by  sa
mRNA and protein half-life) and that they can be abstracted in the interaction between s

2 genes. Our interaction model is therefore an approximation of the underlying 363
biochemical cascade reactions. This should be kept in mind when interpreting an 364
interaction in our GRN: many intermediaries (fast) reactions may be hidden behind this ses
interaction. 366

4. Optionally, WASABI offers the capability to integrate proteomic data to 367
reproduce translational or post-translational regulation. Our proteomic data |39) 368
demonstrate that nearly half of detected genes exhibit mRNA /protein uncoupling 369

during differentiation and allowed to estimate the time evolution of protein production sn
and degradation rates. Nevertheless, we are not fully explanatory since we do not infer sn

causalities of these parameters evolution. This is a source of improvement discussed a2
later. 373

5. We deliberately developed WASABI in a “brute force” computational way to 374
guarantee its biological relevance and versatility. This allowed to minimize simplifying s
assumptions potentially necessary for mathematical formulations. During calibration, s
we used a simple Euler solver to simulate our networks within model . This 377

facilitates addition of any new biological assumption, like post-translation regulations, s
without modifying the WASABI framework, making it very versatile. Thanks to the 379

splitting and parallelization allowed by WASABI original gene-by-gene iterative 380
inference process, the inference problem becomes linear regarding the network size, 381
whereas typical GRN inference algorithms face combinatorial curse. This strategy also s
allowed the use of High Parallel Computing (HPC) which is a powerful tool that 383
remains underused for GRN inference [23,/43]. 384
WASABI performances, improvements and next steps 385

WASABI has been developed and tested on an in silico controlled environment before s
its application on in vitro data. Fach in silico network true topology was successfully s
inferred. Cascade type GRN is perfectly inferred (Fi with an excellent specificity. 388
Auto-positive and negative feedback networks (Fi were also inferred, demonstrating  sso
WASABTI’s ability to infer circular causations, but specificity is lower. This might be 300

due to a time sampling of experimental data being longer than the network dynamic 301
time scale. Auto-positive feedback creates a switch like response, the dynamic of which s
is much quicker than simple activation. Thus, to capture accurately auto-positive 303
feedback wave time, we should use high frequency time sample for RNA experimental 30
data during auto-positive feedback activation short period. For negative feedback 305

interactions, WASABI calibrated initial increase considering only first experimental time 306
points before feedback effect. Consequently, precision of first interaction was decreased 3o

13/128


https://doi.org/10.1101/292128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292128; this version posted April 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

and more false positive sub-GRN candidates were selected. Increasing the frequency of
experimental time sampling during initial phase should overcome this problem.

As it stands our mechanistic model is only accounting for transcriptional regulation
through proteins. It does not take into account other putative regulation level,
including translational or post-translational regulations, or regulation of the mRNA

half-life, although there is ample evidence that such regulation might be relevant [44L45].

Provided that sufficient data is available, it would be straightforward to integrate such
information within the WASABI framework. For example, the estimation of the
degradation rates at the single-cell level for mRNAs and proteins has recently been
described [46], the distribution of which could then be used as an input into the
WASABI inference scheme.

Cooperativity and redundancies are not considered in the current WASABI
framework, so that a gene can only be regulated by one gene, except for negative
feedback or incoherent feedforward interactions. However, many experimentally curated
GRN show evidence for cooperations (2 genes are needed to activate a third gene) or
redundant interactions (2 genes independently activating a third gene) [47]. We
intentionally did not considered such multi-interactions because our current calibration
algorithm relies on the comparison of marginal distributions which are not sufficiently
informative for inferring cooperative effects. It is our belief that the use of joint
distribution of two genes or more should enable such inference. We previously developed
in our group a GRN inference algorithm which is based on joint distribution
analysis [36] but which does not consider time evolution. We are therefore planning to
integrate joint-distribution-based analyses within the WASABI framework in order to
improve calibration, by upgrading the objective function with measurement considering
joint-distribution comparison.

HPC capacities used during iterative inference impacts WASABI accuracy. Indeed
late iterations are supposed more discriminative than the first one because false GRN
candidates have accumulated too many wrong interactions so that calibration is not
able to compensate for errors. However, if the expansion phase is limited by available
computational nodes, the true candidate may be eliminated because at this stage
inference is not discriminative enough. Therefore improving computing performances
would represent an important refinement and we have initiated preliminary studies in
that direction [43].

Nevertheless, despite all possible improvements, GRN inference will remain per se an
asymptotically solvable problem due to inferability limitations [48], intrinsic biological
stochasticity, experimental noise and sampling. This is why we propose a set of GRN
candidates with acceptable confidence level. A natural companion of the WASABI
approach would be a phase of design of experiments (DOE) specifically aiming at
selecting the most informative experiments to discriminate among the candidates. Such
DOE procedures have already been developed for GRN inference, but none of them
takes into account the mechanistic aspects and the stochasticity of gene
expression [48,49]. Extending the DOE framework to stochastic models is currently
being developed in our group.

New insights on typical GRN topology

The application of WASABI on our in vitro model of differentiation generated several
GRN candidates with a very interesting consensus topology (Fi.

1. We can see that the stimulus (i.e. medium change |37]) is a central regulator of
our GRN. We are strongly confident with this result because initial RNA kinetic of
early genes can only be explained by fast regulation at promoter level several minutes
after stimulation. Proteins dynamics are way too slow to justify these early variations.
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2. 22 of the 29 inferred early genes are inhibited by the stimulus, while inhibitions
are only present in 7 of the 28 non-early interactions. Thus inhibitions are
overrepresented in stimulus-early genes interactions. An interpretation is that most of
genes are auto-activated and their inhibition requires a strong and long enough signal to
eliminate remaining auto-activated proteins. A constant and strong stimulus should be
very efficient for this role like in [32] where stimulus long duration and high amplitude is
required to overcome an auto-activation feedback effect. It could be very interesting in
that respect to assess how the network would respond to a temporary stimulus,
mimicking the commitment experiment described in [37] or [50].

3. None of our GRN candidates do contain so-called “hubs genes” affecting in
parallel many genes, whereas existing GRN inferred generally present consequent
hubs [261[28}29,35] . A possible interpretation is that hub identifications is mostly a
by-product of correlation analysis. This interpretation is in line with the sparse nature

of our candidate networks, as compared to some previous network (see e.g. [25] or [51]).

This strongly departs with the assumption that small-world network might represent
“universal laws” [52].

4. In order to reproduce non-monotonous gene expression variations, WASABI
inferred systematically incoherent feedforward pattern instead of “simpler” negative
feedback. This result is interesting because nothing in WASABI explain this bias since
in silico benchmarking proved that WASABI is able to infer simple negative feedbacks
(Fi. Such “paradoxical components” have been proposed to provide robustness,
generate temporal pulses, and provide fold-change detection [53].

5. WASABI candidates are limited in network depth by a maximum of 3 levels. We
did not include readout genes during inference but addition of these genes would only
increase GRN candidate depth by one level. GRN realistic candidates depth are thus
limited by 4 levels. This might be due to the fact that information can only be relayed

by limited number of intermediaries because of induced time delay, damping and noise.

Indeed, general mechanism of molecules production/degradation behaves exactly as a
low pass filter with a cutting frequency equivalent to the molecule degradation rate.
Furthermore, protein information will be transmitted at the promoter target level by
modulation of burst size and frequency, which are stochastic parameters, thereby adding
noise to the original signal.

Such a strong limitation for information carrying capacity in GRN is at stake with
long differentiation sequences, say from the hematopoietic stem cell to a fully
committed cell. In such a case, tens of genes will have to be sequentially regulated. This
might be resolved by the addition of auto-positive feedbacks. Such auto-positive
feedbacks will create a dynamic memory whereby the information is maintained even in
the absence of the initial information. An important implication is the loss of
correlation between auto-activated gene and its regulator gene. Consequently, all
algorithms based on stationary RNA single-cell correlation [26}27] will hardly catch
regulators of auto-activated genes.

Considering the importance of auto-positive feedback benefits on GRN information
transfert, it is therefore not surprising to see that more than 80% of our GRN genes
present auto-positive feedback signatures in their RNA distribution. Moreover,
experimentally observed auto-positive feedback influence is stronger in our in vitro
model than in our in silico models. Such a strong prevalence of auto-positive feedbacks
has also been observed in a network underlying germ cell differentiation [51]. As
mentioned earlier, care should be taken in interpreting such positive influences, which
very likely rely on indirect influences, like epigenomic remodeling.
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Materials and Methods
Mechanistic GRIN model

Our approach is based on a mechanistic model that has been previously introduced
in [36] and which is summed-up in Fig

Fig 7. GRN mechanistic and stochastic model. Our GRN model is composed of
coupled piecewise deterministic Markov processes. In this example 2 genes are coupled.
A gene ¢ is represented by its promoter state (dashed box) which can switch randomly
from ON to OFF, and OFF to ON, respectively at kon,; and kog; mean rate. When
promoter state is ON, mRNA molecules are continuously produced at a s¢; rate.
mRNA molecules are constantly degraded at a dy; rate. Proteins are constantly
translated from mRNA at a s; ; rate and degraded at a d; ; rate. The interaction
between a regulator gene j and a target gene ¢ is defined by the dependence of koy ; and
kotr,; with respect to the protein level P; of gene j and the interaction parameter 6; ;.
Likewise, a stimulus (yellow flash) can regulate a gene ¢ by modulating its ko, ; and
kost,; switching rates with interaction parameter 6; o.

In all that follows, we consider a set of G interacting genes potentially influenced by
a stimulus level Q. Each gene i is described by its promoter state F; = 0 (off) or 1 (on),
its mRNA level M; and its protein level P;. We recall the model definition in the
following equation, together with notations that will be extensively used throughout
this article.
Ei(t): 0 £y 1, 1 Loty
M{(t) = SO,iEi(t) — doﬂMz(t) (1)

P{(t) = s1,M;(t) — d1,,P;(t)

The first line in model represents a discrete, Markov random process, while the
two others are ordinary differential equations (ODEs) describing the evolution of mRNA
and protein levels. Interactions between genes and stimulus are then characterized by
the assumption that k., and kg are functions of P = (P, ..., Pg) and Q. The form
for ko is the following (for kg, replace 6; ; by —0; ;):

kon,min,i + kon,max,iﬁiéi(Pv Q)
1+ 8:%:(P,Q)

kon(Pv Q) = (2)

0. (P
&,(P.Q) — LTQ o 1+ () (3)
1 9 1+Q 1 1+(& vy

Jj=1 H;
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This interaction function slightly differs from [36] since auto-feedback is considered
as any other interactions and stimulus effect is explicitly defined. Exponent parameter
7y is set to default value 2. Interaction threshold Hj is associated to protein j.
Interaction parameters §; ; will be estimated during the iterative inference. Parameter
B; corresponds to GRN external and constant influence on gene to define its basal
expression: it is computed at simulation initialization in order to set ko, and ko to
their initial value. From now on, we drop the index i to simplify our notation when
there is no ambiguity.
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Overview of WASABI workflow

WASABI framework is divided in 3 main steps. First, individual gene parameters
defined in model (all except 6 and H) are estimated before network inference from a
number of experimental data types acquired during T2EC differentiation. They include
time stamped single-cell transcriptomic [37], bulk transcription inhibition kinetic [37]
and bulk proteomic data [39]. In a second step, genes are sorted regarding their wave
times (see "Results” section for a description of wave concept) estimated from the mean
of single cell transcriptomic data for promoter waves, and bulk proteomic data for
protein waves. Finally, network iterative inference step is performed from single
transcriptomic data, previously inferred gene parameters and sorted genes list. All
methods are detailed in following sections, an overview of workflow is given by Fig

For T2EC in witro application, tables of gene parameters and wave times are
provided in supporting information. For in silico benchmarking we assume that gene
parameters dg, dy, s; are known. Single-cell data and bulk proteomic data are simulated
from in silico GRNs for time points 0, 2, 4 ,8, 24, 33, 48, 72 and 100h.
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Fig 8. Parameters estimation workflow. Schematic view of WASABI workflow
with 3 main steps: (1) individual gene parameters estimation (red zone), (2) waves
sorting (green zone) and (3) network iterative interaction inference (blue zone). Wave
concept is introduced in ”Result” section. Model parameters (square boxes) are
estimated from experimental data (flasks) with a specific method (grey hexagones). All
methods are detailed in "Method” section. Estimated data relative to waves are
represented by round boxes. Input arrows represent data required by methods to
compute parameters. There are 3 types of experimental data, (i) bulk transcription
inhibition kinetic (green flask), (ii) single-cell transcriptomic (blue flask) and (iii)
proteomic data (orange flask). Model parameters are specific to each gene, except for 6,
which is specific to a pair of regulator/regulated genes. Notations are consistent with
Eq7 Yauto T€presents exponent term of auto-positive feedback interaction. Only dy(¢),
dy(t) and s1(t) are time dependent. One gene can have several wave times.

S.C. Trans.

dy(t)

=0, 36, 72h

s,(t)
t=0, 36, 72h

®

Individual gene Prot
parameters estimation

18/128

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533


https://doi.org/10.1101/292128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292128; this version posted April 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

First step - Individual gene parameters estimation 534
Exponential decay fitting for mRNA degradation rate (dj) estimation 535

The degradation rate dy corresponds to active decay (i.e. destruction of mRNA) plus s
dilution due to cell division. The RNA decay was already estimated in [37] before 537
differentiation (Oh), 24h and 72h after differentiation induction from population-based s
data of mRNA decay kinetic using actinomycin D-treated T2EC (osf.io/k2g5b). Cell s
division dilution rate is assumed to be constant during the differentiation process and s«

cell cycle time has been experimentally measured at 20h [38]. 541
Maximum estimator for mRNA transcription rate (sy) estimation 542
To infer the transcription rate sy, we used a maximum estimator based on single-cell 543

expression data generated in [37]. We suppose that the highest possible mRNA level is s«
given by sg/dy. Thus sy corresponds to the maximum mRNA count observed in all cells s

and time points multiplied by m?X(do(t)). 546
Method of moments and bootstrapping for range of promoter switching 547
rates (Kon/off-min/max) €Stimation 548
Dynamic parameters ko, and kog are bounded respectively by constant parameters 549

[Kon_min; Kon_max] and [Koff_min; Koff.max] (see Eq ) which are estimated as follows from  sso
time course single-cell transcriptomic data. Parameters sg and do(t) are supposed to be sz

previously estimated for each gene at time ¢. 552
Range parameters shall be compliant with constraints (Eq ) imposed by the 553
transcription dynamic regime observed in vitro. RNA distributions [37] have many 554
zeros, which is consistent with the bursty regime of transcription. There is no observed sss
RNA saturation in distributions. Moreover, all GRN parameters should also comply 556
with computational constraints. On the one hand, the time step dt used for simulations s
shall be small enough regarding GRN dynamics to avoid aliasing (under-sampling) 558
effects. On the other hand, dt should not be too small to save computation time. These sso
constraints correspond to 560

kon < do < kogr < di (4)

t
and we deduce inequalities for ranges: 561
1
kon,min < kon,max < d() < koff,min < koff,max < % (5)

We set the default value kon min to 0.001 h™!. Parameter kon_max 18 estimated from  se2
time course single-cell transcriptomic data after removing zeros. This truncation mimics  ses
a distribution where gene is always activated, so that ko, is close to its maximum value s

kon_max- With these truncated distributions, for each time point ¢, we estimate kon 565
using a moment-based method defined in [54]. We bootstrapped 1000 times to get a list  ses
of kon,t,n with index n corresponding to bootstrap sample n. For each time point we 567
compute the 95% percentile of kon ¢, then we consider the mean value of these 568
percentiles to have a first estimate of kon_max. This kon_max is then down and up limited  seo
respectively between Kon_max_lim_min a0d Kon_max_lim.max given in Eq @ to guarantee 570
that observed k,, can be easily reached during simulations with reasonable values of 571

protein level (because of asymptotic behavior of interaction function). In other words  s»
kon_max shall not be too close from minimum or maximum observed k., considering 10% s
margins. Finally, this limited kon_max is up-limited by 0.5 x mtax(do(t)) to guarantee a  sw

50% margin with dg(t). 575
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mtax(median(kon,t’n)) — 0.1 X kon_min

kon,max, im_min —
: 0.9 (©)

mtax(median(kon’t,n)) = 0.9 X kon_min

0.1
Parameter kog min 1S set to mtax(do(t)) to comply with equation Eq . Parameter

kon,max,lim,max =

koff_max 18 estimated like kon_max from time course single-cell transcriptomic data but
without zero truncation.For each time point ¢, we estimate ko, using a moment-based
method defined in [54]. We bootstrapped 1000 times to get a list of kofr,¢,, With index n
corresponding to bootstrap sample n. For each time point we compute the 95%
percentile of Kofr ¢, then we consider the mean value of these percentiles to have a first
estimate of kot max. This Koff max is then down and up limited respectively between
Kott_max_lim_min aNd Kot max_lim_-max given in Eq to guarantee that observed kog can
be easily reached during simulations with reasonable values of protein level (because of
asymptotic behavior of interaction function). In other words koff max shall not be too
close from minimum or maximum observed ko considering 10% margins. Finally, this
limited koff max is up-limited by 1/dt¢ to guaranty simulation anti-aliasing.

m?x(median(koffyt,n)) — 0.1 X Koff_min

koff,max,lim,min = 0.9
) 7
mgx(median(kofﬁt,n)) — 0.9 X Eotf min (7)

koff,max,lim,max = 0.1

ODE fitting for protein translation and degradation rates (d;, s1) estimation

Rates d;(t) and s1(¢) are estimated from comparison of proteomic population kinetic
data [39] with RNA mean value kinetic data computed from single-cell data [37].
Parameter d;(t) corresponds to protein active decay rate while total protein degradation
rate di_tot(t) includes decay plus cell division dilution. Associated total protein half-life
is referred to as t1_t0t(t). Parameters s1(t) and dy +0+(t) are estimated using a calibration
algorithm based on a maximum likelihood estimator (MLE) from package [55].
Objective function is given by the Root Mean Squared Error function (provided by the
package) comparing experimental protein counts with simulated ones given by ODEs
from our model with RNA level provided by experimental mean RNA data:

P'(t) = s1(t)M(t) — dyi(t)P(t)

52 out of our 90 selected genes were detected in proteomic data. 23 of these fit
correctly experimental data with a constant d; and s; during differentiation. 5 genes
were estimated with a variable s1(¢) and a constant d; to fit a constant protein level
with a decreasing RNA level. For the remaining 24 genes, protein level decreased while
RNA is constant, which is modeled with s; constant and d;(t) variable.

For the genes that were not detected in our proteomic data we turned to the
literature [56] and found 13 homologous genes with associated estimation of d; and s;.
For the remaining 25 genes, we estimated parameters with the following rationale: we
consider that the non-detection in the proteomic data is due to low protein copy
number, lower than 100. Moreover [56] proposed an exponential relation between s; and
the mean protein level that we confirmed with our data (see supporting information),
resulting in the following definition:

sy = 107147 » po8t
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Linear regression was performed using the Python scipy.stats.linregress() method 610
from Scipy package with the following parameters: r2 = 0.55, slope = 0.81, 611
intercept = —1.47 and p = 2.97 x 10~?. Therefore, if we extrapolate this relation for 612
low protein copy numbers assuming P < 100 copies, s; should be lower than 1 613
molecule/RNA /hour. Assuming the relation 614

Prot = RNA x —1
1_tot

between mean protein and RNA levels, we deduced a minimum value of d; from mean o5
RNA level given by: d; > RNA/100. We set s; and d; respectively to their maximum e
and minimum estimated values. 617

Bimodal distribution likelihood for auto-positive feedback exponent (y,ut0) 68

estimation 619
We inferred the presence of auto-positive feedback by fitting an individual model for 620
each gene, based on [36]. The model is characterized by a Hill-type power coefficient. 621

The value of this coefficient was inferred by maximizing the model likelihood, available 2
in explicit form. The key idea is that genes with auto-positive feedback typically show, e

once viewed on an appropriate scale, a strongly bimodal distribution during their 624
transitory regime. The interested reader may find some details in the supplementary 625
information file of [36], especially in sections 3.6 and 5.2. Note that such auto-positive e
feedback may reflect either a direct auto-activation, or a strong but indirect positive 627
loop, potentially involving other genes. Estimated Hill-type power coefficients for in 628
silico and in vitro networks are provided in supporting information. 629
Second step - Waves sorting 630
Inflexion estimator for wave time estimation 631

Wave time for gene pr(lmoterEVprom and protein Wy, are estimated regarding their 632
respective mean trace E and P. Estimation differs depending on mean trace monotony. 33

In vitro wave times are provided in supporting information. 634

1) If the mean trace is monotonous (checked manually), it is smoothed by a 3rd 635
order polynomial approximation using method polyld() from python numpy package. 636
Wave time is then defined as the inflection time point of polynomial function where 50% o3
of evolution between minimum and maximum is reached. 638

2) If the mean trace is not monotonous, it is approximated by a piecewise-linear 639
function with 3 breakpoints that minimizes the least square error. Linear interpolations e
are performed using the polynomial.polyfit() function from python numpy package. 641
Selection of breakpoints is performed using optimize.brute() function from python numpy e
package. 643

We obtained a series of 4 segments with associated breakpoints coordinate and slope. 64
Slopes are thresholded: if absolute value is lower than 0.2 it is considered null. Then, we s
looked for inflection break times where segments with non null slope have an opposite s
sign compare to the previous segment, or if previous segment has a null slope. Each 647
inflection break time corresponds to an initial effect of a wave. A valid time, when wave s
effect applies, is associated and corresponds to next inflection break time or to the end o0
of differentiation. Thus, we obtained couples of inflection break time and valid time 650
which defined the temporal window of associated wave effect. For each wave window, if s
mean trace variation between inflection break time and valid time is large enough (i.e., s
greater than 20% of maximal variation during all differentiation process for the gene), a  ¢s3
wave time is defined as the time where half of mean trace variation is reached during 654
wave time window. 655

21/128


https://doi.org/10.1101/292128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292128; this version posted April 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Protein mean trace P is given by proteomic data if available, else it is computed from

simulation traces with 500 cells using the model with the parameters estimated earlier.

Promoter mean trace E is computed as follows from mean RNA trace (from single-cell

transcriptomic data) with time delay correction induced by mRNA degradation rate do.

o kon(t)
Et) = kon(t) + koge(t)

E (t - dol(t)) B CSLE x M) > (t - dol(t))

Genes are sorted regarding their promoter waves time Wyom,. Genes with multiple
waves, in case of feedback for example, are present several times in the list. Moreover,
genes are classified by groups regarding their position in the network. Genes directly
regulated by the stimulus are called the early genes; Genes that regulates other genes
are defined as regulatory genes; Genes that do not influence other genes are identified as
readout genes. Note that genes can belong to several group.

We can deduce the group type for each gene from its wave time estimation.
Subsequent constraints have been defined from in silico benchmarking (see Results
section). A gene ¢ belongs to one of these groups according to following rules:

Genes sorting

e if Wy,.0m < 5h then it is an early gene
o if Wy.0m < 7h then it could be an early gene or another types

o if max(Wyrom,i) + 30h < W, then it is a readout gene
1

e else it could be a regulatory or a readout gene

Third step - Network iterative inference
Interaction threshold (H)

Interaction threshold H is estimated for each protein. It corresponds to mean protein
level at 25% between minimum and maximum mean protein level observed during
differentiation by in silico simulations:

H= Pmin + 0-25(Pmax - Pmin)

We choose the value of 25% to maximize the amplitude variation of ko, and kegr of
gene target induced by the shift of the regulator protein level from its minimal to
maximal value (see Eq(2)).

Iterative calibration algorithm (9, ;)
The following algorithm gives a global overview of the iterative inference process:
Generate_ EARLY _network(): In a first step we calibrate the interactions between

early genes and stimulus (6; ) to obtain an initial sub-GRN. Calibration algorithm
Calibrate() is defined below.

List_genes_sorted_by_Wave_time: This list is computed prior to iterative inference
(see previous subsection).
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Algorithm 1 WASABI GRN iterative inference

1: List_.GRN_candidates = Generate_ EARLY _network()

2: for Gene, Wave in List_genes_sorted_by_Wave_time do

3: for GRN in List_GRN _candidates() do

List_new_GRN _to_calibrate = Get_all_possible_interaction(GRN, Gene, Wave)

4

5: for New_GRN in New_GRN_List do
6: Calibrate(New_GRN)
7

List_GRN_candidate = Select_Best_New_GRN()

Get_all _possible_interaction(GRN, Gene, Wave):

gene. Note: if WASABI is run in “directed” mode, only the true interaction is returned.

For each GRN candidate we
estimate all possible interactions with the new gene and prior regulatory genes, or
stimulus, regarding their respective promoter wave and protein wave with the following
logic: if promoter wave is lower than 7h, interaction is possible between stimulus and
the new gene. If the difference of promoter wave minus protein wave is between —20h
and +30h, then there is a possible interaction between the new gene and regulatory

Calibrate(New_GRN): For interaction parameter calibration we used a Maximum
Likelihood Estimator (MLE) from package spotpy [55]. The goal is to fit simulated
single-cell gene marginal distribution with in vitro ones tuning efficiency interaction
parameter §; ;. For in silico study we defined GRN Fit distance as the mean of the 3
worst gene-wise fit distances. For in vitro study we defined GRIN Fit distance as the
mean of the fit distances of all genes. Gene-wise fit distance is defined as the mean of
the 3 higher Kantorovitch distances [42] among time points. For a given time point and
a given gene, the Kantorovitch fit distance corresponds to a distance between marginal
distributions of simulated and experimental expression data. At the end of calibration
the set of interaction parameter 6; ; with associated GRN Fit distance is returned.

Select_Best_ New_GRN() We fetch all GRN calibration fitting outputs from remote
servers and select best new GRNs to be expanded for next iteration updating list of
List_GRN_candidate. New networks candidates are limited by number of available

computational cores.

GRN simulation

We use a basic Euler solver with fixed time step (dt = 0.5h) to solve mRNA and protein
ODEs [36]. The promoter state evolution between ¢ and ¢ + dt is given by a Bernoulli

distributed random variable

E(t + dt) = Bernoulli(p(t))

drawn with probability p(¢) depending on current koy, kot and promoter state:

k
) = E(t)e~Fontkor) 4 on (1 _
p(t) = E(t) et b

e_‘it(kon+koff)) .

Time-dependent parameters like dg, di and s; are linearly interpolated between 2

points. The stimulus @ is represented by a step function between 0 and 1000 at ¢ = Oh.

Simulation starts at ¢ = —60h to ensure convergence to steady state before the stimulus

is applied. Parameters k., and kq¢ are given by Eq .
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