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Abstract

Motivation: A common class of behaviour encountered in the biological sciences involves branching and recombination.
During branching, a statistical process bifurcates resulting in two or more potentially correlated processes that may under-
go further branching; the contrary is true during recombination, where two or more statistical processes converge into one.
A key objective is to identify the time of this bifurcation (branch time) from time series measurements e.g., comparing a
control time series with a perturbed time series. Whilst statistical treatments for the two branch (control versus treatment)
case exists, the ability to infer more complex branching structure from time series data remains open. Gaussian processes
(GPs) represents an ideal framework for such analysis, allowing for nonlinear regression that includes a rigorous treatment
of uncertainty. Currently, however, GP models only exist for two-branch systems. Here we highlight how arbitrarily com-
plex branching processes can be built using the correct composition of covariance functions within a GP framework, thus
outlining a general framework for the treatment of branching and recombination in the form of branch-recombinant Gauss-
ian processes (B-RGPs). We first demonstrate the performance of B-RGPs compared to a variety of existing regression
approaches, and demonstrate robustness to model misspecification. B-RGPs are then used to investigate the branching
patterns of Arabidopsis thaliana gene expression following inoculation with the hemibotrophic bacteria, Pseudomonas sy-
ringae DC3000, and a disarmed mutant strain, hrpA. By grouping genes according to the number of branches, we could
naturally separate out genes involved in basal immune response from those subverted by the virulent strain, and show
enrichment for targets of pathogen protein effectors. Finally, we identify two early branching genes WRKY11 and
WRKY17, and showed that groups of genes that branched at similar times to WRKY11/17 were enriched for W-box bind-
ing motifs, and overrepresented for genes differentially expressed in WRKY11/17 knockouts, suggesting that branch time
could be used for identifying direct and indirect binding targets of key transcription factors. Software is available from:
https://github.com/cap76/BranchingGPs.

pressed by the pathogen, potentially driving expression levels of certain
1 Introduction genes back to uninfected levels. Indeed nearly 50% of the transcriptome
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to gracefully cope with uncertainty, uneven sampling and a diverse range
of dynamic behaviour (Rasmussen and Williams 2006). However, cur-
rently, Gaussian processes treatments for branching processes have only
been developed for the two-branch case (Yang et al. 2016; Stegle et al.
2010). Here we develop an approach to inference for arbitrarily complex
branching and recombination processes, in the form of branch-
recombinant Gaussian processes (B-RGPs). In Section 2 we first intro-
duce B-RGPs, highlighting their key limiting behaviour. In Section 3 we
demonstrate the advantages of B-RGPs over GPs on a variety of simulat-
ed datasets, and in Section 4 we demonstrate the utility of our approach
on genome-scale time-course microarray data by identifying transcrip-
tional branching and recombination in Arabidopsis thaliana infected
with bacterial pathogen Pseudomonas syringae. Finally, in Section 5, we
discuss a variety of possible applications for B-RGPs and future avenues
for research.

2 Methods

Within a Bayesian setting, Gaussian processes (GPs) can be used to
represent prior distributions over smooth functions, providing a flexible
framework for regression and classification with robust treatment of
uncertainty (Rasmussen and Williams 2006). This makes GP-based
approaches ideal frameworks for quantifying the dynamics of gene ex-
pression from biological observations (Stegle et al. 2010; Kalaitzis and
Lawrence 2011; Breeze et al. 2011; Hensman, Lawrence, and Rattray
2013). For regression, we typically have a set of observations, y, as-
sumed to be noisy instances of a continuous underlying function at input
locations t: y = f(t) + €, where ¢ represents Gaussian additive noise. In
our applications, y will typically be used to denote a vector of the ob-
served expression levels for a given gene at times, £. We can assign the
unknown function a GP prior, denoted f(t) ~ GP(u(t), k(t,t")), and
analytically evaluate the posterior distribution at a set of new input loca-
tions, t*. The marginal likelihood, too, may be analytically evaluated,
making GPs a flexible and efficient framework for both prediction and
model comparison. Previous GP-based approaches to branching have
been outlined for the two-dataset case i.e., where there exists two biolog-
ical processes following branching. These include the studies by Stegle
et al. (2010), who developed a GP two-sample approach, based on mix-
tures of GPs, and the more recent work of Yang et al. (2016), who
demonstrate explicitly how a two-branch process can be encoded within
a joint GP model. To our knowledge, the generalisation of GPs to more
than two branches has not been addressed, whilst no explicit closed-form
solution to recombination has been outlined.

A useful extension to the GP framework is the multiple output hierar-
chical Gaussian process (HGP; Hensman, Lawrence, and Rattray
(2013)), in which a basal process is defined by a zero-mean GP with
covariance function k,(t,t"), with a subsequent process having mean
f1(t) and covariance function, k, (t,t"):

fi(®) ~ GP(0, ky (£,£1),
£ ~ GP(f (D), ke (£, £1).

Within this framework, we assume noisy observations of the functions,
vy, = f1(t) + €, and y, = f,(t) + €, and may analytically evaluate the
posterior distribution at a new set of input locations for prediction, or the
marginal likelihood for model comparison. A class of branching behav-
iour can naturally be encoded within this HGP framework, assuming the

basal (main branch) process is defined by a zero-mean GP with covari-
ance function k, (t,t"), with a subsequent process having mean f, (t)
and an appropriate covariance function that ensures the two processes are
identically distributed prior to an arbitrarily chosen time point, t;:
A®) ~GP(0, ky (t,)),
£(8) ~ GP(f, (D), CP,, (Ko, k5 (£, £))),
where K, = K,(t,t') denotes a zero-kernel, and CP,, (k,, k,) denotes a
change-point kernel (Lloyd et al. 2014), defined as:
CP,, (i (8, ), Ky (8, 1))
=0 (Ok,(t,t)a(t")
+(1-o®)k,(t, t)(1 - a(t)),
where (1—0(t)) =1+ tanh (%) /2. Here we introduce two hy-
perparameters: t;, which represents the branch time, and s, which con-
trols how fast data belonging to the second branch transition from the
basal process to the branch process. Note that each data point must be
assigned a branch label, z € [1,2], according to which branch it belongs
to e.g., z=1 will be used to denote data belonging to the control or
wildtype branch, with z = 2 referring to the perturbed dataset. For a two
branch case observations are a priori Gaussian distributed,
Y, Y2l t,Zz~N(0,K(t,t',22")), where:

K(t,t'z,z') = ki (t,t") + CP,, (Ko, k3 (£,£))8,,8,1, + B8,
and the delta function §,,6,/, ensures the change-point kernel only
operates over the second branch i.e., where the branch label z = 2 and
z' = 2. Within this framework, we may again make a prediction y* at a
new input location, (t*,z"), and analytically evaluate the marginal likeli-
hood, allowing us to compare the goodness of fit between different
branching processes.

We can allow further branches that independently diverge from the main
branch, with each data point assigned a branch label. For a n-component
system z € [1, ...,n] and we have the following covariance function:
K(tt',z,2") = K, (t,t") + X1, CP, (Ko, Ky, (6,£)) 8,8, ; + S8t
Alternatively, rather than each branch diverging from the main process,
each branch could itself give rise to further branches in a recurrent man-
ner e.g., a basal (main branch) from which a secondary branch diverges,
with a third branching from the second and so forth. For an n-component
recurrent branching system we have:

K(t, t',zz")
kl(tr t,) + ﬁat,t’az,z"

ky(6,t) + CP,, (Ko ko (8, )) + B, 1,

min (z,z") =1
min (z,z") = 2

n-1

=k, (t,t) + Z CPy; (Ko, Ky (£,£)) + B8.16, 1,
=

ey (£, 1) + Z CP,, (Ko by (t,6)) + f8006,,r,  z=mz' =n.

j=2

When observation data for all branches are specified over identical time
points, the covariance matrix can be expressed in a more compact nota-
tion:
Kt t,z,2) =3}, AVQk;(t,t) + AVR}I,
where @ denotes the Kronecker product and:
_ , k(g t),
i(t,t) = {CPtj (Ko by (t,1)),

where m represents the number of unique time points, I represents an

j=1

otherwise,

(mxm) identity matrix, and AY) = uu', with u representing a column
vector of length n, with ones in elements j through n and zeros every-

min (z,z)=n-1


https://doi.org/10.1101/291757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/291757; this version posted March 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Branch-recombinant Gaussian Processes

where else. Far more complex branching patterns can easily be built via
the correct composition of independent and recurrent branching covari-
ance functions.

As well as building branching structures of arbitrary complexity, we
further note that the dynamic behaviour of the individual branches them-
selves may themselves be arbitrarily complex, comprised of any linear
combination of positive semi-definite kernels. In Supplementary Figure

1(a) we indicate example behaviour of simple branching GPs.

2.1 Recombinant Gaussian processes

Recombinant processes can be defined in a reciprocal fashion to branch-
ing processes. Notable examples might include the reprogramming of
different terminally differentiated cell lineages to iPSCs (Gurdon 1962;
Takahashi and Yamanaka 2006). We can describe a two-component
system via the following composition of covariance functions:
K(t,t',2,2') = ky(6,t') + CP, (ky(6,6), K08, 28,1, + BS,16,,1.

which encodes the main branch process, with a second (potentially corre-
lated) process that recombines after time 7;,. Multiple processes can
again be allowed to independently recombine with the main branch, or
recurrently recombine via a series of parental branches, analogously to
branching GPs. Example recombinant GPs are shown in Supplementary
Figure 1(b).

2.2 Branch-recombinant Gaussian processes

Another important process exists where a statistical process transiently
branches into two or more processes, before recombining back into a
single process. Such combinations of branching and recombination may
be encountered during development when where there exists more than
one route to a terminal cell fate, as may be the case in certain neuronal
lineages (Zawadzka et al. 2010), as well as in certain diseases, such as
during dedifferentiation of cancer cells (Friedmann-Morvinski and
Verma 2014). An example two-component system can be encoded by the
following covariance function:
K(tt'z,2") = ky(t,t") + CP, (CPy, (Ko, ka (£, 1)), Ko )8,26,7 2 +
B6t,t’6z,z’ .

Again, more complex patterns, with arbitrary numbers of branches and
recombination, can readily be built with GPs via the correct composition
of covariance functions, with more complex examples shown in Supple-

mentary Figure 1(c).

2.3 Optimisation, run time and limiting behaviour

A key advantage of the B-RGP framework outlined here over existing
approaches (Yang et al., 2016) is the ability to fit arbitrarily complex
branch-recombinant structures i.e., more branches. Unlike the earlier
work of Yang et al. (2016), all hyperparameters including those relating
to branch and recombination times can be directly optimised via gradient
based approaches e.g., type II ML estimators. In general we note that
inference with B-RGPs scales as any other GP, with complexity O(n?%),
where n is the number of observations, although sparse approximations
are possible. The time required for optimisation of hyperparameters via
type II ML estimates varied: for a dataset with 300 observations, 1000

steps of the gpml minimize function took approximately 30 seconds on a

Desktop computer (2.5 GHz Intel Core i7), although it should be noted
that, in many cases, full convergence could require more than 1000 steps.
This makes B-RGPs slightly slower than the time taken for DEtime
(Yang et al., 2016), which, for the same dataset and default parameters,
ran in around 10 seconds.

Depending upon the branch time hyperparameters and other hyperpa-
rameters in the change-point kernel, the behaviour of B-RGPs can natu-
rally tend towards either an independent GP or a HGP. Specifically, for a
branching GP, when o(t) — 1, as may be the case when (t, —t)/s is
very large, such as when a branch occurs much later than the last data
point, then a BGP will behave as single joint GP with behaviour defined
by the main branch kernel only. When o(t) — 0, as may be the case
when (t, —t)/s has increasingly low values, such as when branching
occurs much earlier than the first observations, then the BGP will behave
as a HGP. Similar limiting behaviour applies for recombination process-

€s.

3 Results

As a preliminary test of the B-RGP framework we fitted five simulated
labelled time series datasets, and evaluated the predictive accuracy over
a range of test locations, comparing the accuracy to that achieved using
DEtime (Yang et al., 2016), independent Gaussian process regression
(IGP) over the individual branches, joint Gaussian process regression
(JGP) over the union of data, and splines. We first evaluated the ability

to fit the following branching process:
0,ift < —m/2,
cos(t), if —m/2< t<0,z=1,
1, ift>0,z=1,
—cos(t),if —m/2< t<0,z=2,
-1, ift >0,z=2.
where z indicates the branch label. Random input locations were sam-

f(tz) =

pled, t~N(0,310), with branch labels assigned with equal probability,
z; € [1,2].
y|t,z~N(f (t, z),621), where o, €[0.1,0.3]. A three-component

branching process, comprised of a (latent) main process from which two

Observations were generated as noisy instances,

observed branches diverge, was fitted to the simulated data, with hy-
perparameters optimised using type II maximum likelihood (ML). The
base kernel and all kernels were set a squared-exponentials. Branch time
hyperparameters were tied i.., t,, = t;,, with initial values set as t,, =
4, logsy p, =05, 0, =02, and all other hyperparameters
0 = [lpy) Opys lp,» Oby» U, O, ]

0;~U(0.1,1). In Figure 1(a) we indicate an example posterior fits to the

initiated as i.i.d. random variables

data using a BGP, IGPs, JGPs, and splines respectively. In Figure 1(b)
we indicate the log mean sum squared error (SSE) over 50 randomly
initiated runs using N=50 and N=300 training points and for different
noise levels. The B-RGPs shows superior fits (reduced SSE) and de-
creased negative log marginal likelihood compared to other approaches.
The fits obtained using DEtime also appeared to perform well in all
cases, outperforming independent GPs, and demonstrating the usefulness
of using more accurate generative models for inference of branching
data. Next we evaluated the ability of branching GPs to estimate the
branch time. In Supplementary Figure 2(b) we plot the branch time ver-
sus inferred branch time for 50 instances and compare to that achieved
using DEtime (Yang et al., 2016). We note that the correlation for our
approach (R=0.9999) indicates good ability to infer branch times, and

Figure 1: (a) Fits to a two-component branching process using a branch GP outlined here, the branching GP outlined in Yang et al. (2016), independent GPs, a joint GP and i
pendent splines. (b) We indicate the log mean sum squared error for each of the methods for different number of training points and for different noise levels. (c) Fits to a two compc
branch-recombinant process using branch-recombinant GPs, branch GPs of Yang et al. (2016), independent GPs, joint GPs and splines. (d) Log mean sum squared error for the diff.
annroaches for different number of data noints and noise levels.
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was greater than that the correlation when using DEtime with default
settings (R=9007). Here the increased accuracy partly comes from the
ability to directly optimise the branch time hyperparameters via type II
ML estimates, rather than relying on a grid search of inferred branch
times. To further explore the ability to infer branch times for datasets
with missing observations, we repeated this experiment, but excluded
observations close to the true branch point, specifically removing any
data points where |t; —t,| < 2, where, t; represents the true branch
time, and t,, is the time of the data point. Even with missing observations
centred at the true branch time, the inferred branch times were found to
be highly correlated with the true branch time (R=0.9649; Supplemen-
tary Figure 2(c)).
In dataset 2, we assumed the following branch-recombinant process:

0if [t] > /2
cos(t)if|t| <m/2,z=1
—cos()if|t| <m/2,z=2

where z indicates the branch label. Again, randomly determined input

ftz) =

locations were sampled as before. A three-component branch-
recombinant GP comprised of a (latent) main process from which two
branches diverge and recombine, was fitted to the simulated data, with
hyperparameters optimised using type II ML estimates. Example fits are
shown in Figure 1(c), with the log mean sum square error shown in

(@) BRGP  ,  BGP

2 2 ] 2
1 1! { 1
0 0: ‘ 0
‘ A 4
2 - ) 2. - } -2
-10 0 10 -10 0 10 -10
(b) = - - -
5 N =300, 0 =0.1 5 N=300,0=0.3 5
LG 0 O 0t o 0
% 5 5 : 5
v S o & -
g, 140 & 3o ¢
10 6 £ 10+ -10

R (O (O 0 GRG0
‘5@0 o & 5(;59\\“? %&\0?60 @ 306‘;\\92

B/RGP . . BGP

) 2 2 ] 2
1 1: 1 1
0 0 } 0
1 -1 { -1
2 1l ‘ 2
10 0 T 0 10 -0
(d) _  N=300,0=01 N =300, 0 =0.3
2
A O 0 0
& O o |
¢ s 51 50 i 5
o™ |
2.0 060 Y 0! ° -10

%@o"ee" & Fge® %‘96?669 O e

Figure 1(d). Again, branch-recombinant GPs outperformed all other
methods, with branching GPs DEtime performing next best.

To test for robustness to model mismatch, we used B-RGPs on two other
datasets. In dataset 3, a non-branching, three-component process was

L _of of ?‘ A'
6@6 @O O 5059\\(\9

%@e"ae" o 30’\;0\\\\“

used to generate data, corresponding to a HGP, f,(t)~GP(0,K,(t,t")),
H@®~GP(fo(£), K, (£,61), f,()~GP(f,(t),K,(t,t)), with squared-
exponential covariance functions used throughout. A B-RGP was fitted
to the data with hyperparameters initialised as t, = —4, t, =4,
log sy, p,r,r, = 0.5, and logo, = 0.2, and all other hyperparameters
initiated as 6;~U(0.1,1). In this case, there exists a model mismatch
between the data, which has no explicit branching or recombination, and
the branch-recombinant covariance function used for inference. Never-
theless, we note that informally, if the branch point occurs much earlier
than the first data point and the recombinant point occurs much later than
the last data point, the behaviour over the range of observations is identi-
cal to that of a HGP, f(t)~GP (O, K, (t,t') + sz(t,t’)),
f(t)~GP (0, K, () + K, (¢, t’)). Tuning of the
branch/recombination time hyperparameters should therefore allow a
good fit over the regions of observation despite the model mismatch. In
Supplementary Figure 3(a) we plot example fits to the function using a
B-RGP, BGPs, IGPs, a JGP and splines. In Supplementary Figure 3(b.c)
we indicate the sum of squared errors and negative log marginal likeli-
hoods. As expected, B-RGPs and IGPs were more accurate than other
approaches, due to the increased flexibility to fit the two processes, ra-
ther than fitting the general underlying trend. In most cases B-RGPs
performed comparably to IGPs, although in a few instances the B-RGP
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appeared to suffer from numerical instability and failed to converge, with
the resulting mean SSE and negative log marginal likelihood distribu-
tions heavy tailed and not as favourable as for IGPs. These results sug-
gest that B-RGPs offer comparable performance to IGPs, although per-
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formance depends on sensible initialisation of hyperparameters.

To further evaluate the effect of model mismatch, we fit to data from a
single, noisy process. Specifically, we used the same three-component
HGP as in dataset 3, with noisy observation data generated from the first
process only ie., representing two replicates y,~N(fi(t),c2l),
Vo~N(f;(t),021). As before, we fitted the data using a three-
component branch-recombinant process, with squared-exponential co-
variance function assumed for all branches, and hyperparameters initiat-
ed t, = —4, t, = 4. Informally, we note that, despite the model mis-
match, when branching and recombination both occur much earlier than
the first observation, or much later than the last observation, the fit over
the range of observations should correspond to that of a JGP with covari-
ance function corresponding to that of the main branch pro-
cess, f,,(£)~GP(0,K,(t, t")). In Supplementary Figure 4(a) we indicate
example fits to the function using a B-RGP, IGPs and a JGP, whilst in
Supplementary Figure 4(b, c) we indicate the SSE and negative log
marginal likelihood. In general, both the B-RGP and JGP outperform the
other approaches.

Finally, we performed inference on a four-branch system, in which we
have one latent basal branch, from which two intermediate latent branch-
es emerge. For comparison, we evaluate the sum squared error for the B-
RGP, IGPs a JGP, and splines, with the results indicating B-RGPs pro-
vide better overall performance (Supplementary Figure 4).

Together, analysis of datasets 1 - 4 indicate B-RGPs offer superior per-
formance compared to other approaches when the underlying data is
branch-recombinant, with good ability to estimate the timing of bifurca-
tions. Crucially, all hyperparameters can be optimised directly using type
II ML. Therefore, branch and recombination time hyperparameters can
be tuned, which, due to their limiting behaviour, means that they can
gracefully cope with datasets where no branching structure exists, pro-

vided hyperparameters are sensibly initialised.
3.1. Inference for partially labelled datasets

In our previous examples, inference relied on the existence of explicit
branch labels. In some cases, however, branch labels may be incomplete
or missing entirely. For example, in a collection of single cell tran-
scriptomics data there may be various cell types, including some that
cannot be unambiguously assigned to a particular branch a priori. We
can attempt to infer the branch labels, z, using Markov chain Monte
Carlo (MCMC). Here we assume partially labelled data, with a subset of
labels know, and the unknown,
z = [gllabelled) Zlunlabelled)] “WWhen branch labels are known, they can be

fixed, whilst unknown branch labels are initialised stochastically, and

branch remainder denoted

updated via a Gibbs sampler, similar to the usage in Stegle et al. (2010).
For an n-component branching process, the unknown label for cell i, is
Gibbs sampled conditional on the observation data and branch assign-
ment of all other cells:

P(ylz; = 1,2\z;,t,0)
k=1 POz = k,2\z;,£,0)
with hyperparameters updated conditional on all branch labels using
hybrid Monte Carlo (HMC):

6 ~PO|tzYy).

To test the accuracy of our B-RGPs on partially labelled data we gener-

P(z; = 1|t,z\z;,y,0) =

ated observations from the simple branching process outlined in Sup-

plementary Section 2. We first generated a set of test input locations,
t~(0,5I), with observation data generated as noisy instances of the
process. We then attempted to infer branch labels and hyperparameters
within an MCMC scheme, with labels updated via Gibbs sampling, and
hyperparameters sampled using Hybrid Monte Carlo. A subset of data
points, n, were branch label,
n/N € [0,0.1,0.25,0.5] and N indicates the total number of observations,

with the remaining data points randomly assigned to either branch with

assigned the correct where

equal probability and updated within the MCMC. Five randomly initiat-
ed runs were used, with 20,000 steps in the MCMC chain, and the first
5,000 discarded for burn-in. An example of the initial branch assignment
is shown in Supplementary Figure 6(a), with red indicating data points
initially assigned to branch 1, and blue assigned to branch 2. An example
fit (and updated branch labels) is shown for step 20,000 in Supplemen-
tary Figure 6(b). The accuracy of classification is summarised using
receiver operating characteristic (ROC) curves in Supplementary Figure
6(c, d). We note good overall ability to infer branch labels even for the

unlabeled case.

4 Arabidopsis thaliana transcriptional branch-
ing in response to Pseudomonas syringae

To evaluate the utility of B-RGPs on a genome scale applications, we
used our framework to investigate transcriptional branching in model
plant organism Arabidopsis thaliana in response to infection with
hemibiotrophic bacterial pathogen Pseudomonas syringae. Recent stud-
ies by Lewis et al., 2015 (GEO GSE56094) have provided highly tempo-
rally resolved transcriptional datasets for Arabidopsis following inocula-
tion with disease-causing Pseudomonas syringae pv. tomato DC3000,
and a disarmed mutant strain hrpA using bulk microarray measurements.
Whilst both strains efficiently infect the plant cells, the DC3000 variant
also delivers 28 effector proteins that subvert the plant’s immune re-
sponse; the disarmed hrpA mutant lacks the apparatus for effector deliv-
ery and thus elicits a classical immune response. Yang er al. (2016)
developed a two-component branching GP to investigate transcriptional
bifurcations between time series of hrpA- and DC3000-inoculated cells.
Here we extend this analysis by simultaneously deciphering the branch-
ing structure that exists between all 3 time series (mock/control, virulent
(DC3000) and innate immune (hrpA) responses).

For each gene in the three datasets, we consider a number of possible
branching structures: hrpA branches from the control, with DC3000
branching from hrpA at a later point (Group 1), or hrpA and DC3000
independently branch from the control (Group 2), which collectively
represent immune response genes that are targeted by effectors; DC3000,
but not hrpA, branches from control (Group 3), representing host suscep-
tibility genes that have been targeted by effectors; hrpA, but not
DC3000, branches from the control (Group 4), likely representing im-
mune genes that have been targeted by effectors prior to their natural
immune response times; both DC3000 and hrpA jointly branch from the
control, but not from one another (Group 5), representing core immune
response genes not targeted by effectors; no branching exists (Group 6),
representing genes unaffected by plant immunity or pathogen virulence
strategies. Example expression patterns of individual genes from each of
the six groups are shown in Figure 2(a).

For Group 1, we assume that the hrpA-infected time series branches
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from the mock-infected time series, with the DC3000-infected time
series branching from hrpA-infected:
Fmock (D~ GP (€ kmac (£,£),
Farpa@~ GP (fnock (), CPy,, (Ko nrpa(£:6)) ),
fc3000(E)~ GP | frrpa(t), CPtbz (KOl kpcz00(ts t,)) )
where observation data was assumed to be a noisy instances of these
functions €.g., Ymock (t) = frmock (t) + €. For Group 2, we have hrpA-
infected and the DC3000-infected time series independently branching
from the mock-infected time series:
Fnocr (8 ~ GP (€, Kinocy (£,£)),

Furpa® ~ GP (Fnock 0, CPr,. (Ko knrpa (6,29,
foc3000(8) ~ GP | fnoci (), CPy,, (Ko kpeaoo(£,£1) ).
Collectively Groups 1 and 2 should represent immune response genes
targeted by effectors, and therefore associated with the onset of disease.
For Group 3, we have mock-infected and hrpA-infected datasets drawn
from an identical process, with the DC3000-infected branching from

this:

fmocirpa(t) ~ GP (Cv kmocinrpa(t, t')) ,
fc3000() ~ GP | finocknrpa(t), CP,, (Ko’ kpczo00(t, t’)))-
This group represents genes not associated with the immune response
that are nonetheless targeted by effectors, and may therefore represent
those functioning in metabolism. For Group 4, we have mock-infected
and DC3000-infected datasets drawn from an identical process, with the
hrpA-infected branching from this:
finock,pczn00 () ~ GP (Cv Kmock,pczo00 (s t')).
fhrpA(t) ~GP (fmock,z)csooo ®, Cptb1 (KU: khrpA(t' t’)))-
These genes likely reflect downstream immune response genes that are
targeted very early by effectors, before their usual time of immune acti-
vation. For Group 5, we have hrpA-infected and DC3000-infected da-
tasets drawn from an identical process that branches from mock-infected:
Finoce () ~ GP (€, kmock (£, 7)),
frrpanczooo () ~ GP (fmnck ®, CP,,, (KOJ Knrpanczoon (L, t,)))-
These genes represent immune response genes not targeted by effectors.
Finally, for Group 6, we have all datasets drawn from an identical pro-
cess:
fmock hrpapczooo () ~ GP (¢ kmock (t, ),

representing genes that are unbranched i.e., not differentially expressed.
Because these datasets correspond to bulk observations from microarrays
with well-defined measurement times we assumed smooth functions
throughout, and therefore, in all cases, the covariance functions were
taken to be squared-exponentials e.g., Kpocr(t,t') = SEq . (t,t") =
Tmock P (€ = ')/ 2lmock”)s Where Omocie = [lmock” Tmoci] denotes a
set of mock dataset-specific hyperparameters, and hyperparameters were
optimised to their ML or MAP values. We assumed the following prior
distributions: the first branch time was Gamma distributed, ty, ~T (2,2),
with the second branch also Gamma distributed, t;, ~ I'(4,2), and the
change-point transition rate was Gaussian distributed, s ~ V' (0,0.5). All

other hyperparameters were optimised to their ML values. Finally, we

selected the optimal group based on the Bayesian information criterion
(BIC).
In Supplementary Figure 7(a), we indicate the branch time between
control and hrpA time series using B-RGPs versus that obtained using
the Gaussian process two-sample (GP2S; Stegle et al. (2010); Supple-
mentary Figure 7(b)). Here the GP2S approach incorrectly identified a
peak perturbation time at t = 0, before Arabidopsis could mount an
immune response. This peak was notably absent in our B-RGP approach.
To further gauge the accuracy of our approach, we compared the esti-
mated branch times between hrpA and DC3000 using B-RGPs (Supple-
mentary Figure 6(c)) to that obtained using the perturbation times previ-
ously estimated in Yang et al. (2016) (Supplementary Figure 6(d)). The
analysis in Yang et al. (2016) provide 90% confidence intervals for
branch time estimates, and we note that our MAP estimation falls within
these bounds in 67% of cases. Of the remaining genes, 27% of our MAP
estimates lie to the right of the confidence bounds, and 5% to the left of
the confidence bounds, suggesting that our approach has a tendency to
estimate later branch times than that of Yang et al. (2016). This is likely
due to differences in the prior distributions over branch times. Indeed, if
we plot the estimated branch time using our method versus the PT ap-
proach for the 27% of genes noted above, we see a strong correlation (R
= 0.8507). Together, these results suggest that, although there is good
agreement between the methods for a large fraction of cases, inference of
branch time in a subset of the observations may be unidentifiable.
Our results indicate that approximately 50% of genes were unperturbed
by either the hrpA or DC3000 strains, in agreement with previous studies
based on pairwise comparison of the time series using mixtures of
Gaussian Processes (Lewis et al. 2015), where 52% of genes were identi-
fied as being differentially expressed in control versus hrpA or control
versus DC3000.
Since DC3000 is known to subvert the basal immune response of Ara-
bidopsis, we hypothesised that the expression of a subset of genes in the
DC3000-infected dataset might converge fully back to control levels
following delivery of effectors. To identify such genes, we also fitted a
two-component branch-recombinant GP using the control and DC300-
infected time series only, again using the BIC to distinguish between
genes undergoing branching and recombination from those undergoing
branching alone.
Fnoce@®) ~ GP(€, kmock (t,17),
foez000(6) ~ GP ( foczo00(D), Cptr1 (Cpt,,1 (KO. Kimocx (€, t’))' Ko))-

An example branch-recombinant expression profile is shown in Figure
2(b). We note that relatively few genes were identified as having their
expression levels fully converge back to control levels. Of those that did,
none were identified as being targets of effectors or previously implicat-
ed in the response to P. syringae, suggesting that the full suppression of
early immune response genes to control levels is not required for infec-

tion to advance.
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Gene Ontology analysis identified several highly enriched terms across
the first five groups (see Supplementary Table 1), suggesting distinct

biological functions relating to pathogen response and metabolic repro-

remodelling in this dataset, B-RGPs provided much better temporal
resolution. As the effector-driven virulence programme proceeds, but

prior to bacterial multiplication (5-8 hpi), there is a strong enrichment of
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Figur € 2: Branching processes were fitted to the three Arabidopsis time series, with hyperparameters optimised to MAP values, and the BIC used to select optimal branch-

ing structure. (a) Example expression profile plots for each of the different classes of branching. (b) Example expression profile of a branch-recombinant structure within the dataset. (¢)

The prevalence of each of the six groups within the dataset, compared to the breakdown of non-Pseudomonas effector targets (d), and Pseudomonas-effector targets show a clear enrich-

ment of effector genes (e). (f, g) The Euclidean distance of branching times of genes from that of WRKY11/17 is statistically lower in genes that are DE in WRKY11/17 knockouts

versus those that are NDE, indicating that perturbation times are predictive of direct and indirect targets of WRKY11/17. (h) The prevalence of Wbox motifs decreases amongst sets of

genes whose branch times are increasingly distant from WRKY11.

gramming. Prior to 3 hours, the ontologies represent some of the earliest
transcriptional processes targeted by effectors. Consequently, there is a
diverse array of GOs represented. Notable are the combination of proteo-
lytic, ribosome, vitamin and amino acid metabolic and transport process-
es. This is indicative of assembly of the processing machinery to enable
effector mediated reprogramming of core cellular processes. Between 3
and 5 hours post infection (hpi) the impact of effectors was evident by
the number of GOs identified, with processes associated with nuclear
processes, in particular chromatin remodelling, nuclear transport, and
transcription, most highly enriched. Other GO processes, such as hor-
mone responses and primary metabolism, were, unexpectedly, less abun-

dant. While Lewis et al. (2015) also reported evidence for chromatin

terms related to adenyl ribonucleotide binding, reflecting the high energy
demands at this phase of the infection process, when Pseudomonas ef-
fectors have suppressed immune responses and are reconfiguring the
metabolism to facilitate pathogen growth.

To further investigate the nature of these groups, we looked for enrich-
ment of known targets of effectors of various pathogens (Mukhtar et al.
2011). We first checked for enrichment of targets of non-Pseudomonas
effectors, hypothesising that the Arabidopsis immune response to differ-
ent pathogens might be conserved (Mukhtar et al. 2011). Figure 2(c, d),
shows that these groups were indeed enriched. Next, we checked for
enrichment of Avr and Hop effectors that are present in several strains of
Pseudomonas syringae, and were again enriched in DC3000-responsive

groups (Figure 2(c, e)).
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We next looked for enrichment of genes with known pathogen-response
phenotypes, using TAIR (Huala et al. 2001) to query for genes using the
terms ‘Pseudomonas’, ‘Botrytis’, and ‘Peronospora’. In Supplementary
Figure 8 we indicate the frequency of pathogen-response genes within
various groups, and our results show a distinct enrichment for Pseudo-
monas-related and Botrytis-related genes amongst the various immune
responsive and disease-responsive groups.

Finally, we investigated whether inferred branch times of key regulators
were predictive of branching of the direct and indirect targets of key
regulators. Here we focused on WRKY11 and WRKY 17, known to be
amongst the earliest branching transcription factors (TFs) implicated in
the Arabidopsis response to P. syringae (Journot-Catalino et al. 2006).
Both genes showed branching between control and hrpA, and between
hrpA and DC3000 consistent with (i) their immune-responsive expres-
sion and (ii) their suppression by DC3000 effectors. Genes that branched
between control and hrpA and between hrpA and DC3000 were assigned
a Euclidean distance (d) based on the position of their branch times with
respect to that of WRKY 11 or WRKY17. We then compared the distri-
butions of these Euclidean distances for the subset of genes identified as
being differentially expressed (DE) in knockout mutants of WRKY11/17
(Journot-Catalino et al. 2006) versus the distribution of the subset of
genes that were not differentially expressed (NDE) in those mutants. Our
results show that DE genes had significantly smaller Euclidean distances
than NDE genes (p<0.05 for WRKY 11 and p<0.005 for WRKY 17 using
two-sided Student’s t-test; Figure 2(f, g)), suggesting that genes that
branched at similar times to WRKY11/17 were likely to represent a core
set of genes targeted by the pathogen’s virulence strategy. WRKY11/17
are TFs and could exert direct regulation of their targets by binding to
their regulatory elements. To check this, we searched for the presence of
WRKY motifs within a 1kb promoter region using FIMO (Grant, Bailey,
and Noble 2011); specifically, the stringent WRKY binding site (Wbox)
motif, TWGTTGACYWWWW, identified by Ciolkowski et al. (2008).
Here, we looked at the frequency of Wbox motifs (p<0.0001) in sets of
genes whose branch times were increasingly distal from WRKY11.
These groups were based on: (i) genes whose Euclidean distance d<l1,
representing the closest 156 genes (see Supplementary Figure 9); (ii)
genes whose Euclidean distance d<2, representing the closest 454 genes;
and (iii) the closest 2000 genes. As positive and negative controls, we
also included the 157 genes that were identified as DE in the WRKY11
knockout line compared to control, and 2000 genes randomly selected
from Group 6 (genes with no branching). Our results showed a clear
trend of increasing frequency of Wbox motifs in sets of genes whose
branch times were closest to that of WRKY11 (Figure 2(h); see also
Supplementary Table 2). Altogether, these results suggest that estimation
of branch times may be useful for identifying direct and indirect targets
of perturbed genes, and more generally demonstrate the efficacy of B-
RGPs for extracting temporally resolved information from complex

biological datasets.

5. Discussion

The ability to identify and quantify branching and recombination pro-
cesses from systems-level measurements has a variety of important ap-
plications in the biological sciences. Here we have outlined a general
framework for the composition of covariance functions that allow for the

prior specification of branch-recombination processes of arbitrary com-

plexity, both in terms of the number of branches and richness of dynam-
ics, via simple compositional of covariance functions within a HGP
framework. As well as specifying arbitrarily complex processes, all
hyperparameters could be optimised via gradient based approaches,
resulting in more accurate inference of branch times compared to exist-
ing approaches, although inference took slightly longer.

Here we applied B-RGPs to a time-series microarray data of Arabidop-
sis thaliana infected with a bacterial pathogen Pseudomonas syringae.
By explicitly enumerating over all possible branch structures i.e., all 1,2
and 3 branch structures, and using the AIC as a selection criterion, we
were able to infer the branch structure for each gene. Whilst exhaustive
iteration will not necessarily be possible for more complex datasets with
more than three time series, we note that greedy approaches based on
merging of time series could instead be used.

More generally, B-RGPs represents a flexible approach for the analysis
of branching and recombination in time series datasets. This approach
can be thought of as a natural extension to two-sample based approaches,
allowing analysis of arbitrary numbers of time series.

Whilst here we focused on branching as a function of time, our approach
is equally amenable to branching as a function of any other variable,
such as expression level of a specific regulator. An intriguing possibility
is therefore to incorporate B-RGPs into existing GP-based approaches
for the inference of nonlinear dynamical systems (Penfold and Wild
2011; Penfold et al. 2012; Penfold, Millar, and Wild 2015; Penfold et al.
2015; Aijo and Lahdesmaki 2009), which would naturally allow infer-
ence of nonstationary nonlinear dynamical systems, such as temporally
or spatially varying networks.

In addition, we envisage that B-RGPs could also be useful to capture
transcriptional dynamics underpinning cell fate decisions from single cell
transcriptomics data. For this, cells are first pseudotemporally ordered
along a developmental axis using a combination of dimensionality reduc-
tion techniques and curve-fitting or graph-theoretic approaches (Trapnell
et al. 2014; Bendall et al. 2014; Marco et al. 2014; Ji and Ji 2016; Setty
et al. 2016). Once ordered along pseudotime, B-RGPs could capture the
branching dynamics of individual genes, thus identifying the earliest
molecular events controlling cell fate decisions. Alternatively, B-RGPs
could be used to directly model cell fate decisions. Recent studies by
(Reid and Wernisch 2016) have shown how Gaussian process latent
variable modes (GPLVMs), can be used to pseudotemporally order genes
along a developmental axis, with a key advantage over other pseudotime
approaches: the incorporation of capture time into the inference proce-
dure. However, due to a previous lack of treatment for branching in GP
models, the approach of Reid and Wernisch (2016) did not explicitly
allow for pseudotemporal ordering of datasets with branching behavior.
The incorporation of B-RGPs into a GPLVM model would naturally
allow for pseudotemporal ordering over branching process, whilst retain-

ing the ability to leverage highly informative data, such as capture time.
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Supplementary materials to ‘Branch-recombinant
Gaussian processes for analysis of perturbations in
biological time series’

1 Benchmarking B-RGPs

Branching and recombinant structures can easily be encoded within a GP framework using the correct composition of covariance functions. In
Supplementary Figure 1(a) we indicate example covariance functions and samples from the prior of some simple branching processes; in
Supplementary 1(b) we do so for recombinant processes, and in 1(c) we do so for branch-recombinant processes.
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Supplementary Figure 1: (a) GP with branching structure. Here we indicate the prior covariance matrix evaluated at uniformly incremented input times (left) and two samples from the
prior distribution (middle, right). (i) A smooth function branches from a smooth base function. (ii) A periodic function branches from a smooth function. (iii) Two smooth functions (solid)
branch from a smooth function (dashed). (iv) Two periodic functions (solid) branch from a smooth function (dashed). (b) GP with recombinant structure. (i) A smooth function converges
on another smooth function. (ii) A periodic function recombines with a smooth function. (iii) Two smooth functions recombine with a smooth function. (iv) Two periodic functions recombine
with a smooth function. (¢) GP with branch-recombinant structure. (i) A periodic function branches and then recombines with a smooth function. (ii) Two periodic functions branch and
then recombine with one another. (iii) A set of four smooth functions branch and recombine at various time points. (iv) A set of two functions (black and green) branch and recombine with
one another, whilst a third function (red) recombines with the first two functions, and a fourth function (blue) branches from the third function and recombines with the first two
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Supplementary Figure 2: Branch time versus inferred branch time versus using a B-RGP (a) and the DEtime approach (b) for 50 randomly generated
branch processes show high correlation of R = 0.9999 and R = 0.9007 respectively, indicating good ability to infer the time of bifurcations in time
series. (¢) Branch times versus inferred branch time for B-RGPs with missing data centered around the branch point (R = 0.9649).
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Supplementary Figure 3: (a): Example posterior GPs fitted to a non-branching hierarchical GP using a B-R GP (left), independent GPs (middle)
and a joint GP (right). (b): distribution of mean sum square error (left) and negative log marginal likelihood (right) for B-RGP, limiting case of a B-RGP
(*), IGP and JGP. (c) Example posterior GPs fitted to a non-branching process (datasets represent replicated samples from a GP) using a three-
component branch-recombinant GP (left), independent GPs (middle) and a joint GP (right). (d) distribution of mean sum square error (left) and negative
log marginal likelihood (right) for B-RGP, limiting case of a B-RGP (*), IGP and JGP.
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Supplementary Figure 4: (a): Example posterior GPs fitted to a non-branching hierarchical GP using a B-R GP (left), independent GPs (middle)
and a joint GP (right). (b): distribution of mean sum square error (left) and negative log marginal likelihood (right) for B-RGP, limiting case of a B-
RGP (*), IGP and JGP. (c) Example posterior GPs fitted to a non-branching process (datasets represent replicated samples from a GP) using a three-
component branch-recombinant GP (left), independent GPs (middle) and a joint GP (right). (d) distribution of mean sum square error (left) and negative
log marginal likelihood (right) for B-RGP, limiting case of a B-RGP (*), IGP and JGP.
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Supplementary Figure 5: (a): Example posterior GPs fitted to a complex branching process using B-RGPs, JGPs and IGPs. Here we indicate
accuracy of the inference using: (b) The log sum squared error; and (c) the log marginal likelihood. In both cases B-RGPs were more accurate than IGPs
and JGPs.

2 B-RGPS FOR PARTIALLY LABELLED DATA

In Supplementary Figure 5 we show the accuracy of inferred B-RGPs for branching data for partially labelled datasets.
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Supplementary Figure 6: Inferring BGPs with unlabelled data. (a) The initial assignment of branch labels is made with a fraction initialised to the
correct values, and the remainder initialised stochastically. (b) Unknown labels are updated via Gibbs sampling, with hyperparameters sampled every 100
steps using HMC. Here we indicate the BGP fit after 20,000 iterations. (¢) Receiver operating characteristic (ROC) curve indicating the accuracy of
inferred branch labels. (d) Area under the ROC curve (AUC) plotted as a function of the fraction of correctly initialised branch labels.

3 Comparison of B-RGPs versus other approaches for the Pseudomonas data
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Supplementary Figure 7: Histogram of the inferred branch times using B-RGPS. Branch times between mock-infected and hrpA-infected plants
are shown for B-RGPs (a) and a mixture of Gaussian processes (GP2S) (b). Branch times between hrpA-infected and DC3000-infeced Arabidopsis using
B-RGPs (¢) and Perturbation Time (PT) analysis (d).
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Supplementary Figure 8: Frequency of known ‘Pseudomonas’, ‘Botrytis’, and ‘Peronospora’ genes within various groupings. Genes were first
grouped according into immune-responsive (Groups 1, 2, 4 and 5), DC-specific (Groups 1, 2,3, and 4) versus not DE groups. Statistical significance
was determined using a Chi-squared test on the analysis of variance between Poisson GLM fits with and without interaction terms. Here we note that
immune responsive and DC-specific subgroups were both enriched for Pseudomonas and Botrytis related genes, although no enrichment for H.
peronospora was noted.
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Supplementary Figure 9: Metric used to evaluate distance of branching time for target gene to WRKY. Here we calculate the Euclidean distance
between the branch times between WRKY11/17 and all other genes in Groups 1 and 2 as d = |d; + d,].

Supplementary Tables 1 and 2: Available as separate spreadsheets
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