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Abstract 
Motivation: A common class of behaviour encountered in the biological sciences involves branching and recombination. 
During branching, a statistical process bifurcates resulting in two or more potentially correlated processes that may under-
go further branching; the contrary is true during recombination, where two or more statistical processes converge into one. 
A key objective is to identify the time of this bifurcation (branch time) from time series measurements e.g., comparing a 
control time series with a perturbed time series. Whilst statistical treatments for the two branch (control versus treatment) 
case exists, the ability to infer more complex branching structure from time series data remains open. Gaussian processes 
(GPs) represents an ideal framework for such analysis, allowing for nonlinear regression that includes a rigorous treatment 
of uncertainty. Currently, however, GP models only exist for two-branch systems. Here we highlight how arbitrarily com-
plex branching processes can be built using the correct composition of covariance functions within a GP framework, thus 
outlining a general framework for the treatment of branching and recombination in the form of branch-recombinant Gauss-
ian processes (B-RGPs). We first demonstrate the performance of B-RGPs compared to a variety of existing regression 
approaches, and demonstrate robustness to model misspecification. B-RGPs are then used to investigate the branching 
patterns of Arabidopsis thaliana gene expression following inoculation with the hemibotrophic bacteria, Pseudomonas sy-
ringae DC3000, and a disarmed mutant strain, hrpA. By grouping genes according to the number of branches, we could 
naturally separate out genes involved in basal immune response from those subverted by the virulent strain, and show 
enrichment for targets of pathogen protein effectors. Finally, we identify two early branching genes WRKY11 and 
WRKY17, and showed that groups of genes that branched at similar times to WRKY11/17 were enriched for W-box bind-
ing motifs, and overrepresented for genes differentially expressed in WRKY11/17 knockouts, suggesting that branch time 
could be used for identifying direct and indirect binding targets of key transcription factors. Software	
   is	
   available	
   from:	
  
https://github.com/cap76/BranchingGPs. 
 

1   Introduction 
A common class of behaviour encountered in the biological sciences 
involves branching. In a branching process, often driven by a biological 
perturbation, a statistical process bifurcates at a specific time, leading to 
two potentially correlated processes that may, themselves, undergo fur-
ther branching (Poincaré 1885). Reciprocal behaviour is encountered in 
recombination processes, where two or more statistical processes con-
verge.  
Such branching and recombination is frequently encountered in tran-
scriptional time series data involving host-pathogen interactions. The 
initial response to infection is the activation of innate immunity, a high-
ly-conserved response based upon perception of non-self. Subsequently, 
pathogens can deliver protein effectors which collectively suppress im-
munity, and later collaborate to reconfigure plant metabolism for patho-
gen nutrition. Thus, initially, the expression dynamics of key infection 
marker genes will be identically distributed in both infected and unin-
fected host cells. Expression patterns will begin to diverge as the host 
mounts immunity; in many cases, this innate immune response is sup-

pressed by the pathogen, potentially driving expression levels of certain 
genes back to uninfected levels. Indeed nearly 50% of the transcriptome 
is observed to be differentially expressed during some plant infections 
(Windram et al. 2012; Lewis et al. 2015). More complex patterns of 
branching and recombination may exist in such datasets due to the ongo-
ing evolutionary arms race between pathogens and their hosts (Jones and 
Dangl 2006; Boller and He 2009). 
The ability to infer the timing of bifurcations in individual genes should 
reveal important information about the onset and development of infec-
tion. The inference of branching and recombination processes from 
systems level measurements, such as collections of microarray or RNA-
sequencing data, remains a difficult challenge, partially due to datasets 
being noisy in nature, with (potentially) missing observations or uneven 
temporal sampling. The dynamic nature of different biological systems 
may also vary significantly, frustrating efforts to find a robust, broadly 
applicable approach to the inference of branching and recombination. 
Nonparametric Bayesian approaches to inference would therefore be 
advantageous, addressing these key issues. Gaussian processes represent 
a flexible nonparametric Bayesian approach to nonlinear regression able 
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to gracefully cope with uncertainty, uneven sampling and a diverse range 
of dynamic behaviour (Rasmussen and Williams 2006). However, cur-
rently, Gaussian processes treatments for branching processes have only 
been developed for the two-branch case (Yang et al. 2016; Stegle et al. 
2010). Here we develop an approach to inference for arbitrarily complex 
branching and recombination processes, in the form of branch-
recombinant Gaussian processes (B-RGPs). In Section 2 we first intro-
duce B-RGPs, highlighting their key limiting behaviour. In Section 3 we 
demonstrate the advantages of B-RGPs over GPs on a variety of simulat-
ed datasets, and in Section 4 we demonstrate the utility of our approach 
on genome-scale time-course microarray data by identifying transcrip-
tional branching and recombination in Arabidopsis thaliana infected 
with bacterial pathogen Pseudomonas syringae. Finally, in Section 5, we 
discuss a variety of possible applications for B-RGPs and future avenues 
for research. 

2   Methods 
Within a Bayesian setting, Gaussian processes (GPs) can be used to 
represent prior distributions over smooth functions, providing a flexible 
framework for regression and classification with robust treatment of 
uncertainty (Rasmussen and Williams 2006). This makes GP-based 
approaches ideal frameworks for quantifying the dynamics of gene ex-
pression from biological observations (Stegle et al. 2010; Kalaitzis and 
Lawrence 2011; Breeze et al. 2011; Hensman, Lawrence, and Rattray 
2013). For regression, we typically have a set of observations, 𝒚, as-
sumed to be noisy instances of a continuous underlying function at input 
locations 𝒕: 𝒚 = 𝑓 𝒕 + 𝜖, where ε represents Gaussian additive noise. In 
our applications, 𝒚 will typically be used to denote a vector of the ob-
served expression levels for a given gene at times, 𝒕. We can assign the 
unknown function a GP prior, denoted 𝑓 𝑡 	
  ~	
  𝒢𝒫(𝜇 𝑡 , 𝑘(𝑡, 𝑡′)), and 
analytically evaluate the posterior distribution at a set of new input loca-
tions, 𝒕∗. The marginal likelihood, too, may be analytically evaluated, 
making GPs a flexible and efficient framework for both prediction and 
model comparison. Previous GP-based approaches to branching have 
been outlined for the two-dataset case i.e., where there exists two biolog-
ical processes following branching. These include the studies by Stegle 
et al. (2010), who developed a GP two-sample approach, based on mix-
tures of GPs, and the more recent work of Yang et al. (2016), who 
demonstrate explicitly how a two-branch process can be encoded within 
a joint GP model. To our knowledge, the generalisation of GPs to more 
than two branches has not been addressed, whilst no explicit closed-form 
solution to recombination has been outlined. 
A useful extension to the GP framework is the multiple output hierar-
chical Gaussian process (HGP; Hensman, Lawrence, and Rattray 
(2013)), in which a basal process is defined by a zero-mean GP with 
covariance function 𝑘3(𝑡, 𝑡4), with a subsequent process having mean 
𝑓3(𝑡) and covariance function, 𝑘5(𝑡, 𝑡4):  

𝑓3 𝑡 	
  ~	
  𝒢𝒫 0, 𝑘3 𝑡, 𝑡4 ,	
  
𝑓5 𝑡 	
  ~	
  𝒢𝒫 𝑓3 𝑡 , 𝑘5 𝑡, 𝑡4 .	
   

Within this framework, we assume noisy observations of the functions, 
𝑦3 = 𝑓3 𝑡 + 𝜖, and 𝑦5 = 𝑓5 𝑡 + 𝜖, and may analytically evaluate the 
posterior distribution at a new set of input locations for prediction, or the 
marginal likelihood for model comparison. A class of branching behav-
iour can naturally be encoded within this HGP framework, assuming the 

basal (main branch) process is defined by a zero-mean GP with covari-
ance function 𝑘9:(𝑡, 𝑡

4), with a subsequent process having mean 𝑓9:(𝑡) 
and an appropriate covariance function that ensures the two processes are 
identically distributed prior to an arbitrarily chosen time point, 𝑡9: 

𝑓3 𝑡 	
  ~	
  𝒢𝒫 0, 𝑘3 𝑡, 𝑡4 ,	
  
𝑓5 𝑡 	
  ~	
  𝒢𝒫 𝑓3 𝑡 , 𝐶𝑃=>(𝐾@, 𝑘5 𝑡, 𝑡

4 ) ,	
   
where 𝐾@ = 	
  𝐾@ 𝑡, 𝑡4  denotes a zero-kernel, and 𝐶𝑃=>(𝑘3, 𝑘5) denotes a 
change-point kernel (Lloyd et al. 2014), defined as:  

𝐶𝑃=> 𝑘3(𝑡, 𝑡
4), 𝑘5 𝑡, 𝑡4

= 𝜎 𝑡 𝑘3 𝑡, 𝑡4 𝜎 𝑡4

+ 1 − 𝜎 𝑡 𝑘5 𝑡, 𝑡4 1 − 𝜎 𝑡4 , 
where 1 − 𝜎 𝑡 = 1 + tanh =>H=

I
/2. Here we introduce two hy-

perparameters: 𝑡9 , which represents the branch time, and 𝑠, which con-
trols how fast data belonging to the second branch transition from the 
basal process to the branch process. Note that each data point must be 
assigned a branch label, 𝑧 ∈ 1,2 , according to which branch it belongs 
to e.g., 𝑧 = 1 will be used to denote data belonging to the control or 
wildtype branch, with 𝑧 = 2 referring to the perturbed dataset. For a two 
branch case observations are a priori Gaussian distributed, 
𝒚3, 𝒚5|	
  𝒕, 𝒛	
  ~	
  𝑁(𝟎, 𝐾(𝒕, 𝒕4, 𝒛, 𝒛′)), where:  
𝐾 𝑡, 𝑡4, 𝑧, 𝑧4 = 𝑘3 𝑡, 𝑡4 + 𝐶𝑃=> 𝐾@, 𝑘5(𝑡, 𝑡′) 𝛿T,5𝛿TU,5 + 𝛽𝛿=,=U𝛿T,TU , 

and the delta function 𝛿T,5𝛿TU,5 ensures the change-point kernel only 
operates over the second branch i.e., where the branch label 𝑧 = 2 and 
𝑧′ = 2. Within this framework, we may again make a prediction 𝒚∗ at a 
new input location, (𝒕∗, 𝒛∗), and analytically evaluate the marginal likeli-
hood, allowing us to compare the goodness of fit between different 
branching processes. 
We can allow further branches that independently diverge from the main 
branch, with each data point assigned a branch label. For a n-component 
system 𝑧 ∈ 1, … , 𝑛  and we have the following covariance function: 
𝐾 𝑡, 𝑡4, 𝑧, 𝑧4 = 𝐾9: 𝑡, 𝑡

4 + 𝐶𝑃=Y 𝐾@, 𝑘9Y(𝑡, 𝑡′) 𝛿T,Z𝛿TU,Z
[
Z\5 + 𝛽𝛿=T𝛿=4T4. 

Alternatively, rather than each branch diverging from the main process, 
each branch could itself give rise to further branches in a recurrent man-
ner e.g., a basal (main branch) from which a secondary branch diverges, 
with a third branching from the second and so forth. For an n-component 
recurrent branching system we have: 
𝐾 𝑡, 𝑡4, 𝑧, 𝑧4

=

𝑘3 𝑡, 𝑡4 + 𝛽𝛿=,=U𝛿T,TU , min	
  (𝑧, 𝑧′) = 1
𝑘3 𝑡, 𝑡4 + 𝐶𝑃=_ 𝐾@, 𝑘5 𝑡, 𝑡

4 + 𝛽𝛿=,=U𝛿T,TU , min	
  (𝑧, 𝑧4) = 2
⋮

𝑘3 𝑡, 𝑡4 + 𝐶𝑃=a 𝐾@, 𝑘b 𝑡, 𝑡4
[H3

b\5

+ 𝛽𝛿=,=U𝛿T,TU , min	
  (𝑧, 𝑧4) = 𝑛 − 1

𝑘3 𝑡, 𝑡4 + 𝐶𝑃=a 𝐾@, 𝑘b 𝑡, 𝑡4
[

b\5

+ 𝛽𝛿=,=U𝛿T,TU , 𝑧 = 𝑛, 𝑧4 = 𝑛.

 

When observation data for all branches are specified over identical time 
points, the covariance matrix can be expressed in a more compact nota-
tion: 

𝐾 𝒕, 𝒕4, 𝒛, 𝒛4 = 𝑨(b)⨂𝑘b 𝒕, 𝒕′[
b\3 + 𝑨(3)⨂𝛽𝕀,	
  

where ⨂ denotes the Kronecker product and: 

𝑘b 𝒕, 𝒕4 =
𝑘3 𝒕, 𝒕4 , 𝑗 = 1

𝐶𝑃=a 𝐾@, 𝑘b 𝒕, 𝒕4 , otherwise, 

where 𝑚 represents the number of unique time points, 𝕀 represents an 
(𝑚×𝑚) identity matrix, and 𝑨(b) = 𝒖	
  𝒖⊺, with 𝒖 representing a column 
vector of length 𝑛, with ones in elements 𝑗 through 𝑛 and zeros every-
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where else. Far more complex branching patterns can easily be built via 
the correct composition of independent and recurrent branching covari-
ance functions.  
As well as building branching structures of arbitrary complexity, we 
further note that the dynamic behaviour of the individual branches them-
selves may themselves be arbitrarily complex, comprised of any linear 
combination of positive semi-definite kernels. In Supplementary Figure 
1(a) we indicate example behaviour of simple branching GPs.  

2.1 Recombinant Gaussian processes 

Recombinant processes can be defined in a reciprocal fashion to branch-
ing processes. Notable examples might include the reprogramming of 
different terminally differentiated cell lineages to iPSCs (Gurdon 1962; 
Takahashi and Yamanaka 2006). We can describe a two-component 
system via the following composition of covariance functions:  
𝐾 𝑡, 𝑡4, 𝑧, 𝑧4 = 𝑘3 𝑡, 𝑡4 + 𝐶𝑃p> 𝑘5(𝑡, 𝑡′), 𝐾@ 𝛿T,5𝛿TU,5 + 𝛽𝛿=,=U𝛿T,TU , 

which encodes the main branch process, with a second (potentially corre-
lated) process that recombines after time 𝑟9 . Multiple processes can 
again be allowed to independently recombine with the main branch, or 
recurrently recombine via a series of parental branches, analogously to 
branching GPs. Example recombinant GPs are shown in Supplementary 
Figure 1(b). 

2.2 Branch-recombinant Gaussian processes 
Another important process exists where a statistical process transiently 
branches into two or more processes, before recombining back into a 
single process. Such combinations of branching and recombination may 
be encountered during development when where there exists more than 
one route to a terminal cell fate, as may be the case in certain neuronal 
lineages (Zawadzka et al. 2010), as well as in certain diseases, such as 
during dedifferentiation of cancer cells (Friedmann-Morvinski and 
Verma 2014). An example two-component system can be encoded by the 
following covariance function:  

𝐾 𝑡, 𝑡4, 𝑧, 𝑧4 = 𝑘3 𝑡, 𝑡4 + 𝐶𝑃p_ 𝐶𝑃9_ 𝐾@, 𝑘5(𝑡, 𝑡
4) , 𝐾@ 𝛿T,5𝛿TU,5 +

𝛽𝛿=,=U𝛿T,TU . 
Again, more complex patterns, with arbitrary numbers of branches and 
recombination, can readily be built with GPs via the correct composition 
of covariance functions, with more complex examples shown in Supple-
mentary Figure 1(c).  

2.3 Optimisation, run time and limiting behaviour 

A key advantage of the B-RGP framework outlined here over existing 
approaches (Yang et al., 2016) is the ability to fit arbitrarily complex 
branch-recombinant structures i.e., more branches. Unlike the earlier 
work of Yang et al. (2016), all hyperparameters including those relating 
to branch and recombination times can be directly optimised via gradient 
based approaches e.g., type II ML estimators. In general we note that 
inference with B-RGPs scales as any other GP, with complexity 𝒪(𝑛s), 
where 𝑛 is the number of observations, although sparse approximations 
are possible. The time required for optimisation of hyperparameters via 
type II ML estimates varied: for a dataset with 300 observations, 1000 
steps of the gpml minimize function took approximately 30 seconds on a 

Desktop computer (2.5 GHz Intel Core i7), although it should be noted 
that, in many cases, full convergence could require more than 1000 steps. 
This makes B-RGPs slightly slower than the time taken for DEtime 
(Yang et al., 2016), which, for the same dataset and default parameters, 
ran in around 10 seconds.  
Depending upon the branch time hyperparameters and other hyperpa-
rameters in the change-point kernel, the behaviour of B-RGPs can natu-
rally tend towards either an independent GP or a HGP. Specifically, for a 
branching GP, when 𝜎(𝑡) → 1, as may be the case when (𝑡9 − 𝑡)/𝑠 is 
very large, such as when a branch occurs much later than the last data 
point, then a BGP will behave as single joint GP with behaviour defined 
by the main branch kernel only. When 𝜎(𝑡) → 0, as may be the case 
when (𝑡9 − 𝑡)/𝑠

 has increasingly low values, such as when branching 
occurs much earlier than the first observations, then the BGP will behave 
as a HGP. Similar limiting behaviour applies for recombination process-
es. 

3   Results 
As a preliminary test of the B-RGP framework we fitted five simulated 
labelled time series datasets, and evaluated the predictive accuracy over 
a range of test locations, comparing the accuracy to that achieved using 
DEtime (Yang et al., 2016), independent Gaussian process regression 
(IGP) over the individual branches, joint Gaussian process regression 
(JGP) over the union of data, and splines. We first evaluated the ability 
to fit the following branching process: 

𝑓 𝑡, 𝑧 =

0,	
  if	
  𝑡 ≤ −𝜋/2,
cos 𝑡 , 	
  if	
   − 𝜋/2 < 	
  𝑡 ≤ 0, 𝑧 = 1,

1,	
  	
  if	
  𝑡 > 0, 𝑧 = 1,
− cos 𝑡 ,	
  if	
   − 𝜋/2 < 	
  𝑡 ≤ 0, 𝑧 = 2,

−1,	
  	
  if	
  𝑡 > 0, 𝑧 = 2.

 

where z indicates the branch label. Random input locations were sam-
pled, 𝒕~𝒩 𝟎, 3𝕀 , with branch labels assigned with equal probability, 
𝒛Z ∈ [1,2]. Observations were generated as noisy instances, 
𝑦|𝑡, 𝑧~𝒩 𝑓(𝑡, 𝑧), 𝜎[5𝕀 , where 𝜎[ ∈ [0.1,0.3]. A three-component 
branching process, comprised of a (latent) main process from which two 
observed branches diverge, was fitted to the simulated data, with hy-
perparameters optimised using type II maximum likelihood (ML). The 
base kernel and all kernels were set a squared-exponentials. Branch time 
hyperparameters were tied i.e., 𝑡9: = 𝑡9_ , with initial values set as 𝑡9: =
4, log 𝑠9:,9_ = 0.5, 𝜎[ = 0.2, and all other hyperparameters 
𝜃 = [𝑙9�, 𝜎9�, 𝑙9: , 𝜎9:, 𝑙9_ , 𝜎9_] initiated as i.i.d. random variables 
𝜃Z~𝑈 0.1,1 . In Figure 1(a) we indicate an example posterior fits to the 
data using a BGP, IGPs, JGPs, and splines respectively. In Figure 1(b) 
we indicate the log mean sum squared error (SSE) over 50 randomly 
initiated runs using N=50 and N=300 training points and for different 
noise levels. The B-RGPs shows superior fits (reduced SSE) and de-
creased negative log marginal likelihood compared to other approaches. 
The fits obtained using DEtime also appeared to perform well in all 
cases, outperforming independent GPs, and demonstrating the usefulness 
of using more accurate generative models for inference of branching 
data. Next we evaluated the ability of branching GPs to estimate the 
branch time. In Supplementary Figure 2(b) we plot the branch time ver-
sus inferred branch time for 50 instances and compare to that achieved 
using DEtime (Yang et al., 2016). We note that the correlation for our 
approach (R=0.9999) indicates good ability to infer branch times, and 

Figure 1: (a) Fits to a two-component branching process using a branch GP outlined here, the branching GP outlined in Yang et al. (2016), independent GPs, a joint GP and inde-
pendent splines. (b) We indicate the log mean  sum squared error for each of the methods for different number of training points and for different noise levels. (c) Fits to a two component 
branch-recombinant process using branch-recombinant GPs, branch GPs of Yang et al. (2016), independent GPs, joint GPs and splines. (d) Log mean sum squared error for the different 
approaches for different number of data points and noise levels.  
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was greater than that the correlation when using DEtime with default 
settings (R=9007). Here the increased accuracy partly comes from the 
ability to directly optimise the branch time hyperparameters via type II 
ML estimates, rather than relying on a grid search of inferred branch 
times. To further explore the ability to infer branch times for datasets 
with missing observations, we repeated this experiment, but excluded 
observations close to the true branch point, specifically removing any 
data points where 𝑡9 − 𝑡� < 2, where, 𝑡9  represents the true branch 
time, and 𝑡� is the time of the data point. Even with missing observations 
centred at the true branch time, the inferred branch times were found to 
be highly correlated with the true branch time (R=0.9649; Supplemen-
tary Figure 2(c)). 
In dataset 2, we assumed the following branch-recombinant process:  

𝑓 𝑡, 𝑧 =
0	
  if	
   𝑡 > 𝜋/2

cos 𝑡 if	
   𝑡 ≤ 𝜋/2, 𝑧 = 1
− cos 𝑡 if	
   𝑡 ≤ 𝜋/2, 𝑧 = 2

 

where z indicates the branch label. Again, randomly determined input 
locations were sampled as before. A three-component branch-
recombinant GP comprised of a (latent) main process from which two 
branches diverge and recombine, was fitted to the simulated data, with 
hyperparameters optimised using type II ML estimates. Example fits are 
shown in Figure 1(c), with the log mean sum square error shown in 

Figure 1(d). Again, branch-recombinant GPs outperformed all other 
methods, with branching GPs DEtime performing next best.  
To test for robustness to model mismatch, we used B-RGPs on two other 
datasets. In dataset 3, a non-branching, three-component process was 

used to generate data, corresponding to a HGP, 𝑓@ 𝑡 ~𝐺𝑃 0, 𝐾@ 𝑡, 𝑡4 ,
𝑓3 𝑡 ~𝐺𝑃 𝑓@ 𝑡 , 𝐾3 𝑡, 𝑡4 , 𝑓5 𝑡 ~𝐺𝑃 𝑓@ 𝑡 , 𝐾5 𝑡, 𝑡4 , with squared-
exponential covariance functions used throughout. A B-RGP was fitted 
to the data with hyperparameters initialised as 𝑡9: = −4, 𝑡p: = 4, 
log 𝑠9:,9_p:,p_ = 0.5, and log 𝜎[ = 0.2, and all other hyperparameters 
initiated as 𝜃Z~𝑈 0.1,1 . In this case, there exists a model mismatch 
between the data, which has no explicit branching or recombination, and 
the branch-recombinant covariance function used for inference. Never-
theless, we note that informally, if the branch point occurs much earlier 
than the first data point and the recombinant point occurs much later than 
the last data point, the behaviour over the range of observations is identi-
cal to that of a HGP, 𝑓3 𝑡 ~𝐺𝑃 0, 𝐾9: 𝑡, 𝑡

4 + 𝐾9_ 𝑡, 𝑡
4 ,

𝑓5 𝑡 ~𝐺𝑃 0, 𝐾9: 𝑡, 𝑡
4 + 𝐾9� 𝑡, 𝑡

4 .	
  Tuning of the 
branch/recombination time hyperparameters should therefore allow a 
good fit over the regions of observation despite the model mismatch. In 
Supplementary Figure 3(a) we plot example fits to the function using a 
B-RGP, BGPs, IGPs, a JGP and splines. In Supplementary Figure 3(b,c) 
we indicate the sum of squared errors and negative log marginal likeli-
hoods. As expected, B-RGPs and IGPs were more accurate than other 
approaches, due to the increased flexibility to fit the two processes, ra-
ther than fitting the general underlying trend. In most cases B-RGPs 
performed comparably to IGPs, although in a few instances the B-RGP 

appeared to suffer from numerical instability and failed to converge, with 
the resulting mean SSE and negative log marginal likelihood distribu-
tions heavy tailed and not as favourable as for IGPs. These results sug-
gest that B-RGPs offer comparable performance to IGPs, although per-
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formance depends on sensible initialisation of hyperparameters. 
To further evaluate the effect of model mismatch, we fit to data from a 
single, noisy process. Specifically, we used the same three-component 
HGP as in dataset 3, with noisy observation data generated from the first 
process only i.e., representing two replicates 𝑦3~𝒩 𝑓3(𝑡), 𝜎[5𝕀 , 
𝑦5~𝒩 𝑓3(𝑡), 𝜎[5𝕀 . As before, we fitted the data using a three-
component branch-recombinant process, with squared-exponential co-
variance function assumed for all branches, and hyperparameters initiat-
ed 𝑡9: = −4, 𝑡p: = 4. Informally, we note that, despite the model mis-
match, when branching and recombination both occur much earlier than 
the first observation, or much later than the last observation, the fit over 
the range of observations should correspond to that of a JGP with covari-
ance function corresponding to that of the main branch pro-
cess,	
  𝑓3,5 𝑡 ~𝐺𝑃 0, 𝐾@ 𝑡, 𝑡4 . In Supplementary Figure 4(a) we indicate 
example fits to the function using a B-RGP, IGPs and a JGP, whilst in 
Supplementary Figure 4(b, c) we indicate the SSE and negative log 
marginal likelihood. In general, both the B-RGP and JGP outperform the 
other approaches. 
Finally, we performed inference on a four-branch system, in which we 
have one latent basal branch, from which two intermediate latent branch-
es emerge. For comparison, we evaluate the sum squared error for the B-
RGP, IGPs a JGP, and splines, with the results indicating B-RGPs pro-
vide better overall performance (Supplementary Figure 4). 
Together, analysis of datasets 1 - 4 indicate B-RGPs offer superior per-
formance compared to other approaches when the underlying data is 
branch-recombinant, with good ability to estimate the timing of bifurca-
tions. Crucially, all hyperparameters can be optimised directly using type 
II ML. Therefore, branch and recombination time hyperparameters can 
be tuned, which, due to their limiting behaviour, means that they can 
gracefully cope with datasets where no branching structure exists, pro-
vided hyperparameters are sensibly initialised. 
 
3.1. Inference for partially labelled datasets 
 
In our previous examples, inference relied on the existence of explicit 
branch labels. In some cases, however, branch labels may be incomplete 
or missing entirely. For example, in a collection of single cell tran-
scriptomics data there may be various cell types, including some that 
cannot be unambiguously assigned to a particular branch a priori. We 
can attempt to infer the branch labels, z, using Markov chain Monte 
Carlo (MCMC). Here we assume partially labelled data, with a subset of 
branch labels know, and the remainder unknown, denoted 
𝐳 = [𝐳(labelled), 𝐳(unlabelled)]. When branch labels are known, they can be 
fixed, whilst unknown branch labels are initialised stochastically, and 
updated via a Gibbs sampler, similar to the usage in Stegle et al. (2010). 
For an n-component branching process, the unknown label for cell 𝑖, is 
Gibbs sampled conditional on the observation data and branch assign-
ment of all other cells:  

𝑃 𝑧Z = 𝐼 𝒕, 𝒛\𝑧Z, 𝒚, 𝜃 = 	
  
𝑃(𝒚|𝑧Z = 𝐼, 𝒛\𝑧Z, 𝒕, 𝜃)
𝑃(𝒚|𝑧Z = 𝑘, 𝒛\𝑧Z, 𝒕, 𝜃)[

�\3
, 

with hyperparameters updated conditional on all branch labels using 
hybrid Monte Carlo (HMC):  

𝜃	
  ~	
  𝑃(𝜃|𝒕, 𝒛, 𝒚). 
To test the accuracy of our B-RGPs on partially labelled data we gener-
ated observations from the simple branching process outlined in Sup-

plementary Section 2. We first generated a set of test input locations, 
𝑡~𝒩 0,5𝕀 , with observation data generated as noisy instances of the 
process. We then attempted to infer branch labels and hyperparameters 
within an MCMC scheme, with labels updated via Gibbs sampling, and 
hyperparameters sampled using Hybrid Monte Carlo. A subset of data 
points, 𝑛, were assigned the correct branch label, where 
𝑛/𝑁 ∈ 0,0.1,0.25,0.5  and 𝑁 indicates the total number of observations, 
with the remaining data points randomly assigned to either branch with 
equal probability and updated within the MCMC. Five randomly initiat-
ed runs were used, with 20,000 steps in the MCMC chain, and the first 
5,000 discarded for burn-in. An example of the initial branch assignment 
is shown in Supplementary Figure 6(a), with red indicating data points 
initially assigned to branch 1, and blue assigned to branch 2. An example 
fit (and updated branch labels) is shown for step 20,000 in Supplemen-
tary Figure 6(b). The accuracy of classification is summarised using 
receiver operating characteristic (ROC) curves in Supplementary Figure 
6(c, d). We note good overall ability to infer branch labels even for the 
unlabeled case. 

4   Arabidopsis thaliana transcriptional branch-
ing in response to Pseudomonas syringae 

To evaluate the utility of B-RGPs on a genome scale applications, we 
used our framework to investigate transcriptional branching in model 
plant organism Arabidopsis thaliana in response to infection with 
hemibiotrophic bacterial pathogen Pseudomonas syringae. Recent stud-
ies by Lewis et al., 2015 (GEO GSE56094) have provided highly tempo-
rally resolved transcriptional datasets for Arabidopsis following inocula-
tion with disease-causing Pseudomonas syringae pv. tomato DC3000, 
and a disarmed mutant strain hrpA using bulk microarray measurements. 
Whilst both strains efficiently infect the plant cells, the DC3000 variant 
also delivers 28 effector proteins that subvert the plant’s immune re-
sponse; the disarmed hrpA mutant lacks the apparatus for effector deliv-
ery and thus elicits a classical immune response. Yang et al. (2016) 
developed a two-component branching GP to investigate transcriptional 
bifurcations between time series of hrpA- and DC3000-inoculated cells. 
Here we extend this analysis by simultaneously deciphering the branch-
ing structure that exists between all 3 time series (mock/control, virulent 
(DC3000) and innate immune (hrpA) responses). 
For each gene in the three datasets, we consider a number of possible 
branching structures: hrpA branches from the control, with DC3000 
branching from hrpA at a later point (Group 1), or hrpA and DC3000 
independently branch from the control (Group 2), which collectively 
represent immune response genes that are targeted by effectors; DC3000, 
but not hrpA, branches from control (Group 3), representing host suscep-
tibility genes that have been targeted by effectors; hrpA, but not 
DC3000, branches from the control (Group 4), likely representing im-
mune genes that have been targeted by effectors prior to their natural 
immune response times; both DC3000 and hrpA jointly branch from the 
control, but not from one another (Group 5), representing core immune 
response genes not targeted by effectors; no branching exists (Group 6), 
representing genes unaffected by plant immunity or pathogen virulence 
strategies. Example expression patterns of individual genes from each of 
the six groups are shown in Figure 2(a). 
For Group 1, we assume that the hrpA-infected time series branches 
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from the mock-infected time series, with the DC3000-infected time 
series branching from hrpA-infected: 

	
  𝑓���� 𝑡 ~	
  𝒢𝒫 𝑐, 𝑘���� 𝑡, 𝑡4 ,	
  
	
  	
  	
  	
  𝑓�p�� 𝑡 ~	
  𝒢𝒫 𝑓���� 𝑡 , 𝐶𝑃=>: 𝐾@, 𝑘�p�� 𝑡, 𝑡4 , 
𝑓��s@@@ 𝑡 ~	
  𝒢𝒫 𝑓�p�� 𝑡 , 𝐶𝑃=>_ 𝐾@, 𝑘��s@@ 𝑡, 𝑡

4 , 
where observation data was assumed to be a noisy instances of these 
functions e.g.,	
  𝑦���� 𝑡 = 𝑓���� 𝑡 + 𝜀. For Group 2, we have hrpA-
infected and the DC3000-infected time series independently branching 
from the mock-infected time series: 

	
  	
  𝑓���� 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘���� 𝑡, 𝑡4 ,	
  
	
  	
  	
  𝑓�p�� 𝑡 	
  ~	
  𝒢𝒫 𝑓���� 𝑡 , 𝐶𝑃=>: 𝐾@, 𝑘�p�� 𝑡, 𝑡4 , 
𝑓��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑓���� 𝑡 , 𝐶𝑃=>_ 𝐾@, 𝑘��s@@ 𝑡, 𝑡

4 . 
Collectively Groups 1 and 2 should represent immune response genes 
targeted by effectors, and therefore associated with the onset of disease. 
For Group 3, we have mock-infected and hrpA-infected datasets drawn 
from an identical process, with the DC3000-infected branching from 
this: 

	
  𝑓����,�p�� 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘����,�p�� 𝑡, 𝑡4 ,	
  
	
  	
  	
  	
  	
  	
  𝑓��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑓����,�p�� 𝑡 , 𝐶𝑃=>: 𝐾@, 𝑘��s@@@ 𝑡, 𝑡

4 . 
This group represents genes not associated with the immune response 
that are nonetheless targeted by effectors, and may therefore represent 
those functioning in metabolism. For Group 4, we have mock-infected 
and DC3000-infected datasets drawn from an identical process, with the 
hrpA-infected branching from this: 

𝑓����,��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘����,��s@@@ 𝑡, 𝑡4 , 
𝑓�p�� 𝑡 	
  ~	
  𝒢𝒫 𝑓����,��s@@@ 𝑡 , 𝐶𝑃=>: 𝐾@, 𝑘�p�� 𝑡, 𝑡4 . 

These genes likely reflect downstream immune response genes that are 
targeted very early by effectors, before their usual time of immune acti-
vation. For Group 5, we have hrpA-infected and DC3000-infected da-
tasets drawn from an identical process that branches from mock-infected: 

𝑓���� 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘���� 𝑡, 𝑡4 ,	
   
𝑓�p��,��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑓���� 𝑡 , 𝐶𝑃=>: 𝐾@, 𝑘�p��,��s@@@ 𝑡, 𝑡4 . 

These genes represent immune response genes not targeted by effectors. 
Finally, for Group 6, we have all datasets drawn from an identical pro-
cess: 

𝑓����,�p��,��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘���� 𝑡, 𝑡4 , 
representing genes that are unbranched i.e., not differentially expressed. 
Because these datasets correspond to bulk observations from microarrays 
with well-defined measurement times we assumed smooth functions 
throughout, and therefore, in all cases, the covariance functions were 
taken to be squared-exponentials e.g., 𝑘���� 𝑡, 𝑡4 = 𝑆𝐸����� 𝑡, 𝑡′ =
𝜎����5 exp	
  ((𝑡 − 𝑡′)/2𝑙����

5), where 𝜃���� = [𝑙����
5, 𝜎����5 ] denotes a 

set of mock dataset-specific hyperparameters, and hyperparameters were 
optimised to their ML or MAP values. We assumed the following prior 
distributions: the first branch time was Gamma distributed, 𝑡9:~	
  Γ(2,2), 
with the second branch also Gamma distributed, 𝑡9:~	
  Γ 4,2 , and the 
change-point transition rate was Gaussian distributed, 𝑠	
  ~	
  𝒩 0,0.5 . All 
other hyperparameters were optimised to their ML values. Finally, we 

selected the optimal group based on the Bayesian information criterion 
(BIC). 
In Supplementary Figure 7(a), we indicate the branch time between 
control and hrpA time series using B-RGPs versus that obtained using 
the Gaussian process two-sample (GP2S; Stegle et al. (2010); Supple-
mentary Figure 7(b)). Here the GP2S approach incorrectly identified a 
peak perturbation time at 𝑡 = 0, before Arabidopsis could mount an 
immune response. This peak was notably absent in our B-RGP approach. 
To further gauge the accuracy of our approach, we compared the esti-
mated branch times between hrpA and DC3000 using B-RGPs (Supple-
mentary Figure 6(c)) to that obtained using the perturbation times previ-
ously estimated in Yang et al. (2016) (Supplementary Figure 6(d)). The 
analysis in Yang et al. (2016) provide 90% confidence intervals for 
branch time estimates, and we note that our MAP estimation falls within 
these bounds in 67% of cases. Of the remaining genes, 27% of our MAP 
estimates lie to the right of the confidence bounds, and 5% to the left of 
the confidence bounds, suggesting that our approach has a tendency to 
estimate later branch times than that of Yang et al. (2016). This is likely 
due to differences in the prior distributions over branch times. Indeed, if 
we plot the estimated branch time using our method versus the PT ap-
proach for the 27% of genes noted above, we see a strong correlation (R 
= 0.8507). Together, these results suggest that, although there is good 
agreement between the methods for a large fraction of cases, inference of 
branch time in a subset of the observations may be unidentifiable. 
Our results indicate that approximately 50% of genes were unperturbed 
by either the hrpA or DC3000 strains, in agreement with previous studies 
based on pairwise comparison of the time series using mixtures of 
Gaussian Processes (Lewis et al. 2015), where 52% of genes were identi-
fied as being differentially expressed in control versus hrpA or control 
versus DC3000.  
Since DC3000 is known to subvert the basal immune response of Ara-
bidopsis, we hypothesised that the expression of a subset of genes in the 
DC3000-infected dataset might converge fully back to control levels 
following delivery of effectors. To identify such genes, we also fitted a 
two-component branch-recombinant GP using the control and DC300-
infected time series only, again using the BIC to distinguish between 
genes undergoing branching and recombination from those undergoing 
branching alone.  

𝑓���� 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘���� 𝑡, 𝑡4 , 
	
  	
  	
  	
  	
  	
  𝑓��s@@@ 𝑡 	
  ~	
  𝒢𝒫 𝑓��s@@@ 𝑡 , 𝐶𝑃=¢: 𝐶𝑃=>: 𝐾@, 𝑘���� 𝑡, 𝑡

4 , 𝐾@ .	
  
 
An example branch-recombinant expression profile is shown in Figure 
2(b). We note that relatively few genes were identified as having their 
expression levels fully converge back to control levels. Of those that did, 
none were identified as being targets of effectors or previously implicat-
ed in the response to P. syringae, suggesting that the full suppression of 
early immune response genes to control levels is not required for infec-
tion to advance. 
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Gene Ontology analysis identified several highly enriched terms across 
the first five groups (see Supplementary Table 1), suggesting distinct 
biological functions relating to pathogen response and metabolic repro-

gramming. Prior to 3 hours, the ontologies represent some of the earliest 
transcriptional processes targeted by effectors. Consequently, there is a 
diverse array of GOs represented. Notable are the combination of proteo-
lytic, ribosome, vitamin and amino acid metabolic and transport process-
es. This is indicative of assembly of the processing machinery to enable 
effector mediated reprogramming of core cellular processes. Between 3 
and 5 hours post infection (hpi) the impact of effectors was evident by 
the number of GOs identified, with processes associated with nuclear 
processes, in particular chromatin remodelling, nuclear transport, and 
transcription, most highly enriched. Other GO processes, such as hor-
mone responses and primary metabolism, were, unexpectedly, less abun-
dant. While Lewis et al. (2015) also reported evidence for chromatin 

remodelling in this dataset, B-RGPs provided much better temporal 
resolution. As the effector-driven virulence programme proceeds, but 
prior to bacterial multiplication (5-8 hpi), there is a strong enrichment of 

terms related to adenyl ribonucleotide binding, reflecting the high energy 
demands at this phase of the infection process, when Pseudomonas ef-
fectors have suppressed immune responses and are reconfiguring the 
metabolism to facilitate pathogen growth. 
To further investigate the nature of these groups, we looked for enrich-
ment of known targets of effectors of various pathogens (Mukhtar et al. 
2011). We first checked for enrichment of targets of non-Pseudomonas 
effectors, hypothesising that the Arabidopsis immune response to differ-
ent pathogens might be conserved  (Mukhtar et al. 2011). Figure 2(c, d), 
shows that these groups were indeed enriched. Next, we checked for 
enrichment of Avr and Hop effectors that are present in several strains of 
Pseudomonas syringae, and were again enriched in DC3000-responsive 
groups (Figure 2(c, e)). 

Figure 2: Branching processes were fitted to the three Arabidopsis time series, with hyperparameters optimised to MAP values, and the BIC used to select optimal branch-
ing structure. (a) Example expression profile plots for each of the different classes of branching. (b) Example expression profile of a branch-recombinant structure within the dataset. (c) 
The prevalence of each of the six groups within the dataset, compared to the breakdown of non-Pseudomonas effector targets (d), and Pseudomonas-effector targets show a clear enrich-

ment of effector genes (e). (f, g) The Euclidean distance of branching times of genes from that of WRKY11/17 is statistically lower in genes that are DE in WRKY11/17 knockouts 

versus those that are NDE, indicating that perturbation times are predictive of direct and indirect targets of WRKY11/17. (h) The prevalence of Wbox motifs decreases amongst sets of 

genes whose branch times are increasingly distant from WRKY11. 
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We next looked for enrichment of genes with known pathogen-response 
phenotypes, using TAIR (Huala et al. 2001) to query for genes using the 
terms ‘Pseudomonas’, ‘Botrytis’, and ‘Peronospora’. In Supplementary 
Figure 8 we indicate the frequency of pathogen-response genes within 
various groups, and our results show a distinct enrichment for Pseudo-
monas-related and Botrytis-related genes amongst the various immune 
responsive and disease-responsive groups. 
Finally, we investigated whether inferred branch times of key regulators 
were predictive of branching of the direct and indirect targets of key 
regulators. Here we focused on WRKY11 and WRKY17, known to be 
amongst the earliest branching transcription factors (TFs) implicated in 
the Arabidopsis response to P. syringae (Journot-Catalino et al. 2006). 
Both genes showed branching between control and hrpA, and between 
hrpA and DC3000 consistent with (i) their immune-responsive expres-
sion and (ii) their suppression by DC3000 effectors. Genes that branched 
between control and hrpA and between hrpA and DC3000 were assigned 
a Euclidean distance (d) based on the position of their branch times with 
respect to that of WRKY11 or WRKY17. We then compared the distri-
butions of these Euclidean distances for the subset of genes identified as 
being differentially expressed (DE) in knockout mutants of WRKY11/17 
(Journot-Catalino et al. 2006) versus the distribution of the subset of 
genes that were not differentially expressed (NDE) in those mutants. Our 
results show that DE genes had significantly smaller Euclidean distances 
than NDE genes (p<0.05 for WRKY11 and p<0.005 for WRKY17 using 
two-sided Student’s t-test; Figure 2(f, g)), suggesting that genes that 
branched at similar times to WRKY11/17 were likely to represent a core 
set of genes targeted by the pathogen’s virulence strategy. WRKY11/17 
are TFs and could exert direct regulation of their targets by binding to 
their regulatory elements. To check this, we searched for the presence of 
WRKY motifs within a 1kb promoter region using FIMO (Grant, Bailey, 
and Noble 2011); specifically, the stringent WRKY binding site (Wbox) 
motif, TWGTTGACYWWWW, identified by Ciolkowski et al. (2008). 
Here, we looked at the frequency of Wbox motifs (p<0.0001) in sets of 
genes whose branch times were increasingly distal from WRKY11. 
These groups were based on: (i) genes whose Euclidean distance d<1, 
representing the closest 156 genes (see Supplementary Figure 9); (ii) 
genes whose Euclidean distance d<2, representing the closest 454 genes; 
and (iii) the closest 2000 genes. As positive and negative controls, we 
also included the 157 genes that were identified as DE in the WRKY11 
knockout line compared to control, and 2000 genes randomly selected 
from Group 6 (genes with no branching). Our results showed a clear 
trend of increasing frequency of Wbox motifs in sets of genes whose 
branch times were closest to that of WRKY11 (Figure 2(h); see also 
Supplementary Table 2). Altogether, these results suggest that estimation 
of branch times may be useful for identifying direct and indirect targets 
of perturbed genes, and more generally demonstrate the efficacy of B-
RGPs for extracting temporally resolved information from complex 
biological datasets. 
 
5. Discussion 
The ability to identify and quantify branching and recombination pro-
cesses from systems-level measurements has a variety of important ap-
plications in the biological sciences. Here we have outlined a general 
framework for the composition of covariance functions that allow for the 
prior specification of branch-recombination processes of arbitrary com-

plexity, both in terms of the number of branches and richness of dynam-
ics, via simple compositional of covariance functions within a HGP 
framework. As well as specifying arbitrarily complex processes, all 
hyperparameters could be optimised via gradient based approaches, 
resulting in more accurate inference of branch times compared to exist-
ing approaches, although inference took slightly longer. 
 Here we applied B-RGPs to a time-series microarray data of Arabidop-
sis thaliana infected with a bacterial pathogen Pseudomonas syringae. 
By explicitly enumerating over all possible branch structures i.e., all 1, 2 
and 3 branch structures, and using the AIC as a selection criterion, we 
were able to infer the branch structure for each gene. Whilst exhaustive 
iteration will not necessarily be possible for more complex datasets with 
more than three time series, we note that greedy approaches based on 
merging of time series could instead be used. 
More generally, B-RGPs represents a flexible approach for the analysis 
of branching and recombination in time series datasets. This approach 
can be thought of as a natural extension to two-sample based approaches, 
allowing analysis of arbitrary numbers of time series.  
Whilst here we focused on branching as a function of time, our approach 
is equally amenable to branching as a function of any other variable, 
such as expression level of a specific regulator. An intriguing possibility 
is therefore to incorporate B-RGPs into existing GP-based approaches 
for the inference of nonlinear dynamical systems (Penfold and Wild 
2011; Penfold et al. 2012; Penfold, Millar, and Wild 2015; Penfold et al. 
2015; Aijo and Lahdesmaki 2009), which would naturally allow infer-
ence of nonstationary nonlinear dynamical systems, such as temporally 
or spatially varying networks. 
In addition, we envisage that B-RGPs could also be useful to capture 
transcriptional dynamics underpinning cell fate decisions from single cell 
transcriptomics data. For this, cells are first pseudotemporally ordered 
along a developmental axis using a combination of dimensionality reduc-
tion techniques and curve-fitting or graph-theoretic approaches (Trapnell 
et al. 2014; Bendall et al. 2014; Marco et al. 2014; Ji and Ji 2016; Setty 
et al. 2016). Once ordered along pseudotime, B-RGPs could capture the 
branching dynamics of individual genes, thus identifying the earliest 
molecular events controlling cell fate decisions. Alternatively, B-RGPs 
could be used to directly model cell fate decisions. Recent studies by 
(Reid and Wernisch 2016) have shown how Gaussian process latent 
variable modes (GPLVMs), can be used to pseudotemporally order genes 
along a developmental axis, with a key advantage over other pseudotime 
approaches: the incorporation of capture time into the inference proce-
dure. However, due to a previous lack of treatment for branching in GP 
models, the approach of Reid and Wernisch (2016) did not explicitly 
allow for pseudotemporal ordering of datasets with branching behavior. 
The incorporation of B-RGPs into a GPLVM model would naturally 
allow for pseudotemporal ordering over branching process, whilst retain-
ing the ability to leverage highly informative data, such as capture time.  
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Supplementary materials to ‘Branch-recombinant 
Gaussian processes for analysis of perturbations in 
biological time series’ 
	
  
1 Benchmarking B-RGPs 

Branching and recombinant structures can easily be encoded within a GP framework using the correct composition of covariance functions. In 
Supplementary Figure 1(a) we indicate example covariance functions and samples from the prior of some simple branching processes; in 
Supplementary 1(b) we do so for recombinant processes, and in 1(c) we do so for branch-recombinant processes. 	
  
 

 

 

Supplementary Figure 1: (a) GP with branching structure. Here we indicate the prior covariance matrix evaluated at uniformly incremented input times (left) and two samples from the 
prior distribution (middle, right). (i) A smooth function branches from a smooth base function. (ii) A periodic function branches from a smooth function. (iii) Two smooth functions (solid) 
branch from a smooth function (dashed). (iv) Two periodic functions (solid) branch from a smooth function (dashed). (b) GP with recombinant structure. (i) A smooth function converges 
on another smooth function. (ii) A periodic function recombines with a smooth function. (iii) Two smooth functions recombine with a smooth function. (iv) Two periodic functions recombine 
with a smooth function. (c) GP with branch-recombinant structure. (i) A periodic function branches and then recombines with a smooth function. (ii) Two periodic functions branch and 
then recombine with one another. (iii) A set of four smooth functions branch and recombine at various time points. (iv) A set of two functions (black and green) branch and recombine with 
one another, whilst a third function (red) recombines with the first two functions, and a fourth function (blue) branches from the third function and recombines with the first two 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/291757doi: bioRxiv preprint 

https://doi.org/10.1101/291757
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  

Supplementary Figure 2: Branch time versus inferred branch time versus using a B-RGP (a) and the DEtime approach (b) for 50 randomly generated 
branch processes show high correlation of 𝑅 = 0.9999 and 𝑅 = 0.9007 respectively, indicating good ability to infer the time of bifurcations in time 
series. (c) Branch times versus inferred branch time for B-RGPs with missing data centered around the branch point (𝑅 = 0.9649). 
 
	
  

 
Supplementary Figure 3: (a): Example posterior GPs fitted to a non-branching hierarchical GP using a B-R GP (left), independent GPs (middle) 
and a joint GP (right). (b): distribution of mean sum square error (left) and negative log marginal likelihood (right) for B-RGP, limiting case of a B-RGP 
(*), IGP and JGP. (c) Example posterior GPs fitted to a non-branching process (datasets represent replicated samples from a GP) using a three-
component branch-recombinant GP (left), independent GPs (middle) and a joint GP (right). (d) distribution of mean sum square error (left) and negative 
log marginal likelihood (right) for B-RGP, limiting case of a B-RGP (*), IGP and JGP. 
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Supplementary Figure 4: (a): Example posterior GPs fitted to a non-branching hierarchical GP using a B-R GP (left), independent GPs (middle) 
and a joint GP (right). (b): distribution of mean sum square error (left) and negative log marginal likelihood (right) for B-RGP, limiting case of a B-
RGP (*), IGP and JGP. (c) Example posterior GPs fitted to a non-branching process (datasets represent replicated samples from a GP) using a three-
component branch-recombinant GP (left), independent GPs (middle) and a joint GP (right). (d) distribution of mean sum square error (left) and negative 
log marginal likelihood (right) for B-RGP, limiting case of a B-RGP (*), IGP and JGP.	
  

	
  

	
  
Supplementary Figure 5: (a): Example posterior GPs fitted to a complex branching process using B-RGPs, JGPs and IGPs. Here we indicate 
accuracy of the inference using: (b) The log sum squared error; and (c) the log marginal likelihood. In both cases B-RGPs were more accurate than IGPs 
and JGPs.  

	
  
2 B-RGPS FOR PARTIALLY LABELLED DATA 

In Supplementary Figure 5 we show the accuracy of inferred B-RGPs for branching data for partially labelled datasets. 
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Supplementary Figure 6: Inferring BGPs with unlabelled data. (a) The initial assignment of branch labels is made with a fraction initialised to the 
correct values, and the remainder initialised stochastically. (b) Unknown labels are updated via Gibbs sampling, with hyperparameters sampled every 100 
steps using HMC. Here we indicate the BGP fit after 20,000 iterations. (c) Receiver operating characteristic (ROC) curve indicating the accuracy of 
inferred branch labels. (d) Area under the ROC curve (AUC) plotted as a function of the fraction of correctly initialised branch labels. 

3 Comparison of B-RGPs versus other approaches for the Pseudomonas data 

	
  

 
Supplementary Figure 7: Histogram of the inferred branch times using B-RGPS.  Branch times between mock-infected and hrpA-infected plants 
are shown for B-RGPs (a) and a mixture of Gaussian processes (GP2S) (b). Branch times between hrpA-infected and DC3000-infeced Arabidopsis using 
B-RGPs (c) and Perturbation Time (PT) analysis (d).  
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Supplementary Figure 8: Frequency of known ‘Pseudomonas’, ‘Botrytis’, and ‘Peronospora’ genes within various groupings. Genes were first 
grouped according into immune-responsive (Groups 1, 2, 4 and 5), DC-specific (Groups 1, 2,3, and 4) versus not DE groups. Statistical significance 
was determined using a Chi-squared test on the analysis of variance between Poisson GLM fits with and without interaction terms. Here we note that 
immune responsive and DC-specific subgroups were both enriched for Pseudomonas and Botrytis related genes, although no enrichment for H. 
peronospora was noted. 
 

 

	
  
Supplementary Figure 9: Metric used to evaluate distance of branching time for target gene to WRKY. Here we calculate the Euclidean distance 
between the branch times between WRKY11/17 and all other genes in Groups 1 and 2 as 𝑑 = |𝑑+ + 𝑑-|. 
 
 
Supplementary Tables 1 and 2: Available as separate spreadsheets 
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