

Design and evaluation of a large sequence-capture probe set and associated SNPs for diploid and haploid samples of Norway spruce (*Picea abies*)

Amaryllis Vidalis^{1,2,*}, Douglas G. Scofield^{1,3,4,*}, Leandro G. Neves⁵,

Carolina Bernhardsson^{1,6,7}, María Rosario García-Gil⁶, Pär K. Ingvarsson^{1,7}

¹ Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå, Sweden

² Department of Population Epigenetics and Epigenomics, Center of Life and Food Sciences

Weihenstephan, Technische Universität München, 85354 Freising, Germany

³ Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, SE-75236, Uppsala, Sweden

4 Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, SE-
12 75105, Uppsala, Sweden

13 5 RAPiD Genomics LLC, 747 SW 2nd Avenue, Gainesville, Florida, 32601, USA

⁶ Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden

16 7 Department of Plant Biology, Uppsala BioCentrum, Swedish University of Agricultural Sci

17 SE-75007 Uppsala, Sweden

19 * For correspondence: amaryll

20

21 **Abstract**

22 Massively parallel sequencing has revolutionized the field of genetics by providing
23 comparatively high-resolution insights into whole genomes for large number of species so far.
24 However, whole-genome resequencing of many conspecific individuals remains cost-prohibitive for
25 most species. This is especially true for species with very large genomes with extensive genomic
26 redundancy, such as the genomes of coniferous trees. The genome assembly for the conifer Norway
27 spruce (*Picea abies*) was the first published draft genome assembly for any gymnosperm. Our goal was
28 to develop a dense set of genome-wide SNP markers for Norway spruce to be used for assembly
29 improvement and population studies. From 80,000 initial probe candidates, we developed two
30 partially-overlapping sets of sequence capture probes: one developed against 56 haploid
31 megagametophytes, to aid assembly improvement; and the other developed against 6 diploid needle
32 samples, to aid population studies. We focused probe development within genes, as delineated via the
33 annotation of ~67,000 gene models accompanying *P. abies* assembly version 1.0. The 31,277 probes
34 developed against megagametophytes covered 19,268 gene models (mean 1.62 probes/model). The
35 40,018 probes developed against diploid tissue covered 26,219 gene modules (mean 1.53
36 probes/model). Analysis of read coverage and variant quality around probe sites showed that initial
37 alignment of captured reads should be done against the whole genome sequence, rather than a subset of
38 probe-containing scaffolds, to overcome occasional capture of sequences outside of designed regions.
39 All three probe sets, anchored to the *P. abies* 1.0 genome assembly and annotation, are available for
40 download.

42 Introduction

43 Massively parallel sequencing has revolutionized the field of genetics by providing
44 comparatively high-resolution insights into whole genomes for large number of species so far.
45 However, whole-genome resequencing of many conspecific individuals for the assessment of genetic
46 variation in large-scale population studies (e.g., Wang et al. 2016), or for linkage-based studies such as
47 association mapping or genomic breeding (e.g., Wang et al. 2017) remains cost-prohibitive for most
48 species. This is especially true for species with very large genomes with extensive genomic
49 redundancy, such as the genomes of coniferous trees (Nystedt et al. 2013, Neale et al. 2014). A number
50 of methods have recently been developed to overcome this problem, focusing on reducing genome
51 complexity to allow partial sequencing of whole genomes. The genomic regions sequenced by these
52 methods are either anonymous, if based on reduced representation libraries generated by restriction
53 enzymes (e.g., Davey and Blaxter 2010), or targeted, using primers and/or probes targetting selected
54 genomic regions for high-throughput amplification or capture for later sequencing (e.g., Clark et al.
55 2011).

56 Sequence capture is a targeted reduced-representation method that can maximize the advantage
57 of additional available genomic information such as a reference genome and associated annotation to
58 target, extract and sequence selected regions of a genome, usually with the aim to conduct comparative
59 analysis across several individuals. Sequence capture is a hybridization-based technique which shears
60 genomic DNA and uses synthetic oligonucleotide probes to hybridize with fragments corresponding to
61 specific regions within the genome, which are then captured and sequenced for further analysis.
62 Depending on the hybridization technology, varying numbers of probes can be used. For humans,
63 multiple technologies are available which contain probes sufficient to capture whole exomes (Clark et
64 al., 2011; Shigemizu et al., 2015). Such comprehensive approaches can be used successfully in model
65 species with well-annotated genomes (Fu et al., 2013; Zhou et al. 2012; Zhou et al. 2014). However,
66 because sequence capture relies largely on the accuracy of genome annotations and the uniqueness of
67 probe targets, it may exhibit reduced efficiency when applied to non-model species with incomplete
68 annotations and/or species with complex genomes containing much repetitive content (Neves et al.,

69 2013; Suren et al., 2016). Thus, we chose a sequence capture technology that had been used
70 successfully in large, repeat-rich, relatively uncharacterized plant genomes (Rapid Genomics Capture-
71 Seq; Neves et al., 2013).

72 The genome assembly for the conifer Norway spruce (*Picea abies*) was the first published draft
73 genome assembly for any gymnosperm (Nystedt et al. 2013). From a total genome size estimated to be
74 19.6 Gbp, the *P. abies* genome version 1.0 included 12 Gbp in scaffolds larger than 200 bp with 4.3
75 Gbp in scaffolds larger than 10 kbp. Our overall goal was to develop a dense set of genome-wide SNP
76 markers for Norway spruce that would be used for three further purposes: (1) assembly improvement
77 and assessment, via the estimation of a scaffold-anchored genetic map and the inclusion of probe pairs
78 straddling contig joins within a scaffold, to test scaffolding decisions made during assembly (Sahlin et
79 al., 2014); (2) trait-based association studies, to understand the architecture of quantitative traits and to
80 assist the design of artificial selection experiments for breeding; and (3) population genomic studies, to
81 understand the evolutionary forces that have shaped genome structure and variation. We chose to
82 develop two partially-overlapping sets of sequence probes assayed against different sets of tissue
83 samples. For purpose (1), we developed probes against haploid megagametophyte tissues related to the
84 sequenced tree Z4006, which limits the general usefulness of the marker set but improves its utility for
85 the assembly. For purposes (2) and (3), we developed probes against diploid needle samples from
86 throughout the range of Norway spruce.

87 Considering the high repetitive content within the Norway spruce genome, including high
88 conservation in some repetitive element families (Zuccolo et al. 2015), we focused probe development
89 on exons within genes, as delineated via the annotation accompanying *P. abies* assembly version 1.0.
90 The ~67,000 annotated nuclear gene models (*ab initio*-predicted protein-coding loci) included in the
91 assembly are divided into three categories designating the relative degree of support for the gene model,
92 based on alignment of supporting evidence provided by non-*P. abies* protein or EST sequences: high-
93 confidence (HC) gene models (39.7%), which were covered >70% of the model length; medium-
94 confidence (MC) gene models (48.1%), covered 30-70%; and low-confidence (LC) gene modules
95 (12.2%), covered <30%. See Nystedt et al. (2013) for further details of gene model development and

96 confidence categories. During probe development, we favoured exons of the HC gene models but also
97 included subsets of MC and LC gene models. The goal was to place a probe within each HC gene
98 model, and where practical two probes/HC gene, resulting in approximately 40,000 probes. We did not
99 design the probe sets to cover complete exons nor did we design probes against all exons of each gene.

100 In this study, we discuss the development and evaluation of sequence sequence capture probe
101 sets developed against haploid and diploid tissues in Norway spruce.

102 Methods

103 Figure 1 provides an overview of the probe design workflow.

104 *Probe design on candidate sequences*

105 Candidate sequences for probe design were created based on RNA-seq and scaffolding
106 decisions of *Pabies* 1.0. Our goal was to design probes on either side of scaffolding joints, in order to
107 assist the genome assembly. To achieve that, the sequences corresponding to HC, MC and LC gene
108 models were selected for probe design, with priority given subsequently to HC and MC categories. All
109 possible probes (120nt) were designed in silico on the candidate genes, with start-end coordinates
110 provided as target subsequences. We included separate subsequences because these represented
111 separate contigs prior to RNA-seq scaffolding or paired-end/mate-pair scaffolding in *P.abies* 1.0.
112 Ideally, we aimed at having separate probes targeting each subsequence to test whether the RNA-seq
113 and paired-end/mate-pair scaffolding decisions were made correctly. All RNA-seq scaffolding events
114 that involved annotated genes were included in the candidate subsequences. As the number of paired-
115 end/mate-pair scaffolding events that involved annotated genes was considerably larger, a random
116 subsample of 15% of these events was included in subsequence delineation. From the total of all
117 possible probes within the candidate sequences, filters were applied to select a set of 80,000 probes that
118 were used for hybridization in the pilot experiment. First, sequencing-level removed probes with
119 extreme GC content (<0.2 and >0.6), high G content (>0.2) and with long homopolymers (>7). Next,
120 probes falling on exon-exon boundaries (as indicated by information from available genome annotation)

121 were removed. Finally, probes were mapped to the genome and chloroplast sequences. Probes mapping
122 to the chloroplast and those aligning to more than one position (90% identity for 90% of the length)
123 were excluded. From the resulting probes, a maximum of two probes per subsequence were chosen to
124 comprise the final probe set.

125 *Plant material and DNA extraction.*

126 Haploid genomic DNA was extracted from 52 megagametophytes. The megagametophytes
127 were excised from open pollinated seeds of Z4006 ramets (Z4006: the Norway spruce reference
128 sequence individual), under the microscope in order to avoid diploid tissue. DNA was extracted with
129 the NucleoSpin® Plant II kit, (Macherey-Nagel, <http://www.mn-net.com>). After several modifications
130 of the manufacturer's recommended protocol, we achieved the highest concentration of DNA from
131 megagametophytes (mean concentration of 40.6 ng/μl) by grinding the megagametophytes together
132 with the extraction buffer in an electric grinder. Diploid genomic DNA was extracted from lyophilized
133 leaves of six individuals that span a large range of the geographic distribution of *Picea abies*. The six
134 individuals were sampled in Russia, Poland, Belarus, Romania and Southern Sweden, including the
135 reference genome sequenced individual Z4006.

136 *Library preparation and Target enrichment*

137 Extracted DNA was submitted for RAPiD Genomics (USA) where DNA library preparation
138 and capture sequencing were performed. The concentration of the extracted DNA was estimated with
139 PicoGreen dsDNA quantification assay (ThermoFisher Scientific, USA) and DNA integrity was
140 analyzed by visualizing the DNA on a 0.8% w/v agarose electrophoresis gel. Libraries compatible with
141 Illumina sequencing were prepared with varying starting amounts of DNA, depending on the yield of
142 the DNA extraction, between 450-500 ng. The DNA was mechanically sheared to a mean fragment size
143 of 300bp, followed by repair of the ends of the molecules, phosphorylation and adenylation. Illumina
144 TruSeq equivalent adapters suited for sequencing were ligated on each side of the molecules containing
145 different 8bp indexes (i7). The libraries were amplified with 14 cycles of PCR and the resulting libraries
146 were quantified with PicoGreen. The set of 80,000 probes synthesized as 120 nt RNA molecules were

147 hybridized to a pool containing a total of 500 ng from 8 equimolarly combined libraries following
148 Agilent's SureSelect Target Enrichment System (Agilent Technologies). The enriched libraries were
149 sequenced on one lane of Illumina HiSeq 2000 and two lanes of HiSeq 500 high-output instruments on
150 a 1x100bp and 1x75bp sequencing mode, respectively.

151 *Probe evaluation*

152 Reads from sequences captured with the 80,000 pilot probes were mapped to the *P. abies* 1.0
153 probe-containing scaffolds and variants at each probe site were called with FreeBayes (Garrison and
154 Marth 2012) followed by filtering for heterozygosity and expected 1:1 segregation ratio. Regions
155 ± 300 bp around each probe site were included to capture more variants. Further evaluation and filtering
156 was applied to this variant set to select the initial megagametophyte and diploid probe sets.

157 Probe context was evaluated by comparison with the *P. abies* 1.0 genome annotation. For each
158 probe set, we used BEDTools (Quinlan and Hall 2010) to intersect 120-bp probe sites with gene
159 models. We identified four separate features: (1) exonic sequence, marked as CDS within the genome
160 annotation; (2) intronic sequence, between separate CDS sequences; (3) UTR-like sequences, which
161 were not annotated directly within the genome annotation but which we inferred as being 1-500 bp
162 upstream of the annotated translation Start site or 1-500 bp downstream of the annotated translation
163 Stop site; (4) exon-intron splice sites.

164 The selected probe sets were used for additional megagametophyte and diploid sequencing.
165 After sequence delivery, probe sites were subject to further evaluation following additional read-
166 mapping with BWA, duplicate marking with Picard, 1.127, and GATK 3.4.0 for realignment and
167 variant-calling with both UnifiedGenotyper and HaplotypeCaller, with a focus on developing reliable
168 variant sites. Read depth, duplicate and multiply-mapped reads, unusual coverage depth, variant quality
169 and breadth of probe site coverage were examined programmatically. For a collection of probe sites,
170 the results of multiple read-mapping and variant-calling options were subject to direct examination in
171 IGV.

172 Results and Discussion

173 *Probe design (pre-sequencing)*

174 Prior to probe design, 66,632 gene models in the *P. abies* 1.0 genome annotation were examined
175 and 76,144 candidate sequences were selected for potential probe design, with mean 1.14
176 candidates/gene model and a total length of 166 Mbp (Table 1A). Within these candidate sequences,
177 403,357 potential 120-bp probe sites were identified (Table 1B). After initial screening and redundant
178 probe removal (≤ 2 probes/sequence) these were reduced to 80,000 total pilot probes, with 34,761 gene models
179 and 32,495 separate scaffolds containing at least one pilot probe site (Table 1B).

180 *Probe evaluation against sequenced samples*

181 An initial set of sequence capture results using both haploid megagametophytes and diploid needle tissue
182 was produced with these 80,000 pilot probes, and variants were called within the probe site using FreeBayes
183 (Garrison and Marth 2012). After initially finding low numbers of heterozygous variants that segregated at $\sim 1:1$
184 ratio, queried sites were expanded ± 300 bp of the boundaries of each probe site. This recovered sufficient variants
185 to proceed with selection among pilot probes.

186 After evaluation of probe site variant qualities in haploid and diploid read sets separately, two partially
187 overlapping sets of final probes were selected for further sequence capture: 31,277 sites for haploid
188 megagametophytes and 40,018 sites for diploid needle tissues (Table 1C). The initial set of 40,000 diploid probe
189 sites was expanded to 40,018 by adding 18 sites covering some genes of interest that were filtered out in earlier
190 screening. In the megagametophyte set, which will be used primarily for construction of genetic maps for
191 assembly evaluation and improvement, 19,268 gene models were included, with an average of 1.62 ± 0.007
192 probes/model (Table 1C). The diploid probe set covered 26,219 gene models with an average of 1.53 ± 0.003
193 probes/model (Table 1C).

194 *Probe context*

195 For each of the final probe sets, we evaluated the context of probe sites vs. gene models in the *P. abies*
196 1.0 genome annotations. The probes were designed to be used against DNA resulting from whole-genome
197 extractions, so exonic, intronic and possible UTR sequences are all possible within probe sites, as are exon-intron

198 splice sites. Within the 120-bp probe sites of the 31,277 megagametophyte probes, a total of 1600.4 Kbp of
199 exonic sequence was covered, 2152.9 Kbp of intronic sequence was covered, 28.5 Kbp of UTR-like sequence was
200 covered, and 6195 exon-intron boundaries were covered (Table 2). For the 40,018 diploid probes, a total of
201 2331.1 Kbp of exonic sequence was covered, 2470.9 Kbp of intronic sequence was covered, 40.7 Kbp of UTR-
202 like sequence was covered, and 9119 exon-intron boundaries were covered (Table 2).

203 *Evaluation of variants within probe sites and switch to whole-genome mapping*

204 To further evaluate the selected probe sets, sequence capture reads from 58 megagametophyte
205 samples and 6 diploid samples were aligned to probe-containing scaffolds using BWA-MEM (Li 2013),
206 followed by duplicate marking with Picard and realignment with GATK and variant calling with both
207 UnifiedGenotyper and HaplotypeCaller in GATK. and variants were called following indel
208 realignment. Following further analysis of the two probe sets, the numbers of filtered variants still
209 seemed unusually low. Direct examinations of read mappings and variant calls within selected probe
210 sites using IGV indicates that at some probe sites, the mapped reads included reads clearly from outside
211 the probe site, as indicated by lower mapping quality, differences that did not clearly belong to one or
212 two haplotypes in the megagametophyte or diploid probe sets, and disagreements among methods in
213 variant presence and quality.

214 Considering these observations together, we hypothesised that these problems were caused by
215 occasional promiscuous capture of sequences from outside probe sites and more importantly, from
216 genome sequences not included in the set of probe-containing scaffolds. The correct alignment target
217 of such external sequences would not be present in the probe-containing scaffolds, so instead the reads
218 would be mapped to the best available sites. This is likely to be encountered any time the potential
219 source of reads exceeds the reference to which they are being aligned.

220 To overcome this problem, we switched to aligning sequence capture reads to the complete *P.*
221 *abies* 1.0 genome assembly. This assembly lacks ~7.5 Gbp from the estimated 19.6 Gbp in the
222 complete genome, but much of the missing sequence is likely to be repetitive (Nystedt et al. 2013)
223 and thus excluded by our probe design. After mapping to the complete assembly, we then restricted the

224 read alignments to just those that were found on probe-containing scaffolds. This resulted in the loss of
225 ~5% of sequenced reads for each sample (Figure 2).

226 At some probe sites, the difference was quite dramatic (Figure 3). Most of the probe sites show
227 relatively little difference in read coverage when reads are mapped to the whole genome or to the
228 restricted set of probe-containing scaffolds. At some illustrated probes, for example probes 33254,
229 42123, 44589, 50875 and 58730, 25% or more of read coverage within and around the probe site was
230 mapped elsewhere when mapped against the full 1.0 genome assembly (Figure 3).

231 *Probe precision*

232 The average read coverage across all probe sites within individual samples quite clearly centred
233 on the probe site proper, with symmetric drop-off in coverage on either site of the 120-bp site (Figure
234 2). A closer look at a selection of individual probe sites across samples reveals that differences among
235 probe sites proper can be quite dramatic (Figure 3). Most probe sites reveal good targetting of the site,
236 and most sequences mapped within a larger 720-bp window which includes 300 bp up- and downstream
237 of the probe site are from the probe site or within 100 bp of the probe site. In light of these results, we
238 decided to accept variants found within the probe site or within 100 bp up- or downstream of the probe
239 site when selecting variants called from large-scale megagametophyte and diploid sequence capture.

240 Several probe sites show a bimodal read depth within the 720-bp window (Figure 3). It is not
241 immediately clear why this would be the case, but it is not rare and it is consistent across samples. In
242 some cases extra-site reads are from other sites in the genome (e.g., probes 42123) but in most, the
243 coverage persists. This may represent some local bias during DNA fragmentation or variation in probe
244 capture kinetics.

245 **Availability of probe sequences**

246 The three sets of probe sets described here – the pilot set, the megagametophyte set, and the
247 diploid set – are available at <https://github.com/douglasgscofield/pubs/tree/master/Vidalis-et-al-1>.

248 **Acknowledgements**

249 We are grateful to the captain and the crew of LH2414 for bringing AV safely to Sweden in
250 January 2016. AV was supported in part by the Stiftelsen Gunnar och Birgitta Nordins fond through
251 the Kungl. Skogs- och Lantbruksakademien. The Norway spruce genome project was supported by the
252 Knut and Alice Wallenberg Foundation. The computations were performed on resources provided by
253 SciLifeLab and SNIC at the Uppsala Multidisciplinary Center for Advanced Computational Science
254 (UPPMAX) under project b2010042.

255

256 **References**

257 Clark MJ, Chen R, Lam HYK, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M. 2011.
258 Performance comparison of exome DNA sequencing technologies. *Nat Biotech* **29**:908-914.

259 Davey JW, Blaxter ML. 2010. RADSeq: next-generation population genetics. *Briefings in Functional*
260 *Genomics* **9**: 416-423.

261 Fu W, O'Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Altshuler D, Shendure J,
262 Nickerson DA, *et al.* 2013. Analysis of 6,515 exomes reveals the recent origin of most human
263 protein-coding variants. *Nature* **493**: 216-220.

264 Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing.
265 arXiv:1207.3907 [q-bio.GN].

266 Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
267 arXiv:1303.3997v1 [q-bio.GN].

268 Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M,
269 Holtz-Morris AE, Liechty JD, *et al.* 2014 Decoding the massive genome of loblolly pine using
270 haploid DNA and novel assembly strategies. *Genome Biol* **15**: R59.

271 Neves LG, Davis JM, Barbazuk WB, Kirst M. 2013. Whole-exome targeted sequencing of the
272 uncharacterized pine genome. *The Plant Journal* **75**: 146-156.

273 Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi V, Delhomme N,
274 Giacomello S, Alexeyenko A, *et al.* 2013. The Norway spruce genome sequence and conifer
275 genome evolution. *Nature* **497**: 579–584.

276 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
277 *Bioinformatics* **26**: 841-842.

278 Sahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L. 2014. BESST: Efficient scaffolding of large
279 fragmented assemblies. *BMC Bioinformatics* **15**:281.

280 Shigemizu D, Momozawa Y, Abe T, Morizono T, Boroevich KA, Takata S, Ashikawa K, Kubo M,
281 Tsunoda T. 2015. Performance comparison of four commercial human whole-exome capture
282 platforms. *Scientific Reports* **5**: 12742.

283 Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday JA.
284 2016. Exome capture from the spruce and pine giga-genomes. *Molecular Ecology Resources*
285 **16**: 1136-1146.

286 Wang J, Street NR, Scofield DG, Ingvarsson PK. 2016. Variation in linked selection and
287 recombination drive genomic divergence during allopatric speciation of European and
288 American aspens. *Molecular Biology and Evolution* **33**: 1754-1767.

289 Wang J, Ding J, Tan B, Robinson KM, Michelson IH, Johansson A, Nystedt B, Scofield DG, Nilsson
290 O, Jansson S, Street NR, Ingvarsson PK. 2017. Natural variation at FLOWERING LOCUS T2
291 mediates local adaptation in a key life history trait in European aspen. *bioRxiv* 178921. doi:

292 <https://doi.org/10.1101/178921>

293 Zhou Y, Tao S, Chen H, Huang L, Zhu X, Li Y, Wang Z, Lin H, Hao F, Yang Z, Wang L and Zhu X.

294 2014. Exome sequencing analysis identifies compound heterozygous mutation in ABCA4 in a

295 Chinese family with Stargardt disease. *PLoS ONE* **9**: e91962.

296 Zuccolo A, Scofield DG, De Paoli E, Morgante M. 2015. The Ty1-*copia* LTR retroelement family

297 PARTC is highly conserved in conifers over 200 MY of evolution. *Gene* **568**: 89-99.

298

299

Table 1: Basic probe targeting statistics vs. Norway spruce 1.0 genome sequence. HC, MC, LC = High-, Medium- and Low-Confidence gene models, respectively; see text for details.

(A) Candidate sequences	HC	MC	LC	Total
Number of gene models	26437	32150	8045	66632
Number of candidate subsequences	31291	36127	8726	76144
Mean subsequences / gene model	1.184	1.124	1.085	1.143
Total length candidate subsequences (Mbp)	86.60	64.77	14.41	165.78

(B) Designed probes				
Total probe sites	229691	143497	30169	403357
Redundant probe removal (≤ 2 probes / subsequence)	43481	29189	7330	80000
Number of genes with ≥ 1 probe	16840	14118	3803	34761
Number of candidate subsequences with ≥ 1 probe	20209	16429	4159	40797
Number of scaffolds with ≥ 1 probe	16387	13645	3740	32495

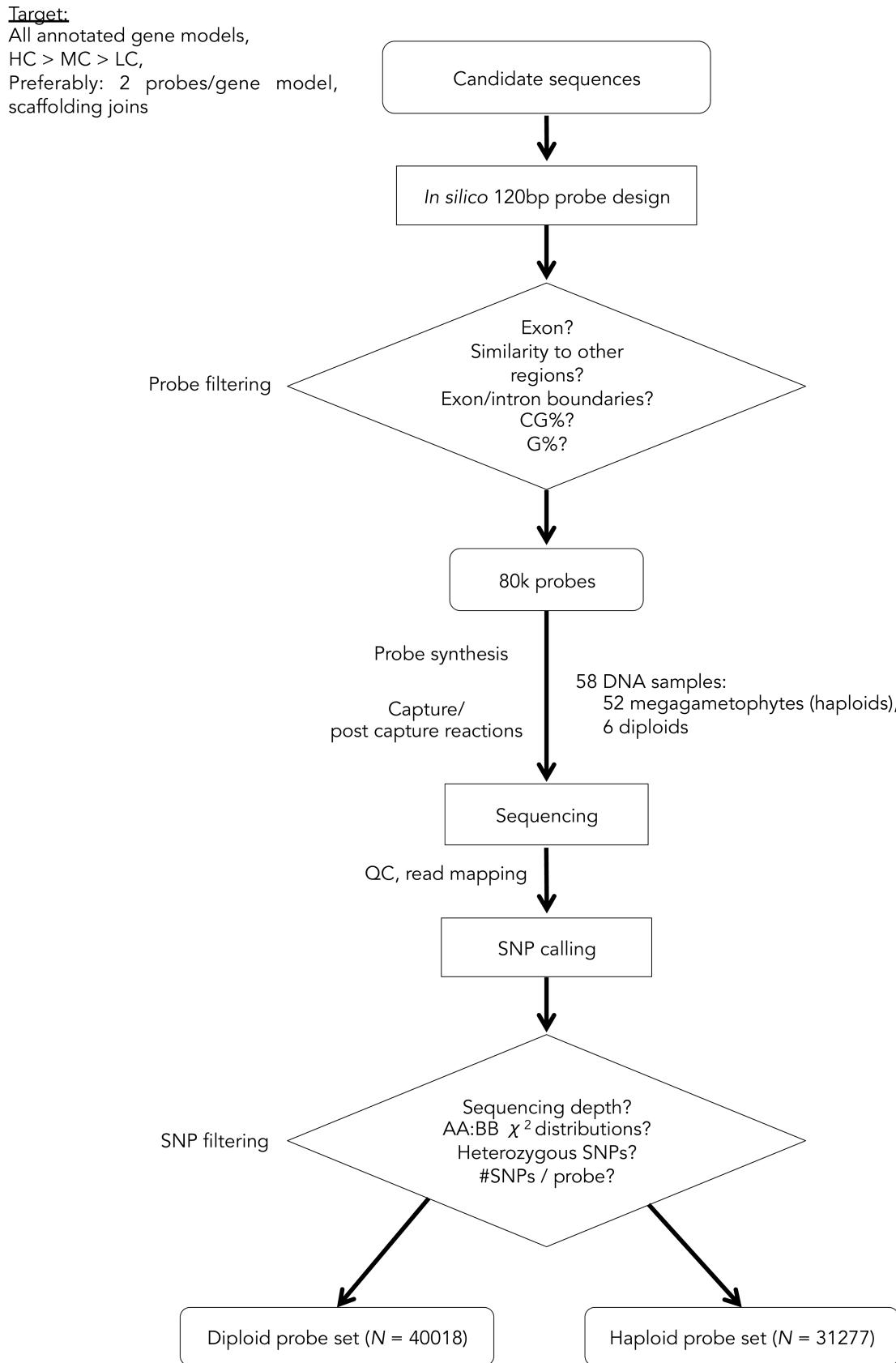
(C) Final probes following filtering				
Probes for <u>haploid</u> samples (megagametophyte)	16822	11304	3151	31277
Genes with ≥ 1 probe for megagametophyte samples	9659	7461	2148	19268
Probes / gene for megagametophyte samples	1.74 ± 0.012	1.52 ± 0.009	1.47 ± 0.014	1.62 ± 0.007
Probes for <u>diploid</u> samples	20532	15446	4040	40018
Genes with ≥ 1 probe for diploid samples	13134	10349	2736	26219
Probes / gene for diploid samples	1.56 ± 0.004	1.49 ± 0.005	1.48 ± 0.010	1.53 ± 0.003

300

301

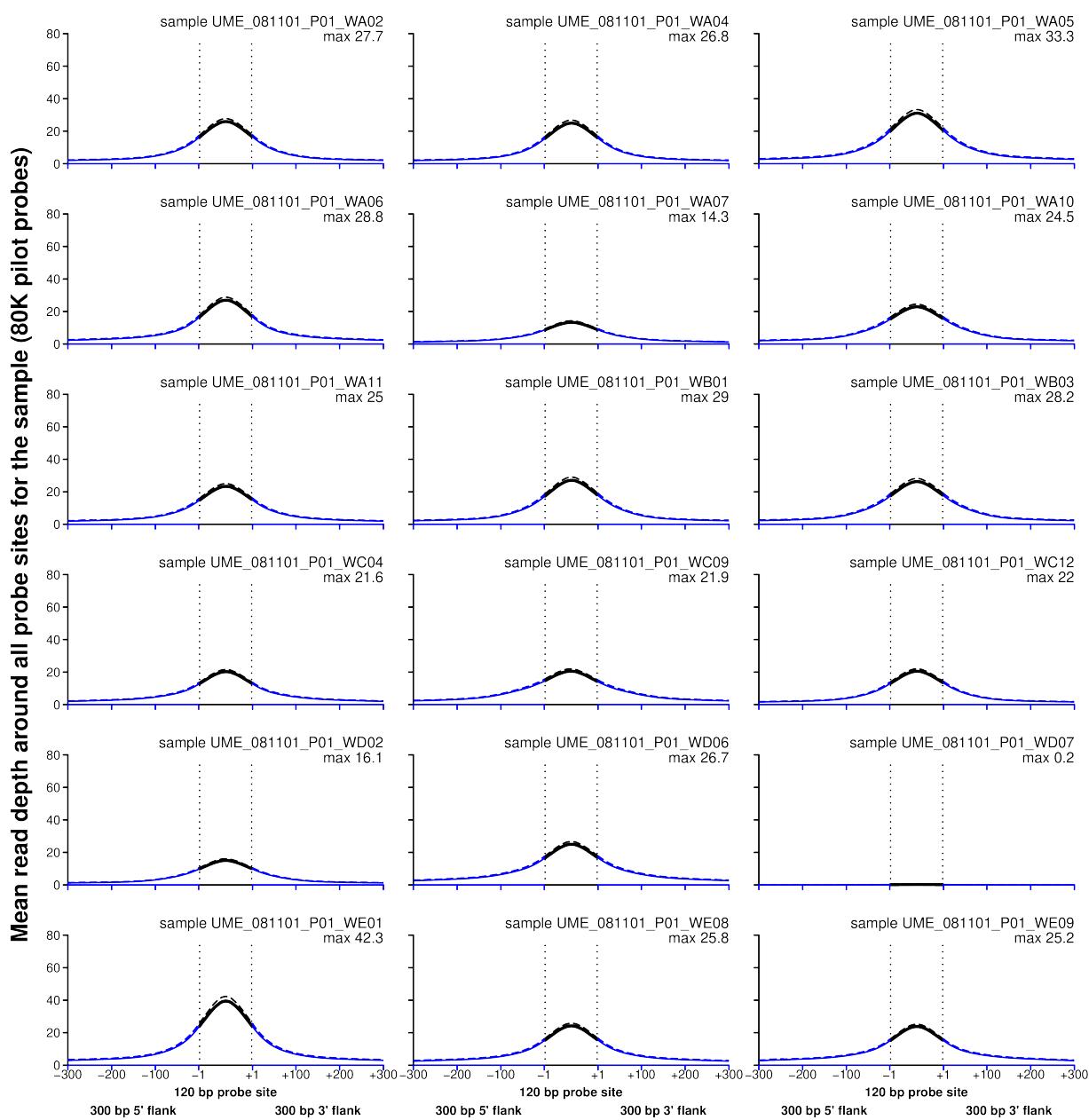
Table 2: Probe context vs. Norway spruce 1.0 genome sequence. HC, MC, LC = High-, Medium- and Low-Confidence gene models, respectively; see text for details.

PROBE CONTEXT: 31K megagametophyte	HC	MC	LC	Total
Exonic sequence (Kbp)	873.7	547.2	179.6	1600.4
Intronic sequence (Kbp)	1145.0	809.3	198.6	2152.9
UTR-like sequence (Kbp) (outside exons/introns, ± 500 bp of Start/Stop)	11.5	14.5	2.6	28.5
Exon-Intron splice sites under probes	3142	2416	637	6195



PROBE CONTEXT: 40K diploid	HC	MC	LC	Total
Exonic sequence (Kbp)	1298.9	810.2	222.0	2331.1
Intronic sequence (Kbp)	1164.8	1043.3	262.8	2470.9
UTR-like sequence (Kbp) (outside exons/introns, ± 500 bp of Start/Stop)	17.4	20.0	3.3	40.7
Exon-Intron splice sites under probes	4371	3810	983	9119

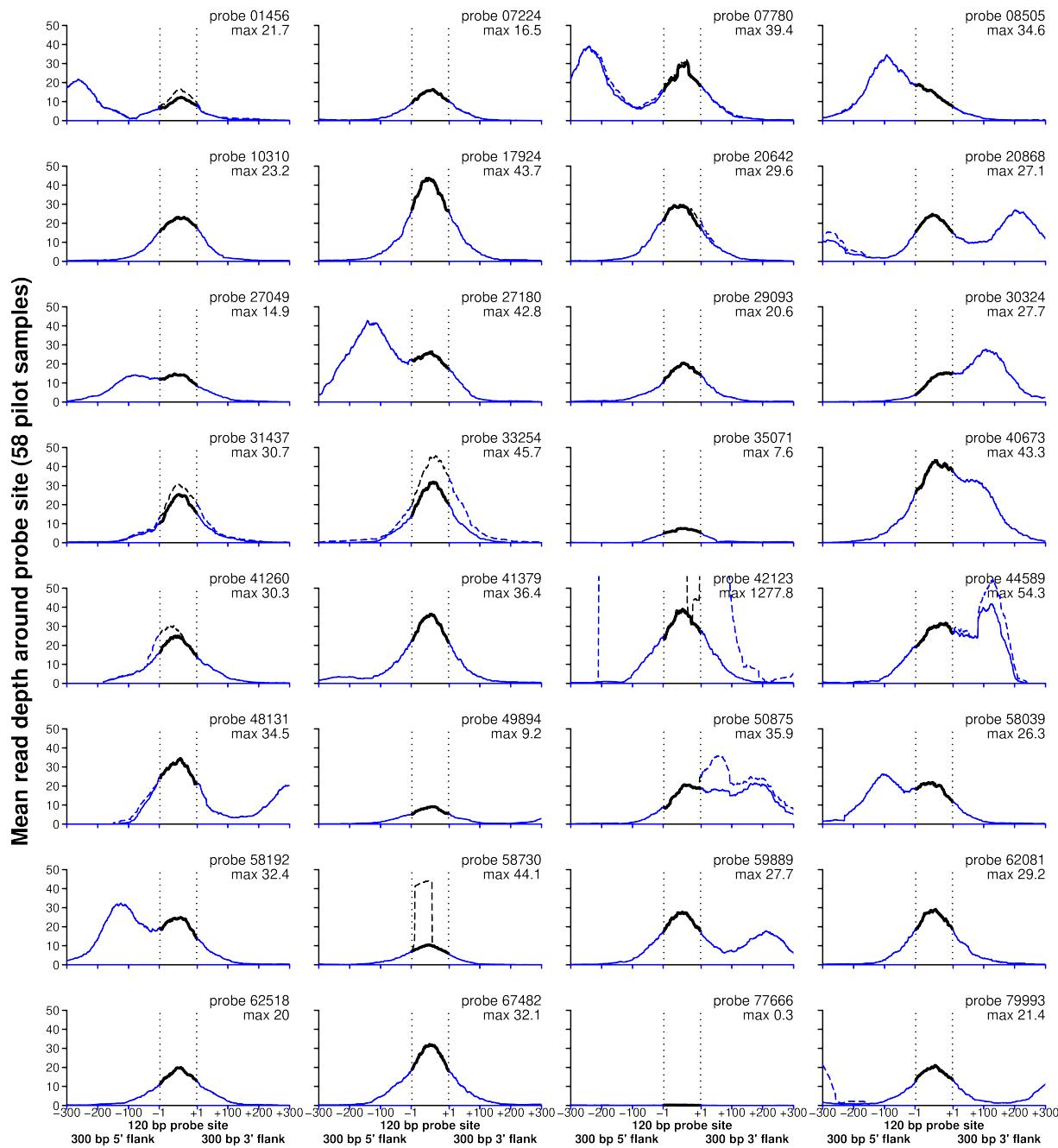
302


303

304 **Figure 1:** Probe selection workflow.

307 **Figure 2:** Mean read depth over all 80,000 pilot probe sites for each of a selection of 18 pilot samples.

308 Each panel shows mean read depth from libraries derived from sequence capture across all
309 probe sites (y-axis) within a window around all probe sites (x-axis). The 120-bp probe site is
310 bounded by vertical dotted segments and read depth within the probe site proper is shown in
311 black lines. Also included is mean read coverage 300 bp up- and downstream of the probe site
312 (blue lines). Mean read depth is shown for two methods of read alignment: solid lines show
313 depth when reads are mapped to the complete *Picea abies* 1.0 genome; and dashed lines show
314 depth when reads are mapped only to the probe-containing scaffolds. Also shown is the
315 sample name and maximum mean read depth within the 720-bp window shown.



317

318 **Figure 3:** Mean read coverage over each of a selection of 32 probe sites across all 58 pilot samples.

319 Each panel shows mean read depth from libraries derived from sequence capture across all 58
320 pilot samples (y-axis) within a 720-bp window around a single focal probe site (x-axis).

Otherwise the colouring and plotting is as described for Figure 2. As for Figure 2, mean read depth is shown for two methods of read alignment: solid lines show depth when reads are mapped to the complete *Picea abies* 1.0 genome; and dashed lines show depth when reads are mapped only to the probe-containing scaffolds. Coverage for the latter, which offers limited control against off-target sequence capture, may exceed the depth-50 limit of the y-axis, as for probe 42123. Also shown is the pilot probe designation and maximum mean read depth across samples within the 720-bp window shown for that probe.

328

329