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1 Botanical Institute, University of Cologne, Zülpicher Straße 47b, 50674 Cologne,
Germany
2 CEPLAS (Cluster of Excellence on Plant Sciences), Heinrich-Heine University,
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3

Abstract4

Microbes have adapted to greatly variable environments in order to survive both short-term per-5

turbations and permanent changes. A classical, yet still actively studied example of adaptation to6

dynamic environments is the diauxic shift of Escherichia coli, in which cells grow on glucose until7

its exhaustion, and then transition to using previously secreted acetate. Here we tested different8

hypotheses concerning the nature of this transition by using dynamic metabolic modeling. Towards9

this goal, we developed an open source modeling framework integrating dynamic models (ordinary10

differential equation systems) with structural models (metabolic networks), which can take into ac-11

count the behavior of multiple sub-populations, and smooth flux transitions between different time12

points. We used this framework to model the diauxic shift, first with a single E. coli model whose13

metabolic state represents the overall population average, and then with a community of two sub-14

populations each growing exclusively on one carbon source (glucose or acetate). After introducing15

an environment-dependent transition function that determines the balance between different sub-16

populations, our model generates predictions that are in strong agreement with published data. We17

thus support recent experimental evidence that, rather than a coordinated metabolic shift, diauxie18

would be the emergent pattern of individual cells differentiating for optimal growth on different sub-19

strates. This work offers a new perspective on the use of dynamic metabolic modeling to investigate20

population heterogeneity dynamics. The proposed approach can easily be applied to other biological21

systems composed of metabolically distinct, interconverting sub-populations, and could be extended22

to include single-cell level stochasticity.23

Importance Escherichia coli diauxie is a fundamental example of metabolic adaptation that is not24

yet completely understood. Further insight into this process can be achieved by integrating experi-25

mental and computational modeling methods. We present a dynamic metabolic modeling approach26

that captures diauxie as an emergent property of sub-population dynamics in E. coli monocultures.27

Without fine tuning the parameters of the E. coli core metabolic model, we achieve good agreement28

with published data. Our results suggest that single-organism metabolic models can only approx-29

imate the average metabolic state of a population, therefore offering a new perspective on the use30

of such modeling approaches. The open source modeling framework we provide can be applied to31

model general sub-population systems in more complex environments, and can be extended to include32

single-cell level stochasticity.33

Keywords: Metabolic network modeling, Microbial communities, Diauxic growth.34

1 Introduction35

In natural environments microorganisms are exposed to high fluctuations of nutrient and micronutrient36

availability and have therefore evolved adaptation strategies, both short-term to respond to temporary37

perturbations and long-term to increase evolutionary fitness [11]. We still lack a sound theoretical un-38

derstanding of the mechanisms driving such strategies, but the recent technological advances in high-39

throughput experimental techniques pave the way to novel approaches that integrate experimental and40

theoretical biology [22]. Theoretical ecology describes ecosystems in mathematical terms as dynamic41

organism-environment interactions [33]. As in statistical physics, individual behaviors in an ensemble re-42

sult in observable emergent patterns that can be modeled with mathematical equations [44]. This is the43

case for the earliest models of population dynamics developed by Verhulst [55], Lotka [66] and Volterra [77]44

and for the pioneering work of Jaques Monod in modeling microbial growth [88]. With the rising academic45

and industrial interest in the “microbiome”, systems biology approaches are becoming a new standard [99]46

and more methods for the mathematical modeling of microbial communities are being developed [1010, 1111].47
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1. Introduction 2

In constraint-based stoichiometric modeling the metabolic network model of an organism is recon-48

structed from its annotated genome and described mathematically as a stoichiometric matrix S. After49

imposing the steady-state assumption and introducing thermodynamic and biological boundaries for the50

metabolic fluxes ~v, flux balance analysis (FBA) [1212, 1313] defines an optimization problem in order to51

identify one particular flux distribution in the solution space. As long as the objective function (which52

imposes further biological assumptions on the system) is linear in the fluxes, the optimization problem53

can be solved by linear programming (LP). FBA returns a unique solution for the objective function,54

but the metabolic flux distribution is generally not unique, especially in genome-scale metabolic network55

models (GEMs). Based on the hypothesis that metabolism has evolved to make efficient use of resources56

and minimize waste, two specific methods were developed to extend FBA: parsimonious FBA (pFBA) [1414]57

and minimization of metabolic adjustment (MOMA) [1515]. In pFBA a second LP is defined such that58

the value of the objective function is set to the FBA solution and the new objective is the minimization59

of the overall fluxes. MOMA was developed to simulate the response to the perturbation introduced by60

gene deletion and is based on the principle that the organism will readjust its metabolism to a minimally61

different configuration with respect to the wild-type optimum. Another extension of FBA, dynamic FBA62

(dFBA) [1616], allows partial recovery of the dynamic information lost under the steady-state assumption.63

In the static optimization approach (SOA) that underlies dFBA, time is divided into discrete intervals64

and a new FBA problem is solved at time i after updating the external conditions according to the65

FBA solution at time i− 1. Approaches to model microbial communities with GEMs have been recently66

reviewed by Succurro and Ebenhöh [1717].67

FBA and dFBA have been applied to study one of the most basic examples of metabolic transitions:68

diauxie [1616, 1818, 1919]. Discovered in the model organism Escherichia coli in 1941 by Monod [88, 2020], diauxie69

remains a topic of active research [2121, 2222, 2323]. Under aerobic conditions with glucose as the sole carbon70

source (also generally the preferred one), E. coli secretes acetate during growth, which it then consumes71

once the glucose is exhausted. The molecular mechanisms driving this transition are still not completely72

understood, but over the last few years the fundamental role of stochasticity and population heterogeneity73

has been demonstrated experimentally [2424], often with the support of mathematical models. Indeed, in74

unpredictable natural environments with fluctuating nutrient availability and variable fitness landscapes,75

homogeneous populations are more likely to face extinction, and bet hedging provides a selective advan-76

tage [2525]. Single-cell studies have suggested that the observed biphasic growth is possibly the effect of77

stochastic gene expression [2121], eventually co-regulated by memory mechanisms [2626]. Kotte et al. [2727]78

systematically investigated bistability in a clonal E. coli population. After ruling out responsive switch-79

ing as a homogeneous adaptation, their results strongly suggested that the heterogeneous adaptation80

that results in two co-existing phenotypes was driven by responsive diversification (with a single pheno-81

type diversifying in response to environmental changes) rather than stochastic switching (where the two82

phenotypes would co-exist from the beginning). Although stochastic mathematical models have been83

proposed to support those findings, metabolic modeling approaches are only considered suitable to de-84

scribe homogeneous systems, with single organism GEMs representing the average population metabolic85

state.86

Varma and Palsson [1818] performed the first dFBA analysis on E. coli, with a single GEM growing87

aerobically first on glucose and then on the secreted acetate. Here we present a study of E. coli diauxic88

growth on these two carbon sources, with the bacterial population modeled either as having an aver-89

age, unique metabolic state (standard FBA and dFBA approach) or as the combination of two E. coli90

populations adapted to one of the two carbon sources. We use a modeling approach that integrates91

ordinary differential equation (ODE) models with dFBA, extending methods typically applied to study92

the dynamics of multi-species communities to the investigation of emergent patterns from individual93

behavior in monocultures. We implement three approaches: (i) we model a homogeneous yet smooth94

shift, with a single E. coli GEM, by adapting the MOMA algorithm; (ii) we introduce the hypothesis of95

sub-populations growing on specific carbon sources and model population transition as a purely stochas-96

tic mechanism; and (iii) we introduce an environment-driven response. Our results suggest that, rather97

than as a coordinated metabolic shift, diauxie can be modeled as the emergent pattern resulting from98

sub-populations optimizing growth on different substrates in response to environmental changes. This is99

much in agreement with experimental evidence from e.g. Kotte et al. [2727], and offers a new perspective100

on the use of dynamic metabolic modeling to investigate population dynamics. The proposed approach101

can easily be transferred to studies of generic sub-populations or communities, and ultimately can be102

expanded to investigate single-cell dynamics.103
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2 Results104

We ran simulations with an open source modeling framework developed to model ecosystem dynamics.105

The models are ODE systems solved with integrating routines that at each integration step solve an FBA106

problem. We first validated the E. coli GEM on the data from Varma and Palsson [1818] (who reported107

the first dFBA analysis of the glucose-acetate shift) and then used the calibrated model to reproduce the108

independent sets of experiments from Enjalbert et al. [2222] (who analyzed E. coli grown in aerobic batch109

systems with different concentrations of glucose and acetate). In the standard dFBA approach, a popu-110

lation is modeled with a unique GEM and fluxes instantaneously change to adapt to new environmental111

conditions. In reality, however, transcriptional changes and flux rerouting may cause delays, which are112

not captured by existing algorithms. Furthermore, dFBA might predict metabolic states in which more113

carbon sources are simultaneously utilized, and it is not obvious that such an approach will correctly114

capture the complexity of a population diversifying into metabolically distinct sub-populations. There-115

fore, we modified the dFBA algorithm taking advantage of optimization strategies previously developed116

for different biological questions and implemented novel concepts as well. In particular, we used either117

pFBA [1414] or an adaptation of MOMA [1515] to solve the FBA problem at each time step, replicating the118

standard dFBA approach or implementing a homogeneous yet smooth shift, respectively. The MOMA119

algorithm was integrated into the dFBA routine by imposing that the solution of the FBA problem at120

time i is minimally different from the solution at time i − 1. We tested three different hypotheses: (i)121

homogeneous, smooth population shift; (ii) stochastic-driven and (iii) environment-driven sub-population122

differentiation. We observed that dFBA with both pFBA and MOMA predicted abrupt transitions from123

acetate catabolism to acetate anabolism, and condition-specific parameterizations were necessary to re-124

produce the different data. We then modeled two E. coli sub-populations growing exclusively on glucose125

or acetate. For this we extended the standard dFBA approach to include the process of population shifts.126

We tested whether purely stochastic switches (ii) or rather a responsive diversification (iii) could capture127

the diauxic behavior by modeling the population transitions either with constant rates (ii) or with a128

heuristic function dependent on carbon source concentrations (iii). We observed that only model (iii)129

could reproduce data from different experiments with a unique set of parameters. We did not find signifi-130

cant improvements using MOMA rather than pFBA within the same metabolic state, so the simpler pFBA131

implementation was used in the sub-populations simulations where each model is fixed into one metabolic132

configuration. Further details of the modeling approach are provided in Materials and MethodsMaterials and Methods.133

E. coli diauxie modeled with a uniform population. A single GEM was used to model the134

average E. coli metabolic state and we compared the simulation results with the original data from Varma135

and Palsson [1818] (Fig. S1S1). The parameters for the simulations are reported in Tab. 11 and 22, and the136

only flux constraints that we calibrated to the data were the oxygen uptake rate and the maximal acetate137

secretion rate. A fixed cell death rate was introduced as previously described in [1919], with a value from138

the literature (Tab. 11). In these simulations, a lower absolute flux variation at each simulation time step139

was observed with the MOMA implementation (Fig. S2S2). We used the same GEM model to reproduce the140

results from Enjalbert et al. [2222], changing only the initial values of biomass, glucose and acetate (Fig. 11141

and S5S5). Although the pFBA simulation (Fig. 1(a)1(a)) showed a brief shift to growth on acetate at the time142

of glucose exhaustion (∼ 4 h), the MOMA simulation predicted complete growth arrest already at that143

point, with a minimal acetate consumption to satisfy the ATP maintenance requirement implemented144

in the GEM (Fig. 1(b)1(b)). Both simulations well captured glucose consumption and acetate secretion,145

but neither of them was able to reproduce the slow acetate consumption observed experimentally. Even146

after fine-tuning the constraint on acetate up-take to achieve a perfect match of the acetate consumption147

data from Varma and Palsson [1818], the model could not reproduce the acetate concentration dynamics148

of the corresponding data from Enjalbert et al. [2222] (data not shown). Therefore, we decided to avoid149

fine-tuning of acetate uptake (Tab. 11). Both pFBA and MOMA simulations showed an abrupt change150

in the flux distribution upon shifting from glucose to acetate consumption (Fig. S3S3). We evaluated the151

agreement between experiment and simulation with the R2 distance between in vivo and in silico data for152

the biomass (pFBA R2 = 0.989; MOMA R2 = 0.982) glucose (pFBA R2 = 0.993; MOMA R2 = 0.993)153

and acetate (pFBA R2 = 0.277; MOMA R2 = 0.409). In Fig. 22 we compare the flux distributions of our154

simulation results to the experimental results reported by Enjalbert et al. [2222] for over/under-expression155

of key genes associated with glucose and acetate metabolism (represented graphically in the top panels).156

First, we computed the flux solutions for E. coli growing on either glucose or acetate exponentially157

(data not shown) and compared the fluxes through the relevant reactions in E. coli growing on acetate158

to those in E. coli growing on glucose. Fig. 2(a)2(a) shows the absolute values for the flux results in the159

two simulations, normalized between 0 and 1 for direct comparison with the qualitative representation160

of the gene expression data (with 0 for non-expressed and 1 for expressed genes, respectively). The161

simulation results were consistent with the experiments, with active reactions (dark green) related to162
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(a) (b)

Figure 1: Diauxic growth of E. coli modeled as a uniform population in batch conditions. Simulation (lines) is compared
to data (squares) from Enjalbert et al. [2222] as a function of time. Biomass (blue, top sub-plots), glucose and acetate (red
and yellow, bottom sub-plots) are shown. The flux distribution at each time step is obtained with pFBA (a) or MOMA
(b).

acetate consumption and anabolism (ACKr, PPCK, FBP, ICL, MALS) and inactive reactions (white)163

related to glycolysis (PFK, PYK) during growth on acetate, and vice versa during growth on glucose.164

PPS did not carry flux in either simulation. We then used the simulation results presented in Fig. 11 to165

compare the metabolic fluxes before and after glucose exhaustion (GE), i.e. before and after the single166

E. coli model shifts from growth on glucose to growth on acetate. Enjalbert et al. [2222] compared gene167

expression levels between samples taken at time (GE + 30 min) and (GE - 115 min). However Fig. 11 shows168

that according to the simulation, growth has already stopped after 30 min from the GE point. Indeed169

comparing the absolute values of fluxes taken at time (GE + 30 min) and (GE - 115 min), we found that170

both pFBA and MOMA simulations qualitatively captured the down regulation trends, whereas neither171

reproduced the observed up-regulation (data not shown). Fig. 2(b)2(b) shows the difference in absolute values172

of fluxes taken at time (GE + 18 min) and (GE - 115 min), where in pFBA simulations growth is still173

observed. In this case, both simulations qualitatively captured most of the up/down regulation trends.174

Fig. S4S4 shows the metabolic network (modified from the Escher [2828] map for the E. coli core model)175

with reactions of Fig. 2(b)2(b) highlighted and color-coded according to the gene expression data. Finally,176

we reproduced the other experimental scenarios from Enjalbert et al. [2222] with the uniform population177

model, adjusting only the initial values of biomass, glucose and acetate. We observed that when high178

acetate concentrations are present in the medium a uniform shift can well reproduce the biomass profile179

(Fig. S5(c)S5(c)), while this is not the case when only low acetate concentrations are available (Fig. S5(b)S5(b)).180

E. coli diauxie modeled with a mixed population. We used two GEMs (same parameter181

values as before) to model E. coli monoculture as a mixture of two populations, one adapted to grow on182

glucose and one adapted to grow on acetate. The two models ECGlc and ECAc are hence constrained to183

exclusively take up the corresponding carbon source. Two transition functions, dependent on acetate or184

glucose concentrations, are introduced to model cellular differentiation and shift from one population to185

the other (see Materials and MethodsMaterials and Methods for details). We ran simulations to compare the different scenarios186

investigated experimentally by Enjalbert et al. [2222]. Initial values of biomass, glucose and acetate were187

adjusted to the corresponding datasets. The transition rates, as well as the initial population ratios,188

were chosen following the assumption, supported by a simple mathematical model, that in constant189

environments the populations will converge to a constant ratio (see Text S1S1 for details). Fig. 33 shows190

simulations for the same condition as Fig. 1(a)1(a), with same absolute initial biomass, distributed in this case191

as 95% ECGlc and 5% ECAc. This initial ratio was chosen considering the range of steady-state values192

for the population ratio (reported in Table S1S1) as well as considering that it is reasonable to assume193

that a higher number of cells will be adapted to grow on glucose, which is the carbon source on which194

laboratory cultures are usually maintained. Fig. 3(a)3(a) shows the simulation results for a scenario without195
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(a) (b)

Figure 2: Comparison of experimental information on gene expression levels with simulated flux distributions. The
top plots represent qualitatively the gene expression data from Enjalbert et al. [2222]. Flux solutions in the simulations
for the reactions associated to the reported key genes are compared (a) between two independent simulations with E.
coli exponentially growing either on acetate or on glucose; (b) within the same simulation (Fig. 11, growth on glucose
simulated with MOMA or pFBA) before and after the point of glucose exhaustion.

transitions between the two states, whereas the results of Fig. 3(b)3(b) were obtained with active transition196

functions, defined here by constant transition rates as reported in Tab. 22. Although both Fig. 3(a)3(a) and197

Fig. 3(b)3(b) well capture the biomass (R2 = 0.987 and R2 = 0.990, respectively) and glucose concentrations198

(R2 = 0.996 and R2 = 0.997, respectively), only the simulation including the population transition199

realistically reproduced the acetate consumption (R2 = 0.336 and R2 = 0.951 respectively), as well as a200

lag phase before culture crash. Neither of the two simulations captured the eventual recovery of growth201

hinted by the last data points. We reproduced two other results (where only biomass measurements are202

available) from Enjalbert et al. [2222], again using the same GEMs and changing only the initial conditions203

(biomass quantity and distribution among ECGlc and ECAc) and the experimental setup accordingly. By204

modeling the population transition with the same constant rate, we were able to explain the biomass205

profile in the case where E. coli is grown on 15 mM glucose and after glucose exhaustion the acetate206

concentration is maintained at around 4 mM (Fig. S5(e)S5(e), R2 = 0.986), but not in the case where E. coli207

is grown on 15 mM glucose and 32 mM acetate, and after glucose exhaustion the acetate concentration208

is maintained at the same high level (Fig. S5(f)S5(f), R2 = 0.727). We therefore introduced a dependency209

of the transition functions on the substrate concentration (see Materials and MethodsMaterials and Methods for details) that210

well captures all the experimental scenarios with a unique set of parameters (Fig. S5(g)S5(g), S5(h)S5(h), S5(i)S5(i)).211

Fig. 4(a)4(a) shows that an E. coli population starting with 95% ECGlc and 5% ECAc well describes the212

biomass dynamics (R2 = 0.985) and the glucose exhaustion point after around 4 h when acetate is213

maintained at 4 mM. Again, without fine-tuning the GEM simulation parameters, Fig. 4(b)4(b) shows that214

an E. coli population starting with 75% ECGlc and 25% ECAc reproduces the biomass measurements215

(R2 = 0.940) and the glucose exhaustion point after around 4 h also in the experimental setup with216

acetate maintained at 32 mM. The effect of varying the initial biomass ratios in the different experimental217

conditions is shown in Fig. S6S6. Overall, simulations starting with 95% ECGlc and 5% ECAc or 75% ECGlc218

and 25% ECAc did not show strong differences, but further reducing the percentage of ECGlc (and leaving219

the range of steady-state values of Table S1S1) resulted in drastic changes to the shape of the growth curves.220

The initial condition of 75% ECGlc and 25% ECAc population distribution for Fig. 4(b)4(b) is also justified221

by a difference in the experimental initial values for the biomass quantity (see Fig. S7S7).222

Lag time for growth on acetate explained with population distribution. Enjalbert et al. [2222]223

showed different trends in the lag time of E. coli cultures required to achieve maximal growth after224

GE. In their switch experiments, they sampled at different time points “mother cultures” of E. coli225

cells growing in batch conditions on 15 mM glucose alone (M9G condition) or on 15 mM glucose and226

32mM acetate (M9GA condition), and re-inoculated the sampled cells as “daughter cultures” into fresh227
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(a) (b)

Figure 3: Diauxic growth of E. coli modeled as a mixture of two E. coli populations ECGlc and ECAc growing exclusively
on glucose or acetate, respectively, and without (a) or with (b) possibility to shift from one population to the other.
Simulation (lines) is compared to data (squares) from Enjalbert et al. [2222] as a function of time. The upper plots show
simulation results (using pFBA) for ECGlc and ECAc biomasses (light blue and aqua, respectively) and the observable
E. coli biomass (black line simulation, blue dots data). The bottom plots show glucose and acetate (red and yellow
respectively).

(a) (b)

Figure 4: Diauxic growth of E. coli modeled as a mixture of two E. coli populations ECGlc and ECAc growing exclusively
on glucose or acetate, respectively, with possibility to shift from one population to the other. (a) E. coli grows on 15 mM
glucose and after glucose is exhausted, acetate concentration is kept at about 4 mM. (b) E. coli grows on 15 mM glucose
and 32 mM acetate and after glucose is exhausted, acetate concentration is maintained at around that concentration. The
upper plots show simulation results (using pFBA) for ECGlc and ECAc biomasses (light blue and aqua lines, respectively)
and the observable E. coli biomass (black line simulation, blue dots data from Enjalbert et al. [2222]). The bottom plots
show simulation results for glucose and acetate (red and yellow lines respectively).
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(a) (b)

Figure 5: Simulation (dark and light gray points) and experimental (orange and yellow points, data from Enjalbert et
al. [2222]) results for the delay of daughter cultures before reaching maximal growth after media switch. Mother cultures
are grown either on 15 mM of glucose (M9G, (a)) or 15 mM of glucose and 32 mM of acetate (M9GA, (b)). Daughter
cultures are re-inoculated into fresh media with either 15 mM of glucose (M9G, square and plus markers) or 45 mM of
acetate (M9A, diamond and cross markers). The simulation error bars are obtained by varying the initial population
ratios (obtained from sampling the simulated mother cultures) by ±15%.

medium exclusively containing glucose (M9G condition) or acetate (M9A condition). We replicated this228

experiment in silico by running first simulations under the M9G and M9GA conditions. For the M9G229

mother culture, we used the simulation of the mixed ECGlc and ECAc population shown in Fig. 3(b)3(b),230

because the experimental conditions are the same. For the M9GA mother culture, we did not have an231

experimental reference dataset and we simulated a new scenario similar to that shown in Fig. 4(b)4(b), with232

the same initial population composed of 75% ECGlc and 25% ECAc, but without the feeding of additional233

acetate. The GE time point is about 4.6 h for M9G and 3.9 h for M9GA, consistent with the observations234

of Enjalbert et al. [2222] (data not shown). The in silico mother cultures were sampled at regular time235

intervals to obtain the initial biomass distribution of ECGlc and ECAc for the daughter cultures (reported236

in Tab. 33) and the lag time of each daughter culture was computed (see Materials and MethodsMaterials and Methods for237

details). Fig. 55 shows the simulation results compared with the experimental data from Enjalbert et238

al. [2222]. The error bars on the simulated lag time were obtained by varying the initial biomass ratio of239

the daughter cultures by ±15%. A quantitative agreement between simulation and experimental results240

was only achieved in the M9G-M9G switch experiment (Fig. 5(a)5(a)) with the correct prediction of almost241

zero lag time for the daughter cells, but the trend for the delay to reach maximal growth was in general242

qualitatively reproduced also for the other scenarios. According to the simulations, cultures switched243

from M9G to M9A (Fig. 5(a)5(a)) need about 1.5 h before reaching maximal growth, which is more than244

twice the duration observed experimentally. For cultures pre-grown in M9GA (Fig. 5(b)5(b)), we observed245

both in simulations and in experiments a decreasing lag time for daughter cultures sampled after GE for246

the M9GA-M9A switch, and an increasing lag time for the M9GA-M9G switch. Additional studies are247

reported in Fig. S8S8. In particular, Fig. S8(a-d)S8(a-d) shows the dependence of the lag time in the daughter248

cultures on the maximal transition values and Fig. S8(e-h)S8(e-h) shows the same dependence, including also249

the distribution of the biomass ratio in the mother cultures, for a limited set of parameters.250

3 Discussion251

We have investigated a fundamental example of metabolic adaptation, namely the diauxic growth of252

E. coli on glucose and acetate, aiming to test whether a dynamic metabolic modeling approach can253

capture diauxie in monocultures of E. coli as the observable emergent result of individual (sub-population)254

behavior. To this end, we first developed a modeling framework to integrate dynamic models (ODE255

systems) with structural models (metabolic networks) and then performed simulations to reproduce256
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published experimental results in silico.257

Avoiding fine-tuning of model parameters. One recurrent criticism of stoichiometric and258

constraint-based modeling approaches, such as FBA, is that they can easily be adjusted to reproduce259

experimental results by ad hoc changes of flux constraints. Indeed, we observed that a condition-specific260

fine-tuning of the constraint on acetate uptake could reproduce fairly well the growth dynamics of the261

different experiments (data not shown). However, the change of such constraint from one experimental262

condition to another is not biologically justified. Although some extensions of the FBA approach such263

as FBA with molecular crowding (FBAwMC [2929]) provide reasonable ways to constrain the metabolic264

fluxes and were shown to reproduce carbon consumption hierarchies, they also require extensive parame-265

terization. We therefore chose to use the basic FBA approach, limiting the number of constraint imposed266

and with parameters mostly from experimental measurements (Tab. 11). In the case of oxygen uptake267

and acetate secretion, we calibrated the constraints using the data from Varma and Palsson [1818], where268

an E. coli diauxic shift from glucose to acetate was first simulated using a genome scale model. The269

FBA parameters were left unchanged to reproduce the independent experiments reported by Enjalbert270

et al. [2222]. The use of an independent set of data to calibrate the FBA model parameters is a possible271

way to improve the confidence in subsequent results. Further model parameters of the ODE system were272

chosen according to reasonable hypotheses, and were adjusted slightly to achieve fair agreement with the273

experimental results, consistently among all the simulations. The initial conditions were specific to the274

experiments we aimed to reproduce.275

Standard dFBA allows for abrupt metabolic readjustments. The flux distributions obtained276

from FBA solutions represent an average picture of the metabolic state of a population, which is in general277

modeled using a single genome scale model. Therefore, standard dFBA implementations, in which the278

FBA constraints evolve according to the updated external conditions, will reproduce the average change279

in metabolic state of the population in response to external variations. This is equivalent to assuming280

that a population undergoes a coordinated, uniform metabolic shift under changing environmental con-281

ditions. Furthermore, such transitions are generally abrupt with dFBA models. We therefore tested two282

alternative approaches to simulate the diauxic shift in uniform E. coli monocultures, solving the FBA283

problems either with pFBA (mostly equivalent to the usual dFBA implementations) or with an adapta-284

tion of the MOMA algorithm. In the latter case, instead of minimizing the difference in flux distribution285

between a “wild-type” GEM and a modified one (original MOMA implementation), we used the same286

concept to integrate the dFBA system while also imposing the following condition: at time ti the flux287

solution differs minimally from that at time ti−1, where the time steps are set by the integration routine.288

Contrary to our expectations however, this approach did not achieve smoother metabolic adjustments in289

the system in response to the changing external conditions. Instead, both implementations resulted in290

abrupt changes in the flux distributions following the shift from glucose to acetate metabolism (Fig. S3S3).291

More sophisticated implementations of a dynamic MOMA model (e.g. computing the minimal adjust-292

ment based on a subset of biologically relevant variables) might succeed in achieving smooth metabolic293

transitions, but will require the introduction of additional parameters and ad hoc biological hypotheses.294

In a similar way, biologically justified extensions of FBA such as FBAwMC [2929] might provide better295

descriptions of an average and uniform population-level metabolism, but typically need the empirical296

determination of large numbers of organism-specific parameters.297

Monocultures can be modeled as multi-sub-population systems to capture individual298

heterogeneity. With the introduction of two basic assumptions (first, there are two distinct metabolic299

states consuming either glucose or acetate; second, transition from one state to the other is driven300

by glucose and acetate concentrations) we were able to capture all the experimental trends published by301

Enjalbert et al. [2222] with the same computational model. The transitions between two states were modeled302

as Hill functions of the corresponding substrate concentrations with a noise offset representing a constant,303

small noise component in cell regulation. Although other transition laws could have been chosen, Hill304

functions conveniently model concentration-dependent shifts between two states. For example, if acetate305

is highly abundant, more cells in the glucose-consumption state will shift to the acetate-consumption306

state in response to the change in environment. Finally, the introduction of a transition efficiency term307

was motivated by the observation that cells can get “lost in transition”, an effect that was estimated308

to account for the death of ∼7% of yeast cells, which cannot initiate glycolysis following a shift to309

high glucose levels [3030]. Using a simple mathematical model (Text S1S1) we identified ranges for the310

parameters of the transition functions and selected reasonable values that would return good agreement311

between simulations and experiments. Both values for the constant transition rate (4% h−1) and for312

the maximal transition rate (20% h−1) were in good agreement with measured average protein turnover313

rates in E. coli cultures from the literature [3131, 3232, 3333]. Simulation results were mostly in very good314

agreement with the experimental data and our results strongly further support the idea, suggested over315

the last few years by independent research on different organisms [2121, 2525, 3434], that monocultures are316
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an ensemble of sub-populations in different metabolic states, partially regulated by the environmental317

conditions. When the acetate concentrations were too low to support growth, it was sufficient to model318

the transition as a constant random process. In contrast, in order to reproduce the data under conditions319

with high acetate concentrations, we needed to introduce an active transition rate dependent on substrate320

concentrations. Interestingly, this assumption alone is sufficient to model the experimentally observed321

growth rate, without further fine tuning of model parameters. The introduction of substrate-dependent322

transition functions is also consistent with the experimental observations of Kotte et al. [2727], supporting323

the hypothesis that a monoculture undergoes diversification in response to environmental changes.324

The lag phase between growth on different substrates can be explained by population325

distributions. With standard dFBA simulations, the metabolic transition during the shift from one326

carbon source to another is abrupt, and no lag phase is observable. This is rarely the case and, most327

remarkably, the duration of the lag phase between the exhaustion of the favored carbon source and the328

resumption of optimal growth on the alternate carbon source is highly variable under different environ-329

mental conditions. This observation can easily be explained as an emergent property of sub-population330

dynamics. Our simulations are consistent with the explanation that the delay in the resumption of full331

growth actually depends on the relative abundance of the two sub-populations. Although the simulation332

results did not reproduce the experimental data quantitatively, all qualitative trends were fully explained.333

Several factors may explain these discrepancies. For example, the lack of experimental data concerning334

the mother cultures (in terms of biomass, glucose and acetate dynamics) made it impossible to cali-335

brate the initial model population. This could introduce a significant bias in the later sampling and336

determination of the sub-population ratio, thus strongly influencing the quantification of the lag time,337

which is highly correlated with the population distribution (Fig. S8S8). Solopova et al. [2525] showed that338

the density of a Lactococcus lactis population (translating in practice to the rate at which the primary339

carbon source was consumed) played a significant role in determining the proportion of cells successfully340

transitioning to growth on the secondary carbon source. The connection between lag time and sub-341

population distribution could in principle be exploited to estimate initial population distributions from342

lag time measurements. However, with the currently available data it is difficult to assess the robustness343

and reliability of such predictions, and further investigation is therefore required, including devoted ex-344

periments to determine initial conditions. An additional source of discrepancy between our quantitative345

results and the experimental measurements could be the experimental procedure itself. For example,346

abrupt changes in conditions, such as the re-inoculation of daughter cultures into a different medium347

in the switch experiments might select for additional adaptation strategies. Interestingly, we observed348

a dramatic improvement in the quantitative agreement between experiment and simulation by relaxing349

the condition imposing no growth for populations inoculated on the “wrong” carbon source (data not350

shown). By allowing the glucose-consuming population sampled from glucose mother cultures to growth351

more slowly on acetate, we mimick a situation in which cells store resources and are able to survive a352

bit longer. On the other hand, allowing reduced growth on acetate (glucose) for the glucose-consumer353

(acetate-consumer) population that was exposed to both carbon sources in the mixed mother cultures354

could be a proxy for a memory effect. Bacterial cells do show memory effects upon changes in environ-355

mental conditions [2626], but to explore this potential explanation further, more systematic experiments356

would be necessary to carefully and reproducibly determine the lag times as functions of external param-357

eters. Finally, a recent stochastic model of the regulatory network of diauxic growth in E. coli suggests358

that the limitations of biological sensors are responsible for the lag phase [3535]. From these results we can359

infer that in our model the transition functions, currently depending on the absolute concentration of360

one carbon source at a time, might not be able to capture the fine details of population shifts. A possible361

extension would be to introduce more complex transition mechanisms dependent on relative concentra-362

tions of primary and secondary carbon sources, a process that would need dedicated experiments for the363

construction and validation of the new transition functions.364

Sub-populations in the dynamic metabolic modeling approach. We developed a modeling365

framework to perform FBA simulations embedded in a system of ODEs. Building on previous methods366

and approaches [1919, 3636], we further extended the standard dFBA implementation and introduced novel367

concepts. In particular, standard dFBA approaches assume that fluxes can instantaneously change to368

adapt to new environmental conditions, and flux solutions at subsequent time steps might differ signif-369

icantly. This is an obvious limitation when aiming to capture diauxic shift, where lag phases, highly370

dependent on the environmental conditions, are typically observed. We implemented the MOMA algo-371

rithm (originally developed to model the response to genetic perturbations in static FBA) in dFBA to372

minimize the metabolic adjustment between different time points. Furthermore, we integrated dynamic373

mechanisms into dFBA that cannot be included in metabolic models, such as population transitions.374

Indeed, although the use of dFBA to model sub-populations bears some similarities to other platforms375

for the simulation of microbial communities, a notable difference in our formulation is the capacity of376
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sub-populations to interconvert. The current study relied on the a priori knowledge that only two carbon377

sources would be available to E. coli, thus motivating the development of a two sub-population commu-378

nity, but in principle an arbitrary number of sub-populations can be defined, and more generic transition379

functions introduced. Further experiments, in particular single-cell studies, could be designed to define380

and parameterize these transition functions. Thanks to the object oriented design of the framework, it381

is relatively easy to introduce other functions regulating the constraints on specific reaction fluxes in382

the FBA problem. In this way, different hypotheses can be extensively tested to better understand how383

to capture regulatory dynamics in dFBA. Notably, the methods developed in this framework to study384

population heterogeneity could then be transferred to other platforms more specific for microbial com-385

munity modeling where different features are implemented (e.g. spatial structure [1919] or community-level386

objectives [3737]). Finally, the framework could also be developed further to include stochastic mechanisms,387

such as mutations that would alter the function of metabolic genes. Indeed, our implementation of the388

dFBA algorithm is able to call different methods at each time step, e.g. to update the flux rates, and a389

regulatory function with random components could be in principle defined.390

Outlook. There is extensive experimental evidence that bacteria differentiate into sub-populations391

as a result of survival strategies [2525, 2727]. Simulations based on standard dFBA model the dynamics of392

cells by predicting the putative average behavior of a whole population. For example, if a population of393

cells globally utilizes a combination of two carbon sources, dFBA would predict metabolic states in which394

both carbon sources are utilized simutaneously. Our model assumes that cells are either in the glucose395

or acetate consuming state, with an instantaneous transition between these two sub-populations that396

follows a simplistic rule which cannot capture intermediate states. This simplification is both practical397

and plausible when we observe population dynamics as the emergent properties of individual behavior,398

and it works well in dynamically changing environments with a continuous transition. However, rather399

than having a well-defined metabolic state, especially during the transition between states, cells might400

exhibit a mixed state, which could be described as a superposition of ’pure’ states, analogous to the state401

vectors in quantum physics. Furthermore, our approach suggests a fundamental difference in the strategies402

to account for metabolic fluxes in heterogeneous populations, because the average fluxes in a uniform403

population might differ from the cumulative average fluxes of sub-populations. Further investigations of404

this novel concept of superimposed metabolic states will provide a promising new approach to study the405

principles of metabolic regulation.406

4 Materials and Methods407

FBA methods. In stoichiometric models, the stoichiometric matrix S(m× n) is defined with the row
and column dimensions corresponding to the numbers of metabolites m and reactions n respectively, the
elements sij being the stoichiometric coefficients of metabolite i taking part in reaction j. FBA defines
and solves the following LP problem:

maximize ~z, (1)

subject to :

S~v = 0, (2)

l.b.j ≤ vj ≤ u.b.j . (3)

The steady-state assumption (Eq. 22) gives a system of equations that is under-determined and has an408

infinite number of solutions. Constraints on the fluxes (Eq. 33) allow us to restrict the solutions to a convex409

solution space, but still result in an infinite number of solutions. The definition of an objective (Eq. 11)410

selects one solution, but generally this is still not unique for large (genome-scale) metabolic networks.411

We consider two extensions to the FBA problem definition, namely pFBA [1414] and MOMA [1515]. We412

then use these two methods to solve the FBA problem in an approach similar to dFBA [1616]. Assuming that413

metabolism evolves towards the efficient utilization of resources, pFBA finds the minimal flux distribution414

that returns the same objective defined by the FBA problem. We use the pFBA implementation from415

COBRApy [3838] with maximal flux through the biomass reaction as the objective function. Considering416

that metabolism must respond quickly to perturbations, MOMA implements a quadratic algorithm to417

find the FBA solution after gene deletion that is most similar to the optimal wild-type configuration. In418

our case, we do not introduce modifications to the metabolic network but rather require that the MOMA419

solution obtained at time ti−1 is used to compute the MOMA solution at time ti as the minimally different420

solution that satisfies the objective function. Also here the objective function is maximal flux through the421

biomass reaction. We use the MOMA implementation from COBRApy [3838] in the linear approximation,422
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with a slight modification to allow the LP problem to be reset in an iterative manner, which is necessary423

to run MOMA within the dFBA approach.424

Modeling framework integrating ODE and FBA. In the SOA of dFBA the boundary conditions
in Eq. 33 are updated at discrete time steps according to the solution of the FBA problem in the previous
time interval. Assuming quasi-steady-state conditions, i.e. that metabolism readjustments are faster than
external environmental changes, dFBA can approximate the dynamic response of a GEM to a changing
environment. Our approach is an extension of dFBA. The model is built as a system of ODEs, whose
dimension depends on the dynamics to be modeled. Each ODE describes the variation in time of biomass,
metabolites, or other regulatory/dynamic processes. The biomasses and the metabolites can, but do not
necessarily, be linked to the corresponding variables in a GEM. Their ODEs vary according to a function
that can then depend on the flux solutions ~v

dqi
dt

= F(~p;~v, ~q, t). (4)

The ODE system is then solved using integration routines with an automated choice of time step. Each425

integration step solves the FBA problem (or pFBA, or MOMA) to obtain the current reaction rates for426

Eq 44, updates the metabolite quantities according to the FBA solution, re-computes the flux boundaries427

of Eq. 33 according to specific reaction kinetics (typically Michaelis-Menten enzyme kinetics), and re-428

defines the FBA problems with the new boundaries and/or other regulatory mechanisms defined by the429

user.430

The modeling framework is written in Python (Python Software Foundation, https://www.python.org/https://www.python.org/)431

following the object-oriented programming (OOP) paradigm for efficiency and flexibility. The framework432

uses functionality from the following third-party packages: numpy [3939], scipy [4040], matplotlib [4141], CO-433

BRApy [3838], and pandas [4242]. In particular, we use COBRApy methods to solve the FBA problems and434

Python integrators from the scipy.integrate method ode to solve the system of ODEs.435

E. coli uniform population model. We used a previously reported core version of E. coli GEM [4343]
downloaded from http://bigg.ucsd.edu/models/e_coli_corehttp://bigg.ucsd.edu/models/e_coli_core. The E. coli model ECany is constrained
on the consumption of “any” carbon source (glucose, Gl, or acetate, Ac) solely by the environmental
conditions, and the lower bound of the exchange reactions (EX Glc e and EX Ac e respectively) follows
two simple Michaelis-Menten kinetics:

l.b.
ECany

EX Glc e = −V Gl
M

[Gl]

[Gl] +KGl
M

, (5)

l.b.
ECany

EX Ac e = −V Ac
M

[Ac]

[Ac] +KAc
M

. (6)

The ODE system is defined as

dBMECany

dt
= vECany

µ · BMECany
− δBMECany

, (7)

dGl

dt
= v

ECany

EX Glc e · BMECany + ξfed-batch, (8)

dAc

dt
= v

ECany

EX Ac e · BMECany
, (9)

where vµ is the reaction rate of the biomass function (proxy for growth rate) in the FBA model, δ is the436

cell death rate and ξfed-batch is a positive rate under fed-batch conditions and zero under batch conditions.437

Parameters and initial conditions are summarized in Tab. 22. Either pFBA or MOMA can be used to438

solve the FBA problem.439

E. coli mixed population model. Two E. coli core models are loaded and defined as either Glucose
consumer (ECGlc) or Acetate consumer (ECAc) by switching off uptake of the other carbon source

l.b.ECGlc

EX Glc e = −V Gl
M

[Gl]

[Gl] +KGl
M

, (10)

l.b.ECAc

EX Glc e = 0, (11)

l.b.ECGlc

EX Ac e = 0, (12)

l.b.ECAc

EX Ac e = −V Ac
M

[Ac]

[Ac] +KAc
M

. (13)
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Table 1: Fixed parameters for all simulations. The lower bound for oxygen exchange as
well as the upper bound for acetate exchange are calibrated on the data from Varma and
Palsson [1818]. The death rate δ is computed assuming a cell death of 1% per generation [4444]
and a generation time of 20 min. The Michaelis-Menten parameters for substrate uptake
are taken from Gosset [4545]. These parameters were also used in previously published dFBA
implementations [4646].

L.B.
EX O2

U.B.
EX Ac

δ VGlc
M KGlc

M VAc
M KAc

M

mmol

gDW hr

mmol

gDW hr
hr−1 mmol

gDW hr
mM

mmol

gDW hr
mM

Value -11.5 3.0 0.03 10.0 0.01 10.0 0.01

The ODE system is defined as

dBMECGlc

dt
= (vECGlc

µ − ψ − δ) · BMECGlc
+ εφBMECAc , (14)

dBMECAc

dt
= (vECAc

µ − φ− δ) · BMECAc + εψBMECGlc
, (15)

dGl

dt
= vECGlc

EX Glc e · BMECGlc
+ vECAc

EX Glc e · BMECAc
+ ξfed-batch, (16)

dAc

dt
= vECGlc

EX Ac e · BMECGlc
+ (vECAc

EX Glc e + ζ ·H(t− tx)) · BMECAc
, (17)

where ζ · H(t − tx) is a Heaviside function activated at the time tx of glucose exhaustion in order to
keep acetate constant, and ψ and φ are functions that model the cellular shift from ECGlc to ECAc and
ECAc to ECGlc, respectively, and 0 < ε < 1 is a positive factor representing the transition efficiency. The
functions ψ and φ are modeled as Hill functions with a noise offset

ψ([Ac]) = ψ0 + V ψM
[Ac]n

[Ac]n +Kψ
M

n , (18)

φ([Gl]) = φ0 + V φM
[Gl]n

[Gl]n +Kφ
M

n , (19)

and for V φM = V ψM = 0 they are constant transition rates. For the simulations presented herein, we used a440

Hill coefficient n = 5. Indeed, simulations seem to work best for a transition function with a high degree441

of cooperativity, and the results are robust with respect to small deviations relative to this value. The442

other parameters and initial conditions, specific to the different simulations, are summarized in Tab. 22.443

For mixed-population simulations, pFBA is used to solve the FBA problem.444

Switch experiment simulations. Two E. coli mixed population model simulations are run as
“mother cultures” as shown in Tab. 22 for “M9G” and “M9GA” conditions (glucose and glucose plus
acetate, respectively). From each mother culture we sample 11 time points between −1 and +1.5 h from
the corresponding GE time (4.6 h for M9G and 3.9 h for M9GA) to obtain the biomass ratio between
ECGlc and ECAc used as the initial condition for the re-inoculation simulations. The percentage of ECGlc

biomass at these time points is shown in Tab. 33. The “daughter cultures” are then grown under “M9G”
glucose-only or “M9A” acetate-only conditions (see Tab. 22), yielding 44 simplified simulations, 11 for
each of the following 4 switch experiments: M9G to M9G; M9G to M9A; M9GA to M9G; M9GA to
M9A. For each simulation, the lag time is computed according to Enjalbert et al. [2222]:

tlag = t1 −
ln(X1/X0)

µmax
(20)

where X0 is the total initial E. coli biomass, X1 is the total E. coli biomass value at time t1 (1.5 h as445

in [2222]), and µmax values are used according to Enjalbert et al. [2222].446

Published experimental data. Experimental data (values with standard deviations, when avail-447

able) from Enjalbert et al. [2222] were kindly provided by Prof. Enjalbert. The data from Varma and448

Palsson [1818] were extracted from the original publication using WebPlotDigitizer [4747].449

Availability of data and materials. The version of the modeling framework used to obtain the450

results presented in this manuscript (v1.1) is publicly available with instructions to install and run sim-451

ulations at https://github.com/QTB-HHU/dfba-ode-framework_ecoli-diauxiehttps://github.com/QTB-HHU/dfba-ode-framework_ecoli-diauxie. The development452

version is hosted on https://gitlab.com/asuccurro/dfba-ode-frameworkhttps://gitlab.com/asuccurro/dfba-ode-framework and people interested in453

contributing can request access by contacting the corresponding author (A.S.).454
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Table 2: Parameters of the simulations.

BM(0)
ECGlc

ECAc

∣∣∣∣∣
0

Glc(0) Ac(0) ξ ζ tx ψ0 Vψ
M Kψ

M φ0 Vφ
M Kφ

M ε

10−3 gDW mmol mmol
mmol

hr

mmol

hr
hr hr−1 hr−1 mM hr−1 hr−1 mM

Fig. S1S1(a), S1S1(c) 0.3 NA 10.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. S1S1(b), S1S1(d) 0.24 NA 0.82 0.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 1(a)1(a), 1(b)1(b), S5(a)S5(a)2.7 NA 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 3(a)3(a) 2.7
0.95

0.05
15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 3(b)3(b), S5(d)S5(d) 2.7
0.95

0.05
15.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9

Fig. S5(g)S5(g) 2.7
0.95

0.05
15.0 0.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9

Fig. S5(b)S5(b) 3.8 NA 15.0 0.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. S5(e)S5(e) 3.8
0.75

0.25
15.0 0.0 0.0 9.1 4.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9

Fig. 4(a)4(a), S5(h)S5(h) 3.8
0.75

0.25
15.0 0.0 0.0 9.1 4.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9

Fig. S5(c)S5(c) 6.0 NA 15.0 32.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. S5(f)S5(f) 6.0
0.75

0.25
15.0 32.0 0.0 9.1 4.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9

Fig. 4(b)4(b), S5(i)S5(i) 6.0
0.75

0.25
15.0 32.0 0.0 9.1 4.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9

M9G (m.c.) 2.7
0.95

0.05
15.0 0.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9

M9GA (m.c.) 6.0
0.75

0.25
15.0 32.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9

Table 3: Percentage of ECGlc biomass in M9G and M9GA conditions at time points relative
to glucose exhaustion, in hours.

-1.0 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.0 1.25 1.5

M9G 95.1 95.0 94.8 94.5 94.3 93.2 92.3 91.4 90.6 89.4 88.2

M9GA 78.7 78.6 78.1 77.3 76.5 73.2 70.1 67.2 64.5 62.0 59.7
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Phys, 10:113–121, 1838.487

[6] AJ Lotka. Elements of Physical Biology. Baltimore (MD), 1925.488

[7] V Volterra. Fluctuations in the Abundance of a Species considered Mathematically. Nature, 118:558–560, oct 1926.489

[8] J Monod. The Growth of Bacterial Cultures. Annu Rev Microbiol, 3(1):371–394, oct 1949.490

[9] Stefanie Widder, et al. Challenges in microbial ecology: building predictive understanding of community function and491

dynamics. ISME J, 10(11):2557–2568, nov 2016.492

[10] Hyun-Seob Song, et al. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review. Pro-493

cesses, 2(4):711–752, oct 2014.494
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[21] Sarah Boulineau, et al. Single-Cell Dynamics Reveals Sustained Growth during Diauxic Shifts. PLoS One, 8(4):e61686,514

apr 2013.515

[22] Brice Enjalbert, et al. Acetate Exposure Determines the Diauxic Behavior of Escherichia coli during the Glucose-516

Acetate Transition. J Bacteriol, 197(19):3173–81, oct 2015.517

[23] Troy E Sandberg, et al. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and518

Genetic Adaptive Strategies. Appl Environ Microbiol, 83(13):e00410–17, jul 2017.519

[24] Mark L. Siegal. Shifting Sugars and Shifting Paradigms. PLOS Biol, 13(2):e1002068, feb 2015.520

[25] Ana Solopova, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci U S A, 111(20):7427–32, may521

2014.522

[26] Guillaume Lambert and Edo Kussel. Memory and Fitness Optimization of Bacteria under Fluctuating Environments.523

PLoS Genet, 10(9):e1004556, sep 2014.524

[27] O. Kotte, et al. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol Syst Biol, 10(7):736–736,525

jul 2014.526

[28] Zachary A. King, et al. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations527

of Biological Pathways. PLOS Comput Biol, 11(8):e1004321, aug 2015.528

[29] Q K Beg, et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and529

constrains its metabolic activity. Proceedings of the National Academy of Sciences of the United States of America,530

104(31):12663–8, jul 2007.531

[30] Johan H van Heerden, et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science,532

343(6174):1245114, feb 2014.533

[31] K Nath and AL Koch. Protein degradation in Escherichia coli. II. Strain differences in degradation of protein and534

nucleic acid resulting from starvation. J Biol Chem, 246:6956–6967, 1971.535

[32] E Borek, L Ponticorvo, and D Rittenberg. PROTEIN TURNOVER IN MICRO-ORGANISMS. Proc Natl Acad Sci U536

S A, 44(5):369–74, may 1958.537

[33] Martin J. Pine. Heterogeneity of protein turnover in Escherichia coli. Biochim Biophys Acta - Gen Subj, 104(2):439–538

456, jul 1965.539

[34] Christine M. DeGennaro, Yonatan Savir, and Michael Springer. Identifying Metabolic Subpopulations from Population540

Level Mass Spectrometry. PLoS One, 11(3):e0151659, mar 2016.541

[35] Dominique Chu. Limited by sensing - A minimal stochastic model of the lag-phase during diauxic growth. J Theor542

Biol, 414:137–146, feb 2017.543
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