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Abstract

Microbes have adapted to greatly variable environments in order to survive both short-term per-

turbations and permanent changes. A classical, yet still actively studied example of adaptation to
dynamic environments is the diauxic shift of Escherichia coli, in which cells grow on glucose until
its exhaustion, and then transition to using previously secreted acetate. Here we tested different
hypotheses concerning the nature of this transition by using dynamic metabolic modeling. Towards
this goal, we developed an open source modeling framework integrating dynamic models (ordinary
differential equation systems) with structural models (metabolic networks), which can take into ac-
count the behavior of multiple sub-populations, and smooth flux transitions between different time
points. We used this framework to model the diauxic shift, first with a single E. coli model whose
metabolic state represents the overall population average, and then with a community of two sub-
populations each growing exclusively on one carbon source (glucose or acetate). After introducing
an environment-dependent transition function that determines the balance between different sub-
populations, our model generates predictions that are in strong agreement with published data. We
thus support recent experimental evidence that, rather than a coordinated metabolic shift, diauxie
would be the emergent pattern of individual cells differentiating for optimal growth on different sub-
strates. This work offers a new perspective on the use of dynamic metabolic modeling to investigate
population heterogeneity dynamics. The proposed approach can easily be applied to other biological
systems composed of metabolically distinct, interconverting sub-populations, and could be extended
to include single-cell level stochasticity.
Importance FEscherichia coli diauxie is a fundamental example of metabolic adaptation that is not
yet completely understood. Further insight into this process can be achieved by integrating experi-
mental and computational modeling methods. We present a dynamic metabolic modeling approach
that captures diauxie as an emergent property of sub-population dynamics in E. coli monocultures.
Without fine tuning the parameters of the E. coli core metabolic model, we achieve good agreement
with published data. Our results suggest that single-organism metabolic models can only approx-
imate the average metabolic state of a population, therefore offering a new perspective on the use
of such modeling approaches. The open source modeling framework we provide can be applied to
model general sub-population systems in more complex environments, and can be extended to include
single-cell level stochasticity.

Keywords: Metabolic network modeling, Microbial communities, Diauxic growth.

1 Introduction

In natural environments microorganisms are exposed to high fluctuations of nutrient and micronutrient
availability and have therefore evolved adaptation strategies, both short-term to respond to temporary
perturbations and long-term to increase evolutionary fitness [1]. We still lack a sound theoretical un-
derstanding of the mechanisms driving such strategies, but the recent technological advances in high-
throughput experimental techniques pave the way to novel approaches that integrate experimental and
theoretical biology [2]. Theoretical ecology describes ecosystems in mathematical terms as dynamic
organism-environment interactions [3]. As in statistical physics, individual behaviors in an ensemble re-
sult in observable emergent patterns that can be modeled with mathematical equations [4]. This is the
case for the earliest models of population dynamics developed by Verhulst [5], Lotka [6] and Volterra [7]
and for the pioneering work of Jaques Monod in modeling microbial growth [3]. With the rising academic
and industrial interest in the “microbiome”, systems biology approaches are becoming a new standard [9]
and more methods for the mathematical modeling of microbial communities are being developed [10, 11].
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In constraint-based stoichiometric modeling the metabolic network model of an organism is recon-
structed from its annotated genome and described mathematically as a stoichiometric matrix S. After
imposing the steady-state assumption and introducing thermodynamic and biological boundaries for the
metabolic fluxes ¥, flux balance analysis (FBA) [12, 13] defines an optimization problem in order to
identify one particular flux distribution in the solution space. As long as the objective function (which
imposes further biological assumptions on the system) is linear in the fluxes, the optimization problem
can be solved by linear programming (LP). FBA returns a unique solution for the objective function,
but the metabolic flux distribution is generally not unique, especially in genome-scale metabolic network
models (GEMs). Based on the hypothesis that metabolism has evolved to make efficient use of resources
and minimize waste, two specific methods were developed to extend FBA: parsimonious FBA (pFBA) [14]
and minimization of metabolic adjustment (MOMA) [15]. In pFBA a second LP is defined such that
the value of the objective function is set to the FBA solution and the new objective is the minimization
of the overall fluxes. MOMA was developed to simulate the response to the perturbation introduced by
gene deletion and is based on the principle that the organism will readjust its metabolism to a minimally
different configuration with respect to the wild-type optimum. Another extension of FBA, dynamic FBA
(dFBA) [16], allows partial recovery of the dynamic information lost under the steady-state assumption.
In the static optimization approach (SOA) that underlies dFBA, time is divided into discrete intervals
and a new FBA problem is solved at time i after updating the external conditions according to the
FBA solution at time i — 1. Approaches to model microbial communities with GEMs have been recently
reviewed by Succurro and Ebenhoh [17].

FBA and dFBA have been applied to study one of the most basic examples of metabolic transitions:
diauxie [16, 18, 19]. Discovered in the model organism Escherichia coli in 1941 by Monod [8, 20], diauxie
remains a topic of active research [21, 22, 23]. Under aerobic conditions with glucose as the sole carbon
source (also generally the preferred one), E. coli secretes acetate during growth, which it then consumes
once the glucose is exhausted. The molecular mechanisms driving this transition are still not completely
understood, but over the last few years the fundamental role of stochasticity and population heterogeneity
has been demonstrated experimentally [24], often with the support of mathematical models. Indeed, in
unpredictable natural environments with fluctuating nutrient availability and variable fitness landscapes,
homogeneous populations are more likely to face extinction, and bet hedging provides a selective advan-
tage [25]. Single-cell studies have suggested that the observed biphasic growth is possibly the effect of
stochastic gene expression [21], eventually co-regulated by memory mechanisms [26]. Kotte et al. [27]
systematically investigated bistability in a clonal E. coli population. After ruling out responsive switch-
ing as a homogeneous adaptation, their results strongly suggested that the heterogeneous adaptation
that results in two co-existing phenotypes was driven by responsive diversification (with a single pheno-
type diversifying in response to environmental changes) rather than stochastic switching (where the two
phenotypes would co-exist from the beginning). Although stochastic mathematical models have been
proposed to support those findings, metabolic modeling approaches are only considered suitable to de-
scribe homogeneous systems, with single organism GEMs representing the average population metabolic
state.

Varma and Palsson [18] performed the first dFBA analysis on E. coli, with a single GEM growing
aerobically first on glucose and then on the secreted acetate. Here we present a study of E. coli diauxic
growth on these two carbon sources, with the bacterial population modeled either as having an aver-
age, unique metabolic state (standard FBA and dFBA approach) or as the combination of two E. coli
populations adapted to one of the two carbon sources. We use a modeling approach that integrates
ordinary differential equation (ODE) models with dFBA, extending methods typically applied to study
the dynamics of multi-species communities to the investigation of emergent patterns from individual
behavior in monocultures. We implement three approaches: (i) we model a homogeneous yet smooth
shift, with a single E. coli GEM, by adapting the MOMA algorithm; (ii) we introduce the hypothesis of
sub-populations growing on specific carbon sources and model population transition as a purely stochas-
tic mechanism; and (iii) we introduce an environment-driven response. Our results suggest that, rather
than as a coordinated metabolic shift, diauxie can be modeled as the emergent pattern resulting from
sub-populations optimizing growth on different substrates in response to environmental changes. This is
much in agreement with experimental evidence from e.g. Kotte et al. [27], and offers a new perspective
on the use of dynamic metabolic modeling to investigate population dynamics. The proposed approach
can easily be transferred to studies of generic sub-populations or communities, and ultimately can be
expanded to investigate single-cell dynamics.
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2 Results

We ran simulations with an open source modeling framework developed to model ecosystem dynamics.
The models are ODE systems solved with integrating routines that at each integration step solve an FBA
problem. We first validated the E. coli GEM on the data from Varma and Palsson [18] (who reported
the first dFBA analysis of the glucose-acetate shift) and then used the calibrated model to reproduce the
independent sets of experiments from Enjalbert et al. [22] (who analyzed E. coli grown in aerobic batch
systems with different concentrations of glucose and acetate). In the standard dFBA approach, a popu-
lation is modeled with a unique GEM and fluxes instantaneously change to adapt to new environmental
conditions. In reality, however, transcriptional changes and flux rerouting may cause delays, which are
not captured by existing algorithms. Furthermore, dFBA might predict metabolic states in which more
carbon sources are simultaneously utilized, and it is not obvious that such an approach will correctly
capture the complexity of a population diversifying into metabolically distinct sub-populations. There-
fore, we modified the dFBA algorithm taking advantage of optimization strategies previously developed
for different biological questions and implemented novel concepts as well. In particular, we used either
pFBA [14] or an adaptation of MOMA [15] to solve the FBA problem at each time step, replicating the
standard dFBA approach or implementing a homogeneous yet smooth shift, respectively. The MOMA
algorithm was integrated into the dFBA routine by imposing that the solution of the FBA problem at
time ¢ is minimally different from the solution at time ¢ — 1. We tested three different hypotheses: (i)
homogeneous, smooth population shift; (ii) stochastic-driven and (iii) environment-driven sub-population
differentiation. We observed that dFBA with both pFBA and MOMA predicted abrupt transitions from
acetate catabolism to acetate anabolism, and condition-specific parameterizations were necessary to re-
produce the different data. We then modeled two E. coli sub-populations growing exclusively on glucose
or acetate. For this we extended the standard dFBA approach to include the process of population shifts.
We tested whether purely stochastic switches (ii) or rather a responsive diversification (iii) could capture
the diauxic behavior by modeling the population transitions either with constant rates (i) or with a
heuristic function dependent on carbon source concentrations (iii). We observed that only model (iii)
could reproduce data from different experiments with a unique set of parameters. We did not find signifi-
cant improvements using MOMA rather than pFBA within the same metabolic state, so the simpler pFBA
implementation was used in the sub-populations simulations where each model is fixed into one metabolic
configuration. Further details of the modeling approach are provided in Materials and Methods.

E. coli diauxie modeled with a uniform population. A single GEM was used to model the
average F. coli metabolic state and we compared the simulation results with the original data from Varma
and Palsson [18] (Fig. S1). The parameters for the simulations are reported in Tab. 1 and 2, and the
only flux constraints that we calibrated to the data were the oxygen uptake rate and the maximal acetate
secretion rate. A fixed cell death rate was introduced as previously described in [19], with a value from
the literature (Tab. 1). In these simulations, a lower absolute flux variation at each simulation time step
was observed with the MOMA implementation (Fig. S2). We used the same GEM model to reproduce the
results from Enjalbert et al. [22], changing only the initial values of biomass, glucose and acetate (Fig. 1
and S5). Although the pFBA simulation (Fig. 1(a)) showed a brief shift to growth on acetate at the time
of glucose exhaustion (~ 4 h), the MOMA simulation predicted complete growth arrest already at that
point, with a minimal acetate consumption to satisfy the ATP maintenance requirement implemented
in the GEM (Fig. 1(b)). Both simulations well captured glucose consumption and acetate secretion,
but neither of them was able to reproduce the slow acetate consumption observed experimentally. Even
after fine-tuning the constraint on acetate up-take to achieve a perfect match of the acetate consumption
data from Varma and Palsson [18], the model could not reproduce the acetate concentration dynamics
of the corresponding data from Enjalbert et al. [22] (data not shown). Therefore, we decided to avoid
fine-tuning of acetate uptake (Tab. 1). Both pFBA and MOMA simulations showed an abrupt change
in the flux distribution upon shifting from glucose to acetate consumption (Fig. S3). We evaluated the
agreement between experiment and simulation with the R? distance between in vivo and in silico data for
the biomass (pFBA R? = 0.989; MOMA R? = 0.982) glucose (pFBA R? = 0.993; MOMA R? = 0.993)
and acetate (pFBA R? = 0.277; MOMA R? = 0.409). In Fig. 2 we compare the flux distributions of our
simulation results to the experimental results reported by Enjalbert et al. [22] for over/under-expression
of key genes associated with glucose and acetate metabolism (represented graphically in the top panels).
First, we computed the flux solutions for F. coli growing on either glucose or acetate exponentially
(data not shown) and compared the fluxes through the relevant reactions in E. coli growing on acetate
to those in E. coli growing on glucose. Fig. 2(a) shows the absolute values for the flux results in the
two simulations, normalized between 0 and 1 for direct comparison with the qualitative representation
of the gene expression data (with 0 for non-expressed and 1 for expressed genes, respectively). The
simulation results were consistent with the experiments, with active reactions (dark green) related to
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Figure 1: Diauxic growth of E. coli modeled as a uniform population in batch conditions. Simulation (lines) is compared
| as a function of time. Biomass (blue, top sub-plots), glucose and acetate (red

to data (squares) from Enjalbert et al. |

and yellow, bottom sub-plots) are shown. The flux distribution at each time step is obtained with pFBA (a) or MOMA

(b).
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acetate consumption and anabolism (ACKr, PPCK, FBP, ICL, MALS) and inactive reactions (white)
related to glycolysis (PFK, PYK) during growth on acetate, and vice versa during growth on glucose.
PPS did not carry flux in either simulation. We then used the simulation results presented in Fig. 1 to
compare the metabolic fluxes before and after glucose exhaustion (GE), i.e. before and after the single
E. coli model shifts from growth on glucose to growth on acetate. Enjalbert et al. [22] compared gene
expression levels between samples taken at time (GE + 30 min) and (GE - 115 min). However Fig. 1 shows
that according to the simulation, growth has already stopped after 30 min from the GE point. Indeed
comparing the absolute values of fluxes taken at time (GE 4 30 min) and (GE - 115 min), we found that
both pFBA and MOMA simulations qualitatively captured the down regulation trends, whereas neither
reproduced the observed up-regulation (data not shown). Fig. 2(b) shows the difference in absolute values
of fluxes taken at time (GE 4 18 min) and (GE - 115 min), where in pFBA simulations growth is still
observed. In this case, both simulations qualitatively captured most of the up/down regulation trends.
Fig. S4 shows the metabolic network (modified from the Escher [28] map for the E. coli core model)
with reactions of Fig. 2(b) highlighted and color-coded according to the gene expression data. Finally,
we reproduced the other experimental scenarios from Enjalbert et al. [22] with the uniform population
model, adjusting only the initial values of biomass, glucose and acetate. We observed that when high
acetate concentrations are present in the medium a uniform shift can well reproduce the biomass profile
(Fig. S5(c)), while this is not the case when only low acetate concentrations are available (Fig. S5(b)).
E. coli diauxie modeled with a mixed population. We used two GEMs (same parameter
values as before) to model E. coli monoculture as a mixture of two populations, one adapted to grow on
glucose and one adapted to grow on acetate. The two models ECqj. and ECa. are hence constrained to
exclusively take up the corresponding carbon source. Two transition functions, dependent on acetate or
glucose concentrations, are introduced to model cellular differentiation and shift from one population to
the other (see Materials and Methods for details). We ran simulations to compare the different scenarios
investigated experimentally by Enjalbert et al. [22]. Initial values of biomass, glucose and acetate were
adjusted to the corresponding datasets. The transition rates, as well as the initial population ratios,
were chosen following the assumption, supported by a simple mathematical model, that in constant
environments the populations will converge to a constant ratio (see Text S1 for details). Fig. 3 shows
simulations for the same condition as Fig. 1(a), with same absolute initial biomass, distributed in this case
as 95% ECgie and 5% ECa.. This initial ratio was chosen considering the range of steady-state values
for the population ratio (reported in Table S1) as well as considering that it is reasonable to assume
that a higher number of cells will be adapted to grow on glucose, which is the carbon source on which
laboratory cultures are usually maintained. Fig. 3(a) shows the simulation results for a scenario without
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Figure 2: Comparison of experimental information on gene expression levels with simulated flux distributions. The
top plots represent qualitatively the gene expression data from Enjalbert et al. [22]. Flux solutions in the simulations
for the reactions associated to the reported key genes are compared (a) between two independent simulations with E.
coli exponentially growing either on acetate or on glucose; (b) within the same simulation (Fig. 1, growth on glucose
simulated with MOMA or pFBA) before and after the point of glucose exhaustion.
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transitions between the two states, whereas the results of Fig. 3(b) were obtained with active transition
functions, defined here by constant transition rates as reported in Tab. 2. Although both Fig. 3(a) and
Fig. 3(b) well capture the biomass (R? = 0.987 and R? = 0.990, respectively) and glucose concentrations
(R? = 0.996 and R?> = 0.997, respectively), only the simulation including the population transition
realistically reproduced the acetate consumption (R? = 0.336 and R? = 0.951 respectively), as well as a
lag phase before culture crash. Neither of the two simulations captured the eventual recovery of growth
hinted by the last data points. We reproduced two other results (where only biomass measurements are
available) from Enjalbert et al. [22], again using the same GEMs and changing only the initial conditions
(biomass quantity and distribution among ECgj. and ECa.) and the experimental setup accordingly. By
modeling the population transition with the same constant rate, we were able to explain the biomass
profile in the case where E. coli is grown on 15 mM glucose and after glucose exhaustion the acetate
concentration is maintained at around 4 mM (Fig. S5(e), R? = 0.986), but not in the case where E. coli
is grown on 15 mM glucose and 32 mM acetate, and after glucose exhaustion the acetate concentration
is maintained at the same high level (Fig. S5(f), R? = 0.727). We therefore introduced a dependency
of the transition functions on the substrate concentration (see Materials and Methods for details) that
well captures all the experimental scenarios with a unique set of parameters (Fig. S5(g), S5(h), S5(i)).
Fig. 4(a) shows that an E. coli population starting with 95% ECg). and 5% ECa. well describes the
biomass dynamics (R? = 0.985) and the glucose exhaustion point after around 4 h when acetate is
maintained at 4 mM. Again, without fine-tuning the GEM simulation parameters, Fig. 4(b) shows that
an E. coli population starting with 75% ECql. and 25% ECa. reproduces the biomass measurements
(R? = 0.940) and the glucose exhaustion point after around 4 h also in the experimental setup with
acetate maintained at 32 mM. The effect of varying the initial biomass ratios in the different experimental
conditions is shown in Fig. S6. Overall, simulations starting with 95% ECg). and 5% ECa. or 75% ECqic
and 25% EC 4. did not show strong differences, but further reducing the percentage of ECgj. (and leaving
the range of steady-state values of Table S1) resulted in drastic changes to the shape of the growth curves.
The initial condition of 75% ECgi. and 25% ECa. population distribution for Fig. 4(b) is also justified
by a difference in the experimental initial values for the biomass quantity (see Fig. S7).

Lag time for growth on acetate explained with population distribution. Enjalbert et al. [22]
showed different trends in the lag time of E. coli cultures required to achieve maximal growth after
GE. In their switch experiments, they sampled at different time points “mother cultures” of E. coli
cells growing in batch conditions on 15 mM glucose alone (M9G condition) or on 15 mM glucose and
32mM acetate (M9GA condition), and re-inoculated the sampled cells as “daughter cultures” into fresh
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Figure 3: Diauxic growth of E. coli modeled as a mixture of two E. coli populations ECqic and ECac growing exclusively
on glucose or acetate, respectively, and without (a) or with (b) possibility to shift from one population to the other.

Simulation (lines) is compared to data (squares) from Enjalbert et al. |

] as a function of time. The upper plots show

simulation results (using pFBA) for ECqic and ECac biomasses (light blue and aqua, respectively) and the observable
E. coli biomass (black line simulation, blue dots data). The bottom plots show glucose and acetate (red and yellow

respectively).
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Figure 4: Diauxic growth of E. coli modeled as a mixture of two E. coli populations ECgic and ECac growing exclusively
on glucose or acetate, respectively, with possibility to shift from one population to the other. (a) E. coli grows on 15 mM
glucose and after glucose is exhausted, acetate concentration is kept at about 4 mM. (b) E. coli grows on 15 mM glucose
and 32 mM acetate and after glucose is exhausted, acetate concentration is maintained at around that concentration. The
upper plots show simulation results (using pFBA) for ECgic and ECac biomasses (light blue and aqua lines, respectively)

and the observable E. coli biomass (black line simulation, blue dots data from Enjalbert et al. |
show simulation results for glucose and acetate (red and yellow lines respectively).

). The bottom plots
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Figure 5: Simulation (dark and light gray points) and experimental (orange and yellow points, data from Enjalbert et
al. [22]) results for the delay of daughter cultures before reaching maximal growth after media switch. Mother cultures
are grown either on 15 mM of glucose (M9G, (a)) or 15 mM of glucose and 32 mM of acetate (MIGA, (b)). Daughter
cultures are re-inoculated into fresh media with either 15 mM of glucose (M9G, square and plus markers) or 45 mM of
acetate (M9A, diamond and cross markers). The simulation error bars are obtained by varying the initial population
ratios (obtained from sampling the simulated mother cultures) by +15%.

»s  medium exclusively containing glucose (M9G condition) or acetate (M9A condition). We replicated this
29 experiment in silico by running first simulations under the M9G and M9GA conditions. For the M9G
20 mother culture, we used the simulation of the mixed ECgj. and ECa. population shown in Fig. 3(b),
2 because the experimental conditions are the same. For the MIGA mother culture, we did not have an
2 experimental reference dataset and we simulated a new scenario similar to that shown in Fig. 4(b), with
213 the same initial population composed of 75% ECqe and 25% ECac, but without the feeding of additional
2 acetate. The GE time point is about 4.6 h for M9G and 3.9 h for M9GA, consistent with the observations
25 of Enjalbert et al. [22] (data not shown). The in silico mother cultures were sampled at regular time
26 intervals to obtain the initial biomass distribution of ECg). and ECx. for the daughter cultures (reported
27 in Tab. 3) and the lag time of each daughter culture was computed (see Materials and Methods for
28 details). Fig. 5 shows the simulation results compared with the experimental data from Enjalbert et
20 al. [22]. The error bars on the simulated lag time were obtained by varying the initial biomass ratio of
20 the daughter cultures by +15%. A quantitative agreement between simulation and experimental results
21 was only achieved in the MIG-MIG switch experiment (Fig. 5(a)) with the correct prediction of almost
22 zero lag time for the daughter cells, but the trend for the delay to reach maximal growth was in general
23 qualitatively reproduced also for the other scenarios. According to the simulations, cultures switched
20 from MIG to M9A (Fig. 5(a)) need about 1.5 h before reaching maximal growth, which is more than
25 twice the duration observed experimentally. For cultures pre-grown in M9GA (Fig. 5(b)), we observed
26 both in simulations and in experiments a decreasing lag time for daughter cultures sampled after GE for
27 the MIGA-M9IA switch, and an increasing lag time for the MIGA-MIG switch. Additional studies are
us  reported in Fig. S8. In particular, Fig. S8(a-d) shows the dependence of the lag time in the daughter
20 cultures on the maximal transition values and Fig. S8(e-h) shows the same dependence, including also
0 the distribution of the biomass ratio in the mother cultures, for a limited set of parameters.

» 3 Discussion

2 We have investigated a fundamental example of metabolic adaptation, namely the diauxic growth of
3 F. coli on glucose and acetate, aiming to test whether a dynamic metabolic modeling approach can
25 capture diauxie in monocultures of E. coli as the observable emergent result of individual (sub-population)
25 behavior. To this end, we first developed a modeling framework to integrate dynamic models (ODE
6 systems) with structural models (metabolic networks) and then performed simulations to reproduce
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published experimental results in silico.

Avoiding fine-tuning of model parameters.  One recurrent criticism of stoichiometric and
constraint-based modeling approaches, such as FBA, is that they can easily be adjusted to reproduce
experimental results by ad hoc changes of flux constraints. Indeed, we observed that a condition-specific
fine-tuning of the constraint on acetate uptake could reproduce fairly well the growth dynamics of the
different experiments (data not shown). However, the change of such constraint from one experimental
condition to another is not biologically justified. Although some extensions of the FBA approach such
as FBA with molecular crowding (FBAwMC [29]) provide reasonable ways to constrain the metabolic
fluxes and were shown to reproduce carbon consumption hierarchies, they also require extensive parame-
terization. We therefore chose to use the basic FBA approach, limiting the number of constraint imposed
and with parameters mostly from experimental measurements (Tab. 1). In the case of oxygen uptake
and acetate secretion, we calibrated the constraints using the data from Varma and Palsson [18], where
an F. coli diauxic shift from glucose to acetate was first simulated using a genome scale model. The
FBA parameters were left unchanged to reproduce the independent experiments reported by Enjalbert
et al. [22]. The use of an independent set of data to calibrate the FBA model parameters is a possible
way to improve the confidence in subsequent results. Further model parameters of the ODE system were
chosen according to reasonable hypotheses, and were adjusted slightly to achieve fair agreement with the
experimental results, consistently among all the simulations. The initial conditions were specific to the
experiments we aimed to reproduce.

Standard dFBA allows for abrupt metabolic readjustments. The flux distributions obtained
from FBA solutions represent an average picture of the metabolic state of a population, which is in general
modeled using a single genome scale model. Therefore, standard dFBA implementations, in which the
FBA constraints evolve according to the updated external conditions, will reproduce the average change
in metabolic state of the population in response to external variations. This is equivalent to assuming
that a population undergoes a coordinated, uniform metabolic shift under changing environmental con-
ditions. Furthermore, such transitions are generally abrupt with dFBA models. We therefore tested two
alternative approaches to simulate the diauxic shift in uniform F. coli monocultures, solving the FBA
problems either with pFBA (mostly equivalent to the usual dFBA implementations) or with an adapta-
tion of the MOMA algorithm. In the latter case, instead of minimizing the difference in flux distribution
between a “wild-type” GEM and a modified one (original MOMA implementation), we used the same
concept to integrate the dFBA system while also imposing the following condition: at time ¢; the flux
solution differs minimally from that at time ¢;_1, where the time steps are set by the integration routine.
Contrary to our expectations however, this approach did not achieve smoother metabolic adjustments in
the system in response to the changing external conditions. Instead, both implementations resulted in
abrupt changes in the flux distributions following the shift from glucose to acetate metabolism (Fig. S3).
More sophisticated implementations of a dynamic MOMA model (e.g. computing the minimal adjust-
ment based on a subset of biologically relevant variables) might succeed in achieving smooth metabolic
transitions, but will require the introduction of additional parameters and ad hoc biological hypotheses.
In a similar way, biologically justified extensions of FBA such as FBAwWMC [29] might provide better
descriptions of an average and uniform population-level metabolism, but typically need the empirical
determination of large numbers of organism-specific parameters.

Monocultures can be modeled as multi-sub-population systems to capture individual
heterogeneity. With the introduction of two basic assumptions (first, there are two distinct metabolic
states consuming either glucose or acetate; second, transition from one state to the other is driven
by glucose and acetate concentrations) we were able to capture all the experimental trends published by
Enjalbert et al. [22] with the same computational model. The transitions between two states were modeled
as Hill functions of the corresponding substrate concentrations with a noise offset representing a constant,
small noise component in cell regulation. Although other transition laws could have been chosen, Hill
functions conveniently model concentration-dependent shifts between two states. For example, if acetate
is highly abundant, more cells in the glucose-consumption state will shift to the acetate-consumption
state in response to the change in environment. Finally, the introduction of a transition efficiency term
was motivated by the observation that cells can get “lost in transition”, an effect that was estimated
to account for the death of ~7% of yeast cells, which cannot initiate glycolysis following a shift to
high glucose levels [30]. Using a simple mathematical model (Text S1) we identified ranges for the
parameters of the transition functions and selected reasonable values that would return good agreement
between simulations and experiments. Both values for the constant transition rate (4% h=!) and for
the maximal transition rate (20% h~!) were in good agreement with measured average protein turnover
rates in E. coli cultures from the literature [31, 32, 33]. Simulation results were mostly in very good
agreement with the experimental data and our results strongly further support the idea, suggested over
the last few years by independent research on different organisms [21, 25, 34], that monocultures are
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an ensemble of sub-populations in different metabolic states, partially regulated by the environmental
conditions. When the acetate concentrations were too low to support growth, it was sufficient to model
the transition as a constant random process. In contrast, in order to reproduce the data under conditions
with high acetate concentrations, we needed to introduce an active transition rate dependent on substrate
concentrations. Interestingly, this assumption alone is sufficient to model the experimentally observed
growth rate, without further fine tuning of model parameters. The introduction of substrate-dependent
transition functions is also consistent with the experimental observations of Kotte et al. [27], supporting
the hypothesis that a monoculture undergoes diversification in response to environmental changes.

The lag phase between growth on different substrates can be explained by population
distributions. With standard dFBA simulations, the metabolic transition during the shift from one
carbon source to another is abrupt, and no lag phase is observable. This is rarely the case and, most
remarkably, the duration of the lag phase between the exhaustion of the favored carbon source and the
resumption of optimal growth on the alternate carbon source is highly variable under different environ-
mental conditions. This observation can easily be explained as an emergent property of sub-population
dynamics. Our simulations are consistent with the explanation that the delay in the resumption of full
growth actually depends on the relative abundance of the two sub-populations. Although the simulation
results did not reproduce the experimental data quantitatively, all qualitative trends were fully explained.
Several factors may explain these discrepancies. For example, the lack of experimental data concerning
the mother cultures (in terms of biomass, glucose and acetate dynamics) made it impossible to cali-
brate the initial model population. This could introduce a significant bias in the later sampling and
determination of the sub-population ratio, thus strongly influencing the quantification of the lag time,
which is highly correlated with the population distribution (Fig. S8). Solopova et al. [25] showed that
the density of a Lactococcus lactis population (translating in practice to the rate at which the primary
carbon source was consumed) played a significant role in determining the proportion of cells successfully
transitioning to growth on the secondary carbon source. The connection between lag time and sub-
population distribution could in principle be exploited to estimate initial population distributions from
lag time measurements. However, with the currently available data it is difficult to assess the robustness
and reliability of such predictions, and further investigation is therefore required, including devoted ex-
periments to determine initial conditions. An additional source of discrepancy between our quantitative
results and the experimental measurements could be the experimental procedure itself. For example,
abrupt changes in conditions, such as the re-inoculation of daughter cultures into a different medium
in the switch experiments might select for additional adaptation strategies. Interestingly, we observed
a dramatic improvement in the quantitative agreement between experiment and simulation by relaxing
the condition imposing no growth for populations inoculated on the “wrong” carbon source (data not
shown). By allowing the glucose-consuming population sampled from glucose mother cultures to growth
more slowly on acetate, we mimick a situation in which cells store resources and are able to survive a
bit longer. On the other hand, allowing reduced growth on acetate (glucose) for the glucose-consumer
(acetate-consumer) population that was exposed to both carbon sources in the mixed mother cultures
could be a proxy for a memory effect. Bacterial cells do show memory effects upon changes in environ-
mental conditions [26], but to explore this potential explanation further, more systematic experiments
would be necessary to carefully and reproducibly determine the lag times as functions of external param-
eters. Finally, a recent stochastic model of the regulatory network of diauxic growth in E. coli suggests
that the limitations of biological sensors are responsible for the lag phase [35]. From these results we can
infer that in our model the transition functions, currently depending on the absolute concentration of
one carbon source at a time, might not be able to capture the fine details of population shifts. A possible
extension would be to introduce more complex transition mechanisms dependent on relative concentra-
tions of primary and secondary carbon sources, a process that would need dedicated experiments for the
construction and validation of the new transition functions.

Sub-populations in the dynamic metabolic modeling approach. We developed a modeling
framework to perform FBA simulations embedded in a system of ODEs. Building on previous methods
and approaches [19, 36], we further extended the standard dFBA implementation and introduced novel
concepts. In particular, standard dFBA approaches assume that fluxes can instantaneously change to
adapt to new environmental conditions, and flux solutions at subsequent time steps might differ signif-
icantly. This is an obvious limitation when aiming to capture diauxic shift, where lag phases, highly
dependent on the environmental conditions, are typically observed. We implemented the MOMA algo-
rithm (originally developed to model the response to genetic perturbations in static FBA) in dFBA to
minimize the metabolic adjustment between different time points. Furthermore, we integrated dynamic
mechanisms into dFBA that cannot be included in metabolic models, such as population transitions.
Indeed, although the use of dFBA to model sub-populations bears some similarities to other platforms
for the simulation of microbial communities, a notable difference in our formulation is the capacity of
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sub-populations to interconvert. The current study relied on the a prior: knowledge that only two carbon
sources would be available to E. coli, thus motivating the development of a two sub-population commu-
nity, but in principle an arbitrary number of sub-populations can be defined, and more generic transition
functions introduced. Further experiments, in particular single-cell studies, could be designed to define
and parameterize these transition functions. Thanks to the object oriented design of the framework, it
is relatively easy to introduce other functions regulating the constraints on specific reaction fluxes in
the FBA problem. In this way, different hypotheses can be extensively tested to better understand how
to capture regulatory dynamics in dFBA. Notably, the methods developed in this framework to study
population heterogeneity could then be transferred to other platforms more specific for microbial com-
munity modeling where different features are implemented (e.g. spatial structure [19] or community-level
objectives [37]). Finally, the framework could also be developed further to include stochastic mechanisms,
such as mutations that would alter the function of metabolic genes. Indeed, our implementation of the
dFBA algorithm is able to call different methods at each time step, e.g. to update the flux rates, and a
regulatory function with random components could be in principle defined.

Outlook. There is extensive experimental evidence that bacteria differentiate into sub-populations
as a result of survival strategies [25, 27]. Simulations based on standard dFBA model the dynamics of
cells by predicting the putative average behavior of a whole population. For example, if a population of
cells globally utilizes a combination of two carbon sources, dFBA would predict metabolic states in which
both carbon sources are utilized simutaneously. Our model assumes that cells are either in the glucose
or acetate consuming state, with an instantaneous transition between these two sub-populations that
follows a simplistic rule which cannot capture intermediate states. This simplification is both practical
and plausible when we observe population dynamics as the emergent properties of individual behavior,
and it works well in dynamically changing environments with a continuous transition. However, rather
than having a well-defined metabolic state, especially during the transition between states, cells might
exhibit a mixed state, which could be described as a superposition of 'pure’ states, analogous to the state
vectors in quantum physics. Furthermore, our approach suggests a fundamental difference in the strategies
to account for metabolic fluxes in heterogeneous populations, because the average fluxes in a uniform
population might differ from the cumulative average fluxes of sub-populations. Further investigations of
this novel concept of superimposed metabolic states will provide a promising new approach to study the
principles of metabolic regulation.

4 Materials and Methods

FBA methods. In stoichiometric models, the stoichiometric matrix S(m x n) is defined with the row
and column dimensions corresponding to the numbers of metabolites m and reactions n respectively, the
elements s;; being the stoichiometric coeflicients of metabolite ¢ taking part in reaction j. FBA defines
and solves the following LP problem:

maximize Z, (1)
subject to :
Sv =0, (2)
Lb; <wvj; <ub.;. (3)

The steady-state assumption (Eq. 2) gives a system of equations that is under-determined and has an
infinite number of solutions. Constraints on the fluxes (Eq. 3) allow us to restrict the solutions to a convex
solution space, but still result in an infinite number of solutions. The definition of an objective (Eq. 1)
selects one solution, but generally this is still not unique for large (genome-scale) metabolic networks.
We consider two extensions to the FBA problem definition, namely pFBA [14] and MOMA [15]. We
then use these two methods to solve the FBA problem in an approach similar to dFBA [16]. Assuming that
metabolism evolves towards the efficient utilization of resources, pFBA finds the minimal flux distribution
that returns the same objective defined by the FBA problem. We use the pFBA implementation from
COBRApy [38] with maximal flux through the biomass reaction as the objective function. Considering
that metabolism must respond quickly to perturbations, MOMA implements a quadratic algorithm to
find the FBA solution after gene deletion that is most similar to the optimal wild-type configuration. In
our case, we do not introduce modifications to the metabolic network but rather require that the MOMA
solution obtained at time ¢;_; is used to compute the MOMA solution at time ¢; as the minimally different
solution that satisfies the objective function. Also here the objective function is maximal flux through the
biomass reaction. We use the MOMA implementation from COBRApy [38] in the linear approximation,
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23 with a slight modification to allow the LP problem to be reset in an iterative manner, which is necessary
a4 to run MOMA within the dFBA approach.

Modeling framework integrating ODE and FBA. In the SOA of dFBA the boundary conditions
in Eq. 3 are updated at discrete time steps according to the solution of the FBA problem in the previous
time interval. Assuming quasi-steady-state conditions, i.e. that metabolism readjustments are faster than
external environmental changes, dFBA can approximate the dynamic response of a GEM to a changing
environment. Our approach is an extension of dFBA. The model is built as a system of ODEs, whose
dimension depends on the dynamics to be modeled. Each ODE describes the variation in time of biomass,
metabolites, or other regulatory /dynamic processes. The biomasses and the metabolites can, but do not
necessarily, be linked to the corresponding variables in a GEM. Their ODEs vary according to a function
that can then depend on the flux solutions

dg;

= F(5:7,q.1). 4
o F(p;v,q,t) (4)

5 The ODE system is then solved using integration routines with an automated choice of time step. Each
w26 integration step solves the FBA problem (or pFBA, or MOMA) to obtain the current reaction rates for
21 Eq 4, updates the metabolite quantities according to the FBA solution, re-computes the flux boundaries
w28 of Eq. 3 according to specific reaction kinetics (typically Michaelis-Menten enzyme kinetics), and re-
w9 defines the FBA problems with the new boundaries and/or other regulatory mechanisms defined by the

430 USer.

431 The modeling framework is written in Python (Python Software Foundation, https://www.python.org/)
w2 following the object-oriented programming (OOP) paradigm for efficiency and flexibility. The framework

a3 uses functionality from the following third-party packages: numpy [39], scipy [40], matplotlib [41], CO-

1 BRApy [38], and pandas [12]. In particular, we use COBRApy methods to solve the FBA problems and

s5 Python integrators from the scipy.integrate method ode to solve the system of ODEs.

E. coli uniform population model. We used a previously reported core version of E. coli GEM [13]
downloaded from http://bigg.ucsd.edu/models/e_coli_core. The E. coli model EC,,y is constrained
on the consumption of “any” carbon source (glucose, Gl, or acetate, Ac) solely by the environmental
conditions, and the lower bound of the exchange reactions (EX_Glc_e and EX_Ac_e respectively) follows
two simple Michaelis-Menten kinetics:

Ly e = —Vﬁ’l[cﬂ][ﬂ(ﬁ, (5)
Lbp R e = —VECM- (6)
The ODE system is defined as
s _ s BMgc,, — 0BMrc,., )
dd—i” = Uy Giee - BMEC,,, + Ered-bateh; (8)
O BT, BMa,,. o)

a6 where v, is the reaction rate of the biomass function (proxy for growth rate) in the FBA model, ¢ is the
a7 cell death rate and Egoq-paten is a positive rate under fed-batch conditions and zero under batch conditions.
s Parameters and initial conditions are summarized in Tab. 2. Either pFBA or MOMA can be used to
a0 solve the FBA problem.
E. coli mixed population model. Two E. coli core models are loaded and defined as either Glucose
consumer (ECg) or Acetate consumer (ECx.) by switching off uptake of the other carbon source

Lb e = — ﬁl[c}ﬂ[f_l]f(%a (10)
Lbgx e = 0, (11)
Lbgx e =0, (12)
LbECx  — e [Ad (13)

EX_Ace — M m :
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Table 1: Fixed parameters for all simulations. The lower bound for oxygen exchange as
well as the upper bound for acetate exchange are calibrated on the data from Varma and

Palsson [18]. The death rate ¢ is computed assuming a cell death of 1% per generation [44]
and a generation time of 20 min. The Michaelis-Menten parameters for substrate uptake
are taken from Gosset [15]. These parameters were also used in previously published dFBA
implementations [46].
Gl Gl A A
L.B. U.B. o A2V Ky © Ve Ky'
EX_02 EX_Ac
mmol mmol - mmol M mmol M
2DW hr eDW hr ' eDW hr m eDW hr "
Value -11.5 3.0 0.03 10.0 0.01 10.0 0.01
The ODE system is defined as
dBMEcy,, EC
TGI = (Uu G =1 — 5) *BMEcg,. +€¢BMEic,., (14)
dBMEgc,. EC
TA = (UH re—¢— 6) : BMECAc + EwBMECGm’ (15)
dGl
T bk Biee - BMECG,. + Upx Giee - BMBCA. + red-bateh, (16)
dAc EC EC
W = UEXEACc,e ’ BMECGlc + (’UEXfCC}lc,e + C : H(t - ti)) : BMECAC’ (17)

where ¢ - H(t — t,) is a Heaviside function activated at the time ¢, of glucose exhaustion in order to
keep acetate constant, and 1) and ¢ are functions that model the cellular shift from ECg). to ECa. and
ECa. to ECge, respectively, and 0 < e < 1 is a positive factor representing the transition efficiency. The
functions ¥ and ¢ are modeled as Hill functions with a noise offset

) = P [Ac]"
H(Ad) = v+ Vi P (18)
B P [G1]™
G =60+ Vi (19

and for Vf/’[ = V]@ = 0 they are constant transition rates. For the simulations presented herein, we used a
Hill coefficient n = 5. Indeed, simulations seem to work best for a transition function with a high degree
of cooperativity, and the results are robust with respect to small deviations relative to this value. The
other parameters and initial conditions, specific to the different simulations, are summarized in Tab. 2.
For mixed-population simulations, pFBA is used to solve the FBA problem.

Switch experiment simulations. Two FE. coli mixed population model simulations are run as
“mother cultures” as shown in Tab. 2 for “M9G” and “M9GA” conditions (glucose and glucose plus
acetate, respectively). From each mother culture we sample 11 time points between —1 and +1.5 h from
the corresponding GE time (4.6 h for M9G and 3.9 h for MIGA) to obtain the biomass ratio between
ECglc and EC4. used as the initial condition for the re-inoculation simulations. The percentage of ECq)c
biomass at these time points is shown in Tab. 3. The “daughter cultures” are then grown under “M9G”
glucose-only or “M9A” acetate-only conditions (see Tab. 2), yielding 44 simplified simulations, 11 for
each of the following 4 switch experiments: M9G to M9G; M9G to M9A; MIGA to MIG; MIGA to
MOA. For each simulation, the lag time is computed according to Enjalbert et al. [22]:

_ hl(Xl/XQ)

Hmax

tag = 11 (20)
where Xy is the total initial E. coli biomass, X; is the total E. coli biomass value at time ¢; (1.5 h as
in [22]), and fimax values are used according to Enjalbert et al. [22].

Published experimental data. Experimental data (values with standard deviations, when avail-
able) from Enjalbert et al. [22] were kindly provided by Prof. Enjalbert. The data from Varma and
Palsson [18] were extracted from the original publication using WebPlotDigitizer [47].

Availability of data and materials. The version of the modeling framework used to obtain the
results presented in this manuscript (v1.1) is publicly available with instructions to install and run sim-
ulations at https://github.com/QTB-HHU/dfba-ode-framework_ecoli-diauxie. The development
version is hosted on https://gitlab.com/asuccurro/dfba-ode-framework and people interested in
contributing can request access by contacting the corresponding author (A.S.).
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Table 2: Parameters of the simulations.
ECqgic
BM(0) o2t Gle(0) Ac(0) & ¢t % Vi Ku g Vi K e
C
_3 0 mmol mmol 1 1 1 N
10 gDW mmol mmol hr hr hr mM hr hr mM
hr hr
Fig. S1(a), S1(c) 0.3 NA 10.8 0.4 00 00 00 00 00 00 00 00 00 00
Fig. S1(b), S1(d) 0.24 NA 0.82 0.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. 1(a), 1(b), S5(83.7 NA 15.0 0.0 00 00 00 00 00 00 00 00 00 00
0.95
Fig. 3(a) 2.7 005 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0
0.95
Fig. 3(b), S5(d) 2.7 005 15.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.04 0.0 00 09
0.95
Fig. S5(g) 2.7 0,05 15.0 0.0 0.0 0.0 00 0.04 02 300 0.04 02 50 09
Fig. S5(b) 3.8 NA 15.0 0.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. S5(e) 3.8 % 15.0 0.0 0.0 91 40 0.04 0.0 0.0 0.04 0.0 00 09
0.75
Fig. 4(a), S5(h) 3.8 0% 15.0 0.0 00 91 40 004 02 300 004 02 50 09
Fig. S5(c) 6.0 NA 15.0 32.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. S5(f) 6.0 % 15.0 32.0 0.0 91 40 0.04 0.0 0.0 0.04 0.0 00 09
0.75
Fig. 4(b), S5()) 6.0 0% 15.0 32.0 0.0 91 40 004 02 300 004 02 50 09
0.95
MIG (m.c.) 2.7 005 15.0 0.0 0.0 0.0 0.0 0.04 02 300 0.04 0.2 50 09
0.75
M9GA (m.c.) 6.0 025 15.0 32.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
Table 3: Percentage of ECgic biomass in M9G and M9GA conditions at time points relative
to glucose exhaustion, in hours.
-1.0 -0.5 -0.25 0.25 0.5 0.75 1.0 1.25 1.5
MIG 95.1 94.8 94.5 94.3 93.2 92.3 91.4 90.6 89.4 88.2
M9GA 78.7 78.1 77.3 76.5 73.2 70.1 67.2 64.5 62.0 59.7
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Supplemental material for this article may be found at xxx
FIGURE S1, S2, S3, PDF file, 962 KB.
FIGURE S4 EPS file, 2.2 MB.
TEXT S1, TABLE S1, PDF file, 228 KB.
FIGURE S5, PDF file, 406 KB.
FIGURE S6, S7, PDF file, 388 KB.
FIGURE S8 PDF file, 449 KB.
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