

1 A novel mutual information estimator to measure spike train correlations in a model thalamocortical
2 network

3

4

5 Ekaterina D. Gribkova^{1,3}, Baher A. Ibrahim^{2,3}, and Daniel A. Llano^{1,2,3}

6

7

8 1. Neuroscience Program, University of Illinois at Urbana-Champaign

9 2. Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign

10 3. Beckman Institute for Advanced Science and Technology, Urbana, Illinois

11

12

13 Abbreviated Title: Novel MI Estimator for a Model Thalamocortical Network

14

15

16 Corresponding Author:

17 Ekaterina D. Gribkova

18 gribkov2@illinois.edu

19 405 N Mathews Ave,

20 Urbana, IL 61801

Novel MI Estimator for a Model Thalamocortical Network

21 **Abstract**

22 The impact of thalamic state on information transmission to the cortex remains poorly
23 understood. This limitation exists due to the rich dynamics displayed by thalamocortical networks and
24 because of inadequate tools to characterize those dynamics. Here, we introduce a novel estimator of
25 mutual information and use it to determine the impact of a computational model of thalamic state on
26 information transmission. Using several criteria, this novel estimator, which uses an adaptive partition, is
27 shown to be superior to other mutual information estimators with uniform partitions when used to analyze
28 simulated spike train data with different mean spike rates, as well as electrophysiological data from
29 simultaneously recorded neurons. When applied to a thalamocortical model, the estimator revealed that
30 thalamocortical cell T-type calcium current conductance influences mutual information between the input
31 and output from this network. In particular, a T-type calcium current conductance of about 40 nS appears
32 to produce maximal mutual information between the input to this network (conceptualized as afferent
33 input to the thalamocortical cell) and the output of the network at the level of a layer 4 cortical neuron.
34 Furthermore, at particular combinations of inputs to thalamocortical and thalamic reticular nucleus cells,
35 thalamic cell bursting correlated strongly with recovery of mutual information between thalamic afferents
36 and layer 4 neurons. These studies suggest that the novel mutual information estimator has advantages
37 over previous estimators, and that thalamic reticular nucleus activity can enhance mutual information
38 between thalamic afferents and thalamorecipient cells in the cortex.

39 **Keywords:** mutual information, adaptive partition, thalamus, thalamic reticular nucleus, bursting

40

41

42

Novel MI Estimator for a Model Thalamocortical Network

43 **Introduction**

44 Estimating the degree to which a signal is conserved as it passes through a neural network
45 requires methods that are both sensitive to spike timing and that take into account nonlinear dependencies
46 between spike trains. These requirements are particularly necessary in thalamocortical networks, which
47 encode stimuli nonlinearly (Kayser et al. 2001; MacLean et al. 2005; Miller et al. 2014; Watson et al.
48 2008) and rely on the precise timing of inputs to process sensory information (Rose and Metherate 2005).
49 Sensory thalamocortical (TC) neurons receive input from retina or caudal sensory structures and project
50 to well-defined areas of the cerebral cortex. TC neurons display at least two firing modes: tonic and burst
51 mode, and tonic mode has generally been regarded as a high-fidelity transmission state to relay sensory
52 information to the cortex (Jones 2007; Kim and McCormick 1998; Llinás and Steriade 2006; McCormick
53 and Feeser 1990; Sherman 2001; Steriade and Llinás 1988). TC cells are also strongly synaptically
54 interconnected with the thalamic reticular nucleus (TRN), which comprises a shell of GABAergic neurons
55 that partially surrounds the thalamus. The TRN has been implicated in a wide range of brain functions,
56 including the production of sleep spindles, modulation of arousal and attention and, under pathological
57 conditions, production of absence seizures (Destexhe et al. 1999; Destexhe et al. 1993; Halassa et al.
58 2014; Halassa et al. 2011; Huguenard 1998; McAlonan et al. 2008; McCormick and Contreras 2001).
59 Traditional models of thalamic processing have postulated the presence of reciprocal connectivity
60 between TC and TRN neurons, and that this connectivity forms the basis for oscillations such as spindles
61 and spike-wave discharges in absence epilepsy (Destexhe et al. 1998; Huguenard 1998; Steriade et al.
62 1993). However, more recent data have revealed non-reciprocal connectivity, which may serve as a
63 substrate to adjust the gain and filter properties of TC cells or to select particular groups of TC cells to
64 meet cognitive demands (Crabtree and Isaac 2002; Kimura 2014; Pinault and Deschênes 1998; Willis et
65 al. 2015; Zikopoulos and Barbas 2012). We recently explored a non-reciprocal (“open-loop”) model and
66 found that total spike counts in the output of the model, a layer 4 (L4) cortical cell, were paradoxically
67 enhanced by intermediate rates of TRN activity, and that this enhancement was dependent on both the

Novel MI Estimator for a Model Thalamocortical Network

68 actions of TRN neurons and nonlinear T-type calcium currents (T-currents) in TC cells (Willis et al.
69 2015), consistent with recent physiological findings (Whitmire et al. 2017; Whitmire et al. 2016). Given
70 the impact of T-channel-mediated bursting behavior on enhancement of information transmission through
71 a TC network (Reinagel et al. 1999), and the theoretical benefits of bursting on signal encoding (Denning
72 and Reinagel 2005; Lisman 1997; Mukherjee and Kaplan 1995; Oswald et al. 2007; Person and Perkel
73 2005; Reinagel et al. 1999; Smith et al. 2000; Swadlow and Gusev 2001a), we hypothesized that the TRN
74 in an open-loop configuration could have a major impact on information traveling through the TC
75 network.

76 There is, however, difficulty in measuring information flow through a network of spiking
77 neurons, particularly in networks that must be able to respond to trains of incoming sensory signals at a
78 broad range of rates, such as thalamocortical networks. There exist several generalized methods of
79 estimating dependence between time series (see (Doqure and Verleysen 2012; Silverman 1986; Walters-
80 Williams and Li 2009) for overviews of common estimators). One such class of methods is distance
81 metrics. The Victor-Purpura spike train distance metric (Victor and Purpura 1996) is a binless method of
82 measuring dissimilarity between spike trains. Unlike other distance metrics, this method embeds data in a
83 metric space instead of a vector space, thus avoiding the assumption of spike train addition or scalar
84 multiplication. Another common method is correlation analysis, which includes Pearson correlation and
85 the Spike Timing Tiling Coefficient (STTC) (Cutts and Eglen 2014). Of these methods, STTC was
86 specifically developed for estimating correlation between neural spike trains, and it is not confounded by
87 firing rate, unlike other measures of correlation.

88 However, a potential problem with traditional correlational analyses is that they are not optimal at
89 estimating nonlinear dependencies (Gencaga et al. 2014), which are often observed in neural networks.
90 This drawback can be addressed by using a dependence measure known as mutual information (MI)
91 (Cellucci et al. 2005; Shannon 1948). MI between two random variables X and Y is mathematically
92 defined as:

Novel MI Estimator for a Model Thalamocortical Network

93
$$I(X, Y) = H(X) + H(Y) - H(X, Y) \quad , \quad (1.1)$$

94 where $H(X)$ and $H(Y)$ are entropies and $H(X, Y)$ is joint entropy. Since the entropy H of a random variable

95 $X = x_1, x_2, \dots, x_n$ is essentially a measure of its unpredictability, and is defined through its probability

96 distribution p with $H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i)$, MI estimators can take into account any kind of

97 dependency. Furthermore, an important feature of MI estimators is that they can be used as nonparametric

98 density estimators, as MI is considered to be a nonparametric measure of relevance (Walters-Williams

99 and Li 2009). Nonparametric estimators assume no prior model underlying the data distribution, and

100 consequently require more data than parametric estimators (Worms and Touati 2016). A common

101 example of a nonparametric estimator is the Direct Method (Strong et al. 1998). This estimator calculates

102 MI using the distribution of binary “words” in input and output time series. However, like many

103 estimators the Direct Method uses a uniform partition of the data, which consists of a fixed time window

104 to obtain probability distributions. Uniform partitions are typically ad hoc or chosen through an error-

105 reduction algorithm which increases computational cost (Kjaer et al. 1994; Walters-Williams and Li

106 2009). By using adaptive partitions (Cellucci et al. 2005; Marek and Tichavsky 2008), convergence of the

107 MI estimate is faster, and the amount of data required is less, making adaptive partition methods generally

108 more computationally efficient than uniform partitions, particularly when data are distributed

109 nonuniformly (Darbellay and Vajda 1999; Marek and Tichavsky 2008; Walters-Williams and Li 2009).

110 In the case of thalamocortical networks, whose output depends heavily on the rate of synaptic

111 input from both peripheral sensory structures and the TRN (Bartlett and Wang 2007; Kim et al. 1997;

112 Mukherjee and Kaplan 1995; Willis et al. 2015), measurement of the rates of information flow across the

113 thalamus require MI estimators that provide estimates across different spike rates. Therefore, similar to

114 our previous work (Willis et al. 2015), we introduce a modified estimator of MI (Adaptive partition using

115 Interspike intervals MI Estimator, or AIMIE), between time series that takes into account these different

116 characteristic time scales. This new estimator, unlike previous estimators, uses adaptive partitions of

Novel MI Estimator for a Model Thalamocortical Network

117 interspike intervals and spikes densities to handle the disparate firing rates. Previously used estimators are
118 typically limited by poor estimation of nonlinear dependencies, a priori assumptions of distributions,
119 requirements of large amounts of data, and overestimation or underestimation of data distributions. In the
120 current study, the AIMIE method is further examined and compared to these other, more traditional,
121 methods of estimating MI using both simulated and real spike trains. AIMIE is then used to probe the
122 impact of the TRN on the transformation of spike information as signals pass through a simple
123 thalamocortical network model. Using several different criteria, we find that AIMIE outperforms the
124 other metrics and reveals that TRN-mediated inhibition in a thalamocortical model produces a
125 paradoxical recovery of information per spike that is lost during thalamic bursting.

126 **Methods**

127 ***Computational Methods***

128 **Model Architecture:** A Hodgkin-Huxley framework was used to build a three-neuron, open-loop
129 thalamorecipient network, as described previously (Willis et al. 2015). The network consists of single TC,
130 TRN, and L4 cells, modeled as single-compartment models from whole-cell recordings done in our
131 laboratory. Each cell's membrane potential V was modeled by a first-order differential equation:

$$132 C_m \frac{dV}{dt} = g_L(V - E_L) + \sum_{i=1}^n g_i(V)(V - E_i) + I_e, \quad (2.1)$$

133 where C_m is membrane capacitance, g_L is leak conductance, E_L is leak reversal potential, I_e is current
134 externally applied to the cell, n is the number of channel types, excluding leak channels, $g_i(V)$ is
135 conductance of i th channel type as a function of the membrane potential, and E_i is reversal potential of i^{th}
136 channel type. As described previously (Willis et al. 2015), the model of TC cell includes T-type calcium
137 current, cationic H-current, delayed-rectifying potassium current, and fast sodium current, while the TRN
138 cell model includes all of the aforementioned currents as well as slow-inactivating potassium current (KS

Novel MI Estimator for a Model Thalamocortical Network

139 current). To detect the maximum number of bursts, the number of bursts in TC output time series was
140 calculated using liberal criteria, defined by (Ramcharan et al. 2000) as, for each burst, at least 50 ms of
141 quiescence followed by at least two spikes with interspike interval(s) of at most 6 ms (but see (Deleuze et
142 al. 2012; Sincich et al. 2007)). The L4 model includes fast sodium current, delayed-rectifying potassium
143 current, and non-inactivating potassium current (M-current). The parameters of these cell models and
144 their currents are found in Table 1. Thalamic afferent, reticulothalamic, and thalamocortical synaptic
145 parameters were derived from the literature (Chen and Regehr 2003; Gentet and Ulrich 2003; Laurent et
146 al. 2002). All inputs to TC and TRN cell models are Poisson-modulated pulse trains, with a single-pulse
147 duration of 0.1 ms.

148 **MI Estimator with Adaptive Partition based on Interspike Intervals (AIMIE):** AIMIE is a
149 nonparametric MI estimator (Walters-Williams and Li 2009), which does not assume the distribution of
150 data a priori, similar to the MI estimators mentioned below, and utilizes an adaptive partition (Cellucci et
151 al. 2005) of interspike interval durations and spike densities.

152 Given two time series of spike times, let X be the time series with the greater number of spikes,
153 and Y be the time series with the lesser number of spikes. Let t_i^Y be the times at which spikes occur in Y,
154 and let Δt_i^Y be the durations (in ms) of an interval between subsequent spikes of Y such that

$$155 \quad \Delta t_i^Y = t_{i+1}^Y - t_i^Y \quad . \quad (3.1)$$

156 Let n_i^X be the number of spikes of X in the Y interspike interval $[t_i^Y, t_{i+1}^Y)$ corresponding to Δt_i^Y (Fig 1A),
157 and M be the total number of Y interspike intervals. From Y we constructed a time series of interspike
158 interval durations, $\Delta t_1^Y, \Delta t_2^Y, \dots, \Delta t_M^Y$, and from X we constructed a time series of spike densities, $d_1^X,$
159 d_2^X, \dots, d_M^X , corresponding to each interspike interval of Y, where $d_i^X = \frac{n_i^X}{\Delta t_i^Y}$.

Novel MI Estimator for a Model Thalamocortical Network

160 An adaptive partition was applied to the time series of interspike interval durations of Y and
161 separately to the time series of spike densities of X (Fig 1B). Specifically, for the adaptive partition, the
162 corresponding time series was sorted by smallest to largest values, and each bin was chosen to have a
163 minimum occupancy C_{\min} equal to the square root of the total number of interspike intervals of Y, with
164 the total number of bins, for either X or Y, being N. Let C_j^Y be the occupancy of bin j of the adaptive
165 partition used for Y, and let C_k^X be the occupancy of bin k of the adaptive partition used for X. For each
166 bin, the marginal probabilities, P_j^Y and P_k^X , were calculated as follows (Fig 1B):

$$167 \quad P_j^Y = \frac{C_j^Y}{\sum_{l=1}^N C_l^Y}, \quad (3.2)$$

$$168 \quad P_k^X = \frac{C_k^X}{\sum_{l=1}^N C_l^X}. \quad (3.3)$$

169 Note that the denominator for each marginal probability is the sum of all occupancies for the
170 corresponding adaptive partition. This particular partition, where each bin is nonempty and has roughly
171 equal occupancy, is related to an adaptive partition (Cellucci et al. 2005).

172 The joint probability $P_{j,k}^{Y,X}$ was calculated by constructing a two-dimensional matrix with one
173 horizontal axis corresponding to bins of the adaptive partition for Y and the other horizontal axis
174 corresponding to bins of the adaptive partition for X (Fig 1C). Let $C_{j,k}^{Y,X}$ be the joint occupancy of both
175 bin j of the adaptive partition used for Y and of bin k of the adaptive partition used for X. Then $P_{j,k}^{Y,X}$ was
176 calculated as follows:

$$177 \quad P_{k,j}^{Y,X} = \frac{C_{k,j}^{Y,X}}{\sum_{l=1}^N \sum_{p=1}^N C_{l,p}^{Y,X}}, \quad j=1,2,3,\dots,N \text{ and } k=1,2,3,\dots,N, \quad (3.4)$$

Novel MI Estimator for a Model Thalamocortical Network

178 To calculate mutual information, the general formula for MI is used (Fig 1D):

$$179 \quad I = \sum_{j=1}^A \sum_{k=1}^B P_{j,k}^{Y,X} \log_2 \frac{P_{j,k}^{Y,X}}{P_j^Y P_k^X} \quad j=1,2,3,\dots,N \text{ and } k=1,2,3,\dots,N, \quad (3.5)$$

180 where N, being the total number of bins for either adaptive partition in this case also served as the total
181 number of bins on both axes, such that A = B = N.

182 **Direct Method MI estimator (DMIE):** This estimator uses a fixed-width partition of binary input and
183 output time series (Strong et al. 1998). This technique has a precision of Δt , which is the sampling
184 interval that is used to convert input and output time series into binary signals. A time window of length T
185 was used to construct a dictionary of unique binary “words,” each consisting of binary symbols (0’s and
186 1’s), from the input and output. Marginal probabilities, P_i^{out} and P_j^{in} , associated with output word i and
187 input word j, were calculated by dividing the total number of occurrences for each word by the total
188 number of occurrences for the corresponding time series. Joint probability, $P_{i,j}^{\text{out,in}}$, was determined by
189 constructing a two-dimensional matrix of output words, corresponding to columns, and input words,
190 corresponding to rows, much like with AIMIE. The occupancy of each two-dimensional bin was then
191 divided by the total occupancy of all two-dimensional bins to give joint probability for the corresponding
192 two-dimensional bin. Finally, MI was calculated using Eq. 3.5, with B as the total number of output
193 words, and A as the total number of input words. We utilized two variations of DMIE: DMIE10, with Δt
194 = 10 ms and T = 100 ms, and DMIE20, with Δt = 20 ms and T = 200 ms.

195 **MI estimator with uniform partition of spike counts (three variations: FBWSE, FBNSE, SQRSE):**
196 This is a simple estimator that uses a fixed bin-width partition to determine spike count distributions for
197 input and output. Originally, this method of estimation was used to measure the amount of information
198 transmitted by neuronal responses in the visual system about a set of stimuli (Oram et al. 1999; Oram et
199 al. 2001). Specifically, this estimator can be used to compare information transmitted by total spike count
200 as well as by number of repeating triplets in output spike code. For this method, a uniform partition with

Novel MI Estimator for a Model Thalamocortical Network

201 time bins of fixed duration, also used for DMIE10, was used to construct a time series of spike counts.
202 Marginal probabilities, P_i^{out} and P_j^{in} , were determined from histograms that were constructed based on
203 spike counts, with spike bin occupancy defined as the number of time bins containing the corresponding
204 number of spikes. Joint probability, $P_{i,j}^{\text{out,in}}$, was determined by constructing a two dimensional histogram
205 of input spike bins on one axis and output spike bins on the other axis. MI was calculated using Eq. 3.5,
206 with B as the total number of output spike bins, and A as the total number of input spike bins.

207 To determine distribution histograms, Oram et. al used the error reduction algorithm of Kjaer et.
208 al (Kjaer et al. 1994; Oram et al. 1999; Oram et al. 2001), which requires training a back-propagation
209 artificial neural network with relatively substantial amounts of data. However, to demonstrate a blind
210 application of this estimator, we defined three variations of uniform partitions that differ only in their
211 construction of time bins. The fixed bin-width spike partition (FBWSE) uses time bins with a fixed
212 duration of 10 ms, regardless of the duration of input or output time series. The fixed bin-number spike
213 partition (FBNSE) uses 500 time bins for both input and output, with bin width being the total duration of
214 the time series divided by number of bins. For the square-root spike partition (SQRSE), we chose the
215 number of time bins to be the square root of the total number of data points for each time series (Cellucci
216 et al. 2005; Mosteller and Tukey 1977).

217 All simulations and estimators were coded in MATLAB R2012a and R2015a. MI was computed
218 using the algorithms of Celluci et. al (Cellucci et al. 2005). Calculations and simulations were run on
219 multiple machines, including an HP Pavilion machine using a Windows 7 operating system, as well as a
220 Lenovo Ideapad machine with a Windows 10 operating system.

221 ***Electrophysiological Recordings***

222 **Animals:** P20-24 BALB/c mice of both sexes were used for this study. All procedures were approved by
223 the Institutional Animal Care and Use Committee (IACUC, protocol # 16164) at University of Illinois
224 Urbana-Champaign. Animals were housed in animal care facilities at the Beckman Institute for Advanced

Novel MI Estimator for a Model Thalamocortical Network

225 Science and Technology, approved by the American Association for Accreditation of Laboratory Animal
226 Care (AAALAC).

227 **Brain slicing:** Mice were initially anesthetized with ketamine (100 mg/kg) and xylazine (3 mg/kg)
228 intraperitoneally and perfused with chilled (4°C) sucrose-based slicing solution ((in mM): 234 sucrose, 11
229 glucose, 26 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, 10 MgCl₂, 0.5 CaCl₂). 300 μm-thick thalamocortical brain
230 slices were obtained, as previously described (Cruikshank et al. 2002; Stebbings et al. 2016), then
231 incubated for 30 minutes in 32°C incubation solution ((in mM): 26 NaHCO₃, 2.5 KCl, 10 glucose, 126
232 NaCl, 1.25 NaH₂PO₄, 3 MgCl₂, and 1 CaCl₂). After incubation, slices were transferred to a perfusion
233 chamber and perfused with artificial cerebrospinal fluid (ACSF) ((in mM): 26 NaHCO₃, 2.5 KCl, 10
234 glucose, 126 NaCl, 1.25 NaH₂PO₄, 2 MgCl₂, and 2 CaCl₂), and bubbled with 95% oxygen/5% carbon
235 dioxide.

236 **Electrophysiology:** The cell-attached recordings of pairs of neurons located in layer 2/3 or layer 4 of the
237 auditory cortex were performed at room temperature using a visualized slice setup outfitted with infrared-
238 differential interference contrast (IR-DIC) optics. Recording pipettes were pulled from borosilicate glass
239 capillary tubes and had tip resistances of 2–5 MΩ when filled with solution, which contained (in mM):
240 117 K-gluconate, 13 KCl, 1.0 MgCl₂, 0.07 CaCl₂, 0.1 ethyleneglycol-bis (2-aminoethylether)-N,N,N0 ,N0
241 -tetra acetic acid, 10.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2.0 Na-ATP, 0.4 Na-GTP, pH
242 7.3. For data acquisition, a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA, USA) and
243 pClamp software (Molecular Devices, Sunnyvale, CA, USA) were used with a 20-kHz sampling rate. The
244 cell-attached recordings were conducted under after a gigaOhm seal was attained. Once the recording was
245 started, 2 μM of SR-95531 (gabazine, Tocris) was perfused with the ACSF for 30 minutes, after which
246 increasing concentrations of DNQX (Tocris) were added sequentially to the ACSF (approximately 30
247 minutes/each DNQX concentration) along with 2 μM SR-95531. The software program Clampfit
248 (Molecular Devices, LLC) was used to analyze series of spike times from paired recording data using an
249 event detection algorithm with threshold search.

Novel MI Estimator for a Model Thalamocortical Network

250 **Results**

251 The validity of using AIMIE to measure the degree of correlation between spike trains was
252 examined. Four other MI estimators, DMIE, FBWSE, FBNSE, and SQRSE, described in further detail in
253 Methods, are also tested for comparison.

254 **MI estimator dependence on the length of time series:** To determine the number of spikes needed to
255 achieve a stable measurement of MI using AIMIE, simulations of a thalamocortical model were run while
256 systematically varying the simulation time. AIMIE was used to compute the MI between the afferent
257 spike train providing synaptic input to a model TC neuron and the output of the model, measured as spike
258 times in a model layer 4 cortical neuron. A simple thalamocortical network model was used (Fig 2A, see
259 Table 1 for parameters), and the afferent input was a 10 Hz Poisson-modulated spike train, varying only
260 in the total simulation time of the model. This scheme permitted generation of pairs of input and output
261 time series to examine basic properties of AIMIE, such as the dependency of AIMIE on the simulation
262 time, which corresponds to total number of output spikes. Ten trials were performed for each simulation
263 time to calculate standard deviation. Comparing across the total simulation times, MI per output spike
264 approaches an asymptotic value of about 2×10^{-4} bits/spike (Fig 2B). This finding indicates that with
265 increasing amounts of data, AIMIE becomes less dependent on time series length. At about 100 seconds
266 of simulation time (black triangle of Fig 2), which corresponds to an average of 411 output spikes, a
267 decrease is seen in the standard deviation function (Fig 2C) and in magnitude of error bars (Fig 2B inset)
268 when compared to shorter simulation times. Note that for simulation times below 100 seconds there are
269 significant fluctuations in the MI values, however the standard deviation substantially drops at simulation
270 times beyond 100 seconds. Therefore, for most subsequent simulations, simulation times were adjusted
271 such that at least 500 output spikes were generated, and for all tests of AIMIE's performance, with
272 artificial spike trains that were not generated with the thalamocortical model, a minimum of 500 output
273 spikes was also used.

Novel MI Estimator for a Model Thalamocortical Network

274 **MI estimator independence of interspike interval length variation:** To determine whether any of the
275 MI estimators are sensitive to the average spiking rate, we created artificial input and output spike trains
276 and computed MI between these trains using multiple different MI estimators. The input time series were
277 randomly generated using a uniform distribution, each with 4000 spikes in total and interspike intervals
278 ranging from 5 ms to 50 ms. In this case, for the output time series, a single output spike followed each
279 input spike and arrived before the next input spike. Under the assumption here that the optimal estimator
280 for MI should be insensitive to stretch (and therefore average spiking rate), the input and output spike
281 trains were then temporally “stretched” to change their average spiking rate without changing the
282 relationship between the two trains (Fig 3A). In total, ten trials were performed for each average spiking
283 rate. When tested alongside the four other estimators (Fig 3B), the estimators that produced a change in
284 MI beyond 10% of the baseline MI were DMIE10, DMIE20, and FBWIE, all of which use a fixed bin
285 width partition, indicating that DMIE and FBWIE are sensitive to time scaling, while FBNIE, SQRSE,
286 and AIMIE are not. Therefore, FBNIE, SQRSE and AIMIE were compared in subsequent examinations
287 of MI estimator performance.

288 **MI estimator performance with artificial spike trains:** In the next test of MI estimator performance, it
289 was assumed that a high dependence between input and output data would be indicated by each input
290 spike eliciting a similar spiking event in the output. Deviation from this idealized response would be
291 considered a loss of information. To test the performance of the MI estimators, four sets of input and
292 output time series were generated, with progressively decreasing degree of correlation in the first three
293 sets (Fig 4A). The input time series were randomly generated, each with 4000 spikes in total and
294 interspike intervals ranging from 5 ms to 50 ms using a uniform distribution. For the first set of input and
295 output time series, designated as Type 1, the response is ideal, meaning that each input spike has 100%
296 chance of eliciting a single output spike. For the Type 2 pair, there is a 50% response, where each input
297 spike has a 50% chance of generating a single output spike. This adjustment roughly decreases the
298 number of output spikes in Type 2 by half when compared to Type 1, and as such, should constitute a

Novel MI Estimator for a Model Thalamocortical Network

299 decrease in MI. Similarly, the Type 3 pair features a 25% response. The pair of time series in Type 4 is
300 constructed similarly to Type 3 time series, with the 4000 inputs randomly generated; each input has a
301 25% chance of generating a response event in the output, which, unlike for Type 3, is a random number
302 between 1 to 10 spikes. Ten trials were performed for each application of an MI estimator to a different
303 type of time series pair. Our expectation was that an ideal MI estimator would show the highest MI for
304 Type 1 stimuli and progressively lower for all of the rest.

305 For this comparison, only the MI estimators that were shown to be insensitive to time scaling
306 (FBNIE, SQRSE, and AIMIE) were tested. When AIMIE was applied to these four pairs of constructed
307 time series, it was observed that the MI values corresponded to the drops in degree of correlation across
308 Types 1 through 3 (Fig 4B). For Type 4, the MI value was very close to that of Type 3, within 2%.
309 FBNSE and SQRSE, neither of which uses an adaptive partition, demonstrated a significant drop in MI
310 across Type 1 to Type 2 and a slight drop in MI from Type 2 to Type 3. Lastly, for Type 4, when
311 compared to Type 3, both FBNSE and SQRSE showed an increase in MI. Note that the only estimator
312 whose MI value for Type 4 was less than that of Type 3 is AIMIE. Substantial fluctuation in MI values,
313 resulting in significant error values, may indicate an insufficient amount of data, particularly for SQRSE,
314 though as suggested by our time series length test (Fig 2). This amount of data would be enough for
315 AIMIE to yield reliable results, as there are 4000 input spikes and around 1000 or more output spikes and
316 for each time series pair type. Note that the degree of variance for AIMIE's estimates is noticeably
317 smaller than those of the other estimators' values. These data suggest that AIMIE is more sensitive than
318 other methods to manipulations of spike trains that are expected to diminish the MI between them.

319 **MI estimator performance with paired electrophysiological recordings:** In this test, MI estimators
320 were applied to spike trains of paired recordings of spontaneous activity from the auditory cortex in a
321 slice preparation, under different concentrations of bath-applied DNQX, which is an AMPA receptor
322 antagonist that blocks excitatory synaptic transmission. At higher concentrations of DNQX, we expect
323 that MI per spike between responses of the two neurons of a paired recording would drop, due to

Novel MI Estimator for a Model Thalamocortical Network

324 diminished synchrony between spontaneous action potentials of the paired neurons. Specifically, AIMIE
325 and FBNSE were tested, as these two estimators performed well with artificially constructed inputs and
326 outputs described above. Recordings from a total of five pairs of neurons in layer 2/3 or layer 4 from
327 mouse brain slices containing the auditory cortex were used. For each pair of recorded neurons, the
328 neuron that produced the greatest number of spikes at the highest DNQX concentration was used for
329 normalization of MI, specifically by dividing the MI value of each trial by the number of spikes produced
330 by this neuron for that trial. For each paired recording sequence under different DNQX concentrations,
331 the change in normalized MI was calculated by dividing the MI per spike at each DNQX concentration by
332 the MI per spike at DNQX concentration of 0 μ M. With increasing DNQX concentrations, AIMIE
333 demonstrated the expected drop in normalized MI (Fig 5A), while FBNSE did not (Fig 5B), indicating
334 that AIMIE performs well with electrophysiological recordings of variable synchrony.

335 **Varying T-current conductance in open-loop thalamoreticular network:** Applying AIMIE to a simple
336 open-loop thalamocortical network model (Fig 6A), the effect of varying stimulation parameters and the
337 T-current conductance of the TC cell on the modification of an ascending signal through the thalamus was
338 explored. Poisson-modulated synaptic input to a model TC cell (henceforth “thalamic afferents”) was
339 varied from 0.5 Hz to 200 Hz on a logarithmic scale, while Poisson-modulated synaptic input to a TRN
340 neuron was similarly varied from 0 Hz to 200 Hz. As before (Willis et al. 2015), the applied spike trains
341 in thalamic afferents were independent of the applied spike trains in afferents to the TRN cell. For each
342 combination of TC and TRN stimulation rates, the MI between the thalamic afferents and output, either at
343 the TC or L4 neuron, was computed. This MI, normalized by the number of output spikes, was then
344 averaged over all combinations of TC and TRN stimulation rates to produce average MI per output spike.
345 The average MI per output spike was computed for each T-current conductance, ranging from 0 to 100 nS
346 (Fig 6B). Also, for each value of T-current conductance, ranging from 10 to 80 nS, a heat map plot of
347 normalized MI values with TRN stimulation rates on the x-axis and TC stimulation rates on the y-axis
348 was constructed (Fig 7A for normalized MI between thalamic afferents and L4 output, and Fig 7B for

Novel MI Estimator for a Model Thalamocortical Network

349 normalized MI between thalamic afferents and TC output). 10 trials were performed for each data point of
350 T-current conductance.

351 The average MI per output spike between the thalamic afferents and L4 is on average slightly
352 greater than between the thalamic afferents and the TC cell (Fig 6B). Note that at certain combinations of
353 TRN and TC stimulation rates, specifically at high TRN stimulation frequencies and low TC stimulation
354 frequencies, MI per output spike between the thalamic afferents and L4 output paradoxically becomes
355 greater than MI per output spike between the thalamic afferents and TC output, as seen in the normalized
356 MI difference plots of Fig 7C. For example, for TC T-current conductances above 20 nS and thalamic
357 afferent input at 0.5 Hz and to the TRN neuron at 207 Hz, MI per spike across the whole network (from
358 thalamic afferent to L4; purple line, Fig 8A) paradoxically exceeds that seen during the first stage of the
359 network (from thalamic afferent to TC; green line, Fig 8A). In addition, this paradoxical behavior is seen
360 as the degree of bursting of the TC neuron increases (blue line, Fig 8A). This relationship is quantified in
361 Fig 8B. Here, the number of bursts in the TC neuron is compared against this paradoxical increase in MI
362 across the whole network, and a strong positive correlation is observed (Fig 8B, (Pearson's $r = 0.843$, $p <$
363 0.001)). These data suggest that the paradoxical increase in MI per spike is related to the underlying
364 bursting behavior of the TC cell.

365 **Discussion**

366 **Summary of findings:** In the current study, the properties of a novel estimator of MI, the Adaptive
367 partition using Interspike intervals MI Estimator (AIMIE), were examined, with its performance
368 compared to other, more established methods of measuring MI between spike trains. The AIMIE method
369 of computing MI was found to be insensitive to overall time compression or expansion of the spike trains,
370 suggesting that it may be used effectively at both high and low spike rates. AIMIE was also found to be
371 sensitive to manual manipulation of the relationship between simulated input and output spike trains. That
372 is, manual degradation in the relationships between two spike trains also lowered the MI, computed with

Novel MI Estimator for a Model Thalamocortical Network

373 AIMIE, but not with other methods. Further, in paired neuronal recordings, the decrease in MI with
374 increasing concentration of DNQX was consistent with DNQX's effect of desynchronizing the responses
375 of the recorded neuron pairs. Finally, when AIMIE was used to compute the MI between input (to a
376 model TC cell) and output (from a model L4 neuron) in a thalamocortical model, it was found that MI
377 was maximum at T-current amplitudes corresponding to those seen physiologically, and that the apparent
378 degradation in MI caused by bursting could be recovered at the thalamocortical synapse. These data
379 suggest that a new method for estimating MI between spike trains, AIMIE, is now available to
380 investigators and that the method has the advantage of being able to easily compensate for wide changes
381 in the average spike rate of either the input or output spike train.

382 **Methodological considerations:** Since the thalamocortical network demonstrates short latencies in L4
383 neurons in response to afferent input provided to TC neurons (< 10 ms, corresponding to 2 synapses
384 between input and output, (Llano et al. 2014), no effort was made to shift the output time series relative to
385 the input time series. However, in other networks, particularly in large-scale networks containing many
386 more synapses, where response latencies are longer, a constant time delay may need to be compensated
387 for in the analysis. In addition, most MI estimators require a minimum amount of data for reliable results
388 (Paninski 2003). As observed in Fig 2B and C, under the specified simulation parameters, approximately
389 400-500 output spikes, corresponding to 100 seconds simulation time, are needed for AIMIE to provide
390 consistent MI values, suggesting that for spike rates of approximately 10 spikes/second, approximately
391 40-50 seconds of data are required to compute MI using AIMIE. Parametric density estimators, such as
392 maximum likelihood estimation, require relatively little data for convergence (Marek and Tichavsky
393 2008), while MI estimators with uniform partition, especially DMIE, usually require larger amounts of
394 data in comparison to MI estimators with adaptive partition (Borst and Theunissen 1999; Walters-
395 Williams and Li 2009).

396 **MI as an estimate of dependence:** Multiple metrics have been used previously to compute the degree of
397 similarity between spike trains. MI is a quantity that measures general dependence between two random

Novel MI Estimator for a Model Thalamocortical Network

398 variables, and as such, it is related to correlation functions which traditionally measure linear dependence
399 (Li 1990). STTC, for example, uses a fixed time bin around each input spike to calculate correlation
400 between input and output spike trains (Cutts and Eglen 2014). This approach is reminiscent of a uniform
401 partition method, which is inadequate for analyzing MI in a TC network because of the wide range of
402 input rates processed by TC neurons, discussed below. Related to the correlation measures are distance
403 metrics, including the Victor-Purpura spike train distance metric (Victor and Purpura 1996). This metric
404 is commonly used in input and output spike train analysis, though there is evidence that this may not be
405 an optimal metric for evaluating temporal information (Gai and Carney 2008). Specifically, the Victor-
406 Purpura spike train distance metric measures information carried primarily by absolute spike times, and it
407 does not appear to effectively account for other temporal features in spike time series, such as
408 synchronization to frequency of sensory input in a neuron's response. This insensitivity to certain
409 temporal features could potentially complicate its use in analysis of the temporally sensitive
410 thalamocortical network.

411 Furthermore, traditional correlation analysis, such as Pearson correlation, has been shown to be
412 optimal only in the case of linear dependencies between variables, while MI can be applied to random
413 variables that exhibit linear as well as nonlinear dependencies (Gencaga et al. 2014), which are often
414 demonstrated in neural networks (Schöner and Kelso 1988). Comparisons of marginal entropy, meaning
415 the average amount of information provided by, in this case, a single spike time series, have also been
416 used to measure the relative information content of time series in the analysis of bursting and tonic firing
417 in the thalamus (Reinagel et al. 1999). However, only marginal entropies are compared in this earlier
418 analysis, and there is no calculation of joint entropy between two time series, as there is in MI estimation.
419 A consequence of not calculating joint entropy is that the relative timing between input and output spikes
420 is lost.

421 Many previously employed MI estimators use uniform partitions of data to estimate density
422 distributions (e.g., DMIE, FBNSE, FBWSE, and SQRSE). While computationally efficient, these uniform

Novel MI Estimator for a Model Thalamocortical Network

423 partitions can produce many empty bins (Gencaga et al. 2014). Therefore, for these estimators, different
424 choices of bin construction for a nonadaptive partition can produce substantially different MI values.
425 Estimators with a fixed bin width that do not depend on the number of data points, FBWSE and DMIE,
426 show a change in MI when applied to time-scaled time series (Fig 3), unless bin widths of the partition are
427 scaled appropriately. Furthermore, estimators with a fixed bin width that do depend on the number of data
428 points, FBNSE and SQRSE, did not perform as well as AIMIE with certain pairs of time series of
429 variable degrees of correlation and synchrony (Figs 4 and 5). These findings regarding estimators that use
430 fixed bin widths indicate that in a network where spike timing can be changed significantly by varying
431 input rate, an MI estimate of each time series pair would require a readjustment of the uniform partition.
432 The use of multiple partition schemes could cause substantial uncertainty in comparisons across samples,
433 since every combination of TRN and TC stimulation rates would require its own parameters for the
434 uniform partition. Therefore, for the thalamocortical network, MI estimators with uniform partitions
435 would not be an optimal choice, leaving us to favor an adaptive partition instead. In addition, unlike
436 estimators that use a uniform partition, AIMIE's adaptive partition also causes estimated MI to converge
437 faster with sample size (Walters-Williams and Li 2009), and allows investigators to work with time
438 processes that have incomparable time-scales (Darbellay and Vajda 1999).

439 **T-current conductance, bursting, and MI:** Systematic variation of the TC cell's T-current conductance
440 in the thalamocortical model revealed that there is a specific range of maximal conductance values near
441 40 nS that produces a maximum average MI per output spike between thalamic afferent input and output
442 at L4 (Fig 6B). This finding suggests that the TRN is able to induce the most potentiation of the
443 ascending TC input at this peak TC T-current conductance value. Note that this value is close to the
444 physiological TC T-current conductance of approximately 45 nS (Willis et al. 2015), and is within the
445 range used in previous modeling studies (Deleuze et al. 2012; Destexhe et al. 1993; Pospischil et al. 2008;
446 Wang 1994). It has been shown that some hyperpolarization-activated cation currents can be modulated
447 by factors such as intracellular pH and specific neurotransmitters, including norepinephrine and serotonin

Novel MI Estimator for a Model Thalamocortical Network

448 (Munsch and Pape 1999; Pape and McCormick 1989). If TC T-current is similarly modulated (for
449 example see (Joksovic et al. 2010)), then the current study suggests that this modulation could alter the
450 amount of MI between input and output as well. Thus, findings from the current study may indicate the
451 possibility that modulation of TC T-current is one way in which the thalamocortical network can
452 modulate sensory thalamocortical information flow.

453 Previous studies have suggested that bursting in thalamic relay neurons degrades ascending
454 sensory signals, and that tonic firing modes are more likely to produce a high-fidelity representation of
455 ascending information en route to the cortex (Castro-Alamancos 2002; McCarley et al. 1983; McCormick
456 and Feeser 1990). However, it has also been shown that thalamic bursts may carry more information, can
457 enhance detection of specific temporal sequences, and are higher in synaptic efficacy than single thalamic
458 spikes (Lesica and Stanley 2004; Lesica et al. 2006; Reinagel et al. 1999; Swadlow and Gusev 2001a).
459 The current study suggests that in certain cases, particularly with high-frequency input to TRN and low
460 frequency input to TC (Fig 8A), bursting is responsible for loss of incoming sensory information at the
461 level of the TC (Fig 8B), as it likely obscures the ascending sensory signal. However, this information
462 loss may be compensated in the L4 neuron due to the filter properties of the TC synapse, which produce
463 single spikes in response to the initial spikes of a burst (Boudreau and Ferster 2005; Chung et al. 2002;
464 Gil et al. 1999; Krahe and Gabbiani 2004; Swadlow and Gusev 2001b). Thus, information per spike that
465 is lost at the level of the thalamus due to bursting may be partially recovered at the level of the cortex; this
466 is a hypothesis that can be tested physiologically in subsequent studies.

467 Acknowledgements

468 The authors thank Drs. Rama Ratnam and Jeffrey Brown (University of Illinois) for their reviews
469 of this manuscript prior to submission. This work was supported by DC013073 and DC014765 to DAL.

Novel MI Estimator for a Model Thalamocortical Network

470 **Figure Captions**

471 **Figure 1: Procedure for estimating MI using AIMIE.** A) Given two time series, the one that
472 has a greater number of spikes is designated as X, and the other is designated as Y. A time series of
473 interspike interval durations for Y is constructed, and a time series of spike densities of X corresponding
474 to the interspike intervals of Y. M represents the total number of interspike intervals of Y. B) An adaptive
475 partition is applied to the time series of interspike interval durations of Y and separately to the time series
476 of spike densities of X. Marginal probability for each bin of the adaptive partition is calculated as the
477 occupancy of the bin divided by the sum of occupancies of all bins of that adaptive partition. Note the
478 roughly equal occupancy of the bins, which is due to the adaptive partition. C) A joint histogram is
479 constructed, in which one of the horizontal axes represents the bins of the adaptive partition for Y and the
480 other horizontal axis represents bins of the adaptive partition for X. Joint probability for each combination
481 of bins is calculated as joint occupancy of both bins divided by the sum of all occupancies of the joint
482 histogram. D) Equation for calculating MI, in which the outer sum, from $j=1$ to N, sums over the bins of
483 the adaptive partition of Y and the inner sum, from $k=1$ to N, sums over the bins of the adaptive partition
484 of X.

485 **Figure 2: Application of AIMIE to time series generated from the model thalamocortical**
486 **network with variable simulation times.** A) Model architecture of a thalamocortical network containing
487 only TC and L4 neurons, which are modeled using a Hodgkin-Huxley framework. Default model
488 parameters are used for simulations (see Table 1). IN_{TC} corresponds to thalamic afferent inputs, which are
489 generated as 10 Hz Poisson-modulated pulse trains. B) MI per output spike provided by AIMIE when it is
490 applied to time series pairs with different simulation times. As simulation time increases, the number of
491 output spikes increases as well, and AIMIE's MI per output spike trends towards a horizontal asymptote
492 of about 2×10^{-4} bits/spike. The black triangle marks a simulation time of 100 seconds, which provides an
493 average of about 411 output spikes. Inset shows decreased fluctuations in MI per output spike on an
494 expanded scale, particularly for simulation times above 100 seconds. 10 trials were used for each

Novel MI Estimator for a Model Thalamocortical Network

495 simulation time, to generate error bars and standard deviation. C) Standard deviation of AIMIE's
496 estimates of MI per output spike from Fig 2A for a range of simulation times. Note that standard
497 deviation is significantly smaller at around 100 seconds of simulation time (black triangle) than at shorter
498 simulation times.

499 **Figure 3: Effect of scaling of interspike intervals on MI for different estimators.** A) Spike
500 time plots demonstrating scaling of interspike intervals for input and output series. In this case, the second
501 input and output pair is generated by scaling all interspike intervals of the first pair by a factor of 2. B)
502 Percent change in MI demonstrated by estimators AIMIE, DMIE, FBWSE, FBNSE, and SQRSE when
503 they are applied to input and output time series with interspike intervals scaled by factors of 2, 4, and 8.
504 10 trials were used for each data point and to generate standard deviation for error bars.

505 **Figure 4: Application of different estimators to hypothetical input and output series of**
506 **variable dependence.** A) Spike time plots of hypothetical constructed time series of Types 1, 2 ,3, and 4,
507 where Type 1 is an ideal (100%) response type, Type 2 is a 50% response type, Type 3 is a 25% response
508 type, and Type 4 is a 25% burst response type. B) Percent change in MI demonstrated by estimators
509 AIMIE, FBNSE, and SQRSE when they are applied to input and output time series of Types 1, 2, 3, and
510 4. As before, 10 trials were used for each data point and to generate standard deviation for error bars.

511 **Figure 5: Application of different estimators to dual-recorded spike time series of variable**
512 **synchrony.** Recordings from a total of five neuron pairs are used. For both estimators, for each paired
513 recording sequence under different DNQX concentrations, the change in normalized MI is calculated as
514 MI per spike at each DNQX concentration divided by the MI per spike at DNQX concentration of 0 μ M.
515 A) Change in normalized MI demonstrated by AIMIE across different concentrations of DNQX. The
516 inset is an image of electrode placement for a paired recording in auditory cortex of mouse brain slice,
517 with C denoting caudal and D denoting dorsal orientation. The legend for paired recordings is located
518 below in Fig 5B. B) Change in normalized MI demonstrated by FBNSE across different concentrations of
519 DNQX. The legend corresponds to both Fig 5A and Fig 5B.

520

Novel MI Estimator for a Model Thalamocortical Network

521 **Figure 6: MI analysis of inputs and outputs in an open-loop thalamocortical network model**
522 **at variable T-current conductances.** A) Model architecture of the open-loop thalamocortical network.
523 Arrows represent excitatory inputs, while the TRN to TC projection represents inhibitory (GABAergic)
524 input. All neurons are modeled using a Hodgkin-Huxley framework. IN_{TRN} corresponds to input to the
525 TRN, which ranges from 0 Hz to 200 Hz, while IN_{TC} corresponds to thalamic afferents, which ranges
526 from 0.5 Hz to 200 Hz. Both IN_{TRN} and IN_{TC} are generated as Poisson-modulated pulse trains. Note that
527 the green bracket symbolizes information transfer from thalamic afferents to TC, and the purple bracket
528 symbolizes information transfer from thalamic afferents to L4. B) Average MI transmitted per output
529 spike between thalamic afferents and TC and between thalamic afferents and L4, at a range of TC T-
530 current conductances. There is a peak in MI per output spike at a TC T-current conductance of about 40
531 nS, which may indicate maximum potentiation of ascending input in open-loop thalamocortical network.
532 Again, 10 trials were used for each data point and generation of standard deviation for error bars.

533 **Figure 7: Heat map plots of normalized MI in open-loop thalamocortical network model for**
534 **variable T-current conductances.** For each TC T-current conductance, an MI plot is generated using a
535 range of combinations of TC and TRN stimulation rates and then normalized by the number of output
536 spikes for each rate combination. Normalized MI plots are averaged over 10 trials. The rate combination
537 of 207 Hz stimulation of TRN and 0.5 Hz stimulation of TC (see Fig 8) is marked in a black box on each
538 plot. Note that the horizontal black line between panels A and B denotes a minus sign, while the pair of
539 horizontal black lines between panels B and C denotes an equals sign. A) Plots of average normalized MI
540 (bits per output spike) between thalamic afferents and L4 output for T-current conductances of 10 nS to
541 80 nS. B) Plots of average normalized MI between thalamic afferents and TC output for T-current
542 conductances of 10 nS to 80 nS. C) Plots of average normalized MI between thalamic afferents and L4
543 output (Fig 7A) minus average normalized MI between thalamic afferents and TC output (Fig 7B) for T-
544 current conductances of 10 nS to 80 nS. These difference plots show a recovery of information per spike
545 at low thalamic afferent rates and high TRN stimulation rates.

Novel MI Estimator for a Model Thalamocortical Network

546 **Figure 8: Stimulation of TRN at 207 Hz and TC at 0.5 Hz in open-loop thalamocortical**
547 **network model.** This rate combination is marked as a black box on the normalized MI plots of Fig 7.
548 IN_{TC} refers to thalamic afferents, as shown in Fig 7. A) MI per output spike between thalamic afferents
549 and TC output and thalamic afferents and L4 output at a range of T-current conductances from 0 nS to
550 100 nS. The number of bursts observed at the TC is also shown alongside on the right vertical axis. 10
551 trials were used for each data point and for generation of standard deviation for error bars. B) Difference
552 of MI per spike of TC input to TC output and MI per spike of TC input and L4 output against the number
553 of bursts produced by TC. The trendline is shown alongside a Pearson coefficient value of $r = 0.843$ ($p <$
554 0.001).

555 References

- 556 **Bartlett EL, and Wang X.** Neural representations of temporally modulated signals in the auditory
557 thalamus of awake primates. *Journal of neurophysiology* 97: 1005-1017, 2007.
558 **Borst A, and Theunissen FE.** Information theory and neural coding. *Nature neuroscience* 2: 947-957,
559 1999.
560 **Boudreau CE, and Ferster D.** Short-term depression in thalamocortical synapses of cat primary visual
561 cortex. *Journal of Neuroscience* 25: 7179-7190, 2005.
562 **Castro-Alamancos MA.** Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus
563 and the relay of high-frequency sensory inputs. *Journal of Neurophysiology* 87: 946-953, 2002.
564 **Cellucci CJ, Albano AM, and Rapp P.** Statistical validation of mutual information calculations:
565 Comparison of alternative numerical algorithms. *Physical review E* 71: 66208, 2005.
566 **Chen C, and Regehr WG.** Presynaptic modulation of the retinogeniculate synapse. *The Journal of
567 neuroscience* 23: 3130-3135, 2003.
568 **Chung S, Li X, and Nelson SB.** Short-term depression at thalamocortical synapses contributes to rapid
569 adaptation of cortical sensory responses in vivo. *Neuron* 34: 437-446, 2002.
570 **Crabtree JW, and Isaac JTR.** New Intrathalamic Pathways Allowing Modality-Related and Cross-
571 Modality Switching in the Dorsal Thalamus. *The Journal of Neuroscience* 22: 8754-8761, 2002.
572 **Cruikshank SJ, Rose HJ, and Metherate R.** Auditory thalamocortical synaptic transmission in vitro.
573 *Journal of neurophysiology* 87: 361-384, 2002.
574 **Cutts CS, and Eglen SJ.** Detecting pairwise correlations in spike trains: an objective comparison of
575 methods and application to the study of retinal waves. *The Journal of Neuroscience* 34: 14288-14303,
576 2014.
577 **Darbellay GA, and Vajda I.** Estimation of the information by an adaptive partitioning of the observation
578 space. *IEEE Transactions on Information Theory* 45: 1315-1321, 1999.
579 **Deleuze C, David F, Béhuret S, Sadoc G, Shin H-S, Uebel VN, Renger JJ, Lambert RC, Leresche
580 N, and Bal T.** T-Type Calcium Channels Consolidate Tonic Action Potential Output of Thalamic
581 Neurons to Neocortex. *The Journal of Neuroscience* 32: 12228-12236, 2012.
582 **Denning KS, and Reinagel P.** Visual Control of Burst Priming in the Anesthetized Lateral Geniculate
583 Nucleus. *The Journal of Neuroscience* 25: 3531-3538, 2005.

Novel MI Estimator for a Model Thalamocortical Network

- 584 **Destexhe A, Contreras D, and Steriade M.** Mechanisms Underlying the Synchronizing Action of
585 Corticothalamic Feedback Through Inhibition of Thalamic Relay Cells. *Journal of Neurophysiology* 79:
586 999-1016, 1998.
- 587 **Destexhe A, McCormick DA, and Sejnowski TJ.** Chapter 17 Thalamic and thalamocortical
588 mechanisms underlying 3 Hz spike-and-wave discharges. In: *Progress in Brain Research*, edited by
589 James A. Reggia ER, and Dennis GElsevier, 1999, p. 289-307.
- 590 **Destexhe A, McCormick DA, and Sejnowski TJ.** A model for 8–10 Hz spindling in interconnected
591 thalamic relay and reticularis neurons. *Biophysical Journal* 65: 2473-2477, 1993.
- 592 **Doquire G, and Verleysen M.** A Comparison of Multivariate Mutual Information Estimators for Feature
593 Selection. In: *ICPRAM* (1)2012, p. 176-185.
- 594 **Gai Y, and Carney LH.** Statistical analyses of temporal information in auditory brainstem responses to
595 tones in noise: correlation index and spike-distance metric. *Journal of the Association for Research in*
596 *Otolaryngology* 9: 373-387, 2008.
- 597 **Gencaga D, Malakar NK, and Lary DJ.** Survey on the estimation of mutual information methods as a
598 measure of dependency versus correlation analysis. *AIP Conference Proceedings* 1636: 80-87, 2014.
- 599 **Gentet LJ, and Ulrich D.** Strong, reliable and precise synaptic connections between thalamic relay cells
600 and neurones of the nucleus reticularis in juvenile rats. *The Journal of physiology* 546: 801-811, 2003.
- 601 **Gil Z, Connors BW, and Amitai Y.** Efficacy of thalamocortical and intracortical synaptic connections:
602 quanta, innervation, and reliability. *Neuron* 23: 385-397, 1999.
- 603 **Halassa Michael M, Chen Z, Wimmer Ralf D, Brunetti Philip M, Zhao S, Zikopoulos B, Wang F,
604 **Brown Emery N, and Wilson Matthew A.** State-Dependent Architecture of Thalamic Reticular
605 Subnetworks. *Cell* 158: 808-821, 2014.**
- 606 **Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, and Moore CI.** Selective optical drive of thalamic
607 reticular nucleus generates thalamic bursts and cortical spindles. *Nature neuroscience* 14: 1118-1120,
608 2011.
- 609 **Herrero M-T, Barcia C, and Navarro J.** Functional anatomy of thalamus and basal ganglia. *Child's*
610 *Nervous System* 18: 386-404, 2002.
- 611 **Huguenard JR.** Neuronal circuitry of thalamocortical epilepsy and mechanisms of antiabsence drug
612 action. *Advances in neurology* 79: 991-999, 1998.
- 613 **Joksovic PM, Choe WJ, Nelson MT, Orestes P, Brimelow BC, and Todorovic SM.** Mechanisms of
614 Inhibition of T-Type Calcium Current in the Reticular Thalamic Neurons by 1-Octanol: Implication of the
615 Protein Kinase C Pathway. *Molecular Pharmacology* 77: 87-94, 2010.
- 616 **Jones EG.** *The Thalamus*. Cambridge University Press, 2007.
- 617 **Kayser A, Priebe NJ, and Miller KD.** Contrast-dependent nonlinearities arise locally in a model of
618 contrast-invariant orientation tuning. *Journal of Neurophysiology* 85: 2130-2149, 2001.
- 619 **Kim U, and McCormick DA.** The functional influence of burst and tonic firing mode on synaptic
620 interactions in the thalamus. *Journal of Neuroscience* 18: 9500-9516, 1998.
- 621 **Kim U, Sanchez-Vives MV, and McCormick DA.** Functional dynamics of GABAergic inhibition in the
622 thalamus. *Science* 278: 130-134, 1997.
- 623 **Kimura A.** Diverse subthreshold cross-modal sensory interactions in the thalamic reticular nucleus:
624 implications for new pathways of cross-modal attentional gating function. *European Journal of*
625 *Neuroscience* 39: 1405-1418, 2014.
- 626 **Kjaer TW, Hertz JA, and Richmond BJ.** Decoding cortical neuronal signals: network models,
627 information estimation and spatial tuning. *Journal of computational neuroscience* 1: 109-139, 1994.
- 628 **Krahe R, and Gabbiani F.** Burst firing in sensory systems. *Nature Reviews Neuroscience* 5: 13-23,
629 2004.
- 630 **Laurent A, Goaillard J-M, Cases O, Lebrand C, Gaspar P, and Ropert N.** Activity-dependent
631 presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in
632 neonatal mice. *The Journal of neuroscience* 22: 886-900, 2002.
- 633 **Lesica NA, and Stanley GB.** Encoding of Natural Scene Movies by Tonic and Burst Spikes in the
634 Lateral Geniculate Nucleus. *The Journal of Neuroscience* 24: 10731-10740, 2004.

Novel MI Estimator for a Model Thalamocortical Network

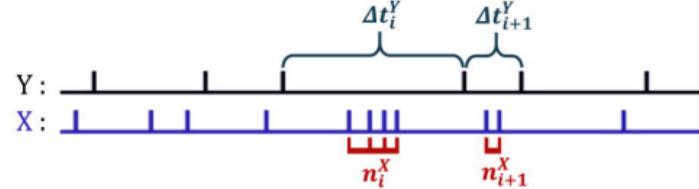
- 635 **Lesica NA, Weng C, Jin J, Yeh C-I, Alonso J-M, and Stanley GB.** Dynamic encoding of natural
636 luminance sequences by LGN bursts. *PLoS Biol* 4: e209, 2006.
- 637 **Li W.** Mutual information functions versus correlation functions. *Journal of statistical physics* 60: 823-
638 837, 1990.
- 639 **Lisman JE.** Bursts as a unit of neural information: making unreliable synapses reliable. *Trends in*
640 *Neurosciences* 20: 38-43, 1997.
- 641 **Llano DA, Slater BJ, Lesicko AM, and Stebbings KA.** An auditory colliculothalamic brain slice
642 preparation in mouse. *Journal of Neurophysiology* 111: 197-207, 2014.
- 643 **Llinás RR, and Steriade M.** Bursting of thalamic neurons and states of vigilance. *Journal of*
644 *neurophysiology* 95: 3297-3308, 2006.
- 645 **MacLean JN, Watson BO, Aaron GB, and Yuste R.** Internal dynamics determine the cortical response
646 to thalamic stimulation. *Neuron* 48: 811-823, 2005.
- 647 **Marek T, and Tichavsky P.** On the estimation of mutual information. In: *Proceedings of ROBUST2008*.
- 648 **McAlonan K, Cavanaugh J, and Wurtz RH.** Guarding the gateway to cortex with attention in visual
649 thalamus. *Nature* 456: 391-394, 2008.
- 650 **McCarley RW, Benoit O, and Barrionuevo G.** Lateral geniculate nucleus unitary discharge in sleep and
651 waking: state-and rate-specific aspects. *Journal of neurophysiology* 50: 798-818, 1983.
- 652 **McCormick D, and Feeser H.** Functional implications of burst firing and single spike activity in lateral
653 geniculate relay neurons. *Neuroscience* 39: 103-113, 1990.
- 654 **McCormick DA, and Contreras D.** On the cellular and network bases of epileptic seizures. *Annual*
655 *Review of Physiology* 63: 815-846, 2001.
- 656 **Miller J-eK, Ayzenshtat I, Carrillo-Reid L, and Yuste R.** Visual stimuli recruit intrinsically generated
657 cortical ensembles. *Proceedings of the National Academy of Sciences* 111: E4053-E4061, 2014.
- 658 **Mosteller F, and Tukey JW.** Data analysis and regression: a second course in statistics. *Addison-Wesley*
659 *Series in Behavioral Science: Quantitative Methods* 1977.
- 660 **Mukherjee P, and Kaplan E.** Dynamics of neurons in the cat lateral geniculate nucleus: in vivo
661 electrophysiology and computational modeling. *Journal of Neurophysiology* 74: 1222-1243, 1995.
- 662 **Munsch T, and Pape HC.** Modulation of the hyperpolarization-activated cation current of rat thalamic
663 relay neurones by intracellular pH. *The Journal of Physiology* 519: 493-504, 1999.
- 664 **Oram M, Wiener M, Lestienne R, and Richmond B.** Stochastic nature of precisely timed spike patterns
665 in visual system neuronal responses. *Journal of neurophysiology* 81: 3021-3033, 1999.
- 666 **Oram MW, Hatsopoulos NG, Richmond BJ, and Donoghue JP.** Excess synchrony in motor cortical
667 neurons provides redundant direction information with that from coarse temporal measures. *Journal of*
668 *neurophysiology* 86: 1700-1716, 2001.
- 669 **Oswald A-MM, Doiron B, and Maler L.** Interval coding. I. Burst interspike intervals as indicators of
670 stimulus intensity. *Journal of Neurophysiology* 97: 2731-2743, 2007.
- 671 **Paninski L.** Estimation of entropy and mutual information. *Neural Comput* 15: 1191-1253, 2003.
- 672 **Pape H-C, and McCormick DA.** Noradrenaline and serotonin selectively modulate thalamic burst firing
673 by enhancing a hyperpolarization-activated cation current. *Nature* 340: 715-718, 1989.
- 674 **Person AL, and Perkel DJ.** Unitary IPSPs Drive Precise Thalamic Spiking in a Circuit Required for
675 Learning. *Neuron* 46: 129-140, 2005.
- 676 **Pinault D, and Deschênes M.** Anatomical evidence for a mechanism of lateral inhibition in the rat
677 thalamus. *European Journal of Neuroscience* 10: 3462-3469, 1998.
- 678 **Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, and**
679 **Destexhe A.** Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic
680 neurons. *Biological cybernetics* 99: 427-441, 2008.
- 681 **Ramcharan E, Gnadt J, and Sherman S.** Burst and tonic firing in thalamic cells of unanesthetized,
682 behaving monkeys. *Visual neuroscience* 17: 55, 2000.
- 683 **Reinagel P, Godwin D, Sherman SM, and Koch C.** Encoding of Visual Information by LGN Bursts. *J*
684 *Neurophysiol* 81: 2558-2569, 1999.

Novel MI Estimator for a Model Thalamocortical Network

- 685 **Rose HJ, and Metherate R.** Auditory thalamocortical transmission is reliable and temporally precise.
686 *Journal of neurophysiology* 94: 2019-2030, 2005.
- 687 **Schöner G, and Kelso JAS.** Dynamic Pattern Generation in Behavioral and Neural Systems. *Science*
688 239: 1513-1520, 1988.
- 689 **Shannon CE.** A Mathematical Theory of Communication. *Bell System Technical Journal* 27: 379-423,
690 1948.
- 691 **Sherman SM.** Tonic and burst firing: dual modes of thalamocortical relay. *Trends in Neurosciences* 24:
692 122-126, 2001.
- 693 **Silverman BW.** In: *Density estimation for statistics and data analysis* CRC press, 1986.
- 694 **Sincich LC, Adams DL, Economides JR, and Horton JC.** Transmission of spike trains at the
695 retinogeniculate synapse. *The Journal of neuroscience* 27: 2683-2692, 2007.
- 696 **Smith GD, Cox CL, Sherman SM, and Rinzel J.** Fourier Analysis of Sinusoidally Driven
697 Thalamocortical Relay Neurons and a Minimal Integrate-and-Fire-or-Burst Model. *Journal of*
698 *Neurophysiology* 83: 588-610, 2000.
- 699 **Stebbins KA, Choi HW, Ravindra A, Caspary DM, Turner JG, and Llano DA.** Ageing-related
700 changes in GABAergic inhibition in mouse auditory cortex, measured using *in vitro* flavoprotein
701 autofluorescence imaging. *J Physiol* 594: 207-221, 2016.
- 702 **Steriade M, and Llinás RR.** The functional states of the thalamus and the associated neuronal interplay.
703 *Physiological reviews* 68: 649-742, 1988.
- 704 **Steriade M, McCormick D, and Sejnowski T.** Thalamocortical oscillations in the sleeping and aroused
705 brain. *Science* 262: 679-685, 1993.
- 706 **Strong SP, Koberle R, de Ruyter van Steveninck RR, and Bialek W.** Entropy and Information in
707 Neural Spike Trains. *Physical Review Letters* 80: 197-200, 1998.
- 708 **Swadlow H, and Gusev A.** The impact of 'bursting' thalamic impulses at a neocortical synapse. *Nat*
709 *Neurosci* 4: 402-408, 2001a.
- 710 **Swadlow HA, and Gusev AG.** The impact of 'bursting' thalamic impulses at a neocortical synapse. *Nature*
711 *neuroscience* 4: 402-408, 2001b.
- 712 **Victor JD, and Purpura KP.** Nature and precision of temporal coding in visual cortex: a metric-space
713 analysis. *Journal of neurophysiology* 76: 1310-1326, 1996.
- 714 **Walters-Williams J, and Li Y.** Estimation of Mutual Information: A Survey. In: *Rough Sets and*
715 *Knowledge Technology*, edited by Wen P, Li Y, Polkowski L, Yao Y, Tsumoto S, and Wang G. Berlin,
716 Heidelberg: Springer Berlin Heidelberg, 2009, p. 389-396.
- 717 **Wang X-J.** Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent
718 phase-locking. *Neuroscience* 59: 21-31, 1994.
- 719 **Watson BO, MacLean JN, and Yuste R.** UP states protect ongoing cortical activity from thalamic
720 inputs. *PLoS one* 3: e3971, 2008.
- 721 **Whitmire CJ, Millard DC, and Stanley GB.** Thalamic state control of cortical paired-pulse dynamics.
722 *Journal of neurophysiology* 117: 163-177, 2017.
- 723 **Whitmire CJ, Waiblinger C, Schwarz C, and Stanley GB.** Information coding through adaptive gating
724 of synchronized thalamic bursting. *Cell reports* 14: 795-807, 2016.
- 725 **Willis AM, Slater BJ, Gribkova ED, and Llano DA.** Open-loop organization of thalamic reticular
726 nucleus and dorsal thalamus: a computational model. *J Neurophysiol* 114: 2353-2367, 2015.
- 727 **Worms J, and Touati S.** Parametric and Non-Parametric Statistics for Program Performance Analysis
728 and Comparison INRIA Sophia Antipolis - I3S, Université Nice Sophia Antipolis, Université Versailles
729 Saint Quentin en Yvelines, Laboratoire de mathématiques de Versailles, 2016.
- 730 **Zikopoulos B, and Barbas H.** Pathways for Emotions and Attention Converge on the Thalamic Reticular
731 Nucleus in Primates. *The Journal of Neuroscience* 32: 5338-5350, 2012.

A

Given two time series of spikes,
Let X be the time series with the greater number of spikes
Let Y be the other time series.

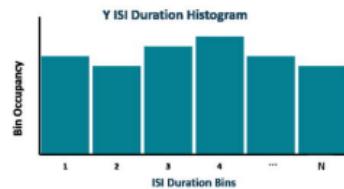


$\Delta t_1^Y, \Delta t_2^Y, \Delta t_3^Y, \dots, \Delta t_M^Y$: Time series of interspike interval durations of Y

$d_1^X, d_2^X, d_3^X, \dots, d_M^X$: Time series of spike densities of X , defined by $d_i^X = \frac{n_i^X}{\Delta t_i^Y}$,
where n_i^X is the spike count of X that falls into interval i of Y

B

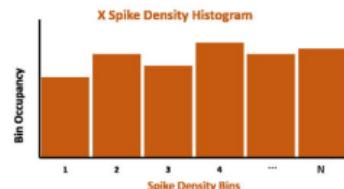
Adaptive Partition:



Marginal Probabilities:

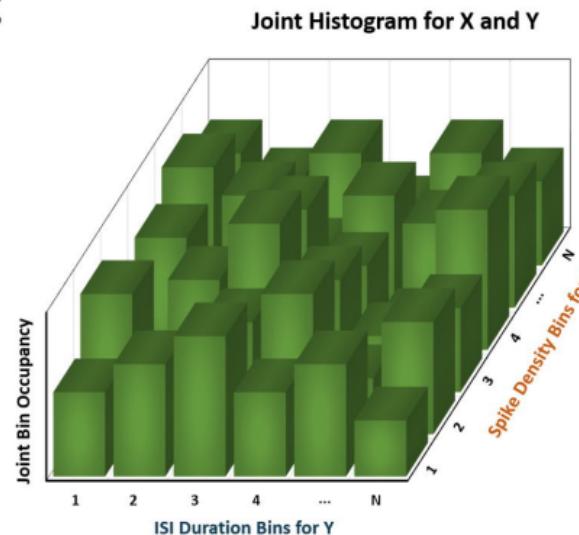
$$P_j^Y = \frac{\text{Occupancy of ISI Duration Bin } j}{\text{Total Occupancy of ISI Duration Bins}}$$

where $j = 1, 2, 3, \dots, N$



$$P_k^X = \frac{\text{Occupancy of Spike Density Bin } k}{\text{Total Occupancy of Spike Density Bins}}$$

where $k = 1, 2, 3, \dots, N$

C

Joint Probabilities:

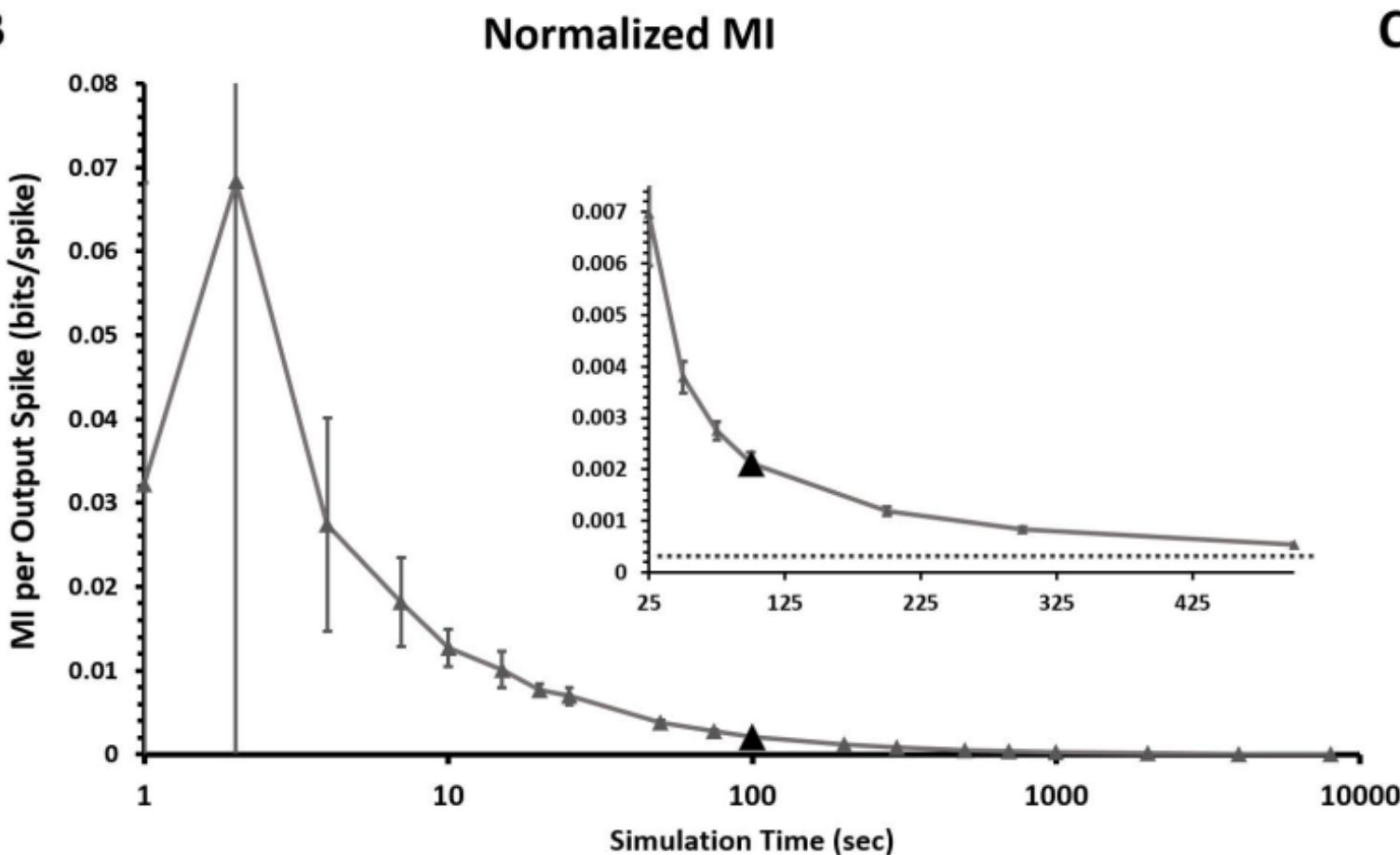
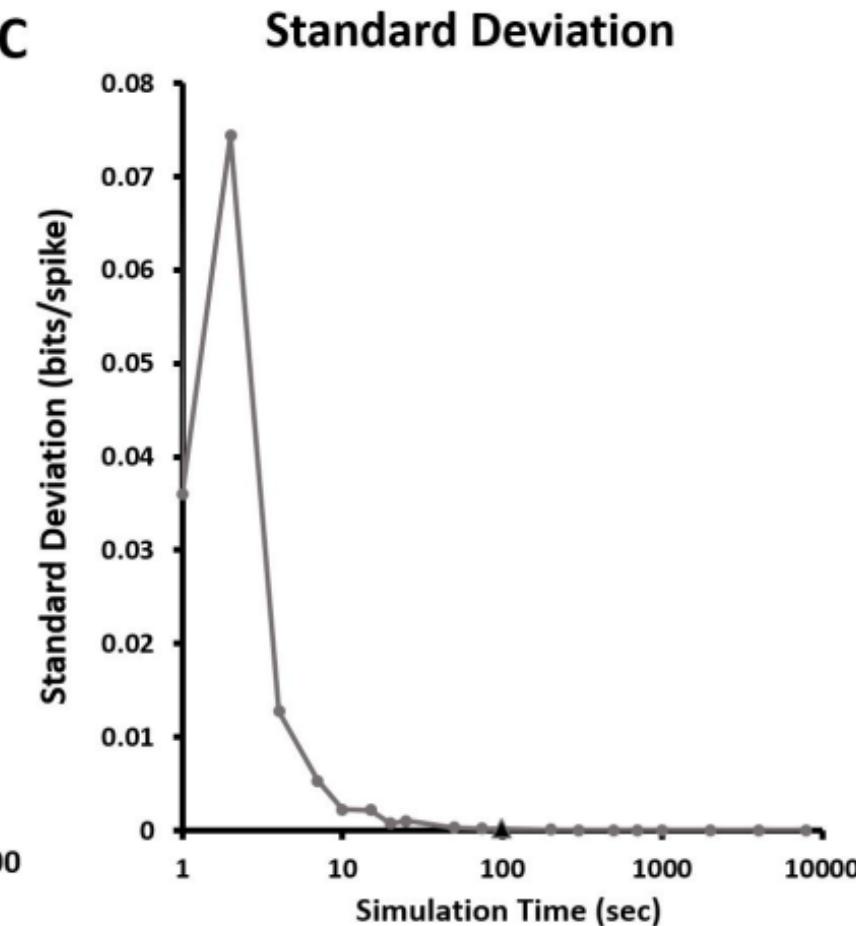
$$P_{j,k}^{Y,X} = \frac{\text{Joint Occupancy of ISI Duration Bin } j \text{ and Spike Density Bin } k}{\text{Total Joint Occupancy for all Bins}}$$

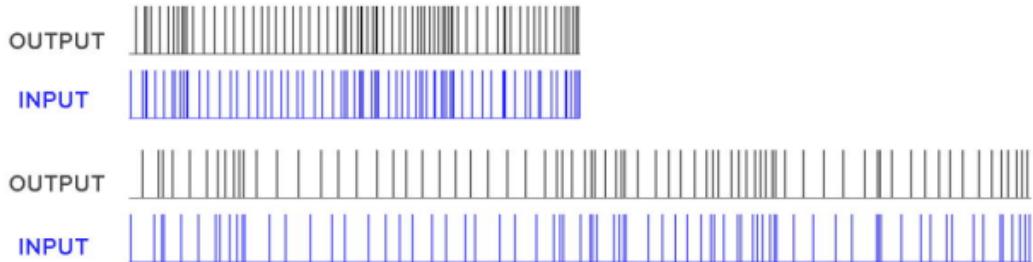
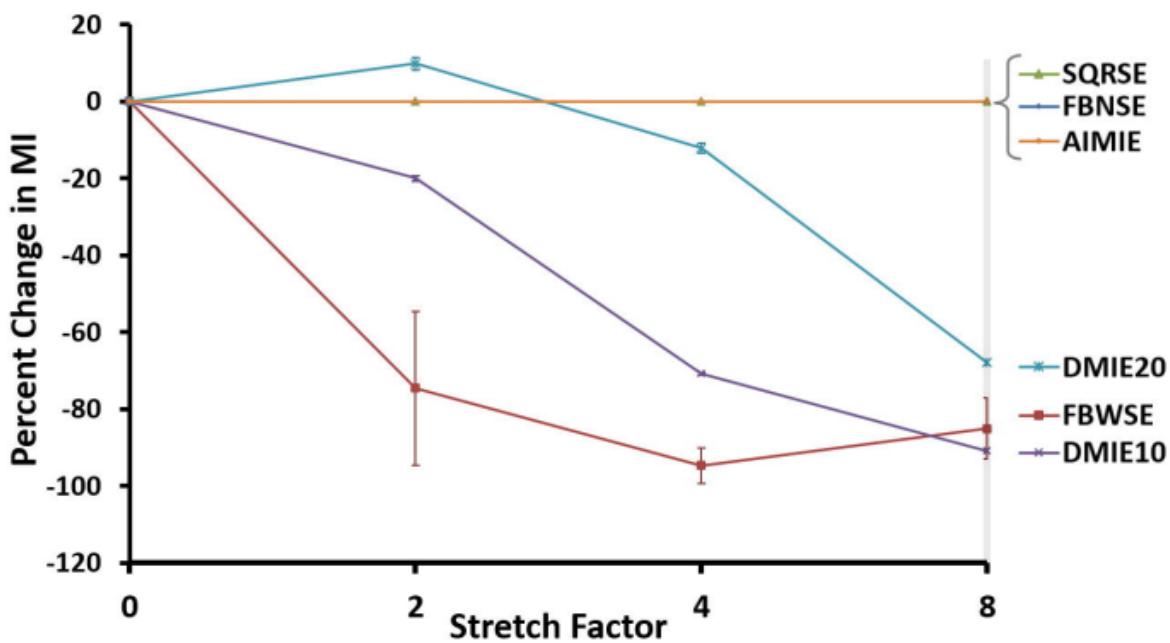
where $j = 1, 2, 3, \dots, N$
and $k = 1, 2, 3, \dots, N$

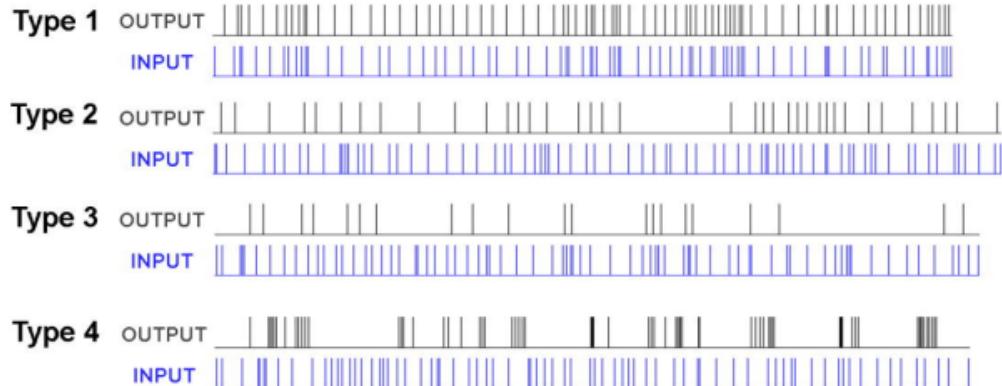
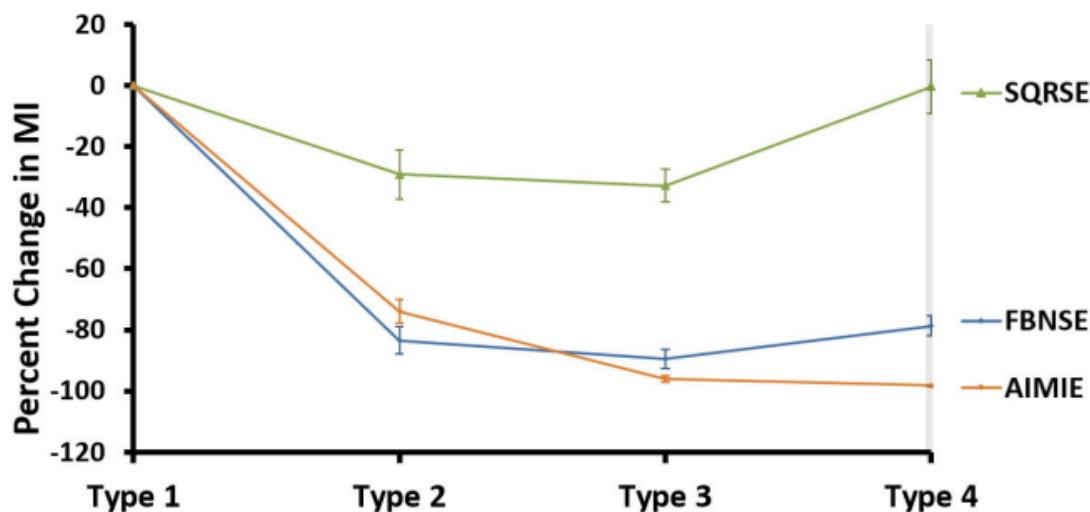
D

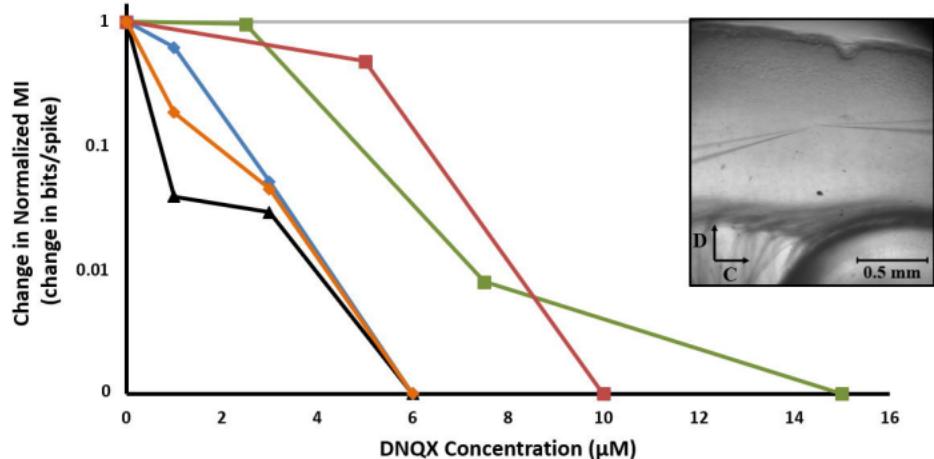
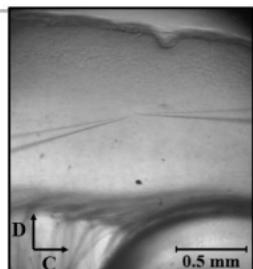
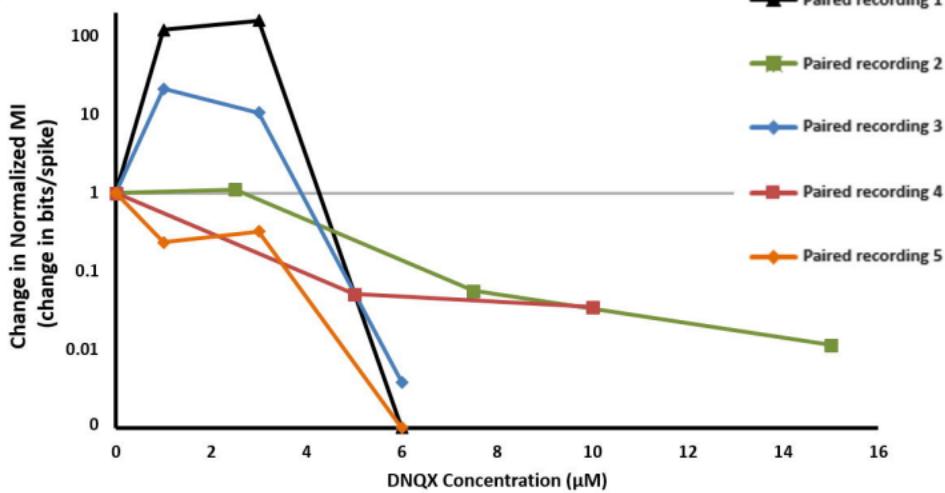
Mutual Information :

$$I = \sum_{j=1}^N \sum_{k=1}^N P_{j,k}^{Y,X} \cdot \log_2 \left(\frac{P_{j,k}^{Y,X}}{P_j^Y \cdot P_k^X} \right)$$

A**B****C**

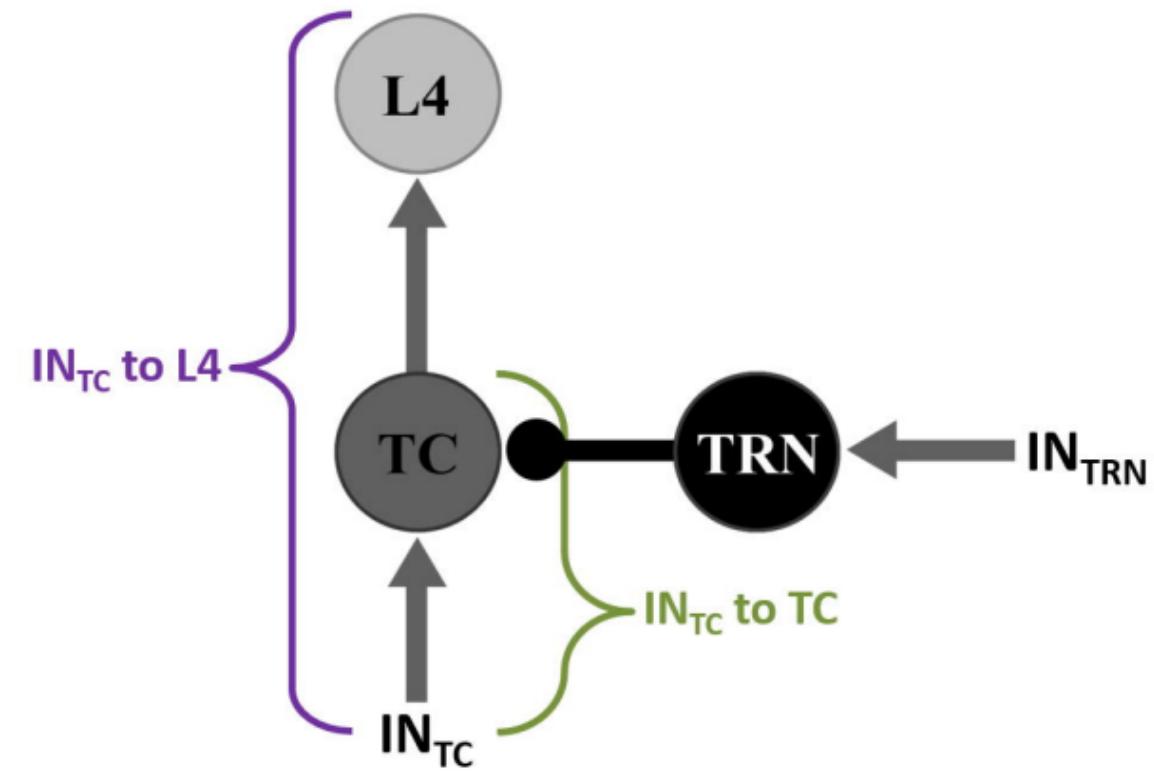
A**B**

A**B**

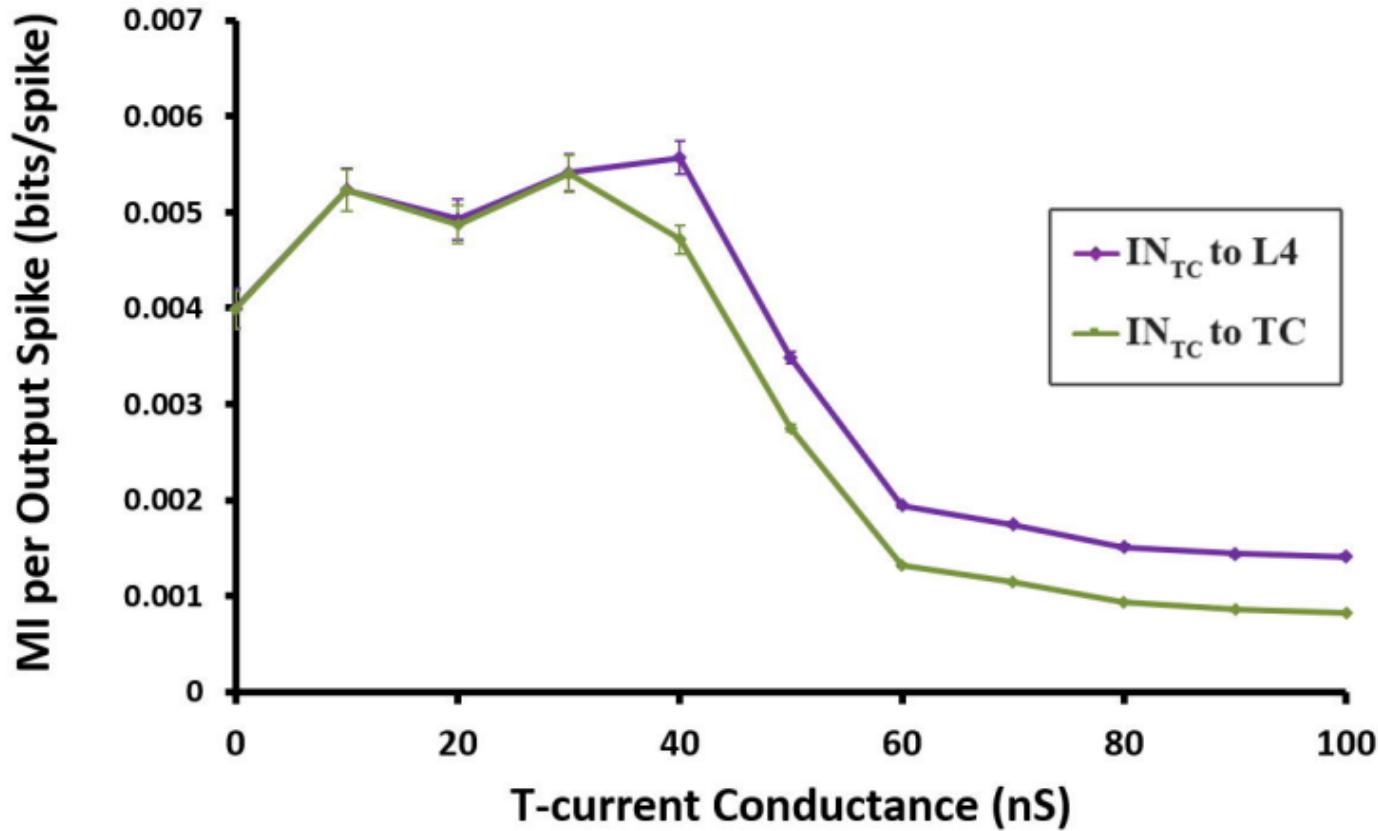
A**AIMIE****B****FBNSE**

A

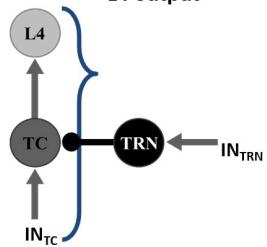
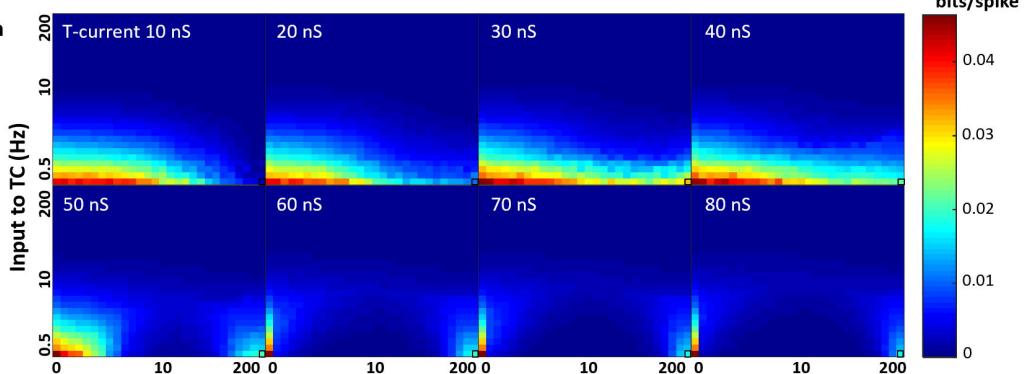
Open-loop Circuit

**B**

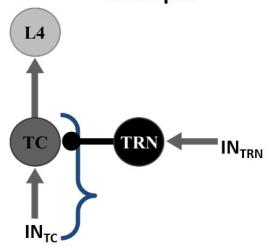
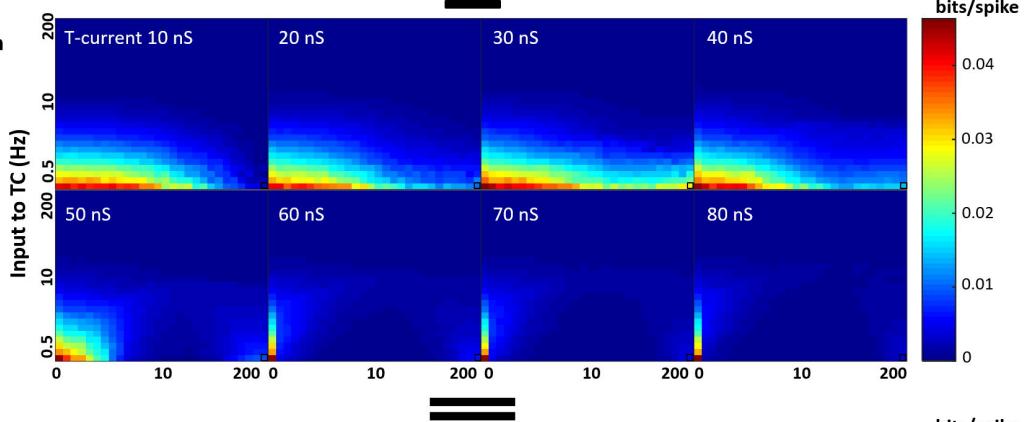
Average MI per Output Spike



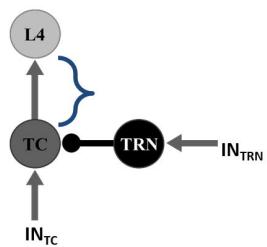
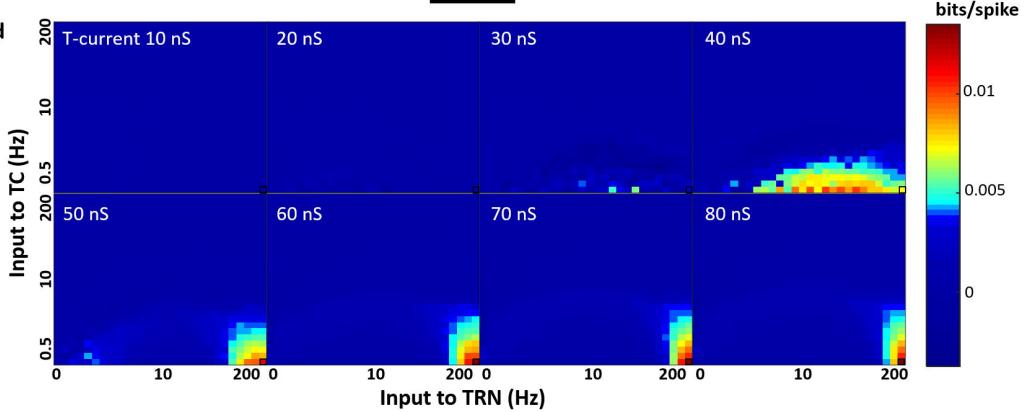
A Normalized MI between thalamic afferents and L4 output



B Normalized MI between thalamic afferents and TC output



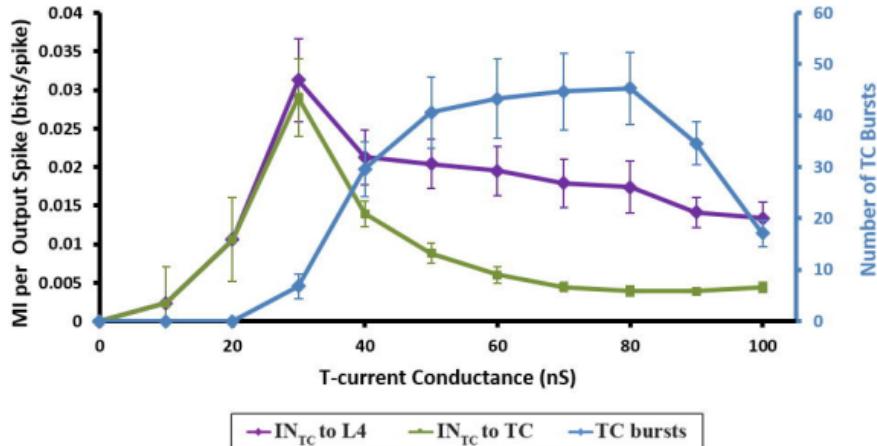
C Difference in normalized MI between A and B



Stimulation of TRN at 207 Hz and Stimulation of TC at 0.5 Hz

A

Normalized MI



B

Difference in Normalized MI vs TC bursts

