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Novel M1 Estimator for a Model Thalamocortical Network

Abstract

The impact of thalamic state on information transmission to the cortex remains poorly
understood. This limitation exists due to the rich dynamics displayed by thalamocortical networks and
because of inadequate tools to characterize those dynamics. Here, we introduce a novel estimator of
mutual information and use it to determine the impact of a computational model of thalamic state on
information transmission. Using several criteria, this novel estimator, which uses an adaptive partition, is
shown to be superior to other mutual information estimators with uniform partitions when used to analyze
simulated spike train data with different mean spike rates, as well as electrophysiological datafrom
simultaneously recorded neurons. When applied to a thalamocortical model, the estimator revealed that
thalamocortical cell T-type calcium current conductance influences mutual information between the input
and output from this network. In particular, a T-type calcium current conductance of about 40 nS appears
to produce maximal mutual information between the input to this network (conceptualized as afferent
input to the thalamocortical cell) and the output of the network at the level of alayer 4 cortical neuron.
Furthermore, at particular combinations of inputs to thalamocortical and thalamic reticular nucleus cells,
thalamic cell bursting correlated strongly with recovery of mutual information between thalamic afferents
and layer 4 neurons. These studies suggest that the novel mutual information estimator has advantages
over previous estimators, and that thalamic reticular nucleus activity can enhance mutual information

between thalamic afferents and thalamorecipient cellsin the cortex.
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I ntroduction

Estimating the degree to which asignal is conserved as it passes through a neura network
requires methods that are both sensitive to spike timing and that take into account nonlinear dependencies
between spike trains. These requirements are particularly necessary in thalamocortical networks, which
encode stimuli nonlinearly (Kayser et al. 2001; MacLean et al. 2005; Miller et a. 2014; Watson et al.
2008) and rely on the precise timing of inputs to process sensory information (Rose and Metherate 2005).
Sensory thalamocortical (TC) neurons receive input from retinaor caudal sensory structures and project
to well-defined areas of the cerebral cortex. TC neurons display at least two firing modes: tonic and burst
mode, and tonic mode has generally been regarded as a high-fidelity transmission state to relay sensory
information to the cortex (Jones 2007; Kim and McCormick 1998; Llinas and Steriade 2006; McCormick
and Feeser 1990; Sherman 2001; Steriade and Llinas 1988). TC cells are also strongly synaptically
interconnected with the thalamic reticular nucleus (TRN), which comprises a shell of GABAergic neurons
that partially surrounds the thalamus. The TRN has been implicated in awide range of brain functions,
including the production of sleep spindles, modulation of arousal and attention and, under pathol ogical
conditions, production of absence seizures (Destexhe et al. 1999; Destexhe et al. 1993; Halassa et al.
2014; Halassa et al. 2011; Huguenard 1998; McAlonan et a. 2008; McCormick and Contreras 2001).
Traditional models of thalamic processing have postul ated the presence of reciprocal connectivity
between TC and TRN neurons, and that this connectivity forms the basis for oscill ations such as spindles
and spike-wave discharges in absence epilepsy (Destexhe et a. 1998; Huguenard 1998; Steriade et al.
1993). However, more recent data have revealed non-reciprocal connectivity, which may serve asa
substrate to adjust the gain and filter properties of TC cells or to select particular groups of TC cellsto
meet cognitive demands (Crabtree and Isaac 2002; Kimura 2014; Pinault and Deschénes 1998; Willis et
al. 2015; Zikopoulos and Barbas 2012). We recently explored a non-reciprocal (“open-loop”) model and
found that total spike countsin the output of the model, alayer 4 (L4) cortical cell, were paradoxically

enhanced by intermediate rates of TRN activity, and that this enhancement was dependent on both the
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actions of TRN neurons and nonlinear T-type calcium currents (T-currents) in TC cells (Williset al.
2015), consistent with recent physiologica findings (Whitmire et al. 2017; Whitmire et al. 2016). Given
the impact of T-channel-mediated bursting behavior on enhancement of information transmission through
aTC network (Reinagel et al. 1999), and the theoretical benefits of bursting on signal encoding (Denning
and Reinagel 2005; Lisman 1997; Mukherjee and Kaplan 1995; Oswald et al. 2007; Person and Perkel
2005; Reinagel et al. 1999; Smith et al. 2000; Swadlow and Gusev 20014), we hypothesized that the TRN
in an open-loop configuration could have a major impact on information traveling through the TC
network.

Thereis, however, difficulty in measuring information flow through a network of spiking
neurons, particularly in networks that must be able to respond to trains of incoming sensory signals at a
broad range of rates, such as thalamocortical networks. There exist several generalized methods of
estimating dependence between time series (see (Doquire and Verleysen 2012; Silverman 1986; Walters-
Williams and Li 2009) for overviews of common estimators). One such class of methodsis distance
metrics. The Victor-Purpura spike train distance metric (Victor and Purpura 1996) is a binless method of
measuring dissimilarity between spike trains. Unlike other distance metrics, this method embeds datain a
metric space instead of a vector space, thus avoiding the assumption of spike train addition or scalar
multiplication. Another common method is correlation analysis, which includes Pearson correlation and
the Spike Timing Tiling Coefficient (STTC) (Cutts and Eglen 2014). Of these methods, STTC was
specifically devel oped for estimating correlation between neural spiketrains, and it is not confounded by
firing rate, unlike other measures of correlation.

However, apotential problem with traditional correlational analysesis that they are not optimal at
estimating nonlinear dependencies (Gencaga et a. 2014), which are often observed in neural networks.
This drawback can be addressed by using a dependence measure known as mutual information (M1)
(Céllucci et a. 2005; Shannon 1948). M1 between two random variables X and Y is mathematically

defined as;
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93 [(X,Y)=H(X)+H(Y)-H(X,Y) , (1.2)
94  where H(X) and H(Y) are entropies and H(X,Y) isjoint entropy. Since the entropy H of arandom variable

95 X=X, X%,...% 1S essentialy ameasure of its unpredictability, and is defined through its probability

96 distribution pwith H(X) = —Z p(x)1og, p(x), Ml estimators can take into account any kind of

i=1

97  dependency. Furthermore, an important feature of M| estimators is that they can be used as nonparametric

98  density estimators, as M| is considered to be a nonparametric measure of relevance (Walters-Williams

99  and Li 2009). Nonparametric estimators assume no prior model underlying the data distribution, and
100  consequently require more data than parametric estimators (Worms and Touati 2016). A common
101  example of anonparametric estimator is the Direct Method (Strong et al. 1998). This estimator calculates
102 Ml using the distribution of binary “words’ in input and output time series. However, like many
103  estimatorsthe Direct Method uses a uniform partition of the data, which consists of afixed time window
104  to obtain probability distributions. Uniform partitions are typically ad hoc or chosen through an error-
105  reduction algorithm which increases computational cost (Kjaer et al. 1994; Walters-Williams and Li
106  2009). By using adaptive partitions (Cellucci et al. 2005; Marek and Tichavsky 2008), convergence of the
107 Ml estimate isfaster, and the amount of data required is less, making adaptive partition methods generally
108  more computationally efficient than uniform partitions, particularly when data are distributed

109  nonuniformly (Darbellay and Vajda 1999; Marek and Tichavsky 2008; Walters-Williams and Li 2009).

110 In the case of thalamocortical networks, whose output depends heavily on the rate of synaptic
111 input from both peripheral sensory structures and the TRN (Bartlett and Wang 2007; Kim et al. 1997,
112 Mukherjee and Kaplan 1995; Willis et a. 2015), measurement of the rates of information flow across the
113  thalamusrequire M1 estimators that provide estimates across different spike rates. Therefore, similar to
114 our previouswork (Willis et a. 2015), we introduce a modified estimator of M1 (Adaptive partition using
115  Interspikeintervals MI Estimator, or AIMIE), between time series that takes into account these different

116  characteristic time scales. This new estimator, unlike previous estimators, uses adaptive partitions of


https://doi.org/10.1101/289512
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/289512; this version posted March 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Novel MI Estimator for a Model Thalamocortical Network

117  interspike intervals and spikes densities to handle the disparate firing rates. Previously used estimators are
118  typically limited by poor estimation of nonlinear dependencies, a priori assumptions of distributions,

119  requirements of large amounts of data, and overestimation or underestimation of data distributions. In the
120  current study, the AIMIE method is further examined and compared to these other, more traditional,

121  methods of estimating M1 using both simulated and real spike trains. AIMIE is then used to probe the

122 impact of the TRN on the transformation of spike information as signals pass through asimple

123 thalamocortical network model. Using severa different criteria, we find that AIMIE outperforms the

124  other metrics and reveas that TRN-mediated inhibition in athalamocortical model produces a

125  paradoxical recovery of information per spike that islost during thalamic bursting.
126  Methods

127  Computational Methods

128  Model Architecture: A Hodgkin-Huxley framework was used to build a three-neuron, open-loop
129  thalamoreticular network, as described previously (Willis et al. 2015). The network consists of single TC,
130 TRN, and L4 cells, modeled as single-compartment models from whole-cell recordings done in our

131 laboratory. Each cell’s membrane potential V was modeled by a first-order differential equation:

dv
132 —
"t

=g (V-E )+Zg.(v)(v E)+l,, @Y
133  where Cp,, is membrane capacitance, g, isleak conductance, E, isleak reversal potential, I is current

134  externaly applied to the cell, n isthe number of channel types, excluding leak channels, gi(V) is

135  conductance of ith channel type as afunction of the membrane potential, and E; is reversal potential of i"
136  channel type. As described previously (Willis et a. 2015), the model of TC cell includes T-type calcium
137  current, cationic H-current, delayed-rectifying potassium current, and fast sodium current, while the TRN

138  cell moddl includes al of the aforementioned currents as well as slow-inactivating potassium current (KS
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139  current). To detect the maximum number of bursts, the number of burstsin TC output time series was
140  calculated using liberal criteria, defined by (Ramcharan et a. 2000) as, for each burst, at least 50 ms of
141 quiescence followed by at least two spikes with interspike interval(s) of at most 6 ms (but see (Deleuze et
142  a. 2012; Sincich et a. 2007)). The L4 model includes fast sodium current, delayed-rectifying potassium
143 current, and non-inactivating potassium current (M-current). The parameters of these cell models and
144  their currents are found in Table 1. Thalamic afferent, reticulothalamic, and thalamocortical synaptic

145  parameters were derived from the literature (Chen and Regehr 2003; Gentet and Ulrich 2003; Laurent et
146  a.2002). All inputsto TC and TRN cell models are Poisson-modulated pulse trains, with a single-pulse

147 duration of 0.1 ms.

148  MI Estimator with Adaptive Partition based on Interspike Intervals (AIMIE): AIMIEisa
149  nonparametric M1 estimator (Walters-Williams and Li 2009), which does not assume the distribution of
150 dataapriori, similar to the MI estimators mentioned below, and utilizes an adaptive partition (Cellucci et

151  a. 2005) of interspike interval durations and spike densities.

152 Given two time series of spiketimes, let X be the time series with the greater number of spikes,
153  and Y bethe time series with the lesser number of spikes. Let t;" be the times at which spikes occur in Y,

154  and let At;Y be the durations (in ms) of an interval between subsequent spikes of Y such that

155 At =t —t" . (3.1)

156 Let n be the number of spikes of X inthe Y interspike interval [tiY ,titl) corresponding to At;Y (Fig 1A),

157  and M bethe total number of Y interspikeintervals. From'Y we constructed atime series of interspike

158 interval durations, At;", At,", ..., Aty", and from X we constructed atime series of spike densities, d;*,

X
159  d%, ..., dy*, corresponding to each interspikeinterval of Y, where d =%.
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160 An adaptive partition was applied to the time series of interspike interval durations of Y and
161  separately to the time series of spike densities of X (Fig 1B). Specifically, for the adaptive partition, the
162  corresponding time series was sorted by smallest to largest values, and each bin was chosen to have a
163 minimum occupancy Cn,, equal to the square root of the total number of interspike intervals of Y, with
164  thetotal number of bins, for either X or Y, being N. Let CjY be the occupancy of bin j of the adaptive
165  partition used for Y, and let C* be the occupancy of bin k of the adaptive partition used for X. For each

166  bin, the marginal probabilities, P;¥ and P, were calculated as follows (Fig 1B):

CY
167 Pl =5—. (32
2.C
1=1
CX
168 R =——~%—. (3.3)

169  Note that the denominator for each marginal probability isthe sum of all occupanciesfor the
170  corresponding adaptive partition. This particular partition, where each bin is nonempty and has roughly

171 equa occupancy, isrelated to an adaptive partition (Cellucci et a. 2005).

172 The joint probability PjT,;X was calculated by constructing a two-dimensional matrix with one
173 horizontal axis corresponding to bins of the adaptive partition for Y and the other horizontal axis

174  corresponding to bins of the adaptive partition for X (Fig 1C). Let CK;(X be the joint occupancy of both

175  hinj of the adaptive partition used for Y and of bin k of the adaptive partition used for X. Then P'* was

176 calculated asfollows:

Y, X
177 R =o—w+—. j=123.,Nadk=123..,N, (3.4)

220

=1 p=1
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178  To calculate mutual information, the general formulafor Ml isused (Fig 1D):

A B P.Y,X
179 | =ZZF}T|;XI092PYJ’—I';< j=123..,N and k=1,23..,N, (35)
j=1 k=1 i Tk

180  where N, being the total number of binsfor either adaptive partition in this case also served as the total

181 number of bins on both axes, such that A =B = N.

182  Direct Method M1 estimator (DMIE): This estimator uses afixed-width partition of binary input and
183  output time series (Strong et al. 1998). This technique has a precision of At, which isthe sampling

184  interval that isused to convert input and output time series into binary signals. A time window of length T
185  wasused to construct adictionary of unique binary “words,” each consisting of binary symbols (0's and
186  1's), from the input and output. Marginal probabilities, P and P", associated with output word i and
187  input word j, were cal culated by dividing the total number of occurrences for each word by the total

188 number of occurrences for the corresponding time series. Joint probability, P;;**", was determined by
189  constructing atwo-dimensional matrix of output words, corresponding to columns, and input words,

190  corresponding to rows, much like with AIMIE. The occupancy of each two-dimensional bin was then
191  divided by the total occupancy of al two-dimensiona binsto give joint probability for the corresponding
192  two-dimensional bin. Finally, M| was cal culated using Eqg. 3.5, with B as the total number of output

193  words, and A asthe total number of input words. We utilized two variations of DMIE: DMIEL0, with At

194 =10msand T =100 ms, and DMIE20, with At =20 msand T = 200 ms.

195 M1 estimator with uniform partition of spike counts (three variations: FBWSE, FBNSE, SQRSE):
196  Thisisasimple estimator that uses afixed bin-width partition to determine spike count distributions for
197  input and output. Originally, this method of estimation was used to measure the amount of information
198  transmitted by neuronal responsesin the visua system about a set of stimuli (Oram et a. 1999; Oram et
199  al. 2001). Specifically, this estimator can be used to compare information transmitted by total spike count

200 aswell as by number of repeating triplets in output spike code. For this method, a uniform partition with
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201  timebins of fixed duration, also used for DMIE10, was used to construct atime series of spike counts.
202 Marginal probabilities, P,*" and P,-”‘, were determined from histograms that were constructed based on
203  spike counts, with spike bin occupancy defined as the number of time bins containing the corresponding
204  number of spikes. Joint probability, P,;*"'", was determined by constructing atwo dimensional histogram
205  of input spike bins on one axis and output spike bins on the other axis. M| was calculated using Eq. 3.5,

206  with B asthetotal number of output spike bins, and A as the total number of input spike bins.

207 To determine distribution histograms, Oram et. a used the error reduction algorithm of Kjaer et.
208  al (Kjaer et al. 1994; Oram et al. 1999; Oram et a. 2001), which requires training a back-propagation

209  artificial neura network with relatively substantial amounts of data. However, to demonstrate a blind

210  application of this estimator, we defined three variations of uniform partitions that differ only in their

211 construction of time bins. The fixed bin-width spike partition (FBWSE) uses time bins with afixed

212 duration of 10 ms, regardless of the duration of input or output time series. The fixed bin-number spike
213 partition (FBNSE) uses 500 time bins for both input and output, with bin width being the total duration of
214  thetime series divided by number of bins. For the square-root spike partition (SQRSE), we chose the

215  number of time binsto be the square root of the total number of data points for each time series (Cellucci

216 et a. 2005; Mosteller and Tukey 1977).

217 All simulations and estimators were coded in MATLAB R2012a and R2015a. M| was computed
218  using the algorithms of Celluci et. a (Cellucci et al. 2005). Calculations and simulations were run on
219  multiple machines, including an HP Pavilion machine using a Windows 7 operating system, aswell asa

220  Lenovo ldeapad machine with a Windows 10 operating system.
221  Electrophysiological Recordings

222  Animals. P20-24 BALB/c mice of both sexes were used for this study. All procedures were approved by
223 thelnstitutional Animal Care and Use Committee (IACUC, protocol # 16164) at University of Illinois

224 Urbana-Champaign. Animals were housed in animal care facilities at the Beckman Institute for Advanced

10
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225  Science and Technology, approved by the American Association for Accreditation of Laboratory Animal

226  Care (AAALAC).

227  Brain dicing: Mice wereinitially anesthetized with ketamine (100 mg/kg) and xylazine (3 mg/kg)

228  intraperitoneally and perfused with chilled (4°C) sucrose-based slicing solution ((in mM): 234 sucrose, 11
229 glucose, 26 NaHCOs, 2.5 KCl, 1.25 NaH,PO,, 10 MgCl,, 0.5 CaCl,). 300 um-thick thalamocortical brain
230  sliceswere obtained, as previously described (Cruikshank et al. 2002; Stebbings et al. 2016), then

231 incubated for 30 minutes in 32°C incubation solution ((in mM): 26 NaHCO3, 2.5 KClI, 10 glucose, 126
232 NaCl, 1.25 NaH,PO,, 3 MgCl,, and 1 CaCl,). After incubation, slices were transferred to a perfusion

233 chamber and perfused with artificial cerebrospina fluid (ACSF) ((in mM): 26 NaHCO;, 2.5 KCl, 10

234 glucose, 126 NaCl, 1.25 NaH,PO,, 2 MgCl,, and 2 CaCl,), and bubbled with 95% oxygen/5% carbon

235 dioxide.

236  Electrophysiology: The cell-attached recordings of pairs of neurons located in layer 2/3 or layer 4 of the
237  auditory cortex were performed at room temperature using a visualized dlice setup outfitted with infrared-
238  differential interference contrast (IR-DIC) optics. Recording pipettes were pulled from borosilicate glass
239  capillary tubes and had tip resistances of 2-5 MQ when filled with solution, which contained (in mM):
240 117 K-gluconate, 13 KCI, 1.0 MgCl,, 0.07 CaCl,, 0.1 ethyleneglycoal-bis (2-aminoethylether)-N,N,NO ,NO
241  -tetraacetic acid, 10.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2.0 NacATP, 0.4 Na-GTP, pH
242 7.3. For dataacquisition, aMulticlamp 700B amplifier (Molecular Devices, Sunnyvale, CA, USA) and
243 pClamp software (Molecular Devices, Sunnyvale, CA, USA) were used with a 20-kHz sampling rate. The
244 cell-attached recordings were conducted under after a gigaOhm seal was attained. Once the recording was
245  started, 2 pM of SR-95531 (gabazine, Tocris) was perfused with the ACSF for 30 minutes, after which
246  increasing concentrations of DNQX (Tocris) were added sequentially to the ACSF (approximately 30

247  minutes/each DNQX concentration) along with 2 uM SR-95531. The software program Clampfit

248  (Molecular Devices, LLC) was used to analyze series of spike times from paired recording data using an

249  event detection algorithm with threshold search.

11
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250 Results

251 The validity of using AIMIE to measure the degree of correlation between spike trains was
252 examined. Four other M| estimators, DMIE, FBWSE, FBNSE, and SQRSE, described in further detail in

253  Methods, are a'so tested for comparison.

254 M1 estimator dependence on thelength of time series. To determine the number of spikes needed to
255 achieve a stable measurement of M| using AIMIE, simulations of athalamaocortical model were run while
256  systematically varying the ssmulation time. AIMIE was used to compute the M| between the afferent

257  gpiketrain providing synaptic input to a model TC neuron and the output of the model, measured as spike
258  timesinamodel layer 4 cortical neuron. A simple thalamocortical network model was used (Fig 2A, see
259  Table 1 for parameters), and the afferent input was a 10 Hz Poisson-modulated spike train, varying only
260 inthetotal simulation time of the model. This scheme permitted generation of pairs of input and output
261  time seriesto examine basic properties of AIMIE, such as the dependency of AIMIE on the simulation
262  time, which corresponds to total number of output spikes. Ten trials were performed for each simulation
263  timeto calculate standard deviation. Comparing across the total simulation times, M1 per output spike
264  approaches an asymptotic value of about 2x10™ bitsg/spike (Fig 2B). This finding indicates that with

265  increasing amounts of data, AIMIE becomes |ess dependent on time series length. At about 100 seconds
266 of simulation time (black triangle of Fig 2), which corresponds to an average of 411 output spikes, a

267  decreaseis seen in the standard deviation function (Fig 2C) and in magnitude of error bars (Fig 2B inset)
268  when compared to shorter simulation times. Note that for simulation times below 100 seconds there are
269  dignificant fluctuationsin the M1 values, however the standard deviation substantially drops at simulation
270  times beyond 100 seconds. Therefore, for most subsequent simulations, simulation times were adjusted
271  suchthat at least 500 output spikes were generated, and for all tests of AIMIE’s performance, with

272  artificial spike trains that were not generated with the thalamocortical model, a minimum of 500 output

273 spikeswas also used.
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274 M1 estimator independence of interspikeinterval length variation: To determine whether any of the
275 Ml estimators are sensitive to the average spiking rate, we created artificial input and output spike trains
276  and computed M| between these trains using multiple different M1 estimators. The input time series were
277  randomly generated using a uniform distribution, each with 4000 spikesin total and interspike intervals
278  ranging from 5 msto 50 ms. In this case, for the output time series, a single output spike followed each
279  input spike and arrived before the next input spike. Under the assumption here that the optimal estimator
280  for MI should be insensitive to stretch (and therefore average spiking rate), the input and output spike
281  trainswere then temporally “stretched” to change their average spiking rate without changing the

282  relationship between the two trains (Fig 3A). In total, ten trials were performed for each average spiking
283  rate. When tested alongside the four other estimators (Fig 3B), the estimators that produced a changein
284 M1 beyond 10% of the baseline M| were DMIE10, DMIE20, and FBWIE, all of which use afixed bin
285  width partition, indicating that DMIE and FBWIE are sensitive to time scaling, while FBNIE, SQRSE,
286  and AIMIE are not. Therefore, FBNIE, SQRSE and AIMIE were compared in subsequent examinations

287  of Ml estimator performance.

288 M1 estimator performance with artificial spiketrains: In the next test of M| estimator performance, it
289  wasassumed that a high dependence between input and output data would be indicated by each input
290  spikediciting asimilar spiking event in the output. Deviation from this idealized response would be

291  considered aloss of information. To test the performance of the MI estimators, four sets of input and

292 output time series were generated, with progressively decreasing degree of correlation in thefirst three
293  sets(Fig4A). Theinput time series were randomly generated, each with 4000 spikesin total and

294  interspike intervals ranging from 5 msto 50 ms using a uniform distribution. For the first set of input and
295  output time series, designated as Type 1, the responseisideal, meaning that each input spike has 100%
296  chance of diciting asingle output spike. For the Type 2 pair, there is a 50% response, where each input
297  gpike has a 50% chance of generating a single output spike. This adjustment roughly decreases the

298  number of output spikesin Type 2 by half when compared to Type 1, and as such, should constitute a
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299  decreasein MI. Similarly, the Type 3 pair features a 25% response. The pair of time seriesin Type4is
300  constructed similarly to Type 3 time series, with the 4000 inputs randomly generated; each input has a
301  25% chance of generating aresponse event in the output, which, unlike for Type 3, is arandom number
302  between 1to 10 spikes. Ten trials were performed for each application of an M| estimator to a different
303  typeof time series pair. Our expectation was that an ideal M| estimator would show the highest M1 for

304  Typelstimuli and progressively lower for al of the rest.

305 For this comparison, only the M| estimators that were shown to be insensitive to time scaling
306 (FBNIE, SQRSE, and AIMIE) were tested. When AIMIE was applied to these four pairs of constructed
307 timeseries, it was observed that the M| values corresponded to the dropsin degree of correlation across
308  Types1through 3 (Fig 4B). For Type 4, the MI value was very close to that of Type 3, within 2%.

309 FBNSE and SQRSE, neither of which uses an adaptive partition, demonstrated a significant drop in Ml
310  across Typelto Type 2 and aslight drop in M1 from Type 2 to Type 3. Lastly, for Type 4, when

311  compared to Type 3, both FBNSE and SQRSE showed an increase in M1. Note that the only estimator
312  whose M1 value for Type 4 was less than that of Type 3 is AIMIE. Substantial fluctuation in M| values,
313  resulting in significant error values, may indicate an insufficient amount of data, particularly for SQRSE,
314  though as suggested by our time series length test (Fig 2). This amount of datawould be enough for

315  AIMIE toyield reliable results, as there are 4000 input spikes and around 1000 or more output spikes and
316  for each time series pair type. Note that the degree of variance for AIMIE’s estimates is noticeably

317  smaller than those of the other estimators’ values. These data suggest that AIMIE is more sensitive than

318  other methods to manipulations of spiketrains that are expected to diminish the M1 between them.

319 Ml estimator performance with paired electr ophysiological recordings: In thistest, M| estimators
320 were applied to spike trains of paired recordings of spontaneous activity from the auditory cortex in a
321  dlice preparation, under different concentrations of bath-applied DNQX, which isan AMPA receptor
322  antagonist that blocks excitatory synaptic transmission. At higher concentrations of DNQX, we expect

323  that MI per spike between responses of the two neurons of a paired recording would drop, due to
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diminished synchrony between spontaneous action potentials of the paired neurons. Specificaly, AIMIE
and FBNSE were tested, as these two estimators performed well with artificially constructed inputs and
outputs described above. Recordings from atotal of five pairs of neuronsin layer 2/3 or layer 4 from
mouse brain slices containing the auditory cortex were used. For each pair of recorded neurons, the
neuron that produced the greatest number of spikes at the highest DNQX concentration was used for
normalization of M|, specifically by dividing the MI value of each trial by the number of spikes produced
by this neuron for that trial. For each paired recording sequence under different DNQX concentrations,
the change in normalized M1 was calculated by dividing the M1 per spike at each DNQX concentration by
the M1 per spike at DNQX concentration of 0 uM. With increasing DNQX concentrations, AIMIE
demonstrated the expected drop in normalized M1 (Fig 5A), while FBNSE did not (Fig 5B), indicating

that AIMIE performs well with electrophysiological recordings of variable synchrony.

Varying T-current conductance in open-loop thalamoreticular network: Applying AIMIE to asimple
open-loop thalamocortical network model (Fig 6A), the effect of varying stimulation parameters and the
T-current conductance of the TC cell on the modification of an ascending signal through the thalamus was
explored. Poisson-modulated synaptic input to amodel TC cell (henceforth “thalamic afferents’) was
varied from 0.5 Hz to 200 Hz on alogarithmic scale, while Poisson-modul ated synaptic input to a TRN
neuron was similarly varied from 0 Hz to 200 Hz. As before (Willis et a. 2015), the applied spike trains
in thalamic afferents were independent of the applied spike trains in afferents to the TRN cell. For each
combination of TC and TRN stimulation rates, the M| between the thalamic afferents and output, either at
the TC or L4 neuron, was computed. This M1, normalized by the number of output spikes, was then
averaged over al combinations of TC and TRN stimulation rates to produce average M| per output spike.
The average M1 per output spike was computed for each T-current conductance, ranging from 0 to 100 nS
(Fig 6B). Also, for each value of T-current conductance, ranging from 10 to 80 nS, a heat map plot of
normalized M| values with TRN stimulation rates on the x-axis and TC stimulation rates on the y-axis

was constructed (Fig 7A for normalized M1 between thalamic afferents and L4 output, and Fig 7B for
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normalized M| between thalamic afferents and TC output). 10 trials were performed for each data point of

T-current conductance.

The average M| per output spike between the thalamic afferents and L4 is on average slightly
greater than between the thalamic afferents and the TC cell (Fig 6B). Note that at certain combinations of
TRN and TC stimulation rates, specifically at high TRN stimulation frequencies and low TC stimulation
frequencies, M1 per output spike between the thalamic afferents and L4 output paradoxically becomes
greater than M| per output spike between the thalamic afferents and TC output, as seen in the normalized
MI difference plots of Fig 7C. For example, for TC T-current conductances above 20 nS and thalamic
afferent input at 0.5 Hz and to the TRN neuron at 207 Hz, M1 per spike across the whole network (from
thalamic afferent to L4; purple line, Fig 8A) paradoxically exceeds that seen during the first stage of the
network (from thalamic afferent to TC; green line, Fig 8A). In addition, this paradoxical behavior is seen
as the degree of bursting of the TC neuron increases (blue line, Fig 8A). Thisrelationship is quantified in
Fig 8B. Here, the number of burstsin the TC neuron is compared against this paradoxical increasein Ml
across the whole network, and a strong positive correlation is observed (Fig 8B, (Pearson'sr = 0.843, p <
0.001)). These data suggest that the paradoxical increasein Ml per spikeis related to the underlying

bursting behavior of the TC cell.

Discussion

Summary of findings: In the current study, the properties of a novel estimator of M1, the Adaptive
partition using Interspike intervals M1 Estimator (AIMIE), were examined, with its performance
compared to other, more established methods of measuring M1 between spike trains. The AIMIE method
of computing M| was found to be insensitive to overall time compression or expansion of the spike trains,
suggesting that it may be used effectively at both high and low spike rates. AIMIE was also found to be
sensitive to manual manipulation of the relationship between simulated input and output spike trains. That

is, manual degradation in the relationships between two spike trains also lowered the M1, computed with
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373 AIMIE, but not with other methods. Further, in paired neuronal recordings, the decreasein M1 with

374  increasing concentration of DNQX was consistent with DNQX'’ s effect of desynchronizing the responses
375  of therecorded neuron pairs. Finaly, when AIMIE was used to compute the M1 between input (to a

376 model TC cell) and output (from amodel L4 neuron) in athalamocortical model, it was found that M1
377  wasmaximum at T-current amplitudes corresponding to those seen physiologically, and that the apparent
378  degradation in M| caused by bursting could be recovered at the thalamocortical synapse. These data

379  suggest that a new method for estimating M| between spike trains, AIMIE, is now available to

380 investigators and that the method has the advantage of being able to easily compensate for wide changes

381 intheaverage spike rate of either the input or output spike train.

382  Methodological considerations: Since the thalamocortical network demonstrates short latenciesin L4
383  neuronsin response to afferent input provided to TC neurons (< 10 ms, corresponding to 2 synapses

384  between input and output, (LIano et al. 2014), no effort was made to shift the output time series relative to
385  theinput time series. However, in other networks, particularly in large-scale networks containing many
386  more synapses, where response latencies are longer, a constant time delay may need to be compensated
387 forintheanalysis. In addition, most M1 estimators require a minimum amount of datafor reliable results
388  (Paninski 2003). As observed in Fig 2B and C, under the specified simulation parameters, approxi mately
389  400-500 output spikes, corresponding to 100 seconds simulation time, are needed for AIMIE to provide
390  consistent MI values, suggesting that for spike rates of approximately 10 spikes/second, approximately
391  40-50 seconds of data are required to compute M| using AIMIE. Parametric density estimators, such as
392  maximum likelihood estimation, require relatively little datafor convergence (Marek and Tichavsky

393  2008), while M1 estimators with uniform partition, especially DMIE, usually require larger amounts of
394  datain comparison to M| estimators with adaptive partition (Borst and Theunissen 1999; Walters-

395  Williamsand Li 2009).

396 Ml asan estimate of dependence: Multiple metrics have been used previously to compute the degree of

397  similarity between spike trains. M1 is a quantity that measures general dependence between two random
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398  variables, and as such, it isrelated to correlation functions which traditionally measure linear dependence
399  (Li 1990). STTC, for example, uses afixed time bin around each input spike to cal culate correlation

400  between input and output spike trains (Cutts and Eglen 2014). This approach is reminiscent of a uniform
401  partition method, which isinadequate for analyzing M1 in a TC network because of the wide range of
402  input rates processed by TC neurons, discussed below. Related to the correlation measures are distance
403  metrics, including the Victor-Purpura spike train distance metric (Victor and Purpura 1996). This metric
404  iscommonly used in input and output spike train analysis, though there is evidence that this may not be
405  anoptima metric for evaluating temporal information (Gai and Carney 2008). Specifically, the Victor-
406  Purpuraspike train distance metric measures information carried primarily by absolute spike times, and it
407  does not appear to effectively account for other temporal features in spike time series, such as

408  synchronization to frequency of sensory input in aneuron’s response. Thisinsensitivity to certain

409  temporal features could potentially complicate its use in analysis of the temporally sensitive

410 thalamocortica network.

411 Furthermore, traditional correlation analysis, such as Pearson correlation, has been shown to be
412 optimal only in the case of linear dependencies between variables, while M| can be applied to random
413  variablesthat exhibit linear aswell as nonlinear dependencies (Gencaga et al. 2014), which are often

414  demonstrated in neural networks (Schoner and Kelso 1988). Comparisons of margina entropy, meaning
415  the average amount of information provided by, in this case, asingle spike time series, have also been
416  used to measure the relative information content of time seriesin the analysis of bursting and tonic firing
417  inthethalamus (Reinage et al. 1999). However, only marginal entropies are compared in this earlier

418  analysis, and thereis no calculation of joint entropy between two time series, asthereisin MI estimation.
419 A consequence of not calculating joint entropy is that the relative timing between input and output spikes

420  islost.

421 Many previously employed M1 estimators use uniform partitions of data to estimate density

422  distributions (e.g., DMIE, FBNSE, FBWSE, and SQRSE). While computationally efficient, these uniform
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423  partitions can produce many empty bins (Gencaga et al. 2014). Therefore, for these estimators, different
424 choices of bin construction for a nonadaptive partition can produce substantially different M1 values.

425 Estimators with afixed bin width that do not depend on the number of data points, FBWSE and DMIE,
426  show achangein M1 when applied to time-scaled time series (Fig 3), unless bin widths of the partition are
427  scaled appropriately. Furthermore, estimators with a fixed bin width that do depend on the number of data
428  points, FBNSE and SQRSE, did not perform aswell as AIMIE with certain pairs of time series of

429  variable degrees of correation and synchrony (Figs 4 and 5). These findings regarding estimators that use
430  fixed bin widths indicate that in a network where spike timing can be changed significantly by varying
431  input rate, an M1 estimate of each time series pair would require a readjustment of the uniform partition.
432 Theuse of multiple partition schemes could cause substantial uncertainty in comparisons across samples,
433  since every combination of TRN and TC stimulation rates would require its own parameters for the

434 uniform partition. Therefore, for the thalamocortical network, M1 estimators with uniform partitions

435  would not be an optimal choice, leaving usto favor an adaptive partition instead. In addition, unlike

436  estimatorsthat use a uniform partition, AIMIE’s adaptive partition also causes estimated M| to converge
437  faster with sample size (Walters-Williams and Li 2009), and allows investigators to work with time

438  processes that have incomparable time-scales (Darbellay and Vajda 1999).

439  T-current conductance, bursting, and M1: Systematic variation of the TC cell’s T-current conductance
440  inthethalamocortical model revealed that there is a specific range of maximal conductance values near
441 40 nSthat produces a maximum average M1 per output spike between thalamic afferent input and output
442  a L4 (Fig 6B). Thisfinding suggests that the TRN is able to induce the most potentiation of the

443  ascending TC input at this peak TC T-current conductance value. Note that this value is close to the

444  physiological TC T-current conductance of approximately 45 nS (Willis et a. 2015), and is within the
445  range used in previous modeling studies (Deleuze et al. 2012; Destexhe et al. 1993; Pospischil et al. 2008;
446  Wang 1994). It has been shown that some hyperpolarization-activated cation currents can be modulated

447 by factors such asintracellular pH and specific neurotransmitters, including norepinephrine and serotonin
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448  (Munsch and Pape 1999; Pape and McCormick 1989). If TC T-current is similarly modulated (for

449  example see (Joksovic et al. 2010)), then the current study suggests that this modulation could alter the
450  amount of MI between input and output as well. Thus, findings from the current study may indicate the
451  possibility that modulation of TC T-current is one way in which the thalamaocortical network can

452  modulate sensory thalamocortical information flow.

453 Previous studies have suggested that bursting in thalamic relay neurons degrades ascending

454  sensory signals, and that tonic firing modes are more likely to produce a high-fidelity representation of
455  ascending information en route to the cortex (Castro-Alamancos 2002; McCarley et a. 1983; McCormick
456  and Feeser 1990). However, it has aso been shown that thalamic bursts may carry more information, can
457  enhance detection of specific temporal sequences, and are higher in synaptic efficacy than single thalamic
458  spikes(Lesicaand Stanley 2004; Lesicaet a. 2006; Reinagel et a. 1999; Swadlow and Gusev 2001a).
459  The current study suggests that in certain cases, particularly with high-frequency input to TRN and low
460  frequency input to TC (Fig 8A), bursting is responsible for loss of incoming sensory information at the
461 level of the TC (Fig 8B), asit likely obscures the ascending sensory signal. However, this information
462  loss may be compensated in the L4 neuron due to the filter properties of the TC synapse, which produce
463  single spikesin responseto theinitial spikes of aburst (Boudreau and Ferster 2005; Chung et al. 2002;
464  Gil et a. 1999; Krahe and Gabbiani 2004; Swadlow and Gusev 2001b). Thus, information per spike that
465  islost at the level of the thalamus due to bursting may be partially recovered at the level of the cortex; this

466  isahypothesisthat can be tested physiologically in subsegquent studies.
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470  Figure Captions

471 Figure 1: Procedurefor estimating M1 using AIMIE. A) Given two time series, the one that
472  hasagreater number of spikesis designated as X, and the other is designated as Y. A time series of

473  interspikeinterval durationsfor Y is constructed, and atime series of spike densities of X corresponding
474  totheinterspikeintervalsof Y. M represents the total number of interspike intervals of Y. B) An adaptive
475  partition is applied to the time series of interspike interval durations of Y and separately to the time series
476  of spike densities of X. Marginal probability for each bin of the adaptive partition is calculated as the

477  occupancy of the bin divided by the sum of occupancies of al bins of that adaptive partition. Note the
478  roughly equal occupancy of the bins, which is due to the adaptive partition. C) A joint histogramis

479  constructed, in which one of the horizontal axes represents the bins of the adaptive partition for Y and the
480  other horizontal axis represents bins of the adaptive partition for X. Joint probability for each combination
481  of binsiscalculated asjoint occupancy of both bins divided by the sum of all occupancies of the joint

482  histogram. D) Equation for calculating M1, in which the outer sum, from j=1 to N, sums over the bins of
483  the adaptive partition of Y and the inner sum, from k=1 to N, sums over the bins of the adaptive partition
484 of X.

485 Figure 2: Application of AIMIE to time series generated from the model thalamocortical
486  network with variable simulation times. A) Model architecture of athalamocortical network containing
487  only TC and L4 neurons, which are modeled using a Hodgkin-Huxley framework. Default model

488  parameters are used for simulations (see Table 1). INt¢ corresponds to thalamic afferent inputs, which are
489  generated as 10 Hz Poisson-modulated pulse trains. B) M1 per output spike provided by AIMIE when it is
490  applied to time series pairs with different simulation times. As simulation time increases, the number of
491  output spikesincreases aswell, and AIMIE s M1 per output spike trends towards a horizontal asymptote
492  of about 2x10™ bits/spike. The black triangle marks a simulation time of 100 seconds, which provides an
493  average of about 411 output spikes. Inset shows decreased fluctuationsin M1 per output spike on an

494  expanded scale, particularly for simulation times above 100 seconds. 10 trials were used for each
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495  simulation time, to generate error bars and standard deviation. C) Standard deviation of AIMIE’s

496  estimates of M| per output spike from Fig 2A for arange of simulation times. Note that standard

497  deviation is significantly smaller at around 100 seconds of simulation time (black triangle) than at shorter
498  simulation times.

499 Figure 3: Effect of scaling of interspikeintervalson M1 for different estimators. A) Spike
500 time plots demonstrating scaling of interspike intervals for input and output series. In this case, the second
501 input and output pair is generated by scaling all interspike intervals of the first pair by a factor of 2. B)
502  Percent changein MI demonstrated by estimators AIMIE, DMIE, FBWSE, FBNSE, and SQRSE when
503 they are applied to input and output time series with interspike intervals scaled by factors of 2, 4, and 8.
504  10trials were used for each data point and to generate standard deviation for error bars.

505 Figure 4: Application of different estimatorsto hypothetical input and output series of

506  variable dependence. A) Spiketime plots of hypothetical constructed time series of Types1, 2,3, and 4,
507 where Type lisanidea (100%) responsetype, Type 2 isa50% response type, Type 3 is a 25% response
508 type, and Type 4 isa25% burst response type. B) Percent change in M1 demonstrated by estimators

509 AIMIE, FBNSE, and SQRSE when they are applied to input and output time series of Types 1, 2, 3, and
510 4. Asbefore, 10 trials were used for each data point and to generate standard deviation for error bars.

511 Figure5: Application of different estimatorsto dual-recor ded spike time series of variable
512 synchrony. Recordings from atotal of five neuron pairs are used. For both estimators, for each paired
513  recording sequence under different DNQX concentrations, the change in normalized M1 is calculated as
514  MI per spike at each DNQX concentration divided by the M1 per spike at DNQX concentration of O pM.
515  A) Changein normalized M| demonstrated by AIMIE across different concentrations of DNQX. The

516  insetisanimage of electrode placement for a paired recording in auditory cortex of mouse brain dlice,
517  with C denoting caudal and D denoting dorsal orientation. The legend for paired recordingsislocated
518  below in Fig 5B. B) Change in normalized M| demonstrated by FBNSE across different concentrations of
519 DNQX. Thelegend corresponds to both Fig 5A and Fig 5B.

520
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Figure6: M1 analysis of inputs and outputsin an open-loop thalamocortical networ k model
at variable T-current conductances. A) Model architecture of the open-loop thalamocortical network.
Arrows represent excitatory inputs, while the TRN to TC projection represents inhibitory (GABAergic)
input. All neurons are modeled using a Hodgkin-Huxley framework. INtgry Corresponds to input to the
TRN, which ranges from 0 Hz to 200 Hz, while IN+c corresponds to thalamic afferents, which ranges
from 0.5 Hz to 200 Hz. Both INtry and INtc are generated as Poisson-modul ated pulse trains. Note that
the green bracket symbolizes information transfer from thalamic afferentsto TC, and the purple bracket
symbolizes information transfer from thalamic afferentsto L4. B) Average M1 transmitted per output
spike between thalamic afferents and TC and between thalamic afferentsand L4, at arange of TC T-
current conductances. Thereisapeak in M1 per output spike at a TC T-current conductance of about 40
nS, which may indicate maximum potentiation of ascending input in open-loop thalamocortical network.
Again, 10 trials were used for each data point and generation of standard deviation for error bars.

Figure 7: Heat map plots of normalized M1 in open-loop thalamocortical network maodel for
variable T-current conductances. For each TC T-current conductance, an M1 plot is generated using a
range of combinations of TC and TRN stimulation rates and then normalized by the number of output
spikes for each rate combination. Normalized M1 plots are averaged over 10 trials. The rate combination
of 207 Hz stimulation of TRN and 0.5 Hz stimulation of TC (see Fig 8) is marked in a black box on each
plot. Note that the horizontal black line between panels A and B denotes a minus sign, while the pair of
horizontal black lines between panels B and C denotes an equals sign. A) Plots of average normalized M|
(bits per output spike) between thalamic afferents and L4 output for T-current conductances of 10 nSto
80 nS. B) Plots of average normalized M| between thalamic afferents and TC output for T-current
conductances of 10 nSto 80 nS. C) Plots of average normalized M| between thalamic afferentsand L4
output (Fig 7A) minus average normalized M| between thalamic afferents and TC output (Fig 7B) for T-
current conductances of 10 nSto 80 nS. These difference plots show arecovery of information per spike

at low thalamic afferent rates and high TRN stimulation rates.
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Figure8: Stimulation of TRN at 207 Hz and TC at 0.5 Hz in open-loop thalamocortical
networ k model. This rate combination is marked as a black box on the normalized M1 plots of Fig 7.
IN+c refers to thalamic afferents, as shown in Fig 7. A) M1 per output spike between thalamic afferents
and TC output and thalamic afferents and L4 output at arange of T-current conductances from 0 nSto
100 nS. The number of bursts observed at the TC is aso shown alongside on the right vertical axis. 10
trials were used for each data point and for generation of standard deviation for error bars. B) Difference
of MI per spike of TC input to TC output and M| per spike of TC input and L4 output against the number
of bursts produced by TC. The trendline is shown alongside a Pearson coefficient value of r = 0.843 (p <

0.001).
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