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Abstract 21 

 The impact of thalamic state on information transmission to the cortex remains poorly 22 

understood. This limitation exists due to the rich dynamics displayed by thalamocortical networks and 23 

because of inadequate tools to characterize those dynamics. Here, we introduce a novel estimator of 24 

mutual information and use it to determine the impact of a computational model of thalamic state on 25 

information transmission. Using several criteria, this novel estimator, which uses an adaptive partition, is 26 

shown to be superior to other mutual information estimators with uniform partitions when used to analyze 27 

simulated spike train data with different mean spike rates, as well as electrophysiological data from 28 

simultaneously recorded neurons. When applied to a thalamocortical model, the estimator revealed that 29 

thalamocortical cell T-type calcium current conductance influences mutual information between the input 30 

and output from this network. In particular, a T-type calcium current conductance of about 40 nS appears 31 

to produce maximal mutual information between the input to this network (conceptualized as afferent 32 

input to the thalamocortical cell) and the output of the network at the level of a layer 4 cortical neuron. 33 

Furthermore, at particular combinations of inputs to thalamocortical and thalamic reticular nucleus cells, 34 

thalamic cell bursting correlated strongly with recovery of mutual information between thalamic afferents 35 

and layer 4 neurons. These studies suggest that the novel mutual information estimator has advantages 36 

over previous estimators, and that thalamic reticular nucleus activity can enhance mutual information 37 

between thalamic afferents and thalamorecipient cells in the cortex.  38 

Keywords: mutual information, adaptive partition, thalamus, thalamic reticular nucleus, bursting 39 

 40 
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Introduction 43 

Estimating the degree to which a signal is conserved as it passes through a neural network 44 

requires methods that are both sensitive to spike timing and that take into account nonlinear dependencies 45 

between spike trains. These requirements are particularly necessary in thalamocortical networks, which 46 

encode stimuli nonlinearly (Kayser et al. 2001; MacLean et al. 2005; Miller et al. 2014; Watson et al. 47 

2008) and rely on the precise timing of inputs to process sensory information (Rose and Metherate 2005). 48 

Sensory thalamocortical (TC) neurons receive input from retina or caudal sensory structures and project 49 

to well-defined areas of the cerebral cortex. TC neurons display at least two firing modes: tonic and burst 50 

mode, and tonic mode has generally been regarded as a high-fidelity transmission state to relay sensory 51 

information to the cortex (Jones 2007; Kim and McCormick 1998; Llinás and Steriade 2006; McCormick 52 

and Feeser 1990; Sherman 2001; Steriade and Llinás 1988).  TC cells are also strongly synaptically 53 

interconnected with the thalamic reticular nucleus (TRN), which comprises a shell of GABAergic neurons 54 

that partially surrounds the thalamus. The TRN has been implicated in a wide range of brain functions, 55 

including the production of sleep spindles, modulation of arousal and attention and, under pathological 56 

conditions, production of absence seizures (Destexhe et al. 1999; Destexhe et al. 1993; Halassa et al. 57 

2014; Halassa et al. 2011; Huguenard 1998; McAlonan et al. 2008; McCormick and Contreras 2001). 58 

Traditional models of thalamic processing have postulated the presence of reciprocal connectivity 59 

between TC and TRN neurons, and that this connectivity forms the basis for oscillations such as spindles 60 

and spike-wave discharges in absence epilepsy (Destexhe et al. 1998; Huguenard 1998; Steriade et al. 61 

1993). However, more recent data have revealed non-reciprocal connectivity, which may serve as a 62 

substrate to adjust the gain and filter properties of TC cells or to select particular groups of TC cells to 63 

meet cognitive demands (Crabtree and Isaac 2002; Kimura 2014; Pinault and Deschênes 1998; Willis et 64 

al. 2015; Zikopoulos and Barbas 2012). We recently explored a non-reciprocal (“open-loop”) model and 65 

found that total spike counts in the output of the model, a layer 4 (L4) cortical cell, were paradoxically 66 

enhanced by intermediate rates of TRN activity, and that this enhancement was dependent on both the 67 
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actions of TRN neurons and nonlinear T-type calcium currents (T-currents) in TC cells (Willis et al. 68 

2015), consistent with recent physiological findings (Whitmire et al. 2017; Whitmire et al. 2016). Given 69 

the impact of T-channel-mediated bursting behavior on enhancement of information transmission through 70 

a TC network (Reinagel et al. 1999), and the theoretical benefits of bursting on signal encoding (Denning 71 

and Reinagel 2005; Lisman 1997; Mukherjee and Kaplan 1995; Oswald et al. 2007; Person and Perkel 72 

2005; Reinagel et al. 1999; Smith et al. 2000; Swadlow and Gusev 2001a), we hypothesized that the TRN 73 

in an open-loop configuration could have a major impact on information traveling through the TC 74 

network. 75 

There is, however, difficulty in measuring information flow through a network of spiking 76 

neurons, particularly in networks that must be able to respond to trains of incoming sensory signals at a 77 

broad range of rates, such as thalamocortical networks. There exist several generalized methods of 78 

estimating dependence between time series (see (Doquire and Verleysen 2012; Silverman 1986; Walters-79 

Williams and Li 2009) for overviews of common estimators). One such class of methods is distance 80 

metrics. The Victor-Purpura spike train distance metric (Victor and Purpura 1996) is a binless method of 81 

measuring dissimilarity between spike trains. Unlike other distance metrics, this method embeds data in a 82 

metric space instead of a vector space, thus avoiding the assumption of spike train addition or scalar 83 

multiplication. Another common method is correlation analysis, which includes Pearson correlation and 84 

the Spike Timing Tiling Coefficient (STTC) (Cutts and Eglen 2014). Of these methods, STTC was 85 

specifically developed for estimating correlation between neural spike trains, and it is not confounded by 86 

firing rate, unlike other measures of correlation.  87 

However, a potential problem with traditional correlational analyses is that they are not optimal at 88 

estimating nonlinear dependencies (Gencaga et al. 2014), which are often observed in neural networks. 89 

This drawback can be addressed by using a dependence measure known as mutual information (MI) 90 

(Cellucci et al. 2005; Shannon 1948). MI between two random variables X and Y is mathematically 91 

defined as: 92 
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 ( , ) ( ) ( ) ( , )I X Y H X H Y H X Y= + −   , (1.1) 93 

where H(X) and H(Y) are entropies and H(X,Y) is joint entropy. Since the entropy H of a random variable 94 

X = x1,x2,…,xn  is essentially a measure of its unpredictability, and is defined through its probability 95 

distribution p with 2
1

( ) ( ) log ( )
n

i i
i

H X p x p x
=

= −∑ , MI estimators can take into account any kind of 96 

dependency. Furthermore, an important feature of MI estimators is that they can be used as nonparametric 97 

density estimators, as MI is considered to be a nonparametric measure of relevance (Walters-Williams 98 

and Li 2009). Nonparametric estimators assume no prior model underlying the data distribution, and 99 

consequently require more data than parametric estimators (Worms and Touati 2016). A common 100 

example of a nonparametric estimator is the Direct Method (Strong et al. 1998). This estimator calculates 101 

MI using the distribution of binary “words” in input and output time series. However, like many 102 

estimators the Direct Method uses a uniform partition of the data, which consists of a fixed time window 103 

to obtain probability distributions. Uniform partitions are typically ad hoc or chosen through an error-104 

reduction algorithm which increases computational cost (Kjaer et al. 1994; Walters-Williams and Li 105 

2009). By using adaptive partitions (Cellucci et al. 2005; Marek and Tichavsky 2008), convergence of the 106 

MI estimate is faster, and the amount of data required is less, making adaptive partition methods generally 107 

more computationally efficient than uniform partitions, particularly when data are distributed 108 

nonuniformly (Darbellay and Vajda 1999; Marek and Tichavsky 2008; Walters-Williams and Li 2009).  109 

In the case of thalamocortical networks, whose output depends heavily on the rate of synaptic 110 

input from both peripheral sensory structures and the TRN (Bartlett and Wang 2007; Kim et al. 1997; 111 

Mukherjee and Kaplan 1995; Willis et al. 2015), measurement of the rates of information flow across the 112 

thalamus require MI estimators that provide estimates across different spike rates. Therefore, similar to 113 

our previous work (Willis et al. 2015), we introduce a modified estimator of MI (Adaptive partition using 114 

Interspike intervals MI Estimator, or AIMIE), between time series that takes into account these different 115 

characteristic time scales. This new estimator, unlike previous estimators, uses adaptive partitions of 116 
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interspike intervals and spikes densities to handle the disparate firing rates. Previously used estimators are 117 

typically limited by poor estimation of nonlinear dependencies, a priori assumptions of distributions, 118 

requirements of large amounts of data, and overestimation or underestimation of data distributions. In the 119 

current study, the AIMIE method is further examined and compared to these other, more traditional, 120 

methods of estimating MI using both simulated and real spike trains. AIMIE is then used to probe the 121 

impact of the TRN on the transformation of spike information as signals pass through a simple 122 

thalamocortical network model. Using several different criteria, we find that AIMIE outperforms the 123 

other metrics and reveals that TRN-mediated inhibition in a thalamocortical model produces a 124 

paradoxical recovery of information per spike that is lost during thalamic bursting. 125 

Methods 126 

Computational Methods 127 

Model Architecture: A Hodgkin-Huxley framework was used to build a three-neuron, open-loop 128 

thalamoreticular network, as described previously (Willis et al. 2015). The network consists of single TC, 129 

TRN, and L4 cells, modeled as single-compartment models from whole-cell recordings done in our 130 

laboratory. Each cell’s membrane potential V was modeled by a first-order differential equation:    131 

   
1

( ) ( )( )
n

m L L i i e
i

dV
C g V E g V V E I

dt =

= − + − +∑ ,    (2.1) 132 

where Cm is membrane capacitance, gL is leak conductance, EL is leak reversal potential, Ie is current 133 

externally applied to the cell, n is the number of channel types, excluding leak channels, gi(V) is 134 

conductance of ith channel type as a function of the membrane potential, and Ei is reversal potential of ith 135 

channel type. As described previously (Willis et al. 2015), the model of TC cell includes T-type calcium 136 

current, cationic H-current, delayed-rectifying potassium current, and fast sodium current, while the TRN 137 

cell model includes all of the aforementioned currents as well as slow-inactivating potassium current (KS 138 
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current). To detect the maximum number of bursts, the number of bursts in TC output time series was 139 

calculated using liberal criteria, defined by (Ramcharan et al. 2000) as, for each burst, at least 50 ms of 140 

quiescence followed by at least two spikes with interspike interval(s) of at most 6 ms (but see (Deleuze et 141 

al. 2012; Sincich et al. 2007)). The L4 model includes fast sodium current, delayed-rectifying potassium 142 

current, and non-inactivating potassium current (M-current). The parameters of these cell models and 143 

their currents are found in Table 1. Thalamic afferent, reticulothalamic, and thalamocortical synaptic 144 

parameters were derived from the literature (Chen and Regehr 2003; Gentet and Ulrich 2003; Laurent et 145 

al. 2002). All inputs to TC and TRN cell models are Poisson-modulated pulse trains, with a single-pulse 146 

duration of 0.1 ms. 147 

MI Estimator with Adaptive Partition based on Interspike Intervals (AIMIE): AIMIE is a 148 

nonparametric MI estimator (Walters-Williams and Li 2009), which does not assume the distribution of 149 

data a priori, similar to the MI estimators mentioned below, and utilizes an adaptive partition (Cellucci et 150 

al. 2005) of interspike interval durations and spike densities.    151 

Given two time series of spike times, let X be the time series with the greater number of spikes, 152 

and Y be the time series with the lesser number of spikes. Let ti
Y be the times at which spikes occur in Y, 153 

and let Δti
Y be the durations (in ms) of an interval between subsequent spikes of Y such that 154 

    1
Y Y Y
i i it t t+Δ = −  .       (3.1) 155 

Let ni
X be the number of spikes of X in the Y interspike interval [ 1,Y Y

i it t + ) corresponding to Δti
Y (Fig 1A), 156 

and M be the total number of Y interspike intervals. From Y we constructed a time series of interspike 157 

interval durations, Δt1
Y, Δt2

Y, …, ΔtM
Y, and from X we constructed a time series of spike densities, d1

X, 158 

d2
X, …, dM

X, corresponding to each interspike interval of Y, where 
X

X i
i Y

i

n
d

t
=

Δ
. 159 
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An adaptive partition was applied to the time series of interspike interval durations of Y and 160 

separately to the time series of spike densities of X (Fig 1B). Specifically, for the adaptive partition, the 161 

corresponding time series was sorted by smallest to largest values, and each bin was chosen to have a 162 

minimum occupancy Cmin equal to the square root of the total number of interspike intervals of Y, with 163 

the total number of bins, for either X or Y, being N. Let Cj
Y be the occupancy of bin j of the adaptive 164 

partition used for Y, and let Ck
X be the occupancy of bin k of the adaptive partition used for X. For each 165 

bin, the marginal probabilities, Pj
Y and Pk

X, were calculated as follows (Fig 1B): 166 

    

1

Y
jY

j N
Y
l

l

C
P

C
=

=
∑

 ,       (3.2) 167 

    

1

X
X k

k N
X

l
l

C
P

C
=

=
∑

.       (3.3) 168 

Note that the denominator for each marginal probability is the sum of all occupancies for the 169 

corresponding adaptive partition. This particular partition, where each bin is nonempty and has roughly 170 

equal occupancy, is related to an adaptive partition (Cellucci et al. 2005).  171 

The joint probability ,
,
Y X
j kP was calculated by constructing a two-dimensional matrix with one 172 

horizontal axis corresponding to bins of the adaptive partition for Y and the other horizontal axis 173 

corresponding to bins of the adaptive partition for X (Fig 1C). Let ,
,

Y X
j kC  be the joint occupancy of both 174 

bin j of the adaptive partition used for Y and of bin k of the adaptive partition used for X. Then ,
,
Y X
j kP was 175 

calculated as follows: 176 

  

,
,,

,
,

,
1 1

Y X
k jY X

k j N N
Y X
l p

l p

C
P

C
= =

=
∑∑

,       1,2,3,...,j N=  and 1,2,3,...,k N= ,   (3.4) 177 
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To calculate mutual information, the general formula for MI is used (Fig 1D): 178 

,
,,

, 2
1 1

log
Y XA B
j kY X

j k Y X
j k j k

P
I P

P P= =

=∑∑  1,2,3,...,j N=  and 1,2,3,...,k N= ,   (3.5) 179 

where N, being the total number of bins for either adaptive partition in this case also served as the total 180 

number of bins on both axes, such that A = B = N. 181 

Direct Method MI estimator (DMIE):  This estimator uses a fixed-width partition of binary input and 182 

output time series (Strong et al. 1998). This technique has a precision of Δt, which is the sampling 183 

interval that is used to convert input and output time series into binary signals. A time window of length T 184 

was used to construct a dictionary of unique binary “words,” each consisting of binary symbols (0’s and 185 

1’s), from the input and output. Marginal probabilities, Pi
out and Pj

in, associated with output word i and 186 

input word j, were calculated by dividing the total number of occurrences for each word by the total 187 

number of occurrences for the corresponding time series. Joint probability, Pi,j
out,in, was determined by 188 

constructing a two-dimensional matrix of output words, corresponding to columns, and input words, 189 

corresponding to rows, much like with AIMIE. The occupancy of each two-dimensional bin was then 190 

divided by the total occupancy of all two-dimensional bins to give joint probability for the corresponding 191 

two-dimensional bin. Finally, MI was calculated using Eq. 3.5, with B as the total number of output 192 

words, and A as the total number of input words. We utilized two variations of DMIE: DMIE10, with Δt 193 

= 10 ms and T = 100 ms, and DMIE20, with Δt = 20 ms and T = 200 ms.  194 

MI estimator with uniform partition of spike counts (three variations: FBWSE, FBNSE, SQRSE): 195 

This is a simple estimator that uses a fixed bin-width partition to determine spike count distributions for 196 

input and output. Originally, this method of estimation was used to measure the amount of information 197 

transmitted by neuronal responses in the visual system about a set of stimuli (Oram et al. 1999; Oram et 198 

al. 2001). Specifically, this estimator can be used to compare information transmitted by total spike count 199 

as well as by number of repeating triplets in output spike code. For this method, a uniform partition with 200 
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time bins of fixed duration, also used for DMIE10, was used to construct a time series of spike counts. 201 

Marginal probabilities, Pi
out and Pj

in, were determined from histograms that were constructed based on 202 

spike counts, with spike bin occupancy defined as the number of time bins containing the corresponding 203 

number of spikes. Joint probability, Pi,j
out,in, was determined by constructing a two dimensional histogram 204 

of input spike bins on one axis and output spike bins on the other axis. MI was calculated using Eq. 3.5, 205 

with B as the total number of output spike bins, and A as the total number of input spike bins.  206 

To determine distribution histograms, Oram et. al used the error reduction algorithm of Kjaer et. 207 

al (Kjaer et al. 1994; Oram et al. 1999; Oram et al. 2001), which requires training a back-propagation 208 

artificial neural network with relatively substantial amounts of data. However, to demonstrate a blind 209 

application of this estimator, we defined three variations of uniform partitions that differ only in their 210 

construction of time bins. The fixed bin-width spike partition (FBWSE) uses time bins with a fixed 211 

duration of 10 ms, regardless of the duration of input or output time series. The fixed bin-number spike 212 

partition (FBNSE) uses 500 time bins for both input and output, with bin width being the total duration of 213 

the time series divided by number of bins. For the square-root spike partition (SQRSE), we chose the 214 

number of time bins to be the square root of the total number of data points for each time series (Cellucci 215 

et al. 2005; Mosteller and Tukey 1977). 216 

All simulations and estimators were coded in MATLAB R2012a and R2015a. MI was computed 217 

using the algorithms of Celluci et. al (Cellucci et al. 2005). Calculations and simulations were run on 218 

multiple machines, including an HP Pavilion machine using a Windows 7 operating system, as well as a 219 

Lenovo Ideapad machine with a Windows 10 operating system.  220 

Electrophysiological Recordings 221 

Animals: P20-24 BALB/c mice of both sexes were used for this study. All procedures were approved by 222 

the Institutional Animal Care and Use Committee (IACUC, protocol # 16164) at University of Illinois 223 

Urbana-Champaign. Animals were housed in animal care facilities at the Beckman Institute for Advanced 224 
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Science and Technology, approved by the American Association for Accreditation of Laboratory Animal 225 

Care (AAALAC).  226 

Brain slicing: Mice were initially anesthetized with ketamine (100 mg/kg) and xylazine (3 mg/kg) 227 

intraperitoneally and perfused with chilled (4oC) sucrose-based slicing solution ((in mM): 234 sucrose, 11 228 

glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 0.5 CaCl2). 300 µm-thick thalamocortical brain 229 

slices were obtained, as previously described (Cruikshank et al. 2002; Stebbings et al. 2016), then 230 

incubated for 30 minutes in 32oC incubation solution ((in mM): 26 NaHCO3, 2.5 KCl, 10 glucose, 126 231 

NaCl, 1.25 NaH2PO4, 3 MgCl2, and 1 CaCl2). After incubation, slices were transferred to a perfusion 232 

chamber and perfused with artificial cerebrospinal fluid (ACSF) ((in mM): 26 NaHCO3, 2.5 KCl, 10 233 

glucose, 126 NaCl, 1.25 NaH2PO4, 2 MgCl2, and 2 CaCl2), and bubbled with 95% oxygen/5% carbon 234 

dioxide.  235 

Electrophysiology: The cell-attached recordings of pairs of neurons located in layer 2/3 or layer 4 of the 236 

auditory cortex were performed at room temperature using a visualized slice setup outfitted with infrared-237 

differential interference contrast (IR-DIC) optics. Recording pipettes were pulled from borosilicate glass 238 

capillary tubes and had tip resistances of 2–5 MΩ when filled with solution, which contained (in mM): 239 

117 K-gluconate, 13 KCl, 1.0 MgCl2, 0.07 CaCl2, 0.1 ethyleneglycol-bis (2-aminoethylether)-N,N,N0 ,N0 240 

-tetra acetic acid, 10.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2.0 Na-ATP, 0.4 Na-GTP, pH 241 

7.3. For data acquisition, a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA, USA) and 242 

pClamp software (Molecular Devices, Sunnyvale, CA, USA) were used with a 20-kHz sampling rate. The 243 

cell-attached recordings were conducted under after a gigaOhm seal was attained. Once the recording was 244 

started, 2 µM of SR-95531 (gabazine, Tocris) was perfused with the ACSF for 30 minutes, after which 245 

increasing concentrations of DNQX (Tocris) were added sequentially to the ACSF (approximately 30 246 

minutes/each DNQX concentration) along with 2 µM SR-95531. The software program Clampfit 247 

(Molecular Devices, LLC) was used to analyze series of spike times from paired recording data using an 248 

event detection algorithm with threshold search.  249 
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Results 250 

 The validity of using AIMIE to measure the degree of correlation between spike trains was 251 

examined. Four other MI estimators, DMIE, FBWSE, FBNSE, and SQRSE, described in further detail in 252 

Methods, are also tested for comparison. 253 

MI estimator dependence on the length of time series: To determine the number of spikes needed to 254 

achieve a stable measurement of MI using AIMIE, simulations of a thalamocortical model were run while 255 

systematically varying the simulation time. AIMIE was used to compute the MI between the afferent 256 

spike train providing synaptic input to a model TC neuron and the output of the model, measured as spike 257 

times in a model layer 4 cortical neuron. A simple thalamocortical network model was used (Fig 2A, see 258 

Table 1 for parameters), and the afferent input was a 10 Hz Poisson-modulated spike train, varying only 259 

in the total simulation time of the model. This scheme permitted generation of pairs of input and output 260 

time series to examine basic properties of AIMIE, such as the dependency of AIMIE on the simulation 261 

time, which corresponds to total number of output spikes. Ten trials were performed for each simulation 262 

time to calculate standard deviation. Comparing across the total simulation times, MI per output spike 263 

approaches an asymptotic value of about 2x10-4 bits/spike (Fig 2B). This finding indicates that with 264 

increasing amounts of data, AIMIE becomes less dependent on time series length. At about 100 seconds 265 

of simulation time (black triangle of Fig 2), which corresponds to an average of 411 output spikes, a 266 

decrease is seen in the standard deviation function (Fig 2C) and in magnitude of error bars (Fig 2B inset) 267 

when compared to shorter simulation times. Note that for simulation times below 100 seconds there are 268 

significant fluctuations in the MI values, however the standard deviation substantially drops at simulation 269 

times beyond 100 seconds. Therefore, for most subsequent simulations, simulation times were adjusted 270 

such that at least 500 output spikes were generated, and for all tests of AIMIE’s performance, with 271 

artificial spike trains that were not generated with the thalamocortical model, a minimum of 500 output 272 

spikes was also used. 273 
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MI estimator independence of interspike interval length variation: To determine whether any of the 274 

MI estimators are sensitive to the average spiking rate, we created artificial input and output spike trains 275 

and computed MI between these trains using multiple different MI estimators. The input time series were 276 

randomly generated using a uniform distribution, each with 4000 spikes in total and interspike intervals 277 

ranging from 5 ms to 50 ms. In this case, for the output time series, a single output spike followed each 278 

input spike and arrived before the next input spike. Under the assumption here that the optimal estimator 279 

for MI should be insensitive to stretch (and therefore average spiking rate), the input and output spike 280 

trains were then temporally “stretched” to change their average spiking rate without changing the 281 

relationship between the two trains (Fig 3A). In total, ten trials were performed for each average spiking 282 

rate. When tested alongside the four other estimators (Fig 3B), the estimators that produced a change in 283 

MI beyond 10% of the baseline MI were DMIE10, DMIE20, and FBWIE, all of which use a fixed bin 284 

width partition, indicating that DMIE and FBWIE are sensitive to time scaling, while FBNIE, SQRSE, 285 

and AIMIE are not. Therefore, FBNIE, SQRSE and AIMIE were compared in subsequent examinations 286 

of MI estimator performance. 287 

MI estimator performance with artificial spike trains: In the next test of MI estimator performance, it 288 

was assumed that a high dependence between input and output data would be indicated by each input 289 

spike eliciting a similar spiking event in the output. Deviation from this idealized response would be 290 

considered a loss of information. To test the performance of the MI estimators, four sets of input and 291 

output time series were generated, with progressively decreasing degree of correlation in the first three 292 

sets (Fig 4A). The input time series were randomly generated, each with 4000 spikes in total and 293 

interspike intervals ranging from 5 ms to 50 ms using a uniform distribution. For the first set of input and 294 

output time series, designated as Type 1, the response is ideal, meaning that each input spike has 100% 295 

chance of eliciting a single output spike. For the Type 2 pair, there is a 50% response, where each input 296 

spike has a 50% chance of generating a single output spike. This adjustment roughly decreases the 297 

number of output spikes in Type 2 by half when compared to Type 1, and as such, should constitute a 298 
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decrease in MI. Similarly, the Type 3 pair features a 25% response. The pair of time series in Type 4 is 299 

constructed similarly to Type 3 time series, with the 4000 inputs randomly generated; each input has a 300 

25% chance of generating a response event in the output, which, unlike for Type 3, is a random number 301 

between 1 to 10 spikes. Ten trials were performed for each application of an MI estimator to a different 302 

type of time series pair. Our expectation was that an ideal MI estimator would show the highest MI for 303 

Type 1 stimuli and progressively lower for all of the rest. 304 

For this comparison, only the MI estimators that were shown to be insensitive to time scaling 305 

(FBNIE, SQRSE, and AIMIE) were tested. When AIMIE was applied to these four pairs of constructed 306 

time series, it was observed that the MI values corresponded to the drops in degree of correlation across 307 

Types 1 through 3 (Fig 4B). For Type 4, the MI value was very close to that of Type 3, within 2%. 308 

FBNSE and SQRSE, neither of which uses an adaptive partition, demonstrated a significant drop in MI 309 

across Type 1 to Type 2 and a slight drop in MI from Type 2 to Type 3. Lastly, for Type 4, when 310 

compared to Type 3, both FBNSE and SQRSE showed an increase in MI. Note that the only estimator 311 

whose MI value for Type 4 was less than that of Type 3 is AIMIE. Substantial fluctuation in MI values, 312 

resulting in significant error values, may indicate an insufficient amount of data, particularly for SQRSE, 313 

though as suggested by our time series length test (Fig 2). This amount of data would be enough for 314 

AIMIE to yield reliable results, as there are 4000 input spikes and around 1000 or more output spikes and 315 

for each time series pair type. Note that the degree of variance for AIMIE’s estimates is noticeably 316 

smaller than those of the other estimators’ values. These data suggest that AIMIE is more sensitive than 317 

other methods to manipulations of spike trains that are expected to diminish the MI between them.  318 

MI estimator performance with paired electrophysiological recordings: In this test, MI estimators 319 

were applied to spike trains of paired recordings of spontaneous activity from the auditory cortex in a 320 

slice preparation, under different concentrations of bath-applied DNQX, which is an AMPA receptor 321 

antagonist that blocks excitatory synaptic transmission. At higher concentrations of DNQX, we expect 322 

that MI per spike between responses of the two neurons of a paired recording would drop, due to 323 
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diminished synchrony between spontaneous action potentials of the paired neurons. Specifically, AIMIE 324 

and FBNSE were tested, as these two estimators performed well with artificially constructed inputs and 325 

outputs described above. Recordings from a total of five pairs of neurons in layer 2/3 or layer 4 from 326 

mouse brain slices containing the auditory cortex were used. For each pair of recorded neurons, the 327 

neuron that produced the greatest number of spikes at the highest DNQX concentration was used for 328 

normalization of MI, specifically by dividing the MI value of each trial by the number of spikes produced 329 

by this neuron for that trial. For each paired recording sequence under different DNQX concentrations, 330 

the change in normalized MI was calculated by dividing the MI per spike at each DNQX concentration by 331 

the MI per spike at DNQX concentration of 0 µM. With increasing DNQX concentrations, AIMIE 332 

demonstrated the expected drop in normalized MI (Fig 5A), while FBNSE did not (Fig 5B), indicating 333 

that AIMIE performs well with electrophysiological recordings of variable synchrony.  334 

Varying T-current conductance in open-loop thalamoreticular network: Applying AIMIE to a simple 335 

open-loop thalamocortical network model (Fig 6A), the effect of varying stimulation parameters and the 336 

T-current conductance of the TC cell on the modification of an ascending signal through the thalamus was 337 

explored. Poisson-modulated synaptic input to a model TC cell (henceforth “thalamic afferents”) was 338 

varied from 0.5 Hz to 200 Hz on a logarithmic scale, while Poisson-modulated synaptic input to a TRN 339 

neuron was similarly varied from 0 Hz to 200 Hz. As before (Willis et al. 2015), the applied spike trains 340 

in thalamic afferents were independent of the applied spike trains in afferents to the TRN cell. For each 341 

combination of TC and TRN stimulation rates, the MI between the thalamic afferents and output, either at 342 

the TC or L4 neuron, was computed. This MI, normalized by the number of output spikes, was then 343 

averaged over all combinations of TC and TRN stimulation rates to produce average MI per output spike. 344 

The average MI per output spike was computed for each T-current conductance, ranging from 0 to 100 nS 345 

(Fig 6B). Also, for each value of T-current conductance, ranging from 10 to 80 nS, a heat map plot of 346 

normalized MI values with TRN stimulation rates on the x-axis and TC stimulation rates on the y-axis 347 

was constructed (Fig 7A for normalized MI between thalamic afferents and L4 output, and Fig 7B for 348 
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normalized MI between thalamic afferents and TC output). 10 trials were performed for each data point of 349 

T-current conductance.  350 

The average MI per output spike between the thalamic afferents and L4 is on average slightly 351 

greater than between the thalamic afferents and the TC cell (Fig 6B). Note that at certain combinations of 352 

TRN and TC stimulation rates, specifically at high TRN stimulation frequencies and low TC stimulation 353 

frequencies, MI per output spike between the thalamic afferents and L4 output paradoxically becomes 354 

greater than MI per output spike between the thalamic afferents and TC output, as seen in the normalized 355 

MI difference plots of Fig 7C. For example, for TC T-current conductances above 20 nS and thalamic 356 

afferent input at 0.5 Hz and to the TRN neuron at 207 Hz, MI per spike across the whole network (from 357 

thalamic afferent to L4; purple line, Fig 8A) paradoxically exceeds that seen during the first stage of the 358 

network (from thalamic afferent to TC; green line, Fig 8A). In addition, this paradoxical behavior is seen 359 

as the degree of bursting of the TC neuron increases (blue line, Fig 8A). This relationship is quantified in 360 

Fig 8B. Here, the number of bursts in the TC neuron is compared against this paradoxical increase in MI 361 

across the whole network, and a strong positive correlation is observed (Fig 8B, (Pearson’s r = 0.843, p < 362 

0.001)). These data suggest that the paradoxical increase in MI per spike is related to the underlying 363 

bursting behavior of the TC cell. 364 

Discussion 365 

Summary of findings: In the current study, the properties of a novel estimator of MI, the Adaptive 366 

partition using Interspike intervals MI Estimator (AIMIE), were examined, with its performance 367 

compared to other, more established methods of measuring MI between spike trains. The AIMIE method 368 

of computing MI was found to be insensitive to overall time compression or expansion of the spike trains, 369 

suggesting that it may be used effectively at both high and low spike rates. AIMIE was also found to be 370 

sensitive to manual manipulation of the relationship between simulated input and output spike trains. That 371 

is, manual degradation in the relationships between two spike trains also lowered the MI, computed with 372 
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AIMIE, but not with other methods. Further, in paired neuronal recordings, the decrease in MI with 373 

increasing concentration of DNQX was consistent with DNQX’s effect of desynchronizing the responses 374 

of the recorded neuron pairs. Finally, when AIMIE was used to compute the MI between input (to a 375 

model TC cell) and output (from a model L4 neuron) in a thalamocortical model, it was found that MI 376 

was maximum at T-current amplitudes corresponding to those seen physiologically, and that the apparent 377 

degradation in MI caused by bursting could be recovered at the thalamocortical synapse. These data 378 

suggest that a new method for estimating MI between spike trains, AIMIE, is now available to 379 

investigators and that the method has the advantage of being able to easily compensate for wide changes 380 

in the average spike rate of either the input or output spike train. 381 

Methodological considerations: Since the thalamocortical network demonstrates short latencies in L4 382 

neurons in response to afferent input provided to TC neurons (< 10 ms, corresponding to 2 synapses 383 

between input and output, (Llano et al. 2014), no effort was made to shift the output time series relative to 384 

the input time series. However, in other networks, particularly in large-scale networks containing many 385 

more synapses, where response latencies are longer, a constant time delay may need to be compensated 386 

for in the analysis. In addition, most MI estimators require a minimum amount of data for reliable results 387 

(Paninski 2003). As observed in Fig 2B and C, under the specified simulation parameters, approximately 388 

400-500 output spikes, corresponding to 100 seconds simulation time, are needed for AIMIE to provide 389 

consistent MI values, suggesting that for spike rates of approximately 10 spikes/second, approximately 390 

40-50 seconds of data are required to compute MI using AIMIE. Parametric density estimators, such as 391 

maximum likelihood estimation, require relatively little data for convergence (Marek and Tichavsky 392 

2008), while MI estimators with uniform partition, especially DMIE, usually require larger amounts of 393 

data in comparison to MI estimators with adaptive partition (Borst and Theunissen 1999; Walters-394 

Williams and Li 2009). 395 

MI as an estimate of dependence: Multiple metrics have been used previously to compute the degree of 396 

similarity between spike trains. MI is a quantity that measures general dependence between two random 397 
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variables, and as such, it is related to correlation functions which traditionally measure linear dependence 398 

(Li 1990). STTC, for example, uses a fixed time bin around each input spike to calculate correlation 399 

between input and output spike trains (Cutts and Eglen 2014). This approach is reminiscent of a uniform 400 

partition method, which is inadequate for analyzing MI in a TC network because of the wide range of 401 

input rates processed by TC neurons, discussed below. Related to the correlation measures are distance 402 

metrics, including the Victor-Purpura spike train distance metric (Victor and Purpura 1996). This metric 403 

is commonly used in input and output spike train analysis, though there is evidence that this may not be 404 

an optimal metric for evaluating temporal information (Gai and Carney 2008). Specifically, the Victor-405 

Purpura spike train distance metric measures information carried primarily by absolute spike times, and it 406 

does not appear to effectively account for other temporal features in spike time series, such as 407 

synchronization to frequency of sensory input in a neuron’s response. This insensitivity to certain 408 

temporal features could potentially complicate its use in analysis of the temporally sensitive 409 

thalamocortical network.  410 

Furthermore, traditional correlation analysis, such as Pearson correlation, has been shown to be 411 

optimal only in the case of linear dependencies between variables, while MI can be applied to random 412 

variables that exhibit linear as well as nonlinear dependencies (Gencaga et al. 2014), which are often 413 

demonstrated in neural networks (Schöner and Kelso 1988). Comparisons of marginal entropy, meaning 414 

the average amount of information provided by, in this case, a single spike time series,  have also been 415 

used to measure the relative information content of time series in the analysis of bursting and tonic firing 416 

in the thalamus (Reinagel et al. 1999). However, only marginal entropies are compared in this earlier 417 

analysis, and there is no calculation of joint entropy between two time series, as there is in MI estimation. 418 

A consequence of not calculating joint entropy is that the relative timing between input and output spikes 419 

is lost. 420 

Many previously employed MI estimators use uniform partitions of data to estimate density 421 

distributions (e.g., DMIE, FBNSE, FBWSE, and SQRSE). While computationally efficient, these uniform 422 
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partitions can produce many empty bins (Gencaga et al. 2014). Therefore, for these estimators, different 423 

choices of bin construction for a nonadaptive partition can produce substantially different MI values. 424 

Estimators with a fixed bin width that do not depend on the number of data points, FBWSE and DMIE, 425 

show a change in MI when applied to time-scaled time series (Fig 3), unless bin widths of the partition are 426 

scaled appropriately. Furthermore, estimators with a fixed bin width that do depend on the number of data 427 

points, FBNSE and SQRSE, did not perform as well as AIMIE with certain pairs of time series of 428 

variable degrees of correlation and synchrony (Figs 4 and 5). These findings regarding estimators that use 429 

fixed bin widths indicate that in a network where spike timing can be changed significantly by varying 430 

input rate, an MI estimate of each time series pair would require a readjustment of the uniform partition. 431 

The use of multiple partition schemes could cause substantial uncertainty in comparisons across samples, 432 

since every combination of TRN and TC stimulation rates would require its own parameters for the 433 

uniform partition. Therefore, for the thalamocortical network, MI estimators with uniform partitions 434 

would not be an optimal choice, leaving us to favor an adaptive partition instead. In addition, unlike 435 

estimators that use a uniform partition, AIMIE’s adaptive partition also causes estimated MI to converge 436 

faster with sample size (Walters-Williams and Li 2009), and allows investigators to work with time 437 

processes that have incomparable time-scales (Darbellay and Vajda 1999).  438 

T-current conductance, bursting, and MI: Systematic variation of the TC cell’s T-current conductance 439 

in the thalamocortical model revealed that there is a specific range of maximal conductance values near 440 

40 nS that produces a maximum average MI per output spike between thalamic afferent input and output 441 

at L4 (Fig 6B). This finding suggests that the TRN is able to induce the most potentiation of the 442 

ascending TC input at this peak TC T-current conductance value. Note that this value is close to the 443 

physiological TC T-current conductance of approximately 45 nS (Willis et al. 2015), and is within the 444 

range used in previous modeling studies (Deleuze et al. 2012; Destexhe et al. 1993; Pospischil et al. 2008; 445 

Wang 1994). It has been shown that some hyperpolarization-activated cation currents can be modulated 446 

by factors such as intracellular pH and specific neurotransmitters, including norepinephrine and serotonin 447 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289512doi: bioRxiv preprint 

https://doi.org/10.1101/289512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Novel MI Estimator for a Model Thalamocortical Network 

20 

 

(Munsch and Pape 1999; Pape and McCormick 1989). If TC T-current is similarly modulated (for 448 

example see (Joksovic et al. 2010)), then the current study suggests that this modulation could alter the 449 

amount of MI between input and output as well. Thus, findings from the current study may indicate the 450 

possibility that modulation of TC T-current is one way in which the thalamocortical network can 451 

modulate sensory thalamocortical information flow.  452 

Previous studies have suggested that bursting in thalamic relay neurons degrades ascending 453 

sensory signals, and that tonic firing modes are more likely to produce a high-fidelity representation of 454 

ascending information en route to the cortex (Castro-Alamancos 2002; McCarley et al. 1983; McCormick 455 

and Feeser 1990). However, it has also been shown that thalamic bursts may carry more information, can 456 

enhance detection of specific temporal sequences, and are higher in synaptic efficacy than single thalamic 457 

spikes (Lesica and Stanley 2004; Lesica et al. 2006; Reinagel et al. 1999; Swadlow and Gusev 2001a). 458 

The current study suggests that in certain cases, particularly with high-frequency input to TRN and low 459 

frequency input to TC (Fig 8A), bursting is responsible for loss of incoming sensory information at the 460 

level of the TC (Fig 8B), as it likely obscures the ascending sensory signal. However, this information 461 

loss may be compensated in the L4 neuron due to the filter properties of the TC synapse, which produce 462 

single spikes in response to the initial spikes of a burst (Boudreau and Ferster 2005; Chung et al. 2002; 463 

Gil et al. 1999; Krahe and Gabbiani 2004; Swadlow and Gusev 2001b). Thus, information per spike that 464 

is lost at the level of the thalamus due to bursting may be partially recovered at the level of the cortex; this 465 

is a hypothesis that can be tested physiologically in subsequent studies.  466 
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Figure Captions 470 

Figure 1: Procedure for estimating MI using AIMIE. A) Given two time series, the one that 471 

has a greater number of spikes is designated as X, and the other is designated as Y. A time series of 472 

interspike interval durations for Y is constructed, and a time series of spike densities of X corresponding 473 

to the interspike intervals of Y. M represents the total number of interspike intervals of Y. B) An adaptive 474 

partition is applied to the time series of interspike interval durations of Y and separately to the time series 475 

of spike densities of X. Marginal probability for each bin of the adaptive partition is calculated as the 476 

occupancy of the bin divided by the sum of occupancies of all bins of that adaptive partition. Note the 477 

roughly equal occupancy of the bins, which is due to the adaptive partition. C) A joint histogram is 478 

constructed, in which one of the horizontal axes represents the bins of the adaptive partition for Y and the 479 

other horizontal axis represents bins of the adaptive partition for X. Joint probability for each combination 480 

of bins is calculated as joint occupancy of both bins divided by the sum of all occupancies of the joint 481 

histogram. D) Equation for calculating MI, in which the outer sum, from j=1 to N, sums over the bins of 482 

the adaptive partition of Y and the inner sum, from k=1 to N, sums over the bins of the adaptive partition 483 

of X.  484 

Figure 2: Application of AIMIE to time series generated from the model thalamocortical 485 

network with variable simulation times. A) Model architecture of a thalamocortical network containing 486 

only TC and L4 neurons, which are modeled using a Hodgkin-Huxley framework. Default model 487 

parameters are used for simulations (see Table 1). INTC corresponds to thalamic afferent inputs, which are 488 

generated as 10 Hz Poisson-modulated pulse trains. B) MI per output spike provided by AIMIE when it is 489 

applied to time series pairs with different simulation times. As simulation time increases, the number of 490 

output spikes increases as well, and AIMIE’s MI per output spike trends towards a horizontal asymptote 491 

of about 2x10-4 bits/spike. The black triangle marks a simulation time of 100 seconds, which provides an 492 

average of about 411 output spikes. Inset shows decreased fluctuations in MI per output spike on an 493 

expanded scale, particularly for simulation times above 100 seconds. 10 trials were used for each 494 
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simulation time, to generate error bars and standard deviation. C) Standard deviation of AIMIE’s 495 

estimates of MI per output spike from Fig 2A for a range of simulation times. Note that standard 496 

deviation is significantly smaller at around 100 seconds of simulation time (black triangle) than at shorter 497 

simulation times.  498 

Figure 3: Effect of scaling of interspike intervals on MI for different estimators. A) Spike 499 

time plots demonstrating scaling of interspike intervals for input and output series. In this case, the second 500 

input and output pair is generated by scaling all interspike intervals of the first pair by a factor of 2. B) 501 

Percent change in MI demonstrated by estimators AIMIE, DMIE, FBWSE, FBNSE, and SQRSE when 502 

they are applied to input and output time series with interspike intervals scaled by factors of 2, 4, and 8. 503 

10 trials were used for each data point and to generate standard deviation for error bars. 504 

Figure 4: Application of different estimators to hypothetical input and output series of 505 

variable dependence. A) Spike time plots of hypothetical constructed time series of Types 1, 2 ,3, and 4, 506 

where Type 1 is an ideal (100%) response type, Type 2 is a 50% response type, Type 3 is a 25% response 507 

type, and Type 4 is a 25% burst response type. B) Percent change in MI demonstrated by estimators 508 

AIMIE, FBNSE, and SQRSE when they are applied to input and output time series of Types 1, 2, 3, and 509 

4. As before, 10 trials were used for each data point and to generate standard deviation for error bars. 510 

Figure 5: Application of different estimators to dual-recorded spike time series of variable 511 

synchrony. Recordings from a total of five neuron pairs are used. For both estimators, for each paired 512 

recording sequence under different DNQX concentrations, the change in normalized MI is calculated as 513 

MI per spike at each DNQX concentration divided by the MI per spike at DNQX concentration of 0 µM. 514 

A) Change in normalized MI demonstrated by AIMIE across different concentrations of DNQX. The 515 

inset is an image of electrode placement for a paired recording in auditory cortex of mouse brain slice, 516 

with C denoting caudal and D denoting dorsal orientation. The legend for paired recordings is located 517 

below in Fig 5B. B) Change in normalized MI demonstrated by FBNSE across different concentrations of 518 

DNQX. The legend corresponds to both Fig 5A and Fig 5B. 519 

 520 
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Figure 6: MI analysis of inputs and outputs in an open-loop thalamocortical network model 521 

at variable T-current conductances. A) Model architecture of the open-loop thalamocortical network. 522 

Arrows represent excitatory inputs, while the TRN to TC projection represents inhibitory (GABAergic) 523 

input. All neurons are modeled using a Hodgkin-Huxley framework. INTRN corresponds to input to the 524 

TRN, which ranges from 0 Hz to 200 Hz, while INTC corresponds to thalamic afferents, which ranges 525 

from 0.5 Hz to 200 Hz. Both INTRN and INTC are generated as Poisson-modulated pulse trains. Note that 526 

the green bracket symbolizes information transfer from thalamic afferents to TC, and the purple bracket 527 

symbolizes information transfer from thalamic afferents to L4. B) Average MI transmitted per output 528 

spike between thalamic afferents and TC and between thalamic afferents and L4, at a range of TC T-529 

current conductances. There is a peak in MI per output spike at a TC T-current conductance of about 40 530 

nS, which may indicate maximum potentiation of ascending input in open-loop thalamocortical network. 531 

Again, 10 trials were used for each data point and generation of standard deviation for error bars. 532 

Figure 7: Heat map plots of normalized MI in open-loop thalamocortical network model for 533 

variable T-current conductances. For each TC T-current conductance, an MI plot is generated using a 534 

range of combinations of TC and TRN stimulation rates and then normalized by the number of output 535 

spikes for each rate combination. Normalized MI plots are averaged over 10 trials. The rate combination 536 

of 207 Hz stimulation of TRN and 0.5 Hz stimulation of TC (see Fig 8) is marked in a black box on each 537 

plot. Note that the horizontal black line between panels A and B denotes a minus sign, while the pair of 538 

horizontal black lines between panels B and C denotes an equals sign. A) Plots of average normalized MI 539 

(bits per output spike) between thalamic afferents and L4 output for T-current conductances of 10 nS to 540 

80 nS. B) Plots of average normalized MI between thalamic afferents and TC output for T-current 541 

conductances of 10 nS to 80 nS. C) Plots of average normalized MI between thalamic afferents and L4 542 

output (Fig 7A) minus average normalized MI between thalamic afferents and TC output (Fig 7B) for T-543 

current conductances of 10 nS to 80 nS. These difference plots show a recovery of information per spike 544 

at low thalamic afferent rates and high TRN stimulation rates.  545 
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Figure 8: Stimulation of TRN at 207 Hz and TC at 0.5 Hz in open-loop thalamocortical 546 

network model. This rate combination is marked as a black box on the normalized MI plots of Fig 7. 547 

INTC refers to thalamic afferents, as shown in Fig 7. A) MI per output spike between thalamic afferents 548 

and TC output and thalamic afferents and L4 output at a range of T-current conductances from 0 nS to 549 

100 nS. The number of bursts observed at the TC is also shown alongside on the right vertical axis. 10 550 

trials were used for each data point and for generation of standard deviation for error bars. B) Difference 551 

of MI per spike of TC input to TC output and MI per spike of TC input and L4 output against the number 552 

of bursts produced by TC. The trendline is shown alongside a Pearson coefficient value of r = 0.843 (p < 553 

0.001).  554 
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