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Abstract	
	

To	facilitate	precision	medicine	and	neuroscience	research,	we	developed	a	machine-learning	

technique	 that	 scores	 the	 likelihood	 that	 a	 gene,	when	mutated,	will	 cause	a	neurological	

phenotype.	 We	 analysed	 1126	 genes	 relating	 to	 25	 subtypes	 of	 Mendelian	 neurological	

disease	defined	by	Genomics	England	(March	2017)	together	with	154	gene-specific	features	

capturing	genetic	variation,	gene	structure	and	tissue-specific	expression	and	co-expression.	

We	randomly	re-sampled	genes	with	no	known	disease	association	to	develop	bootstrapped	

decision-tree	models,	which	were	integrated	to	generate	a	decision	tree-based	ensemble	for	

each	disease	subtype.	Genes	generating	larger	numbers	of	distinct	transcripts	and	with	higher	

probability	of	having	missense	mutations	in	normal	individuals	were	significantly	more	likely	

to	cause	neurological	diseases.	Using	mouse-mutant	phenotypic	data	we	tested	the	accuracy	

of	gene-phenotype	predictions	and	found	that	 for	88%	of	all	disease	subtypes	there	was	a	

significant	 enrichment	 of	 relevant	 phenotypic	 abnormalities	 when	 predicted	 genes	 were	

mutated	in	mice	and	in	many	cases	mutations	produced	specific	and	matching	phenotypes.	

Furthermore,	using	only	newly	identified	genes	included	in	the	Genomics	England	November	

2017	 release,	 we	 assessed	 our	 gene-phenotype	 predictions	 and	 showed	 an	 8.3	 fold	

enrichment	 relative	 to	 chance	 for	 correct	 predictions.	 Thus,	 we	 demonstrate	 both	 the	

explanatory	and	predictive	power	of	machine-learning-based	models	in	neurological	disease.	
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Introduction	
 

The	 last	10	years	has	 seen	amazing	progress	 in	 the	 identification	of	genes	associated	with	

Mendelian	forms	of	neurological	diseases1.	Each	individual	gene	discovery	is	valuable	for	the	

patients	 affected,	 for	 the	 disease-based	 researchers	 and	 for	 the	 wider	 neuroscience	

community.	 However,	 these	 gene	 discoveries	 are	 perhaps	 even	 more	 important	 when	

considered	collectively.	First	and	foremost	the	growth	of	rare	disease	genetics	has	made	it	

clear	that	dysfunction	of	the	central	and	peripheral	nervous	system	is	a	frequent	outcome	of	

genetic	 disorders	 with	 approximately	 50%	 of	 all	 rare	 diseases	 (3000-3500	 conditions)	

presenting	with	some	form	of	neurological	abnormality2.	Furthermore,	 it	has	become	clear	

that	 neurological	 disorders	 exhibit	 remarkable	 genetic	 heterogeneity.	 There	 are	 over	 30	

genes,	which	when	mutated	 give	 rise	 to	 hereditary	 spastic	 paraplegia3	 and	 over	 80	 genes	

associated	with	Charcot	Marie	Tooth	disease4.	Finally,	it	has	become	apparent	that	variable	

expressivity	and	atypical	presentations	are	not	the	exception,	but	the	rule	when	considering	

neurogenetic	disorders2.		

These	observations	have	led	us	to	hypothesise	that	there	is	something	“special”	about	genes	

associated	with	neurogenetic	disorders.	Or	more	formally	stated,	we	hypothesise	that	genes	

with	significant	effects	on	the	structure	and	function	of	the	nervous	system	share	common	

characteristics	not	present	amongst	genes	which	when	mutated	do	not	affect	 the	nervous	

system.	Clearly	identifying	these	common	characteristics	(assuming	they	are	present)	would	

be	useful	for	two	main	reasons.	Firstly,	understanding	the	core	characteristics	of	genes	that	

give	 rise	 to	 neurological	 disorders	 would	 potentially	 help	 us	 to	 better	 understand	 the	

pathophysiology	 of	 at	 least	 a	 subset	 of	 disorders.	 Secondly,	 the	 identification	 of	 these	

common	characteristics	would	allow	us	to	scan	the	genome	for	other	genes	with	the	same	

key	 properties,	 but	 which	 have	 not	 yet	 been	 associated	 with	 neurological	 disease	 simply	

because	 the	 patient	 with	 this	 particular	 neurogenetic	 condition	 has	 not	 had	 appropriate	

genetic	testing	or	the	significance	of	the	pathogenic	variant	could	not	be	recognised.	Since	

these	 predicted	 gene-disease	 associations	 would	 efficiently	 encapsulate	 prior	 knowledge,	

they	could	be	used	to	prioritise	genetic	variants	for	further	investigation	when	more	standard	

analyses	have	failed	to	yield	a	result,	an	increasing	clinical	challenge.	

While	 the	 identification	 of	 the	 core	 characteristics	 of	 a	 neuro-disease	 gene	may	 seem	 an	

impossible	 task,	 there	 is	 an,	 ever	 increasing,	 quantity	 of	 public	 omic	 data,	 which	 has	 the	

potential	to	address	this	question.	Over	the	last	3	years	genome-wide	data	sets	have	become	

ever	larger,	more	accessible,	more	consistent	and	more	comprehensive	both	in	terms	of	the	
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depth	 of	 information	 offered	 and	 the	 quantity	 of	 data	 utilised.	 Public	 data	 sets	 include	

information	 on	 rare	 variant	 frequency	 across	 all	 genes5,	 gene	 and	 isoform	 structure6,	 and	

tissue-specific	gene	expression7.	Hidden	within	these	rich	data	sets	could	be	key	information	

regarding	the	relationship	between	genes	and	their	functional	effects	in	health	and	disease.		

Machine	Learning	(ML)	is	well	suited	to	the	task	of	identifying	such	hidden	phenomena	and	

has	been	used	successfully	to	address	similar	classification	problems,	such	as	the	effects	of	

genetic	variants	on	exon	 inclusion8	and	the	prediction	of	genes	associated	with	autosomal	

dominant	disorders9.		In	this	paper,	we	aim	to	use	ML-based	approaches	to	generate	models	

to	 predict	 new	 genes	 associated	 with	 rare	 neurogenetic	 disorders.	We	 base	 our	 learning	

experience	 on	 highly	 curated	 gene	 panels	 developed	 for	 the	 diagnosis	 of	 a	wide	 range	 of	

neurological	 disorders.	 In	 this	 way,	 we	 aim	 to	 not	 only	 obtain	 novel	 insights	 into	 the	

pathophysiological	 processes	 underlying	 some	 neurogenetic	 disorders,	 but	 also	 provide	

predictive	information,	which	can	be	rapidly	translated	for	the	benefit	of	patients.	
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Results	
	

A	genetic	map	of	human	neurogenetic	disorders		

Given	 that	 one	 of	 the	 major	 motivations	 of	 this	 study	 was	 the	 use	 of	 gene-phenotype	

association	prediction	as	a	means	of	improving	the	diagnostic	yield	of	whole	exome/	genome	

sequencing	 for	 rare	 neurogenetic	 disorders,	we	used	 gene	panels	 generated	by	Genomics	

England	 (https://panelapp.genomicsengland.co.uk;	 March	 31st	 2017)	 for	 “Neurology	 and	

neurodevelopmental	disorders”.		These	gene	panels	are	highly	curated	with	over	45	clinicians	

and	scientists	contributing	 to	 the	curation	process	 (Supplementary	Table	1).	 Furthermore,	

they	 are	 managed	 collectively	 to	 ensure	 quality	 across	 panels	 and	 aim	 to	 generate	

conservative	 “diagnostic-grade”	 gene	 sets,	 chosen	 because	 variants	 within	 the	 genes	 are	

capable	 of	 causing/explaining	 the	 specific	 neurological	 phenotype.	 Only	 gene	 panels	 with	

more	than	10	“Green”	(diagnostic-grade)	genes	were	used	in	our	analysis	with	the	exception	

of	 the	 panel	 for	 intellectual	 disability,	 which	 contained	 735	 high	 confidence	 genes,	 but	

encompasses	a	phenotypically	diverse	disease	set.	This	resulted	in	the	inclusion	of	25	panels	

in	addition	to	a	panel	 including	all	neuro-related	genes	together	 (Supplementary	Table	2).	

Collectively	 this	 equated	 to	 1140	 unique	 genes.	We	 noted	 a	 high	 degree	 of	 gene	 overlap	

amongst	panels,	prompting	us	to	generate	a	genetic	map	of	the	inter-relationships	between	

neurogenetic	 disorders	 based	 on	 “gene-sharing”.	 Interestingly,	 this	 “genetic	map”	 broadly	

reflected	 recognised	disease	 categories	 as	 exemplified	 by	 the	 clustering	 of	 neuromuscular	

disorders	(Figure	1a).	

Predictors	derived	from	genomic	and	transcriptomic	data	are	largely	
independent	

Each	of	the	1140	known	neurogenetic	disease-related	genes	were	considered	for	ML	model	

development	and	were	described	together	with	all	other	protein	coding	genes		(as	defined	by	

Ensembl	version	72)	using	a	set	of	“predictors”.	We	leveraged	features	extracted	from	large,	

public	omic	data	sets	to	obtain	these	predictors	of	gene	status	(disease	versus	non-disease).	

We	focused	on	genome-wide	data	sets,	which	do	not	incorporate	any	prior	knowledge,	either	

in	the	form	of	curation	or	biological/disease	information,	and	which	could	provide	gene-based	

metrics.	 This	 was	 a	 deliberate	 strategy	 in	 order	 to	 enable	 ML	 models	 to	 provide	 novel	

explanatory	information	not	captured	by	current	disease-related	pathways	or	models.		

More	specifically,	we	collated	the	following	three	types	of	gene-specific	information:	i)	gene-

specific	 variant	 frequency,	 ii)	 gene	 and	 transcript	 structure,	 and	 iii)	 tissue-specific	
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expression/co-expression	 of	 genes	 (Online	 Methods	 &	 Supplementary	 Table	 3).	 Since	

deleterious	variants	are	under	negative	selection,	genes	with	less	genetic	variation	than	would	

be	expected	under	a	random	mutation	model	might	be	supposed	to	be	of	particular	disease-

relevance.	This	information	is	already	captured	at	the	gene-level	for	specific	mutation	classes	

by	the	ExAC5	database	parameters	ExACpLI	(the	probability	of	a	gene	being	intolerant	of	both	

heterozygous	and	homozygous		loss-of-function		variants),	ExACpRec	(the	probability	of	being	

intolerant	of	only	homozygous	loss-of-function	variants),	and		ExACpMiss	(a	Z-score	reflecting	

the	likelihood	of	being	intolerant	to	missense	mutations,	see	Online	Methods).	Conversely,	

tolerance	to	deleterious	mutations	as	captured	by	ExACpNull	(the	probability	of	being	tolerant	

of	both	heterozygous	and	homozygous	loss-of-function	variants)	might	be	expected	to	be	an	

attribute	of	non-disease	genes.	All	four	of	the	ExAC	parameters	were	included	as	predictors	

in	our	learning	set.		

We	also	explored	the	possibility	that	the	complexity	of	gene	structure	and	transcription	could	

be	used	to	distinguish	between	disease	and	non-disease	genes.	We	extracted	or	generated	

measures	of	structural	complexity	from	GENCODE	(Ensembl	version	72)	and	the	HEXEvent10	

database.	These	measure	of	complexity	included	gene	length,	intronic	length,	the	number	of	

alternative	 transcripts	 generated,	 the	number	of	possible	unique	exon-exon	 junctions,	 the	

number	of	alternative	3’	and	5’	sites	used	and	the	numbers	of	coding	and	non-coding	genes	

overlapping	with	the	gene	of	interest	(Online	Methods).		

Given	that	disease-associated	genes	are	often	highly	expressed	in	the	tissues	of	relevance	for	

the	disease11–16,	we	included	measures	of	tissue-specific	expression	in	our	learning	data	set.	

Using	 transcriptomic	data	generated	by	 the	GTEx25	project	and	covering	47	human	 tissues	

(including	13	brain	regions,	tibial	nerve	and	skeletal	muscle	amongst	others)	we	generated	

measures	of	tissue-specific	gene-expression	and	co-expression	(Online	Methods).	For	each	of	

the	 47	 human	 tissues	 we	 created	 a	 co-expression	 network	 using	 Weighted	 Gene	 Co-

expression	Network	Analysis17	optimized	by	k-means18.	This	provided	estimates	of	each	gene’s	

global	and	local	connectivity	in	relation	to	all	other	expressed	genes	in	the	tissue	(as	captured	

by	the	terms	“adjacency”	and	“module	membership”,	Online	Methods).	This	allowed	us	to	

generate	measures	 of	 the	 tissue-specific	 network	 properties	 of	 each	 gene	 and	 created	 an	

additional	141	binary	predictors.		

Interestingly,	inspection	of	this	set	of	predictors	demonstrated	that	the	absolute	number	of	

genes	with	 evidence	 of	 tissue-specific	 expression/co-expression	was	 highly	 variable	 across	

tissues	 (Figure	 1b).	 While	 10,483	 genes	 showed	 testes-specific	 gene	 expression	 or	 co-
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expression,	only	1699	genes	were	expressed	in	a	tissue-specific	manner	in	liver.	Furthermore,	

the	 relative	 importance	 of	 tissue-specific	 gene	 expression,	 as	 distinct	 from	 co-expression	

(Figure	1b	&	1c)	was	also	very	variable	across	the	47	GTEx	tissues.	If	we	focus	on	brain	tissue,	

whereas	49.7%	of	tissue-specific	genes	for	cerebellum	were	defined	as	cerebellar-specific	due	

to	high	absolute	expression	in	the	tissue,	in	putamen	the	majority	of	specific	gene	expression	

was	detected	through	the	unique	local	and	global	network	properties	of	genes	(86.12%,	Figure	

1c).		

Finally,	we	explored	all	154	predictors	across	the	major	classes,	namely	genetic,	structural	and	

expression-based	predictors,	for	evidence	of	correlation	amongst	predictors	(Supplementary	

Table	4).	Predictors	within	a	major	class	(genetic	variation,	gene	structure,	gene	expression,	

gene	co-expression)	were	more	correlated	to	each	other	than	to	predictors	of	a	different	class	

suggesting	that	the	major	predictor	classes	used	were	capturing	orthogonal	types	of	gene-

specific	information	(Figure	2).		

Measures	of	gene	complexity	and	intolerance	to	missense	variants	
distinguish	between	disease	and	non-disease	genes	across	most	disorders	

As	described	above	we	generated	154	potentially	useful	predictors	of	disease-gene	state	for	

each	gene	within	the	human	genome.	 In	the	first	 instance	we	wanted	to	 find	out	whether	

there	were	any	statistical	differences	in	predictor	values	between	established	disease-related	

and	non-disease	genes	using	single	predictors	alone.	This	testing	was	performed	for	each	of	

the	25	disease	gene	panels	separately	and	for	all	predictors	whether	numerical	or	categorical	

in	nature	(Online	Methods).		

Using	this	approach	we	found	significant	differences	(FDR	corrected	p-value	<0.05)	in	at	least	

a	single	predictor	for	22	of	the	25	disease	gene	panels	(88.0%,	Supplementary	Table	5).	Of	

the	 three	main	 types	of	gene-specific	predictors	analysed	 (gene-specific	variant	 frequency,	

gene	 and	 transcript	 structure,	 and	 tissue-specific	 expression/co-expression	 of	 genes),	 we	

found	that	gene	and	transcript	structure	appeared	to	be	the	most	useful.	Of	all	25	disease	

gene	panels	72.0%	showed	a	significant	difference	in	predictor	values	for	at	least	one	of	the	

measures	of	gene	and	transcript	structure.	Considering	transcript	count	alone	(the	number	of	

transcripts	produced	by	a	gene),	we	found	that	56%	of	all	the	disease	panels	(minimum	FDR	

corrected	p-value	=	5.22	x	10-18	for	“Epilepsy-Plus”)	had	a	significantly	higher	transcript	count	

for	disease-related	as	compared	to	non-disease	genes	(Figure	3a,	Supplementary	Table	5).	

The	second	most	 important	category	of	predictor	was	gene-specific	variant	frequency	with	
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64.0%	of	all	disease	panels	showing	a	significant	difference	in	predictor	values	for	at	least	one	

measure,	with	ExACpMiss	accounting	for	the	largest	proportion	of	panels	(40.0%,	Figure	3b).		

While	 tissue-specific	 expression/co-expression	 of	 genes	 could	 be	 highly	 discriminatory	

predictors,	 this	 was	 restricted	 to	 small	 sets	 of	 related	 disorders.	 For	 example,	 specific	

expression	in	skeletal	muscle	was	a	highly	significant	predictor	for	a	range	of	primary	muscle	

disorders,	 including	 “Distal	myopathies”	 (p-value	 2.78	 x	 10-32),	 “Congenital	myopathy”	 (p-

value	2.35	x	10-22)	and	“Rhabdomyolosis	and	metabolic	muscle	disease”	(p-value	2.94	x	10-15).	

Similarly,	 specific	 expression	 in	 the	 frontal	 cortex	 could	 be	 used	 to	 distinguish	 between	

epilepsy-related	 and	 non-disease	 genes	 (p-value	 1.26	 x	 10-10	 and	 p-value	 3.53	 x	 10-7	

respectively).		

Thus,	this	analysis	demonstrated	that	while	genes	associated	with	neurological	diseases	have	

common	characteristics	of	broad	relevance	with	complexity	of	transcript	structure	being	the	

single	most	 important	 discriminatory	 genic	 feature,	 there	 are	 also	 features	 operating	 in	 a	

more	disease-specific	manner.	

ML-based	classifiers	for	disease	gene	prediction	can	be	optimized	for	
accuracy	at	the	expense	of	genome	coverage	

The	major	aim	of	this	study	was	to	generate	machine	learning	classifiers,	based	on	genetic,	

structural	 and	 expression-based	 predictors,	 to	 distinguish	 between	 genes	 which	 when	

mutated	produce	a	specific	neurological	phenotype	versus	those	that	do	not.	We	wanted	to	

create	such	classifiers	for	each	of	the	25	disorders	as	defined	by	Genomics	England.	This	was	

challenging	because	not	only	do	we	require	classifiers	capable	of	providing	explanatory	as	well	

as	 predictive	 information,	 but	 the	 generation	 process	 had	 to	 be	 robust	 despite	 the	 large	

disparity	in	the	size	of	disease	(mean	number	of	genes	per	panel	=	45,	range	18-111)	and	non-

disease	gene	sets	(4913	genes,	91.59%	of	the	total	set	of	learning	examples).		

Our	strategy	was	to	address	these	issues	in	two	separate	steps.	In	the	first	step	we	evaluated	

a	 range	 of	 learning	 paradigms	 to	 select	 one	 with	 a	 reasonably	 good	 trade-off	 between	

predictive	and	explanatory	power.	In	the	second	step,	we	created	an	ensemble	composed	of	

many	single	ML	models	based	on	the	 learning	paradigm	of	choice	 (as	 identified	 in	step	1).	

More	specifically,	the	first	step	involved	testing	a	range	of	ML	approaches	covering	the	main	

supervised	learning	paradigms	and	available	through	the	Caret	R	package19	(Online	Methods).	

We	obtained	ROC	estimates	(a	single	measure,	which	conveniently	integrates	sensitivity	and	

specificity)	for	each	algorithm	applied	to	each	of	the	25	gene	panels	(Supplementary	Figures	
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1	&	2).	On	the	basis	of	 these	results,	we	selected	J4820	 (Online	Methods),	a	decision	tree-

based	algorithm,	due	to	its	explanatory	capabilities	and	high	predictive	power.		

In	the	second	step,	we	addressed	the	imbalance	of	positive	and	negative	learning	examples	

(average	ratio	of	positive	to	negative	learning	examples	=	1:109)	by	creating	an	ensemble	of	

J48	models	obtained	from	learning	datasets	with	equal	numbers	of	positive	and	negative	gene	

examples.	We	 created	 each	 learning	 dataset	 by	 randomly	 re-sampling	 non-disease	 genes	

(Figure	4a),	while	keeping	all	disease	genes	unchanged.	In	this	way	for	every	disease	category	

we	generated	200	separate	J48	trees,	each	trained	using	the	same	disease	gene	set,	but	a	

different,	 randomly	 generated	 “non-disease”	 gene	 set.	 We	 integrated	 the	 200	 classifiers	

generated	per	panel	using	a	voting	approach	and	operated	a	simple	majority	to	determine	the	

outcome	for	a	given	gene.	This	meant	that	for	a	given	gene,	we	predicted	a	gene-phenotype	

relationship	as	present	 if	most	of	 the	classifiers	 “voted	disease”	and	absent	 if	most	of	 the	

classifiers	“voted	non-disease”.	We	assessed	whether	the	integration	of	disease	classifiers	to	

generate	 a	 classifier	 ensemble	 improved	 performance.	 We	 found	 that	 for	 all	 25	 disease	

categories	using	a	classifier	ensemble	improved	the	ROC	values.	On	average	there	was	a	4.1%	

improvement	in	ROC	values	(range	of	%	improvement	=	0.6%	-	7.6%),	relative	to	using	a	single	

J48	tree	(Supplementary	Figure	3).	

Furthermore,	the	integration	of	disease	classifiers	using	a	simple	voting	approach	allowed	us	

to	 adjust	 the	 stringency	 of	 our	 classification	 system	 by	 changing	 the	 percentage	 of	 votes	

required	(termed	the	“stringency	parameter,	s”)	to	confidently	assign	a	gene	as	“disease”	or	

“non-disease”.	 In	 this	 way,	 we	 converted	 a	 2-output	 ensemble	 into	 a	 3-output	 ensemble	

adding	 “uncertain”	 as	 the	 third	 possible	 outcome,	 used	 when	 there	 was	 not	 enough	

agreement	 amongst	 	 votes.	 To	 illustrate	 the	 effect	 of	 the	 stringency	 parameter	 (“s”)	 on	

prediction	of	“disease”	genes,	we	tested	a	range	of	“s”	values	across	all	disease	ensembles	

and	all	protein	coding	genes	(Figure	4b).	This	demonstrated	that	as	the	stringency	increased,	

the	 proportion	 of	 genes	 that	 could	 be	 classified	 either	 as	 “Disease”	 or	 “Non-disease”	

decreased.		Thus,	increasing	our	confidence	in	gene-phenotype	predictions,	comes	at	the	cost	

of	 genome	 coverage	with	 the	 proportion	 of	 genes	 for	 which	we	 generate	 an	 “uncertain”	

outcome	rising	rapidly.	Therefore,	depending	on	the	downstream	use	of	classifiers	(e.g.	for	

use	in	a	diagnostic	versus	a	research	setting)	we	would	envisage	situations	where	it	would	be	

sensible	 to	adjust	 the	stringency.	For	 this	 reason	we	have	 released	a	web	 interface	where	

predictions	can	be	obtained	at	variable	levels	of	stringency	for	all	diseases	(www.XXXXXX).	
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Predicted	genes	are	enriched	for	relevant	gene	ontology	terms	and	cell-
specific	markers	

After	removing	genes	used	to	train	classifiers,	we	applied	all	26	of	the	classifier	ensembles	to	

the	entire	set	of	human	protein	coding	genes	as	defined	within	GENCODE	(16,012).	Using	a	

stringency	of	0.9	for	each	classifier	(i.e.	predict	Disease	or	Non-disease	only	when	the	majority	

of	 identical	 predictions	 is	 equal	 or	 above	 90%),	we	 generated	 4,834	 new	 gene-phenotype	

predictions	(Figure	5a,	Supplementary	Table	6).	On	average,	each	classifier	predicted	272	new	

disease	genes	(equating	to	1.7%	of	the	gene	classifications	attempted).	As	would	be	expected	

from	the	high	numbers	of	overlapping	genes	across	disease	panels,	there	was	a	high	degree	

of	 sharing	 amongst	 gene	 predictions	 from	 different	 classifier	 ensembles.	 Nonetheless,	 all	

classifier	ensembles	generated	predictions	which	were	disease-specific	(Figure	5a).	We	noted	

that	the	number	of	new	“disease”	predictions	was	positively	correlated	(Pearson	correlation	

=	0.71,	p-value	<	4.03	x	10-5)	with	the	size	of	the	original	disease	panel	(i.e.	the	number	of	

genes	already	known	to	be	associated	with	disease,	Figure	5a).	No	significant	correlation	was	

detected	 when	 we	 considered	 non-disease	 predictions	 and	 this	 is	 consistent	 with	 our	

expectation	 that	 the	 success	 of	ML-based	 classifiers	 depends	 on	 the	 adequacy	 of	 positive	

training	examples.		

Given	that	no	cellular,	pathway	or	disease-based	 information	was	used	within	the	 learning	

data,	we	wanted	to	investigate	the	biological	characteristics	of	our	predicted	genes.	We	did	

this	 first	by	assessing	predicted	genes	 for	enrichment	of	gene	ontology	 terms21,	as	well	as	

REACTOME22	 and	 KEGG23	 pathway	 annotation	 (Figure	 5b,	 Online	 Methods).	 Using	 this	

approach	and	considering	disease	gene	predictions	produced	by	each	ensemble	separately,	

we	 identified	 2,345	 unique	 significant	 terms	 (at	 an	 FDR	 corrected	 p-value	 of	 <0.05;	

Supplementary	 Table	 7).	 Interestingly	 gene	predictions	made	by	 the	 “all	 in	 one”	 classifier	

(based	 on	 the	 entire	 set	 of	 disease	 genes)	 was	 highly	 enriched	 for	 terms	 relevant	 to	 the	

nervous	 system	 with	 the	 top	 REACTOME	 pathway	 terms	 being	 “Neuronal	 System”	 (FDR-

corrected	p-value	=	5.12	x	10-15),	“Transmission	across	Chemical	Synapses”	(FDR-corrected	p-

value	=	5.12	x	10-9)	and	“Axon	guidance”	(FDR-corrected	p-value	=	3.57	x	10-8,	Supplementary	

Table	7).		

	

Inspection	 of	 disease-specific	 enrichments	 also	 demonstrated	 the	 relevance	 of	 predicted	

genes.	For	example,	amongst	genes	predicted	by	the	classifier	for	“Malformations	of	cortical	

development”	 there	 were	 significant	 enrichments	 for	 966	 terms	 alone.	 Focusing	 on	

REACTOME	pathway	enrichments,	we	identified	a	large	number	of	significant	terms	relating	
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to	growth	factor	signalling	and	neuronal	migration	(Figure	5b,	Online	Methods).	In	the	case	

of	 the	 former,	 this	 included	“Downstream	signaling	of	 activated	FGFR2”	 (FDR-corrected	p-

value	=	2.21	x	10-9),		a	signalling	system	which	has	been	specifically	implicated	in	the	function	

of	 outer	 radial	 glia24.	 This	 analysis	 also	 highlighted	 genes	 involved	 in	 axon	 guidance	 (FDR	

corrected	 p-value	 =	 3.93	 x	 10-16)	 and	 synapse	 formation	 (“Transmission	 across	 Chemical	

Synapses”,	 FDR-corrected	 p-value	 =	 2.49	 x	 10-16;	 “Glutamate	 Binding,	 Activation	 of	 AMPA	

Receptors	and	Synaptic	Plasticity”,	FDR-corrected	p-value	=	4.77	x	10-12),	consistent	with	the	

known	 importance	 of	 neuronal	migration	 abnormalities	 in	 the	 pathophysiology	 of	 cortical	

malformations25.	Furthermore,	a	closer	investigation	of	the	sharing	of	significant	REACTOME	

terms	across	predicted	gene	sets	(generated	with	different	classifiers)	revealed	the	possibility	

of	 shared	 pathophysiological	 processes	 underlying	 disorders.	 For	 example,	 enrichment	

analyses	for	genes	predicted	by	both	the	“Cerebrovascular	disease”	and	“Malformations	of	

cortical	development”	classifiers,	were	highly	enriched	 for	genes	 involved	 in	growth	 factor	

signalling		(Figure	5b),	despite	there	being	no	overlap	in	the	genes	used	as	positive	learning	

examples	for	classifier	generation.		

	

We	 also	 examined	 predicted	 gene	 sets	 for	 evidence	 of	 enrichment	 of	 cell-specific	 gene	

markers.	 This	 analysis	was	 performed	using	 gene	 expression	 signatures	 derived	 from	RNA	

sequencing	 of	 purified	 cell	 types	 isolated	 from	 mouse	 cerebral	 cortex26	 and	 covered	

astrocytes,	 neurons,	 oligodendrocyte	 precursors,	 newly	 formed	 oligodendrocytes,	

myelinating	 oligodendrocytes	 and	 endothelial	 cells.	 Using	 this	 approach	 and	 considering	

disease	gene	predictions	produced	by	each	ensemble	separately,	we	identified	22	significant	

cell-specific	 enrichments	 (FDR	 <	 0.05,	 Supplementary	 Table	 8,	 Online	Methods).	 In	many	

cases,	these	enrichments	were	consistent	with	the	phenotypic	features	of	the	disorder.	For	

example,	genes	predicted	by	the	classifier	for	“Cerebrovascular	disorders”	were	significantly	

enriched	 for	 endothelial	 cell	 markers,	 while	 gene	 predictions	 for	 “Inherited	 white	matter	

disorders”	were	enriched	for	markers	of	oligodendrocyte	precursor	cells.		

	

Thus,	 these	 analyses	 provide	 evidence	 that	 the	 classifiers	 we	 generated	 capture	 some	

important	elements	of	the	biology	of	neurogenetic	disorders	and	so	are	capable	of	generating	

predicted	genes,	which	share	those	key	biological	properties.	
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Disrupting	predicted	genes	tends	to	produce	neurologically-relevant	
phenotypes	in	mice		

In	order	to	explore	the	accuracy	of	gene	predictions	further,	we	made	use	of	the	MGI	Mouse-

Phenotype	Database27	to	determine	whether	disruption	of	mouse	orthologues	of	predicted	

human	genes	produced	phenotypes	relevant	to	the	neurological	diseases	studied.	Considering	

the	 genes	 predicted	 by	 each	 of	 the	 26	 classifiers	 separately,	 we	 identified	 1588	 unique	

significantly	 enriched	Mammalian	 Phenotype	Ontology	 (MPO)	 terms	of	which	 28.7%	were	

directly	relevant	to	the	central	and/or	the	peripheral	nervous	system	(defined	as	sub-terms	

of	 	 MP:0005386,	 behaviour/neurological	 phenotype;	 MP:0003631,	 nervous	 system;	

MP:0005369,	muscle	phenotype).		Using	genes	predicted	by	the	“all	in	one”	classifier	(based	

on	the	entire	set	of	disease	genes),	we	 identified	173	terms	with	significant	enrichment	 in	

mouse	model	systems	(Supplementary	Table	9),	with	the	most	significant	MPO	terms	being	

“abnormal	 synaptic	 transmission”	 (FDR-corrected	 p-value	 =	 1.20	 x	 10-10)	 and	 “abnormal	

nervous	system	physiology”	(FDR-corrected	p-value	=	1.22	x	10-8).		

We	also	explored	the	enrichment	of	MPO	terms	amongst	mouse	models	relevant	to	disease-

specific	classifiers.	Despite	the	challenges	inherent	in	this	analysis,	namely	that	this	is	a	cross-

species	 analysis	 using	 data	 from	mice	 with	 both	 spontaneous	 and	 targeted	 mutations	 of	

multiple	 types,	 we	 were	 able	 to	 identify	 examples	 where	 disruption	 of	 predicted	 genes	

mirrored	the	expected	disease	phenotype	with	precision.	For	example,	using	the	Genomics	

England	Panel	for	“Malformations	of	cortical	development”,	which	consists	of	45	genes,	we	

predicted	a	further	589	genes	(using	stringency	0.9).	Of	the	585	relevant	mouse	orthologues,	

mouse	phenotypic	data	was	available	 for	427	genes.	Using	 this	 information	we	 found	that	

disruption	 of	 these	 genes	 in	 mouse	 models	 resulted	 in	 phenotypes	 highly	 enriched	 for	

“abnormal	cerebral	hemisphere	morphology”	(FDR-corrected	p-value	=	1.14	x	10-13),	and	more	

specifically	“abnormal	cerebral	cortex	morphology”	(FDR-corrected	p-value	=	2.72	x	10-7).	

	

Genes	predicted	using	ML-based	classifiers	are	enriched	for	true	gene-
phenotype	associations	in	humans	

Clearly	 the	 most	 important	 means	 of	 assessing	 the	 value	 of	 ML-based	 classifiers	 for	 the	

prediction	of	genes	contributing	to	neurogenetic	conditions,	is	the	identification	of	mutations	

in	 predicted	 genes	 in	 patients	 with	 matching	 neurological	 phenotypes.	 We	 assessed	 this	

systematically	by	making	use	of	the	regular	re-versioning	of	Genomics	England	panels	and	the	

continuous	updates	 available	 through	 the	Online	Mendelian	 Inheritance	 in	Man	 catalogue	
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(OMIM,	www.OMIM.org).	In	the	case	of	the	former,	we	identified	all	high	confidence	gene-

phenotype	relationships	added	to	PanelApp	after	 the	March	31st	2017	version	release	and	

until	November	1st	2017.	In	the	case	of	the	latter,	we	collated	all	gene-phenotype	associations	

included	 between	 1st	 April	 2017	 and	 5th	 January	 2018.	 After	 excluding	 all	 OMIM	 gene-

phenotype	 associations	 classed	 as	 provisional,	 we	 manually	 curated	 the	 remaining	

associations	 to	 ensure	 that	 the	 phenotypes	 could	 be	 mapped	 accurately	 to	 a	 Genomics	

England	disease	panel.	Using	this	approach	we	identified	a	total	of	32	new,	high	confidence	

gene-phenotype	associations	for	which	the	relevant	ML-based	classifier	provided	a	“Disease”	

or	“Non-disease”	prediction	(applying	a	stringency	of	0.9).	We	correctly	predicted	“Disease”	

status	in	17	cases	with	the	remaining	15	genes	predicted	as	“Non-disease”	(Supplementary	

Table	 10,	 ratio	 of	 “Disease”/”Non-disease”	 =	 113.3%).	 Given	 that	 on	 average	 the	 ratio	 of	

“Disease”	to	“Non-disease”	predictions	amongst	the	relevant	ML-based	classifiers	obtained	

on	the	whole	protein	coding	genome	is	13.9%,	this	represented	an	8.2	fold	enrichment	over	

chance.		

	

Furthermore,	exploring	individual	examples	enabled	us	to	recognise	the	explanatory	value	of	

classifier	ensembles.	For	example,	using	the	ML-based	ensemble	for	“Cerebellar	hypoplasia”,	

which	 was	 trained	 with	 39	 known	 disease	 genes,	 we	 correctly	 predict	 that	 mutations	 in	

TBC1D23	 are	 a	 cause	 of	 the	 disorder28.	 Interestingly,	 inspection	 of	 all	 the	 decision	 trees	

demonstrated	 that	 the	 two	 most	 important	 predictors	 were	 cerebellum-specific	 gene	

expression	and	gene	complexity,	as	captured	by	the	number	of	transcripts	produced	by	a	gene	

(Figure	6a,	Online	Methods).	In	fact,	accounting	for	both	the	usage	of	a	predictor	(Appearance	

Index)	and	its	depth	(a	measure	of	its	average	proximity	to	the	root)	across	all	200	decision	

trees,	demonstrated	that	these	were	more	important	predictors	than	gene-specific	measures	

of	variant	frequency,	such	as	ExACpLi	and	ExACpMiss	scores,	which	are	more	commonly	used	

to	assess	the	pathogenicity	of	variants.	Consistent	with	these	findings	we	noted	that	TBC1D23	

has	higher	mRNA	expression	in	cerebellum	as	compared	to	other	brain	regions	not	only	in	the	

adult	brain	but	throughout	most	of	brain	development	(Figure	6b).	Furthermore,	it	produces	

a	higher	than	expected	number	of	transcript	count	when	considering	all	protein	coding	genes	

(Figure	6c).	

	

While	 these	 findings	 were	 encouraging,	 the	 limited	 availability	 of	 relevant	 novel	 gene-

phenotype	associations,	meant	that	any	measure	of	prediction	accuracy	would	be	unstable.	

With	this	in	mind,	we	also	investigated	gene-phenotype	associations	considered	to	have	lower	
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levels	of	supporting	evidence,	termed	“Amber”	(borderline)	or	“Red”	(low)	genes	within	the	

Genomics	 England	 PanelApp	 (PanelApp	 Handbook	 Version	 5.7).	 For	 this	 list	 of	 329	 gene-

phenotype	associations	we	calculated	the	percentage	of	“Disease”	votes	(“Disease”	quality	

score)	made	for	each	gene	by	the	relevant	classifier	and	demonstrated	that	these	values	were	

highly	 skewed	 towards	 higher	 values	 (Figure	 6d,	 dark	 blue	 density	 plot).	 In	 contrast,	 the	

distribution	of	corresponding	values	 for	a	control	gene	set,	consisting	of	all	protein	coding	

genes	with	the	exception	of	those	listed	in	the	November	1st.	2017	Genomics	England	release	

of	 neurogenetics	 panels,	 was	 negatively	 skewed	 (Figure	 6d,	 light	 blue	 density	 plot).	 The	

difference	 in	 these	 distributions	 of	 “Disease”	 quality	 scores	 was	 highly	 significant	 (Mann-

Whitney	two-sample	unpaired	test	p-value	=	2.2x10-16).	Given	that	the	list	of	test	genes	was	

likely	 to	 be	 highly	 enriched	 for	 true	 gene-phenotype	 associations,	 this	 finding	 provides	

additional	evidence	that	the	classifier	ensembles	we	have	generated	capture	some	if	not	all	

the	key	characteristics	of	disease-associated	genes.	
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Discussion	
	

The	overall	aim	of	this	study	was	to	test	the	hypothesis	that	genes	contributing	to	Mendelian	

forms	of	neurogenetic	disorders	can	be	identified	using	a	relatively	limited	set	of	gene-based	

predictors,	which	do	not	incorporate	directly	or	indirectly	any	prior	biological	knowledge.	We	

achieve	 this	 aim	 through	 the	 generation	 of	 machine	 learning	 classifier	 ensembles	 for	 25	

neurogenetic	 disorders	 and	 their	 resulting	 predictions.	 We	 demonstrate	 that	 our	 set	 of	

disease-specific	gene	predictions	are	enriched	for	GO	terms	and	molecular	pathways	already	

implicated	 in	 neurogenetic	 diseases.	 Furthermore,	we	 show	 that	when	mutated	 in	mouse	

model	systems	these	predicted	gene	sets	produce	phenotypes,	which	are	highly	enriched	for	

neurological	 abnormalities	 and	 which	 can	 mirror	 the	 expected	 human	 phenotype	 with	

accuracy.	Finally	and	most	importantly	we	demonstrate	an	8.2	fold	enrichment	over	chance	

in	disease	gene	predictions	for	a	limited	set	of	recently	identified	neuro-disease	genes.	Given	

that	our	gene	predictions	could	potentially	be	used	to	increase	the	yield	of	diagnostic	whole	

exome	sequencing	by	helping	 investigators	prioritise	genes	of	 interest,	we	have	made	our	

predicted	gene	sets	available	and	easily	searchable	through	a	web	application	G2P	(Gene	2	

Phenotype,	accessible	at	XXXXX).		

Moving	 beyond	 the	 predictive	 value	 of	 our	 ML-based	 classifier	 ensembles,	 we	 provide	

evidence	 of	 the	 explanatory	 power	 of	 this	 approach.	 In	 particular,	 the	 finding	 that	 genes	

contributing	 to	Mendelian	 forms	 of	 neurogenetic	 tend	 to	 be	 complex	 in	 structure,	with	 a	

higher	than	expected	number	of	transcripts	and	unique	exon-exon	junctions	annotated	per	

gene.	Interestingly,	this	would	suggest	that	these	genes	could	be	particularly	prone	to	splicing	

mutations,	which	are	more	difficult	to	recognise	and	assess.	

Most	importantly,	and	despite	the	limitations	of	our	approach	we	demonstrate	the	value	of	

machine	 learning	 approaches	 in	 understanding	 neurogenetic	 disorders	 now	 that	 a	 critical	

mass	of	genome-wide	annotation	and	gene	discovery	data	exists.	Given	that	both	types	of	

data	are	only	set	to	increase	in	quality	and	quantity	across	a	wide	range	of	disorders	we	would	

envisage	that	ML-based	approaches	of	this	kind	are	likely	to	increase	in	impact	over	the	next	

5	years.	
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Figure	Legends	
	

Figure	1	

	

A	 genetic	 "map"	 of	 human	 neurogenetic	 disorders:	 a)	 The	 genetic	 overlap	 between	
Genomics	England	panels	is	displayed,	such	that	each	node	represents	1	panel	and	a	minimum	
of	5	genes	is	required	for	an	edge.	The	radius	of	nodes	and	width	of	edges	reflects	the	number	
of	genes	within	each	panel	and	the	number	of	shared	genes	between	panels	respectively.	b)	
Bar	chart	to	show	for	each	of	the	47	GTEx	tissues	considered,	how	many	genes	expressed	by	
the	tissue	show	evidence	of	tissue-specificity	on	the	basis	of	expression,	adjacency	or	module	
membership	 values.	 We	 highlight	 in	 light	 grey	 tissues	 that	 appear	 as	 significant	 in	 the	
univariate	 test	 for	 any	of	 these	 three	 features.	c)	Bar	 chart	 to	 show	 that	brain	 tissues	are	
characterised	 by	 high	 variability	 in	 the	 relative	 proportion	 of	 tissue-specific	 expression,	
adjacency	and	module	membership.	Cerebellar	hemisphere	shows	the	highest	proportion	of	
tissue-specific	signals	due	to	absolute	expression,	whereas	putamen	is	characterised	by	the	
highest	 proportion	 of	 genes	 with	 tissue-specific	 co-expression.	 Genomics	 England	 panel	
names	are	shortened	as	follows:	Amyotrophic	 lateral	sclerosis	motor	neuron	disease	=	ALS	
MND;	 Arthrogryposis	 =	 AMC;	 Brain	 channelopathy	 =	 BC;	 Cerebellar	 hypoplasia	 =	 CH;	
Cerebrovascular	disorders	=	CD;	Charcot	Marie	Tooth	disease	=	CMT;	Congenital	muscular	
dystrophy	 =	 CMD;	 Congenital	 myaesthenia	 =	 CMS;	 Congenital	 myopathy	 =	 CMP;	 Distal	
myopathies	=	DM;	Early	onset	dementia	encompassing	fronto	temporal	dementia	and	prion	
disease	 =	 EODM	 FTD	 PrD;	 Early	 onset	 dystonia	 =	 EODS;	 Epilepsy	 Plus	 =	 EP;	 Epileptic	
encephalopathy	=	EE;	Hereditary	ataxia	=	HA;	Hereditary	spastic	paraplegia	=	HSP;	Inherited	
white	 matter	 disorders	 =	 IWMD;	 Intracerebral	 calcification	 disorders	 =	 ICD;	 Limb	 girdle	
muscular	dystrophy	=	LGMD;	Malformations	of	cortical	development	=	MCD;	Paediatric	motor	
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neuronopathies	=	PMN;	Parkinson	Disease	and	Complex	Parkinsonism	=	PD;	Rhabdomyolysis	
and	 metabolic	 muscle	 disorders	 =	 RMMD;	 Skeletal	 Muscle	 Channelopathies	 =	 SMC;	 and	
Structural	basal	ganglia	disorders	=	SBGD.	
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Figure	2	

	

The	three	major	types	of	predictors,	namely	genetic	variation,	gene	and	transcript	
structure,	and	gene	expression/co-expression,	are	largely	independent:	Correlation	matrix	
plot	to	show	the	Pearson’s	correlation	coefficients	between	the	predictor	categories,	namely	
genetic	variation	(orange),	gene	and	transcript	structure	(green),	tissue-specific	gene	
expression	(dark	blue),	tissue-specific	module	membership	(blue)	and	tissue-specific	
adjacency	(light	blue).	
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Figure	3	

	

Transcript	 complexity	 and	 reduced	 tolerance	 to	missense	mutations	 are	 a	 distinguishing	
feature	of		genes	associated	with	many	types	of	rare	neurogenetic	disorders:	a)	Plot	showing	
that	of	the	25	Genomics	England	panels	considered	56%	had	a	significant	p-value	(red	scale)	
on	comparing	transcript	count	values	between	genes	in	the	panels	and	other	protein	coding	
genes.	b)	Plot	showing	that	of	the	25	Genomics	England	gene	panels	considered	40%	had	a	
significant	p-value	(red	scale)	on	comparing	ExACpMiss	values	between	genes	in	the	panels	
and	other	protein	coding	genes.	Genomics	England	panel	names	are	shortened	as	 follows:	
Amyotrophic	lateral	sclerosis	motor	neuron	disease	=	ALS	MND;	Arthrogryposis	=	AMC;	Brain	
channelopathy	 =	 BC;	 Cerebellar	 hypoplasia	 =	 CH;	 Cerebrovascular	 disorders	 =	 CD;	 Charcot	
Marie	Tooth	disease	=	CMT;	Congenital	muscular	dystrophy	=	CMD;	Congenital	myaesthenia	
=	 CMS;	 Congenital	 myopathy	 =	 CMP;	 Distal	 myopathies	 =	 DM;	 Early	 onset	 dementia	
encompassing	 fronto	 temporal	 dementia	 and	 prion	 disease	 =	 EODM	 FTD	 PrD;	 Early	 onset	
dystonia	=	EODS;	Epilepsy	Plus	=	EP;	Epileptic	encephalopathy	=	EE;	Hereditary	ataxia	=	HA;	
Hereditary	spastic	paraplegia	=	HSP;	Inherited	white	matter	disorders	=	IWMD;	Intracerebral	
calcification	 disorders	 =	 ICD;	 Limb	 girdle	 muscular	 dystrophy	 =	 LGMD;	 Malformations	 of	
cortical	development	=	MCD;	Paediatric	motor	neuronopathies	=	PMN;	Parkinson	Disease	and	
Complex	 Parkinsonism	 =	 PD;	 Rhabdomyolysis	 and	 metabolic	 muscle	 disorders	 =	 RMMD;	
Skeletal	Muscle	Channelopathies	=	SMC;	and	Structural	basal	ganglia	disorders	=	SBGD.	
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Figure	4	

	

Construction	and	calibration	of	ML	classifier	ensembles	for	gene-phenotype	prediction:	a)	
Diagram	to	show	the	workflow	used	to	generate	ML	classifier	ensembles.	These	ensembles	
are	 based	 on	 the	 creation	 of	 200	 learning	 data	 sets	 per	 a	 disease	 panel.	 Each	 data	 set	 is	
generated	by	resampling	the	control	gene	set	to	maintain	a	1:1	ratio	of	disease	and	control	
genes.	The	final	model	of	200	decisition	trees	are	integrated	into	a	voting	scheme	that	can	be	
used	 to	 prediction	 novel	 gene-phenotype	 associations	 with	 an	 estimate	 of	 confidence	
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(bottom	 right	 part)	 and	 to	 identify	 the	 genic	 features	 contributing	most	 commonly	 to	 the	
prediction	process	(bottom	left	part	of	the	figure).	b)	Plot	to	show	the	effect	of	applying	a	
stringency	 parameter	 on	 ML	 predictions	 generated	 from	 decision	 tree	 ensembles.	 As	
stringency	values	 increase	(x-axis)	the	relative	proportions	of	"Disease",	"Non-disease"	and	
"Uncertain"	also	change.	In	particular,	the	proportion	of	uncertain	predictions	increases.	
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Figure	5	
	

	

Properties	 of	 gene-phenotype	 predictions	 generated	 by	 disease-specific	 ML	 classifier	
ensembles:	 a)	 The	 number	 of	 number	 of	 genes	 contained	within	 each	Genomics	 England	
disease	panel	and	used	for	the	generation	of	ML	classifier	ensembles	is	shown	in	the	lower	
panel	 (positive	 example	 set).	 The	 total	 number	 of	 new	 genes	 predicted	 per	 panel	 using	 a	
stringency	 of	 0.9	 is	 shown	 in	 the	 middle	 panel.	 The	 upper	 panel	 shows	 the	 number	 of	
predicted	genes	per	panel,	which	were	exclusively	predicted	by	the	disease-specific	classifier.	
b)	 Plot	 to	 show	 that	 genes	 predicted	 to	 cause	malformations	 of	 cortical	 development	 are	
significantly	enriched	for	relevant	biological	processes.	REACTOME	pathways	(circles)	with	the	
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most	significant	enrichments	amongst	genes	predicted	to	cause	"Malformations	of	cortical	
development"	 (labelled	 rounded	 square)	 are	 shown.	 REACTOME	 pathways	which	 are	 also	
highlighted	 by	 testing	 for	 enrichment	 of	 predicted	 genes	 for	 other	 disorders,	 namely	 	 "	
Cerebrovascular	 disorders"	 and	 "Brain	 channelopathies”,	 are	 also	 displayed	 (shared	
enrichments	=	blue	circle;	enrichments	unique	to	either	“Cerebrovascular	disorders"	or	"Brain	
channelopathies"	=	grey	circles).	
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Figure	6	

	

Evidence	 for	 enrichment	 of	 true	 gene-phenotype	 associations	 amongst	 gene	 predictions	
made	by	disease-specific	 classifiers:	a)	Cerebellum-specific	gene	expression	and	 transcript	
complexity	 are	 the	 most	 important	 predictors	 used	 within	 the	 “Cerebellar	 hypoplasia”	
classifier	ensemble.	On	the	x-axis	we	plot	each	of	the	predictors	used.	Predictor	importance	
is	plotted	on	the	y-axis,	as	defined	as	the	sum	of	the	appearance	 index	of	a	predictor	 (the	
percentage	 of	 times	 it	 is	 used	 to	 predict	 “Disease”	 across	 the	 200	 decision	 trees	 which	
comprise	the	ensemble	classifier,	range	=	0.0-1.0)	and	the	depth	of	a	predictor	(a	measure	of	
its	average	proximity	to	the	root,	 range	=	0.0	–	1.0).	This	plot	demonstrates	that	the	most	
important	 predictors	 in	 the	 “Cerebellar	 Hypoplasia”	 ensemble	 classifier	 were	 cerebellar-
specific	gene	expression	and	transcript	count	(the	number	of	transcripts	produced	by	a	gene	
as	 annotated	 in	 GENCODE	 version	 72).	 b)	 Graph	 to	 show	 mRNA	 expression	 levels	 for	
TBC1D2329,30	in	6	brain	regions	during	the	course	of	human	brain	development,	based	on	exon	
array	experiments	and	plotted	on	a	 log2	 scale	 (y	axis).	 The	brain	 regions	analyzed	are	 the	
striatum	(STR),	amygdala	(AMY),	neocortex	(NCX),	hippocampus	(HIP),	mediodorsal	nucleus	
of	the	thalamus	(MD),	and	cerebellar	cortex	(CBC).	This	shows	higher	expression	of	TBC1D23	
mRNA	expression	in	cerebellum	as	compared	to	all	other	brain	regions	from	the	late	prenatal	
period	onwards.	c)	Density	plot	showing	the	distribution	of	transcript	counts	(the	number	of	
transcripts	produced	by	a	gene	as	annotated	in	Ensemble	version	72)	for	all	protein-coding	
genes	and	TBC1D23	specifically	(red	line).	d)	Probability	density	plots	to	show	the	percentage	
of	"Disease"	predictions	produced	by	decision	tree	models	for	a	“test”	set	of	genes	enriched	
for	true	gene-phenotype	associations	(dark	blue)	and	a	“control”	set	defined	as	the	set	of	all	
protein	coding	genes	(with	the	exception	of	those	listed	in	the	November	1st.	2017	Genomics	
England	 release	 of	 neurogenetics	 panels).	 The	 “test”	 set	 included	 all	 genes	 classified	 by	
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Genomics	England	as	having	moderate	(amber)	or	low	(red)	evidence	for	association	with	a	
neurogenetic	disorder	as	well	as	high	evidence	genes	added	to	a	panel	after	March	31st	2017	
and	until	November	1st	2017.	None	of	the	genes	used	in	this	“test”	set	were	used	for	learning	
the	classifier	ensembles.	There	was	a	clear	and	highly	significant	(Mann-Whitney	two-sample	
unpaired	 test	p-value	=	2.2x10-16)	difference	 in	 the	distribution	of	 “Disease”	quality	 scores	
comparing	“test”	and	“control”	gene	sets.		
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Supplementary	Tables	
	

Supplementary	Table	1	
Table	providing	the	names	and	affiliations	of	all	individuals	contributing	to	the	curation	of	
Genomics	England	disease-associated	panels	used	in	this	study.	

Supplementary	Table	2	
Table	describing	all	disease-associated	panels	used	and	their	contents.	

Supplementary	Table	3	
Table	providing	all	predictors	used	to	describe	genes	with	omics.	

Supplementary	Table	4	
Table	providing	r2	and	p-values	for	the	relationship	between	all	154	predictors.	

Supplementary	Table	5	
Table	showing	the	predictors	which	differed	significantly	between	and	non-disease	genes	for	
each	disease-associated	panel.	

Supplementary	Table	6		
Table	providing	all	disease	gene	predictions	made	using	ML	classifier	ensembles	with	a	
stringency	of	90%.	

Supplementary	Table	7		
Table	providing	significant	gene	ontology,	KEGG	and	REACTOME	pathway	enrichments	for	
gene	predictions	made	using	disease-specific	ML	classifier	ensembles.	

Supplementary	Table	8		
Table	providing	significant	cell	type-specific	enrichments	for	gene	predictions	made	using	
disease-specific	ML	classifier	ensembles.	

Supplementary	Table	9	
Table	providing	significant	Mammalian	Phenotype	Ontology	terms	for	gene	predictions	
made	using	disease-specific	ML	classifier	ensembles.	

Supplementary	Table	10	
Table	showing	the	predictions	for	32	new,	high	confidence	gene-phenotype	associations	for	
which	the	relevant	ML-based	classifier	provided	a	“Disease”	or	“Non-disease”	prediction	at	a	
stringency	of	0.9.	

	

	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2018. ; https://doi.org/10.1101/288845doi: bioRxiv preprint 

https://doi.org/10.1101/288845
http://creativecommons.org/licenses/by-nc-nd/4.0/


31	
	

Supplementary	Figures	
	

Supplementary	Figure	1	
	

ROC	 values	 for	 all	 Genomics	 England	 panels	 for	 each	 Caret	 Algorithm	 used	 for	 model	
learning:	Box	and	whisker	plots	to	show	the	distribution	of	ROC	values	(x	axis)	for	predictions	
generated	using	the	training	data	(each	GE	panel	genes	corresponds	to	a	point	in	the	sample)	
per	classifier	(y	axis).	While	many	algorithms	performed	well,	we	chose	J48	because	it	has	a	
good	trade	off	between	ROC	and	explanatory	capabilities.	

	

Supplementary	Figure	2	
	

ROC	 values	 for	 all	 Caret	 Algorithms	 used	 for	model	 learning	 on	 each	Genomics	 England	
panel:	 In	 this	 box	 and	 whisker	 plot	 we	 show	 the	 distribution	 of	 ROC	 values	 (x	 axis)	 for	
predictions	generated	using	the	training	data	for	a	single	panel	(y	axis,	each	GE	panel	comes	
with	its	size	in	genes).	Each	algorithm	corresponds	to	a	point	in	the	sample	set.	The	plot	shows	
that	the	learning	ROC	performance	for	all	panels	show	a	performance	better	than	random	but	
with	room	for	improvement.	

	

Supplementary	Figure	3	
	

Improvement	of	ROC	values	through	the	use	of	an	ensemble	of	200	trees	versus	a	single	
tree:	Box	and	whisker	plots	to	demonstrate	that	there	is	an	improvement	 in	ROC	values	(x	
axis,	%	of	improvement	in	ROC)	on	test	data	for	all	GE	panels	(y	axis)	when	using	an	ensemble	
of	decision	trees	as	compared	to	a	single	tree	to	identify	gene-phenotype	associations.	
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Online	methods	

Identification	of	genes	causing	Mendelian	neurogenetic	disorders	
We	obtained	our	list	of	genes	causing	Mendelian	neurogenetic	disorders	from	the	Genomics	
England	 Panel	 App	 (https://panelapp.genomicsengland.co.uk/;	 March	 31st	 2017).	 We	
considered	all	panels	included	under	the	level	2	heading	“Neurology	and	Neurodevelopmental	
disorders”.	We	further	analysed	all	gene	panels	with	more	than	10	“Green”	(diagnostic-grade)	
genes	 with	 the	 exception	 of	 “Intellectual	 Disability”	 due	 to	 the	 very	 broad	 phenotypic	
spectrum	associated	with	this	gene	panel.	This	resulted	in	the	use	of	25	gene	panels,	equating	
to	1140	unique	genes	(Supplementary	Table	2).		

Identification	of	control	gene	sets	
Given	 that	 we	 aim	 to	 use	 ML-based	 classifiers	 not	 only	 to	 predict	 new	 gene-phenotype	
associations,	but	to	provide	explanatory	information	as	well,	we	require	a	“control”	gene	set,	
which	can	serve	as	negative	examples	that	better	delineate	through	contrast	the	core	features	
of	disease	genes.	We	define	a	control	gene,	as	any	gene	with	no	currently	known	association	
to	any	disease	(whether	neurological	in	nature	or	otherwise).	In	this	setting	we	only	consider	
disease	 associations	 based	 on	Mendelian	 inheritance	 and	 accept	 that	 some	 of	 the	 genes	
defined	as	“control”	may	be	identified	in	the	future	as	having	a	disease	association.	Thus,	as	
in	the	case	of	Chakraborty	and	colleagues31,	we	generate	a	list	of	“control”	genes	by	excluding	
all	 genes	 currently	 contained	 within	 the	 Online	Mendelian	 Inheritance	 in	 Man	 	 database	
(https://www.omim.org/),	 Genetic	 Association	 Database	
(https://geneticassociationdb.nih.gov/)	 and	 the	 Human	 Gene	 Mutation	 Database	
(http://www.hgmd.cf.ac.uk/ac/index.php)	from	the	Ensembl	(version	72)	gene	set.	Using	this	
approach	we	identify	4260	“control”	genes.		

Extraction	of	gene-based	measures	of	genetic	constraint	
The	 Exome	 Aggregation	 Consortium	 (ExAC,	 http://exac.broadinstitute.org/)	 database	 has	
been	used	to	model	the	difference	between	the	expected	and	observed	frequency	of	loss-of-
function	and	missense	mutations	in	all	genes.	This	information	has	been	captured	through	the	
gene-specific	parameters,	ExACpLi	(the	probability	of	being	loss-of-function,	lof,	intolerant	of	
both	 heterozygous	 and	 homozygous	 lof	 variants),	 ExACpRec	 (the	 probability	 of	 being	
intolerant	of	homozygous,	but	not	heterozygous	lof	variants),	ExACpNull	(the	probability	of	
being	tolerant	of	both	heterozygous	and	homozygous	lof	variants)	and	ExACpMiss	(corrected	
missense	Z	score,	taking	into	account	that	higher	Z	scores	indicate	that	the	transcript	is	more	
intolerant	of	variation).	These	four	measures	of	genetic	constraint	were	downloaded	from	the	
ExAC	consortium	site	(ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_	
gene_constraint/;	released	January	13th	2017)	for	use	as	predictors.	

Extraction	and	generation	of	measures	of	gene	complexity		
All	measures	of	gene	complexity	were	either	extracted	directly	or	generated	from	Ensembl	
version	72.	The	intronic	length	of	each	gene	(IntronicLength)	was	determined	using	an	ad-hoc	
script	that	calculates	intron	length	in	basepairs	considering	all	possible	transcripts	present	in	
the	 gene.	 The	 total	 number	 of	 unique	 exon-exon	 junctions	 generated	 by	 each	 gene	
(numJunctions)	was	calculated	using	the	refGenome	R	package	with	all	the	known	junctions	
summed	 to	obtain	 a	 value	per	 gene.	 The	number	of	 genes	overlapping	 a	 gene	of	 interest	
(countsOverlap)	was	estimated	using	the	R	package	GRanges32,	such	that	for	each	gene	the	
number	of	genes	overlapping	1bp	or	more	with	the	gene	of	interest	,	regardless	of	strand,	was	
counted.	 The	 number	 of	 overlapping	 protein	 coding	 genes	 (countsProtCodOverlap)	 was	
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generated	 in	 a	 similar	 manner	 except	 that	 only	 genes	 classed	 as	 “protein	 coding”	 within	
Ensembl	(version	72)	were	considered.		

Generation	of	measures	of	tissue-specific	gene	expression	&	co-expression		
In	order	to	generate	a	set	of	gene-based	measures	of	tissue-specific	gene	expression	and	co-
expression,	 we	 used	 the	 GTEx7	 V6	 gene	 expression	 dataset	 (accessible	 from	
https://www.gtexportal.org/home/)	which	comprises	54	tissues	and	expression	data	for	8557	
samples	covering	56318	Ensembl	genes.	We	first	filtered	the	GTEx	dataset	by	tissue	sample	
availability	 using	 only	 those	 tissues	 with	 more	 than	 60	 samples	 available	 leading	 to	 the	
consideration	of	47	tissues.	We	initially	analysed	each	of	the	47	tissue	sample	sets	separately	
by	filtering	genes	on	the	basis	of	an	RPKM	>	0.1		(observed	in	>	80%	of	the	samples	for	a	given	
tissue).	We	then	corrected	for	batch	effects,	age,	gender	and	RIN	using	ComBat33.	Finally,	we	
used	the	residuals	of	these	linear	regression	models	to	construct	gene	co-expression	networks	
for	 each	 tissue	 using	 WGCNA17	 and	 post-processing	 with	 k-means18	 to	 improve	 gene	
clustering.	Thus,	each	of	 the	47	tissues	had	a	corresponding	network	consisting	of	a	set	of	
gene	 modules.	 For	 each	 gene	 in	 a	 network	 we	 obtained	 its	 module	 membership	 and	
adjacency,	where	Module	Membership	 for	 a	 gene	g	was	defined	as	 the	 correlation	of	 the	
residual	 gene	expression	 for	 gene	g	 and	 the	eigengene	of	 the	module	 it	 belonged	 to,	 and	
adjacency	was	defined	 for	a	gene	g	as	 the	sum	of	all	values	 for	 its	 row/column	within	 the	
Topological	Overlap	Matrix	created	by	WGCNA.		

We	used	the	resulting	gene	expression	and	co-expression	data	to	obtain	3	measures	of	tissue-
specific	 expression.	 For	 each	 tissue	 any	 given	 gene	 was	 defined	 as	 having	 tissue-specific	
expression	 if	 the	gene	expression	 in	that	tissue	was	3.5	fold	higher	than	the	average	value	
across	all	other	47	GTEx	tissues.	Similarly,	a	gene	was	defined	as	having	tissue-specific	module	
membership	or	adjacency,	if	its	module	membership	or	adjacency	within	the	co-expression	
network,	was	3.5	fold	higher	than	that	across	all	other	remaining	GTEx	tissues.		

Univariate	analysis	on	single	predictors	
We	wanted	to	 test	whether	each	single	predictor	had	any	predictive	power	on	the	task	of	
identifying	disease	genes	amongst	the	whole	protein	coding	genome.	For	such	a	purpose,	we	
defined	each	Genomics	England	gene	panel’s	(GP)	test	dataset	as		

𝐷#$ = {{𝑃(𝑔), 𝑦-}: 𝑔	 ∈ 𝐺𝑃∗, 𝑃(𝑔) = (𝑃3(𝑔), 𝑃4(𝑔), … , 𝑃6(𝑔)), 𝑦- 	 ∈ +, − }, 

such	that	GP*	refers	to	a	set	of	genes	compound	of	the	genes	in	the	Genomics	England	GP	
gene	panel	plus	the	rest	of	the	whole	protein	coding	genome	(see	below),	the	Pi(g)	is	the	value	
of	the	i-th	predictor	for	gene	g	and	yg	the	label	of	gene	g	for	that	gene	set,	 +,− ,	where	+	
means	 gene	 belonging	 to	 the	 Genomics	 England	 panel	 and	 –	 means	 otherwise.	 We	 use	
predictors	of	a	different	nature,	namely	categorical	predictors	(including	all	predictors	relating	
to	 tissue-specific	 expression	 and	 co-expression)	 and	 numeric	 predictors	 (including	 all	
predictors	relating	to	genetic	constraints	and	gene	complexity).	Accordingly,	we	applied	two	
different	statistical	tests	to	look	for	significant	differences	between	disease	and	non-disease	
genes.	For	categorical	predictors	we	used	Fisher’s	exact	tests	(FET)	with	a	control	gene	set	
consisting	of	all	genes	within	Ensembl	(version	72)	with	tissue-specific	data	available	and	with	
the	exception	of	genes	within	 the	Genomics	England	“Neurology	and	neurodevelopmental	
disorders”	 panels	 (17,315	 genes).	 For	 numeric	 predictors	 we	 used	Mann-Whitney	 U	 tests	
(MWU)	with	a	control	gene	set	consisting	of	all	protein	coding	genes	within	Ensembl	with	a	
non-null	value	for	the	predictor	and	with	the	exception	of	genes	within	the	Genomics	England	
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“Neurology	and	neurodevelopmental	disorders”	panels	(17,918	genes).	FETs	an	MWU	tests	
were	performed	under	the	null	 that	there	was	no	significant	difference	 in	predictor	values	
found	in	disease	gene	panels	in	comparison	to	the	control	gene	set.	We	report	Bonferroni-
Hochberg	corrected	p-values	in	all	cases.	

Machine	leaning	to	generate	disease-specific	classifiers	
We	 used	 a	 supervised	 machine	 learning	 (ML)	 approach34	 to	 inductively	 model	 gene-
phenotype	associations	and	so	generate	classifiers	that	can	distinguish	between	genes	that	
have	an	association	with	a	neurological	phenotype	and	those	that	do	not.	Formally	stated,	
this	 meant	 that	 given	 a	 set	 of	 genes	 already	 causally	 linked	 to	 a	 specific	 neurological	
phenotype	and	defined	by	a	Genomics	England	panel,	GP,	we	sought	a	classifier	CGP,	such	that,	
for	 any	gene	𝑔,	 it	 predicted	whether	 it	 too	would	have	a	gene-phenotype	association	and	
denote	it	in	the	form	of	a	function,	as	follows:	

𝐶#$: 𝑃 → {+,−}, 

and 𝑃  is a	 set	 of 𝑃;  predictors	 such	 that 𝑃(𝑔) = (𝑃3(𝑔), 𝑃4(𝑔), … , 𝑃6(𝑔))  is	 a	 vector	 of	
attributes	 of	 gene	𝑔 	and	 the	 output	 of	 the	 classifier	 is	 then 𝐶#$ 𝑔 = +  if	 the	 classifier	
predicts	 g	 to	 have	 a	 gene-phenotype	 association	 for	 phenotype	 GP and 𝐶#$ 𝑔 = − 
otherwise.		

The	global	ML	analysis	is	divided	into	two	main	phases.	In	the	1st	phase	we	seek	for	the	best	
possible	 learning	 algorithm	 we	 have	 available	 given	 requirements	 on	 prediction	 accuracy	
(mainly	ROC	values	on	10-fold	cross-validation)	and	model	interpretability.	In	the	2nd	phase,	
we	use	a	high	number	of	such	models	into	a	voting	based	integration	ensemble	to	account	for	
the	acute	imbalance	in	the	proportion	of	positive	and	negative	examples	in	the	learning	data.	

1st	phase:	identification	of	the	best	ML	algorithm	

Using	 the	 Caret	 R	 package19	 we	 constructed	 simple	 classifiers	𝐶#$ 	for	 14	 ML	 techniques	
including	the	main	supervised	learning	paradigms	and	all	the	25	Genomics	England	working	
panels.	The	learning	data	for	each	panel	was	compound	by	all	the	High	Evidence	disease	genes	
belonging	 to	 the	panel	and	all	 the	Chakraborty	control	genes,	4260.	 	The	Caret	algorithms	
used	were:	 (1)	 trees/rules	 based	 algorithms	 (C5.0Tree,	 LMT,	 J48,	ONeR,	 Rpart),	 (2)	 neural	
network	 based	 algorithms	 (NNet,	 GlmNet),	 (3)	 linear	 regression	 based	 algorithms	 (PLR,	
RRLDA,	 svmLinear),	 a	 bayes	 reasoning	 approach	with	NaiveBayes	 and	 (5)	 ensemble	 based	
algorithms	(AdaBoost,	Boruta,	Rborist).	We	evaluated	each	Caret	candidate	ML	algorithm	on	
each	𝐶#$ 	dataset	 using	 repeated	 cross-validation	 (10	 fold)	 and	 automatic	 hyperparameter	
evaluation	as	provided	by	Caret.	ROC,	specificity	and	sensitivity	for	all	Caret	algorithms	applied	
to	all	Genomics	England	panels	were	evaluated	(Supplementary	Figure	1,		results	segregated	
by	algorithm;	Supplementary	Figure	2,	results	segregated	by	Genomics	England	panel).	While	
Rborist	and	Boruta	showed	significantly	better	ROC	values	than	J48	(P	<	0.0008	and	P	<	0.02	
respectively	with	a	paired	t-test),	J48	still	had	a	high	predictive	power	(only	9-10%	lower	than	
Rborist	 and	 Boruta).	 Given	 that	 this	 algorithm	 had	 much	 greater	 explanatory	 power,	 all	
subsequent	analyses	were	performed	with	J48.		

2nd	phase:	construction	of	the	best	predictor	based	on	J48	

We	used	the	J48	algorithm	within	a	wrapper	(i.e.	an	ensemble	 in	ML	terminology)	that	we	
developed	 in	order	 to	deal	with	 the	disproportionate	number	of	negative	examples	 in	our	
learning	set.	This	wrapper	involved	the	generation	and	integration	of	many	ML	models	from	
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multiple	 learning	 data	 sets,	 all	with	 the	 same	 set	 of	 positive	 examples,	 but	with	 different	
negative	examples	generated	through	random	re-sampling	of	the	Chakraborty	control	gene	
set.	Formally	stated,	this	meant	that	given	a	panel	𝐺𝑃,	and	its	learning	data	defined	as:		

𝐷#$ = 𝑃 𝑔 , 𝑦- : 𝑔	 ∈ 𝐺𝑃∗, 𝑃 𝑔 = 𝑃3 𝑔 , 𝑃4 𝑔 , … , 𝑃6 𝑔 , 𝑦- 	 ∈ +,− , 

such	that	GP*	refers	now	to	a	set	of	genes	compound	of	the	genes	in	the	Genomics	England	
GP	gene	panel	as	positive	examples	plus	the	Chakraborty	genes	as	negative	ones,	we	created 
(𝐷#$3, 𝐷#$4, … , 𝐷#$4<<) learning	datasets,	with	identical	predictors 𝑃 but	now,	the {𝑦-} had	
a	1:1	 ratio	of	positive (+) and	negative	examples (-). The	set	of	positive	examples	 in	each	
learning	dataset	was	identical	to	that	in 𝐷#$, but	the	negative	examples	were	samples	with	
replacement	from	the	Chakraborty	control	genes. 

We	 applied	 J48	 to	 each	 of	 the	 learning	 datasets (𝐷#$3, 𝐷#$4, … , 𝐷#$4<<)  to	 obtain 
(𝐶#$3, 𝐶#$4, … , 𝐶#$4<<)  classifiers,	 which	 we	 aggregated	 into	 a	 single	 classifier,	 𝐶#$ =
Δ(𝐶#$3, 𝐶#$4, … , 𝐶#$4<<), where	Δ was	a	function	to	integrate	responses	from	all	 individual	
classifiers.	Δ	has	to	be	designed	taking	into	account	that	the	ensemble	compound	of	the	200	
ML	models	with	have	a	limited	predictive	power	for	a	number	of	reasons.	Firstly,	the	number	
of	disease	genes	to	learn	from	will	be	limited,	and	most	likely	incomplete,	for	all	panels.	And	
secondly,	likely	amongst	the	genes	we	consider	as	controls	there	will	be	disease	genes	we	do	
not	know	yet.	Therefore,	we	must	come	up	with	a	strategy	that	deals	with	that.	And	we	define	
a	 stringency	 parameter	 to	 control	 the	 eagerness	 with	 which	 the	 ensemble	 generates	 a	
prediction,	i.e.	Disease	or	Non-disease	but	also	to	include	a	third	outcome:	Uncertain.	And	we	
define	 a	 parameter	 called	 stringency,	 let	 it	 be	 denoted	 with	 s	 in	 [0,1]	 that	 works	 in	 the	
following	way:	 given	 a	 gene	 g,	 and	 the	 200	models	 generated	 from	 a	 gene	 panel	 GP,	we	
generate	200	predictions	𝐶#$; 𝑔 , 𝑖 = 1, … ,200.	Either	Disease	or	Nondisease.	Let	pd	and	pn	
the	proportion	of	Disease	and	Non-disease	predictions	for	g,	such	that	pd	+	pn	=	1.	If	pd	>	pn,	
the	outcome	of	Δ(𝐶#$; 𝑔 , 𝑖 = 1, … ,200)	will	be	Disease	when	pd	>	s.	Analogously	when	pn	>	
pd.	The	outcome	will	be	Uncertain	otherwise.	

Testing	for	annotation	term	enrichment	amongst	predicted	genes	
We	 used	 gProfileR35	 to	 	 investigate	 enrichment	 of	 Gene	 Ontology,	 REACTOME	 and	 KEGG	
pathways	 annotation	 terms	 amongst	 predicted	 gene	 sets.	 We	 included	 IEA	 (Inferred	
Electronic	 Annotations)	 and	 used	 the	 gSCS	 test	 developed	 by	 the	 authors	 to	 assess	 for	
annotation	 term	 enrichment.	 The	 graphical	 representation	 of	 the	 REACTOME	 term	
enrichment	was	based	on	the	most	significant	terms	as	reported	by	gProfileR	and	by	using	
Cytoscape	3.536.	The	enrichment	of	Mammalian	Phenotype	Ontology	terms	amongst	mouse	
models	with	mutations	in	mouse	orthologues	of	predicted	disease	genes	was	performed	using	
the	ToppFun	function	within	ToppGene	(https://toppgene.cchmc.org/,	REF)	and	applying	the	
default	settings.	

Testing	for	enrichment	of	genes	expressed	in	a	cell-specific	manner	amongst	
predicted	genes	
We	obtained	cell-type	specific	gene	lists	relevant	to	brain	from	Soreq	et	al.26.	These	lists	were	
based	 on	 the	 analysis	 of	 RNA-sequencing	 data	 from	 purified	 cells	 isolated	 from	 mouse	
cerebral	cortex	37and	covered	astrocytes,	neurons,	oligodendrocyte	precursors,	newly	formed	
oligodendrocytes,	myelinating	oligodendrocytes,	microglia	and	endothelial	cells.	Genes	that	
appeared	in	more	than	one	cell	type-specific	gene	list	were	removed	from	the	analysis,	and	
the	remaining	genes	were	converted	to	human	orthologs	using	the	biomaRt	package38.	We	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2018. ; https://doi.org/10.1101/288845doi: bioRxiv preprint 

https://doi.org/10.1101/288845
http://creativecommons.org/licenses/by-nc-nd/4.0/


36	
	

used	the	Fisher’s	Exact	Test	to	check	for	enrichment	of	cell-specific	markers	with	each	set	of	
predicted	 genes.	 The	 false	 discovery	 rates	 (FDR)	 were	 calculated	 using	 the	 Benjamini-
Hochberg	procedure39	and	an	FDR	threshold	of	5%	was	used	to	assess	the	significance	of	the	
enrichment	observed.	

Assessing	the	importance	of	predictors	in	disease-specific	classifier	
ensembles	
Given	a	 set	of	 trees	 from	an	ensemble,	we	measure	 the	 importance	of	each	ML	predictor	
within	the	ensemble	on	the	basis	of	 its	 relevance	when	classifying	genes	as	“Disease”.	We	
base	 the	 calculation	 of	 importance	 on	 two	 different	 properties	 of	 a	 predictor	when	 used	
within	a	set	of	trees,	namely	the	frequency	of	appearance	across	the	trees	and	the	average	
depth	of	the	predictor	within	each	tree.	Clearly,	when	a	predictor	appears	high	in	a	tree	(i.e.	
near	to	the	root	or	even	the	root	itself)	and	its	subtree	leads	to	a	higher	proportion	of	genes	
classified	as	“Disease”,	the	predictor	has	relevance	for	disease	classification.	Moreover,	when	
the	attribute	is	used	many	times	across	trees	it	is	also	important.	We	calculate	two	measures	
to	reflect	these	properties.	Note	that	each	non-leaf	node	on	a	tree	is	a	test	(positive	test	in	
this	case)	for	a	predictor.	Leaf	nodes	are	labels,	either	“Disease”	or	“Non-disease”.	In	regard	
to	depth,	given	a	predictor	p	and	tree	t,	with	a	maximum	of	n	nodes	between	the	root	and	
any	leave,	depth	is	defined	for	the	predictor	p	in	the	tree	t	as	the	mean	of	the	p1,	p2,	…,	pm	
values	when	p	appears	m	times	at	the	tree	t	and	pi	is	n	minus	the	number	of	nodes	from	the	
root	to	that	node	at	the	i-th	appearance	of	the	predictor	within	the	tree.	Depth	is	always	in	
[0,1].	With	 respect	 to	appearance,	 the	appearance	of	 a	predictor	p	 in	 a	 trees	ensemble	 is	
simply	its	frequency	of	appearance	as	root	node	of	a	subtree	with	higher	proportion	of	genes	
classified	as	“Disease”	for	that	subtree	generating	a	value	in	[0,1].	As	a	single	measure,	we	
simply	add	these	two	measures.	As	a	single	measure	we	simply	add	these	two	values.		
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Code	availability	statement	
The	code	we	have	developed	for	this	paper	is	available	right	now	upon	request.		

We	are	working	on	making	it	easier	to	use.	It	will	be	ready	before	publication.	

Data	availability	statement	
All	the	new	data	produced	in	this	paper	has	been	made	available	through	the	
supplementary	materials	accessible	from	the	submission.	
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