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Summary 

Bulk tumor tissues comprise intermixed populations of neoplastic cells and multiple lineages 

of stromal cells. We used laser capture microdissection and RNA sequencing to disentangle 

the transcriptional programs active in the malignant epithelium and stroma of pancreatic 

ductal adenocarcinoma (PDA). This led to the development of a new algorithm (ADVOCATE) 

that accurately predicts the compartment fractions of bulk tumor samples and can 

computationally purify bulk gene expression data from PDA. We also present novel stromal 

subtypes, derived from 110 microdissected PDA stroma samples, that were enriched in 

extracellular matrix– and immune–associated processes. Finally, we applied ADVOCATE to 

systematically evaluate cross–compartment subtypes spanning four patient cohorts, 

revealing consistent functional classes and survival associations despite substantial 

compositional differences.  
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Introduction 

All carcinomas harbor both transformed malignant cells and non-transformed stromal cells, 

in varying proportions (Aran et al., 2015). Pancreatic ductal adenocarcinoma (PDA) is among 

the most stroma–rich cancers, with a complex inflammatory microenvironment that typically 

dominates the tumor parenchyma. Expected to be responsible for over 43,000 deaths per 

year in the United States, it is a common, aggressive malignancy that responds poorly to 

therapeutic intervention (Oberstein and Olive, 2013; Siegel et al., 2017). Within the stromal 

compartment of PDA, diverse fibroblast, myeloid, lymphoid, endothelial and other cell 

lineages contribute to both pro– and anti–tumor processes, including angiogenesis and 

epithelial differentiation (Rhim et al., 2014), tissue stiffness (Jacobetz et al., 2012; 

Provenzano et al., 2012), drug delivery (Olive et al., 2009), and local immunosuppression 

(Vonderheide and Bayne, 2013). These functions are orchestrated through a host of 

paracrine signals that pass between and within the epithelial and stromal compartments– 

communication that is quickly altered upon tissue disruption. Thus, efforts to parse 

transcriptional programs of PDA should take into account the processes active in both 

compartments, ideally in an in situ context.  

 

Despite extensive genomic characterization (Bailey et al., 2016; Biankin et al., 2012; Jones 

et al., 2008; Waddell et al., 2015; Witkiewicz et al., 2015), individual DNA mutations have 

thus far failed to provide confirmed prognostic or theranostic information for PDA. Indeed, 

only a small fraction of pancreatic tumors is predicted to harbor “druggable” genetic 

alterations (Bailey et al., 2016; Witkiewicz et al., 2015). As an alternative to genetic 

biomarkers, transcriptional classifiers for PDA have been explored using bulk tumor samples 

(Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015). While each study differs in the 

number of subtypes described, a shared message is that ductal pancreatic tumors include at 

least two groups distinguished by markers of epithelial differentiation state, with the more 

poorly–differentiated subtype (i.e. “Basal-like”, “Squamous”, or “Quasi-Mesenchymal”) 

exhibiting reduced overall survival relative to well-differentiated subtypes (i.e. “Classical” or 

“Progenitor”). However, the contributions of stromal cells are handled differently in each 

instance, leading to some debate as to the merits of different proposed subtypes. To clarify 

this issue, we endeavored to directly profile gene expression from purified neoplastic 

epithelium and associated stroma isolated from frozen human PDA samples.  
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Several techniques may be employed to isolate cellular subsets from bulk tissue including 

magnetic separation, fluorescence assisted cell sorting (FACS), and laser capture 

microdissection (LCM). The first two techniques rely on population–specific antibodies to 

separate a suspension of cells following disruption of the tumor. Unfortunately, the extremely 

fibrotic extracellular matrix of PDA necessitates prolonged enzymatic digestion to achieve a 

single-cell suspension, during which time transcriptional profiles will be altered. Moreover, 

PDA diffusely infiltrates the surrounding pancreatic parenchyma (Hruban, 2007) so that even 

tumor samples enriched by FACS for epithelial markers can include contributions from 

normal, atrophic, pre-neoplastic, or metaplastic epithelial cells. Laser capture microdissection 

(LCM) provides a powerful solution, allowing the isolation of relatively pure compartment–

specific tissue samples based on morphological features, without disrupting the delicate 

interplay of intercellular communication. However, performing LCM while maintaining RNA 

quality suitable for sequencing is technically challenging, costly, and labor intensive. As a 

result, there are currently few examples of large collections of cancer gene expression 

profiles derived from LCM samples.  

 

We present here expression profiles of laser capture microdissected malignant epithelium 

and matched reactive stroma for 66 human pancreatic ductal adenocarcinomas. These data 

informed the development of a novel computational algorithm for the Adaptive DeconVolution 

Of CAncer Tissue Expression (ADVOCATE), which we used to extend our analyses to 

external datasets. ADVOCATE may be used to perform two functions on bulk tumor 

expression profiles. First, it can infer the fractional contribution made by each compartment 

to the original bulk sample. Second, it can transform a bulk tissue transcriptome into separate 

“virtual” profiles for each sub–compartment. Though prior approaches exist for related 

applications (Abu-Alainin et al., 2016; Kuhn et al., 2011; Zhong et al., 2013), they make 

several assumptions, such as the linear mixing of compartments and the specificity of marker 

genes, that lead to reduced performance relative to ADVOCATE. Furthermore, a crucial new 

feature is that ADVOCATE can full infer complete gene expression profiles for modeled 

subpopulations on a sample–by–sample basis, which may then be input into downstream 

analytical pipelines. 

 

Given the many cancer-associated processes that are mediated by stromal elements, and 

the prominence of the tumor stroma specifically in PDA, molecular subtyping of stromal 
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signaling programs may offer a distinct and useful counterpoint to epithelial classification. A 

prior study utilized an elegant computational approach to indirectly infer stromal subtypes 

based on a limited set of stroma–associated expression factors (Moffitt et al., 2015). Here we 

provide a novel stromal classification derived from a total of 110 experimentally purified 

stromal profiles. Two prominent subtypes were apparent, enriched for extracellular matrix 

associated pathways (ECM–rich) and immune/cytokine associated pathways (Immune–rich), 

respectively. Critically, application of this novel, stroma–specific gene signature to virtual 

stroma profiles generated by ADVOCATE from bulk tumor samples led to the consistent 

identification of the same functional subtypes across three large external PDA gene 

expression datasets; similar consistency was also observed using an existing epithelium–

specific classification system. Notably, a meta-analysis of all four cohorts revealed a partial 

association of the ECM–rich stroma subtype with the Basal–like epithelial subtype. Finally, 

we demonstrated that incorporating molecular subtypes from both the epithelial and stromal 

compartments into a combined classification led to the identification of subtypes that are 

strongly associated with patient survival across multiple cohorts. 

  

Results 

Transcriptional profiling of pancreatic cancer epithelium and stroma 

To study the separate transcriptional programs of intact pancreatic tumor epithelium and 

stroma, we optimized a robust protocol for maintaining RNA integrity during laser capture 

microdissection of frozen tumor tissues, yielding total RNA suitable for library preparation and 

RNA sequencing. We first applied this LCM–RNA–Seq technique to 60 primary PDA 

specimens that were harvested and frozen intraoperatively by the Columbia University Tumor 

Bank in collaboration with the Columbia Pancreas Center (see Tables S1,2 for patient 

characteristics). For each tumor, we generated paired gene expression profiles from the 

malignant epithelium and nearby reactive stroma, as distinguished by cell morphology 

(Figure 1A). Extensive quality control metrics confirmed the high quality of resulting RNA 

libraries (Figures 1B,C and  Figures S1A-D) (Adiconis et al., 2013; Shanker et al., 2015). 

Critically, samples from the two compartments separated spontaneously along the first 

component of a Principal Component Analysis (PCA) with virtually no overlap (Figure 1D), 

and were distinguished by expression of established marker genes for epithelial cells 
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(KRT19, EPCAM, CDH1) versus markers of various stromal cell types, including leukocytes 

(PTPRC, CD4, CD163), endothelial cells (VWF, ENG, CDH5), and cancer associated 

fibroblasts (CAFs) (ACTA2, DCN, FAP) (Figure 1E). We observed that technical variance 

was substantially lower than biological variance (Figures S1E-F) and found that different 

malignant areas captured from a single tumor clustered closely, suggesting that the intra-

tumoral transcriptional heterogeneity of that tumor was less than the inter-tumoral 

heterogeneity of PDA (Figures S1G-H). In summary, our analysis shows that LCM–RNA–

Seq produces robust, genome–wide, compartment–specific gene expression profiles.  

 

We next examined the most differentially expressed genes between the epithelium and the 

stroma (Table S3) and compared their expression to immunohistochemistry for the 

corresponding proteins in The Human Protein Atlas (HPA) pathology database (Pontén et 

al., 2008). We restricted our analysis to proteins for which the highest-quality antibodies were 

available (n= 321), based on established HPA criteria (Table S4). Of these, we evaluated the 

immunostaining patterns for the 50 genes whose LCM–RNA–Seq expression was most 

differentially expressed for each compartment, examining a minimum of six PDA samples per 

tested protein. This analysis yielded confirmatory staining patterns for 47 of 50 epithelial 

proteins and 36 of the 50 stromal proteins (Figures 1 F, G, Table S5). For example, Figures 

1 H, I show two members of the galectin protein family, LGALS4 and LGALS1, with inverse 

staining patterns in the two compartments, consistent with our predictions. Critically, none of 

the proteins were found expressed in a pattern opposite that predicted; most genes lacking 

supportive staining were simply not detected, perhaps due to post–translational regulation. 

Thus, through the use of LCM–RNA–Seq, we compiled a rich resource of compartment–

specific genes that may be of use as novel markers for the pancreatic cancer field. 

 

A framework to deconvolve compartment–specific gene expression profiles from bulk data 

Multiple large–scale gene expression datasets for PDA have been reported and each has 

provided important contributions to our understanding of the disease. However, it has been 

challenging to make comparisons between these datasets due to differences in expression 

profiling platforms, inclusion criteria, sample preparation, and other technical details. The 

availability of experimentally–purified, compartment–specific, paired expression profiles 

offered a unique opportunity to unify these resources by using transcriptional deconvolution 
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to remove the noise introduced by variable tissue composition in each dataset. In contrast to 

many prior optimization approaches (i.e. quadratic programming), we utilized a machine-

learning approach to train a probabilistic algorithm (ADVOCATE), consisting of four steps, as 

outlined in Figure 2A: 1) ADVOCATE fits a Gaussian-mixture model on the collection of 

normalized pairs of expression profiles to infer the expression distribution of each gene in 

each compartment. 2) When subsequently provided with a bulk gene expression profile, the 

expression of each gene in the bulk sample is compared with the expression distribution 

inferred in Step 1, to derive a compartment fraction prediction for each detected gene. 3) 

These fractions are integrated across all genes to infer a global compartment fraction for the 

bulk sample. 4) Finally, ADVOCATE combines the information from steps 1, 2, and 3 to infer 

compartment–specific virtual profiles, theoretically recapitulating the results of more–costly 

and laborious LCM–RNA–Seq. While we focus here on the epithelial and stromal 

compartments of pancreatic cancer, there is no technical limitation for the number of 

compartments that can be modeled provided that distinct, matched, compartment–specific 

expression profiles are available.  

 

Computational validation of ADVOCATE performance 

We carried out a series of in silico and experimental assays to validate ADVOCATE’s 

performance. First we generated artificial pure epithelial and stromal gene expression profiles 

by randomly sampling from the density of expression for each gene across the LCM–RNA–

Seq profiles for each compartment (see Methods). These were then mixed together in silico 

in varying proportions to create synthetic bulk samples with different compartment fractions. 

When ADVOCATE was trained on these synthetic compartment–specific samples, it 

predicted the compartment fractions of the synthetic bulk samples with error rates of less 

than 3% (Figure 2B). By comparison, the ESTIMATE algorithm (Yoshihara et al., 2013), 

which is commonly used for compartment fraction analysis of many cancer types, significantly 

and systematically over–estimated the epithelial compartment fraction, independent of the 

actual compartment mixture (black dotted line in Figure 2B).  

 

Next we generated a more realistic set of “semi–synthetic” bulk samples by computationally 

mixing profiles from actual LCM–derived epithelial and stromal sample pairs, in varying 

proportions (Figure 2C). Again, ADVOCATE predicted the compartment mixture rate with 
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very high accuracy (>90%) for the majority (~80%) of the samples. In a complementary 

analysis, we estimated compartment–specific LCM sample purity by leave–one–out cross-

validation (LOOCV), whereby the composition of each individual LCM sample was estimated 

after training the model on the remaining 59 pairs. Figure 2D shows that ADVOCATE 

correctly predicted a very high (>90%) epithelial and stromal composition for the majority of 

compartment–specific LCM–derived samples (73%), as expected, with the residual error 

likely due to biological and technical variability in the LCM–derived sample profiles.  

 

Interestingly, the same three outlier samples with >20% error were detected in the analyses 

from both Figure 2C and 2D (orange lines/bars). Careful histopathological examination of 

these samples revealed that one (E17) was poorly differentiated and therefore may plausibly 

exhibit a more stroma–like signature (Figures S2A-B). A second (S10) had large areas of 

highly cellular stroma intermixed with fibrotic regions, which could plausibly lead to a more 

epithelial–like stroma signature (Figure S2C-E). No obvious pathological distinctions were 

apparent in the third sample (Figure S2F) suggesting either imprecise microdissection or an 

unusually high level of epithelial delamination into the stroma (Rhim et al., 2012). These 

findings were consistent with the clustering of these three samples near the interface between 

epithelial and stromal samples by PCA (Figure 1D). Together, the results provide evidence 

of the robustness of ADVOCATE in predicting bulk tumor composition from synthetic data 

and its resilience when applied to more realistic experimental data. A power analysis 

performed using the LOOCV technique found that experimental error diminished substantially 

as the size of the training set exceeded 20 tumors, indicating fairly modest sample 

requirements for training an implementation of ADVOCATE (Figure 2E). 

 

Experimental validation of compartment fraction prediction with ADVOCATE 

We next assessed ADVOCATE’s ability to predict the composition of samples whose 

compartment fraction had been experimentally assessed and compared it to four other 

published algorithms: ESTIMATE, deconRNAseq (Zhong et al., 2013), PSEA (Kuhn et al., 

2011), and DSA (Zhong et al., 2013). We began by analyzing gene expression profiles from 

pure epithelial and stromal tissues isolated by LCM on PDA samples (Figures 3A, S3A-B). 

Among the five algorithms, ADVOCATE predicted the highest epithelial fraction in 

microdissected epithelial samples, and the second-lowest epithelial fraction in stromal 
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samples; the deconRNAseq algorithm predicted lower epithelial fractions in both the stromal 

and epithelial datasets. We then used ADVOCATE to predict the compartment fractions of 

the CUMC bulk samples for which nuclei counting was performed (Figure S3C) as well as 

bulk PDA samples form TCGA, which are annotated with DNA-based purity estimates using 

the ABSOLUTE algorithm (Figure S3D).   Among the five algorithms, ADVOCATE predicted 

the highest purity for the respective compartment in the LCMsamples, and scored closest to 

the respective reference standards for the CUMC and TCGA bulk PDA samples (nuclei count 

and ABSOLUTE prediction, respectively) (Figure S3E). 

 

Carcinoma–derived cell lines are often used to provide a pure epithelial reference for gene 

expression studies. We next used ADVOCATE to predict the compartment fractions of 40 

PDA cell lines in the Cancer Cell Line Encyclopedia (CCLE)(Barretina et al., 2012). As 

expected, all PDA cell lines were scored as predominantly epithelial with a mean epithelial 

fraction of 94% (Figure S3F). However, nine lines were predicted to have >10% stromal 

fraction. This should not be interpreted to imply the presence of stromal cells in these lines. 

Rather, this result likely indicates either that the original tumor was poorly differentiated or 

that the cells underwent epithelial–to–mesenchymal transition (EMT) during adaptation to 

tissue culture conditions, since stromal signatures are enriched in mesenchymal genes (Ross 

et al., 2000). Consistent with that interpretation, sarcoma and mesothelioma cell lines (n = 

28) were predicted to be significantly more “stromal” than PDA cell lines (P = 2.30x10-25, 

Kolmogorov-Smirnov (KS) test, Figure S3G). This finding highlights potential issues in the 

common practice of using epithelial tumor cell lines indiscriminately as a “pure” epithelial 

reference for purity assessments.  

 

Finally, to directly test the ability of ADVOCATE to predict compartment fractions from bulk 

tissue, we performed RNA–Seq on bulk tissue from 15 PDA samples and compared 

compartment fraction predictions to histopathological assessments. Bulk tumor samples may 

also contain varying amounts of other tissue types (such as normal or atrophic pancreas, 

lymphoid aggregates, nerve plexus, and blood vessels) that are routinely found intermixed 

with frank carcinoma in pancreatic tumors. To account for this, we incorporated a third 

“Residuals” compartment into this analysis, comprising genes with a low expression 

probability in both epithelial and stromal compartments (see Methods). We note that multiple 

studies have reported discrepancies between tumor purity estimates from pathology review 
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and those from molecular analyses (Carter et al., 2012; Song et al., 2012; Yoshihara et al., 

2013), either as a result of technical limitations or of sampling different areas of the tumor for 

the respective analyses. To minimize the latter effect, we assessed the histology of tissue 

sections immediately adjacent to those used for LCM-RNA-Seq. Two blinded, independent 

histopathology assessments of tumor composition were performed on hematoxylin and eosin 

(H&E) stained frozen tissue sections. First, the areas of epithelium, stroma, and other tissue 

were estimated by a gastrointestinal pathologist. Second, individual nuclei were counted in 

the epithelial and stromal compartments for multiple representative tumor areas (Figure 3B). 

We found that tumor content was highly correlated between the two measures (ρ = 0.77), 

with the area assessment showing lower epithelial content than nuclei counting (Figure 3C). 

ADVOCATE’s predictions tracked very well with nuclei count assessment, with a mean 

absolute percent error (MAPE) of 15% (Figure 3D). However, it systematically overestimated 

tumor content, relative to area assessments (MAPE = 32%, Figure 3E), perhaps suggesting 

that nuclei count better reflect gene expression contributions from distinct compartments. 

Overall, ADVOCATE yielded the lowest MAPE of the five algorithms assessed (Figure S3E).  

 

Experimental validation of virtual expression profiles generated from bulk tumors 

The second function offered by ADVOCATE is to extract compartment–specific gene 

expression data from bulk samples (referred to as “virtual profiles” hereafter). To assess the 

accuracy of virtual profiles, we performed both bulk RNA-Seq and LCM–RNA–Seq on six 

tumor samples. We then determined the correlation between the LCM profiles and their bulk 

counterparts, before and after deconvolution (Figure 3F). Without deconvolution, there was 

only modest correlation with ρ = 0.59 and ρ = 0.48 for epithelium and stromal LCM 

comparisons, respectively. By contrast, following deconvolution with ADVOCATE, the 

correlation between experimental LCM and virtual profiles increased significantly to ρ = 0.71 

for the epithelium and ρ = 0.74 for the stroma (P = 1.8x10-5 combined, two-sample KS test). 

Critically, expression of lineage–specific markers in virtual epithelial and stromal samples 

closely tracked with the results of experimental microdissection (Figure 3G vs. Figure 1E). 

Indeed, both hierarchical clustering and PCA showed divergence of virtual epithelial and 

stromal profiles relative to the intermediate clustering of bulk profiles (Figures 3H, I). Taken 

together, these data demonstrate that ADVOCATE is effective in deconvolving 

compartment–specific expression profiles from bulk tissue. 
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Finally, we sought to assess the general suitability of ADVOCATE for deconvolving cancer 

types by making use of a published array expression dataset derived from laser capture 

microdissected breast cancer samples (Oh et al., 2015) (Figures S4A, B). We trained an 

implementation of ADVOCATE on a subset of these samples and then performed LOOCV 

analysis, finding the predicted fraction to be >80% in the majority of samples for both 

compartments (Figure S4C). We then applied this model to the remaining samples from the 

dataset, including samples that clustered with the training samples as well as some expected 

to have intermediate compartment fractions, based on their position in the PCA (yellow points 

in Figure S4B). As expected, most of the samples from this test were predicted to have high 

purity, but compartment fractions were lowest in the intermediate samples (Figure S4D). 

Finally, we used this implementation of ADVOCATE to predict the compartment fractions of 

an independent LCM RNA-seq breast cancer dataset (N=36, Agilent platform, GSE68744) 

and compared these results to purity predictions from ESTIMATE (Figure S4E). Critically, 

ADVOCATE successfully predicted quite pure fractions for the relevant compartment on 

these independent LCM samples. By contrast, ESTIMATE predicted lower purity in both 

compartments, particularly in epithelium samples. These results demonstrate both the 

generalizability of the ADVOCATE algorithm across tumor types when provided appropriate 

training samples, and the suitability of ADVOCATE for use with different gene expression 

platforms. 

 

Compartment fraction analysis reveals distinct compositions of public PDA datasets 

Three prior studies have presented expression–based classification systems, derived from 

large collections of bulk PDA profiles, that relate to biological properties or outcome (Bailey 

et al., 2016; Collisson et al., 2011; Moffitt et al., 2015). In each study, a subtype exhibiting 

molecular characteristics consistent with a poorly differentiated state (termed “Quasi-

Mesenchymal”, “Basal-like”, or “Squamous”, respectively) was shown to have poor overall 

survival, relative to a subtype exhibiting a signature reflective of pancreatic tissue origin 

(“Classical” or “Progenitor”), with varying numbers of additional groups also presented. Moffitt 

et. al. further parsed molecular subtypes from the tumor stroma using non-negative matrix 

factorization (NMF, a statistical approach to separating the constituent parts of an object. See 

Discussion.)(Lee and Seung, 1999). Each of these reports has contributed to our basic 
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understanding of pancreatic cancer biology, but a systematic evaluation of compartment–

specific contributions is needed to identify subtypes that are broadly applicable across 

biologically and technically heterogeneous PDA patient cohorts.  

 

We used the compartment fraction analysis function of ADVOCATE to analyze pancreatic 

cancer gene expression profiles from three independent cohorts: (a) UNC Chapel Hill (UNC, 

n = 125), (b) the International Cancer Genome Consortium (ICGC, PACA-AU RNA-Seq 

dataset, n = 93), and (c) The Cancer Genome Atlas (TCGA, PAAD dataset, n = 137) (see 

Methods for inclusion criteria). We reasoned that there are three potential sources of relevant 

heterogeneity in these data: 1) differences in the epithelium-to-stroma ratio in areas of frank 

carcinoma; 2) variation in the extent of non-tumor tissues (normal pancreas, pancreatitis, 

lymph nodes, etc.) included in the bulk sample; and 3) technical differences (e.g. expression 

platform, library preparation method, etc.). We reasoned that the contributions of the latter 

two sources will be largely captured by the “Residuals” component of the 3–compartment 

implementation of ADVOCATE, since they would lead to gene distributions distinct from those 

found in the pure LCM datasets. Thus, subtracting the Residuals component serves as a 

means to control for technical and biological heterogeneity independent of true compartment 

fraction. Using this approach, we found that the epithelial and stromal fractions varied 

significantly between the cohorts with 46%, 67% and 55% epithelium for the ICGC, UNC and 

TCGA cohorts, respectively (p < 0.001, one-way ANOVA) (Figure 4A).  This highlights critical 

differences in composition between tumor collections curated with different inclusion criteria 

or enrichment practices.  

 

We next focused on the expression level and compartment–specificity of the genes used by 

each of the three published PDA classification systems (Figure 4B) (Bailey et al., 2016; 

Collisson et al., 2011; Moffitt et al., 2015). We began by remapping the Columbia University 

Medical Center (CUMC) dataset using the Ensembl GRCh37 gene annotation in order to 

enable comparisons to the ICGC dataset, which uses this annotation. This resulted in 22% 

more genes being called than with the NCBI annotation, and had a particularly strong impact 

on the many recombined immunoglobulin genes that contribute to the Bailey et. al. 

Immunogenic subtype (Tables S17-20). Notably, we observed that the genes used to define 

the Classical, Basal-like, and Progenitor subtypes were heavily weighted towards epithelium–

specific expression. Conversely, those used to define the Activated, Normal and 
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Immunogenic subtypes were weighted towards the stroma. The Quasi-Mesenchymal (QM) 

and Squamous gene sets were well–expressed and represented a mixture of epithelial and 

stromal identity, consistent with a more poorly differentiated state. Finally, the majority of 

genes that define the Exocrine and ADEX subtypes exhibited very low expression in the LCM-

RNA-Seq datasets, suggesting that their expression in bulk tissue is derived from cell types 

largely absent from our microdissected samples. Together, these data provide insight into 

the cellular compartments that contribute to molecular gene signatures built from bulk tumor 

tissue samples. 

 

Transcriptional deconvolution improves functional classification across cohorts 

An important feature of a robust classification system is its capacity to identify functionally 

similar groups across independent datasets. A gene signature can stratify groups of samples 

that are functionally unrelated due to variation between the cohorts. For example, application 

of the epithelial signature from Moffitt et. al. (hereafter referred to as Moffitt–E) to bulk profiles 

from TCGA identifies two groups of samples. However, gene set variance analysis of the two 

TCGA groups finds intermixing of the functions associated with the Basal–like and Classical 

groups (Figures 4C). With the finding that compartment fraction varies substantially between 

different cohorts, we wondered whether removing the expression contributions of stromal 

cells would aid classification efforts.  

 

To address this challenge, we used the deconvolution function of ADVOCATE to generate 

virtual epithelial and stromal expression profiles from the bulk samples of each PDA cohort 

(producing datasets vUNC, vTCGA, and vICGC). In each case, the resulting virtual profiles 

were clearly distinguished by established cell–specific marker genes (Figure 4D and Figure 

S5A, B). Notably, bulk samples were distributed between the corresponding virtual epithelium 

and stroma samples by hierarchical clustering (Figures S5 C–E).  

 

To address whether deconvolution improved cross–cohort consistency of molecular 

classifiers, we processed the virtual epithelial profiles from each cohort (veUNC, veTCGA, 

and veICGC) using the Moffitt–E signature. Notably, deconvolution of TCGA data led to a 

realignment in functional associations, resulting in two groups that could be clearly 

recognized as Basal-like and Classical, based on enriched gene sets (Figure 4E). Similar 

functional associations were observed when the Moffitt–E classifier was applied to our 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/288779doi: bioRxiv preprint 

https://doi.org/10.1101/288779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

experimentally–derived epithelial LCM–RNA–Seq (CUMC LCM–E) dataset (Figure 4F). We 

also noted that application of the Moffitt–E classifier to the veICGC dataset revealed excellent 

alignment with the pancreatic progenitor and squamous subtypes described by (Bailey et al., 

2016) (SMC = 0.91) (Table S6). Together, these data indicate that removal of stromal 

expression data from bulk tumor datasets can improve the functional similarity of the groups 

identified by classification systems. 

  

Identification of Immune-rich and ECM-rich subtypes of PDA stroma 

The profuse stromal desmoplasia of pancreatic ductal adenocarcinoma is a defining feature 

of this malignancy. Previously, Moffitt and colleagues used NMF (Lee and Seung, 1999) on 

a large number of bulk PDA expression profiles to infer a PDA stromal classifier that identified 

two subtypes, designated “Activated” and “Normal” (Moffitt et al., 2015). These subtypes were 

interpreted to reflect the biology of cancer associated fibroblasts, based on the inferred 

contributions of activated myofibroblasts versus quiescent pancreatic stellate cells. While this 

finding both aligns well with known PDA biology and was shown to be clinically relevant with 

respect to outcome association, we were interested in capturing expression signals from the 

stroma as a whole, including the many myeloid, lymphoid, endothelial and other cell types 

that are commonly present in the PDA microenvironment. To this end, we expanded the 

stromal LCM–RNA–Seq cohort described above to include samples from a total of 110 

unique patients. NMF with consensus clustering identified two prominent molecular subtypes 

among these samples. Clear functional identities were established for these subtypes using 

gene set variance analysis (GSVA), leading to their designations as: an “Immune–rich” group 

characterized by numerous immune and interleukin signals; and an “ECM–rich” group, 

characterized by numerous extracellular matrix–associated pathways (Figure 5A). We next 

extracted a gene signature distinguishing these two stromal subtypes, making use of the 

compartment specificity analysis described above to filter for stroma-specific genes (see 

Supplementary Methods and Supplementary Tables 22 – 24). Application of this signature to 

the virtual stroma profiles yielded two prominent groups each for the UNC, ICGC, and TCGA 

cohorts (Figures 5B–D). Critically, in each cohort, the two groups were again characterized 

by their enrichment for gene sets associated with ECM deposition or immune processes, 

indicating a robust and consistent performance of this new, stroma-specific “CUMC–S” 

signature.  
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Epithelial and stromal subtypes are partially linked and associated with survival differences 

Having determined the epithelial and stromal subtypes of all CUMC, UNC, ICGC, and TCGA 

samples, we were able to assess the degree of variation in the subtype composition of these 

datasets. Notably, we found that both the epithelial and stromal composition of each tumor 

cohort varied considerably across datasets. Within the epithelium, the Basal–like group 

comprised 29%, 41%, and 27% of cases in the veUNC, veICGC, and veTCGA cohorts, 

respectively (Figures 5 E–G), and 36% of our epithelial LCM–RNA–Seq profiles (Figure S6A). 

Within the stroma, the ECM–rich subtype comprised 62%, 52%, and 31% of cases in the 

vsUNC, vsICGC, and vsTCGA cohorts, respectively (Figure 6 D-F), and 47% of our stromal 

LCM–RNA–Seq samples (Figure S6A). These observations serve to further highlight the 

significant heterogeneity between independent collections of pancreatic tumor specimens. 

 

We next sought to assess the associations of epithelial and stromal subtypes with survival 

outcomes. Examining the epithelial samples, we found that removing stromal gene 

expression with ADVOCATE improved the survival association between Classical and 

Basal–like tumors in all three bulk datasets, with a particularly strong effect on TCGA 

outcomes (Figures 6 A–C) where 45% of the samples were re-classified after deconvolution. 

For the stromal subtypes, we observed at least a trend towards reduced survival among 

ECM-rich tumors in all three datasets (a finding made more apparent by deconvolution); 

however, this only reached significance in the ICGC cohort (Figures 6D–F). Together, these 

data indicate that (i) differences in tumor composition between different large-scale gene 

expression datasets can affect the predictive power of established classifier signatures for 

PDA, and (ii) transcriptional deconvolution can help overcome this hurdle, improving the 

reproducibility of outcome prediction.  

The existence of numerous paracrine signaling pathways whose activity is affected by 

oncogenic mutations implies that stromal transcriptional programs should be heavily 

influenced by epithelial identity (Laklai et al., 2016). We examined this corollary by 

ascertaining the association of epithelial and stromal subtypes in our experimental LCM 

dataset as well as in those from the virtual UNC, ICGC, and TCGA datasets. We found that 

in the ICGC and TCGA cohorts, the ECM-rich stroma subtype was preferentially associated 

with the Basal-like epithelial subtype; the UNC and CUMC cohorts trended in this direction 
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but did not reach significance. However, a meta-analysis of the 393 samples from all four 

datasets yielded an Odds Ratio of 2.7 for the association of Basal-like epithelium and ECM-

rich stroma (Figure S6B, random effects model: OR 2.7 [1.33 – 5.53], p < 0.001), indicating 

a partial association between epithelial and stromal compartments.  

 

The imperfect alignment of the epithelial and stromal subtypes offered the possibility that 

combination subtypes might vary in their survival associations as compared to either 

compartment alone. Indeed, consideration of combined epithelial and stromal combination 

subtypes affected the outcome prediction, particularly in the case of the UNC cohort where 

combination subtyping of deconvolved samples found a particularly poor outcome for Basal–

like/ECM–rich tumors relative to Classical/Immune–rich tumors (HR = 3.76 for combined 

subtyping vs. 2.11 for epithelial subtyping alone (Figures 6 G–I, Figures S6 G–H). Together, 

these data highlight the relationship between Basal-like epithelium with ECM-rich stroma in 

pancreatic cancer and the strong association of this combination with poor overall survival.  

 

Discussion   

The traditional understanding of genetic mutations as drivers of tumor development has led 

to a focus on the malignant compartment that is exemplified by the term “tumor purity”, which 

regards the stroma as mere contamination. However, with the understanding that stromal 

cells play critical roles in both promoting and restraining pancreatic tumor progression 

(Neesse et al., 2015), the consensus view of the stromal compartment has shifted to that of 

a critical partner – or foil – to the malignant epithelium. Indeed, in some contexts the stroma 

can even play a dominant role, as epitomized by the success of stroma–targeted 

immunotherapy in treating aggressive cancers such as metastatic melanoma and non–small 

cell lung cancer. In this light, we sought to study the interplay of PDA epithelium and stroma 

in their native state, separated by LCM from otherwise intact samples, but matched by patient 

so that the reciprocal signals active in each compartment might be examined.  

 

A key outcome of this work is to unify our understanding of molecular subtypes in pancreatic 

ductal adenocarcinoma. To do this, we first examined the properties of subtypes resulting 

from existing classification schemes, making use of compartment–fraction estimation 

function of ADVOCATE as well as our annotation of the expression levels and compartment–

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/288779doi: bioRxiv preprint 

https://doi.org/10.1101/288779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 
 

specificity of each gene in our LCM-RNA-Seq dataset. We noted the substantial 

heterogeneity of compartment fraction between the UNC, ICGC, and TCGA cohorts, and 

detailed how certain proposed subtypes may have emerged from variations in tissue 

composition. Indeed, the removal of stromal expression signals from the Moffitt–E signature 

resulted in the reclassification of nearly half the samples and improved discernment of the 

functional processes associated with the Classical and Basal–like subtypes in each cohort.  

 

Functional similarity in subtypes is an important concept for tumor classification. It is fully 

possible, even commonplace, to generate functionally distinct groups when applying the 

same classification signature to different sample cohorts. Variation in technical features such 

as library preparation method or expression platform, as well as biological heterogeneity can 

have an outsized impact on sample classification systems. Thus, in our effort to establish a 

novel classification system for PDA stroma, we placed the greatest emphasis on the 

reproducibility of molecular phenotypes across multiple cohorts. Following this process, we 

observed with great interest the emergence of two prominent molecular subtypes in the 

stroma with pronounced enrichment for two different aspects of stromal biology: ECM 

deposition and remodeling versus immune–related processes. The dichotomy between these 

two functional groups emphasizes the now well–described role that the inflammatory 

microenvironment plays in modulating the local immune response to PDA.  

 

Examining both the epithelial and stromal subtypes together in combination across 393 

pancreatic tumor specimens led to the finding that there is considerable heterogeneity in 

cross-compartmental dependencies across the 393 specimens examined, with some 

evidence of dependence between the global stromal transcriptional program and its epithelial 

counterpart. An expansive body of literature has accumulated describing myriad signaling 

interactions between the epithelium and stroma of pancreatic cancer (Bailey and Leach, 

2012). Furthermore, mutation–driven epithelial signaling programs such as those induced by 

oncogenic K–ras have profound impacts on stromal cell biology (Pylayeva-Gupta et al., 2012; 

Ying et al., 2012). However, K–ras itself is mutated in 95% of PDA cases, so it cannot alone 

explain the differences between the prominent stromal subtypes. By examining all four tumor 

cohorts, we found a strong association between an ECM–rich stroma and Basal-like 

epithelium. The latter finding corroborates the concept that epithelial traits promoting 

dedifferentiation in PDA, such as the loss of SMAD4 expression, may in fact shape a more 
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matricellular and likely more, rigid stromal phenotype (Laklai et al., 2016). This association 

was less prominent in the UNC cohort and absent in our smaller group of LCM tumors. 

Combined evidence from all cohorts, however, generally supports the idea of a modest cross-

compartment dependence. Further studies will be needed to better understand the dynamics 

of cross-compartment subtypes in PDA by taking into account additional variables such as 

mutation status or environmental/epidemiological factors. To this end, we provide two novel 

tools for the PDA field: a compartment-specific gene signature that may discriminate between 

ECM-rich and Immune-rich stromas as well as the ADVOCATE framework which may help 

to assess the compartment composition of PDA bulk expression profiles and provide virtually 

purified expression for downstream analyses.  

 

It is noteworthy that patient stratification according to both the epithelial and stromal 

combination subtype is strongly associated with patient outcome. Specifically, tumors with 

Basal–like epithelium and an ECM–rich stroma have a substantially worse overall survival 

compared to those with a Classical epithelium and Immune–rich stroma (HR = 3.76, 3.81, 

and 2.63 for UNC, ICGC, and TCGA, respectively). This effect size compares favorably to 

other known single variables in pancreatic cancer biology, including lymph node status (HR 

= 1.5), postoperative CA19-9 level (HR = 3.6) or the number of high penetrance driver genes 

(HR = 1.4)(Berger et al., 2008; Yachida et al., 2012) while also providing a biological context. 

Unfortunately, differences in the clinicopathological data reported for each cohort precluded 

a more sophisticated mutivariate model. Nonetheless, we expect that this approach to 

subtyping will have immediate applications, for example, in interpreting the results of small-

scale clinical trials where random inequalities of molecular subtypes could dramatically affect 

the expected survival between groups or relative to historical controls.  

 

The generation of virtual compartment–specific expression profiles from bulk profiles is a 

unique tool in the computational biology field. Other algorithms often provide a means to infer 

compartment expression from a large group of samples based on linear modeling of putative 

marker gene expression (Gill et al., 2014; Kuhn et al., 2011), which depends on the 

availability of truly cell-type specific marker genes being expressed in an essentially binary 

manner. By contrast, ADVOCATE uses a machine learning approach to model the 

expression distribution for hundreds of genes discriminating between the training conditions 

(i.e. epithelium and stroma). This both informs its compartment fraction prediction function 
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and enables the deconvolution function to be performed on an individual–sample basis 

(provided appropriate reference standards for the sample are available from which scaled 

normalized expression may be obtained). The ADVOCATE framework may easily be 

expanded to include additional compartments or cell types, given suitable experimental data. 

However, it cannot generate virtual profiles for any compartments that have not been 

sampled; it can only estimate the fraction of residual gene expression that is unaccounted for 

by the modeled compartments. In practice, this “Residuals” compartment is influenced both 

by technical variations such as expression platform as well as biological variation such as the 

inclusion of non-sampled cell types. It is therefore useful as a noise-reduction tool as 

exemplified in Figure 4A. Considering the technical challenges of performing LCM–RNA–Seq 

and other enrichment methods, we expect this computational approach will reduce the need 

for experimental sample manipulation in the future. Moreover, while we presented 

implementations of ADVOCATE specific to pancreatic and breast cancer, we expect that the 

algorithm, which requires very limited sample sizes for training, can be generally applied to 

model subpopulations across the cancer field. This will provide an important framework for 

handling the cellular heterogeneity of cancer and further expanding the utility of large–scale 

gene expression profile collections. 

 

 

Experimental procedures 

The information provided here is a succinct summary of the experimental procedures. 

Extensive and detailed information is provided in supplementary information. 

 

Samples studied 

Information is provided from a total of 129 PDA patients who underwent surgery at the 

Columbia Pancreas Center. Of these, LCM–RNA–Seq data are presented for both the 

epithelium and stroma of 64 cases, for the stroma of an additional 59 cases, bulk RNA–Seq 

data are presented for 9 cases, and both LCM and bulk RNA–Seq are presented for 6 cases. 

Patients provided surgical informed consent which was approved by a local ethics committee 

(IRB # AAAB2667). Samples were frozen intraoperatively by the Columbia University Tumor 

Bank.  
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Laser capture microdissection and RNA sequencing 

Cryosections of OCT–embedded tissue blocks were transferred to PEN membrane glass 

slides and stained with cresyl violet acetate. Adjacent sections were H&E stained for 

pathology review. Laser capture microdissection was performed on a PALM MicroBeam 

microscope (Zeiss), collecting at least 1000 cells per compartment. RNA was extracted and 

libraries prepared using the Ovation RNA-Seq System V2 kit (NuGEN). Libraries were 

sequenced to a depth of 30 million, 100bp, single-end reads. 

 

Computational methods 

The ADVOCATE framework is described in detail in supplementary materials. An R package 

for implementing ADVOCATE has been developed and will be published in advance of 

publication.  

 

Accession numbers 

Expression data were deposited into publically accessible databases with accession 

numbers to be provided prior to publication.  

 

Author Contributions 

H.C.M. and S.R.H. developed experimental methodologies and performed LCM–RNA–Seq. 

J.H. and M.B. developed the ADVOCATE algorithm and wrote related software. J.Z. provided 

guidance on deconvolution methods. J.H. and H.C.M. curated datasets. J.H., H.C.M., M.B., 

and K.P.O. analyzed and interpreted results. J.A.C., H.H., A.A, and T.S. contributed to tissue 

procurement and banking, and A.A. performed preliminary pathology assessments of banked 

samples. A.C.I. and A.R.S. marked regions of each sample to be laser capture 

microdissected on adjacent sections. A.C.I. annotated the histopathological features of each 

sample with further review of select cases by K.P.O. Regulatory oversight for the use of 

human samples/data was provided by H.H. and J.G. The manuscript was written by J.H., 

H.C.M., and K.P.O. with editing by A.C., M.B., A.C.I., and J.G. Figures were constructed by 

J.H., H.C.M., and K.P.O. Supervision and oversight were provided by A.C., M.B., and K.P.O.. 

Project was initially conceived, funded, and administered by K.P.O.. 

 

Conflicts 

The authors declare no conflicts of interest. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/288779doi: bioRxiv preprint 

https://doi.org/10.1101/288779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

 

Acknowledgements 

The authors would like to thank Federico M. Giorgi and Alexander Lachmann for advice on 

computational methods, and Richard Moffitt for valuable critique of the manuscript. This work 

was supported by the National Cancer Institute (NCI) Cancer Target Discovery and 

Development program (1U01CA168426 to A.C.), NCI Research Centers for Cancer Systems 

Biology Consortium (1U54CA209997 to A.C. and K.P.O.), NCI Outstanding Investigator 

Award (R35CA197745-02 to A.C.) and NCI Research Project Grant (R01CA157980 to 

K.P.O.). Financial support was also provided by the Columbia University Pancreas Center. 

H.C.M. received support from a Mildred Scheel Postdoctoral Fellowship (Deutsche 

Krebshilfe). P.E.O. received support from the NIH NCATS (KL2TR001874). 

 

 

Figure Legends 

Figure 1. Compartment–specific gene expression profiling of pancreatic tumors 

(A) Images of Cresyl Violet stained human PDA frozen sections before and after laser capture 

microdissection of malignant epithelial and adjacent stromal cells. (B) RIN values for RNA 

samples derived from the indicated compartment (N = 60 each). (C) Number of genes and 

transcripts detected at > 1 FPKM in the samples from (B). (D) Principal component analysis 

of the profiles from (C). 60 pairs of epithelial and stromal LCM samples. Color graduation 

shows pairing of samples from the same tumor. Three samples discussed later are labeled. 

(E) Heatmap showing the differential expression of marker genes for the indicated cell types 

in each sample. (F,G) Validation of genes predicted as epithelium–specific (F) or stroma–

specific (G) based on mRNA expression. Bar height and color shading reflects the certainty 

(t-statistic) of differential expression. The box color below each bar summarizes results of 

immunohistochemistry on PDA sections from the Human Protein Atlas (HPA). IHC staining 

pattern was categorized as strongly or weakly supportive of the predicted compartment 

(blue/red), indeterminate (grey), absent (white), or opposite the predicted pattern (black). (H) 

An example epithelium–specific gene, LGALS4, showed a protein staining pattern that was 

strongly consistent with its mRNA expression (at left). Blue and red arrows indicate PDA 

epithelium and stroma, respectively. (I) An example stroma–specific gene, LGALS1, was 

expressed exclusively in the tumor stroma.  
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Figure 2.  ADVOCATE framework and computational validation 

(A) Outline of the ADVOCATE framework where LCM–RNA–Seq profiles are used to model 

genome–wide gene expression distributions for each gene across compartments. Bulk tissue 

profiles can be deconvolved using compartment–specific, gene–wise probabilities, yielding 

two products: i) predicted compartment fractions in the bulk tumor and ii) virtual gene 

expression profiles for the epithelium and stroma of that sample. Numbers indicate steps 

described in main text. (B). Compartment fraction analysis performed with ADVOCATE 

(green) or ESTIMATE (black) on a computationally generated (synthetic) set of epithelial and 

stromal profiles mixed together in silico in varying proportions. (C) Compartment fraction 

analysis performed with ADVOCATE (green/yellow) or ESTIMATE (black) on a semi-

synthetic set of samples generated by mixing actual experimental pairs of LCM expression 

profiles together in varying proportions, for each of 60 tumors. The yellow lines highlight three 

outlier samples. (D) Leave-one-out cross validation of compartment fraction using 

ADVOCATE where the epithelial (blue) and stromal (red) fractions, are predicted for each 

individual pair of LCM–RNA–Seq profiles after training the model using the remaining 59 

pairs. The outliers from (C) are indicated as yellow bars. (E) Power analysis for training the 

ADVOCATE algorithm. Plot shows 95% (dark blue) and 85% (light blue) percentile of 

prediction errors relative to sample sizes based on LOOCV analysis. Errors decreases 

quickly as sample size increases, stabilize after ~ 20 samples, and reach a minimum at 60 

samples.  

 

Figure 3.  Experimental validation of ADVOCATE 

(A) Predicted compartment fractions for CUMC epithelial (left) and stromal (right) LCM–RNA–

Seq profiles using ADVOCATE (red), ESTIMATE (blue), PSEA (green), DSA (purple) and 

deconRNAseq (orange). (B) Example of nuclei counting for the epithelial (teal dots) and 

stromal (orange dots) compartments. Nuclei per compartment were divided by the total to 

yield the compartmental fraction. (C-E) Comparison between tumor epithelium content 

estimated by (C) nuclei counting vs. area estimation, (D) area estimation vs. ADVOCATE, 

and (E) nuclei counting vs. ADVOCATE for 15 tumors from the Columbia University Medical 

Center (CUMC) collection. MAPE denotes Mean Absolute Percentage Error as a measure of 

prediction accuracy. (F) Correlation of normalized gene expression between experimental 

LCM–RNA–Seq profiles and: permuted bulk profiles (left, negative control); bulk expression 

profiles (middle); and virtual epithelial and stroma profiles purified from bulk using 
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ADVOCATE (right). In each pair, blue indicates epithelium and red indicates stroma. (G) 

Heatmap showing expression of indicated marker genes in virtual epithelial and stromal 

profiles derived from the 15 bulk tumors described in (C). (H) Hierarchical clustering and (I) 

PCA of 15 bulk CUMC tumors and their virtual compartment–specific derivatives.  

 

Figure 4. Analysis and classification of pancreatic tumor cohorts and classifiers 

(A) Compartment fraction analysis of pancreatic tumors from the ICGC (blue), UNC (red), 

and TCGA (grey) cohorts. The 3-compartment implementation of ADVOCATE was used for 

fraction estimation to reduce noise from technical and non-tumor sources, and the epithelial 

and stromal estimate were then scaled to sum up to 1. (B) Analysis of genes comprising three 

published classifiers for PDA using LCM–RNA–Seq data. Upper panel depicts the distribution 

of t-statistics for each of the indicated classifier gene lists that were calculated by paired 

differentially expressed gene analysis between the epithelium and stroma. Positive values 

indicate stromal enrichment. Lower panel depicts the geometric mean expression in 

fragments per million mapped fragments (FPM) for the genes from each classifier gene list 

across all LCM–RNA–Seq samples. (C) Heatmap depicts the enrichment of each TCGA bulk 

sample for the indicated gene sets. Gene sets indicated functions associated with Basal-like 

(red) or Classical (blue). (D) Heatmap depicts the enrichment of expression of indicated 

marker genes in deconvolved virtual epithelial and stromal profiles from the TCGA cohort. (E) 

Hierarchical clustering TCGA bulk tumors (black) and their virtual epithelial (blue) and stromal 

(red) derivatives. (F,G) Heatmaps of the top 30 differentially expressed genes between two 

groups that were obtained by clustering virtual epithelial TCGA (F) and CUMC (G) profiles 

using the Moffitt–E classifier. GSVA scores for indicated gene set are represented at top. 

Tumors with Basal–like (red bar) or Classical (blue bar) traits, respectively, can be detected 

in both virtual tumor cohorts. 

  

 

Figure 5. Stromal Subtyping of deconvolved external cohorts 

(A-D) Heat-maps of the top 30 DEG between groups obtained by clustering stromal LCM–

RNA–Seq samples from CUMC tumors (A), and virtual stromal (vs) profiles from the UNC 

(B), ICGC (C) and TCGA (D) cohorts, respectively. Clustering was based on the expression 

of signature derived from stromal LCM profiles from 110 individual patients (CUMC-S 

classifier, see Supplementary Methods). Top section of heat-map depicts GSVA scores per 
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sample for indicated gene sets. In each virtual stroma data set, two groups were identified, 

one with features indicating elevated extracellular matrix deposition and remodeling (“ECM–

rich”, purple) and another enriched in various immune and interleukin pathways (“Immune-

rich”, green). (E-G) Multilayered donut plots showing (i) the alignment of epithelial with 

stromal subtypes for each tumor in each cohort and (ii) the proportion of each epithelial 

subtype. Separate pie charts summarize the proportion of stromal subtypes per cohort.  

 

Figure 6. Combined epithelial and stromal subtypes associate with overall survival 

(A-C) Kaplan-Meier (KM) survival analysis of patients with resected PDA from the indicated 

cohorts shows that the detection of a differential prognosis among the epithelial subtypes is 

enhanced by transcriptional deconvolution across all cohorts. Thick red and blue lines show 

the survival curves of tumor groups identified among deconvolved virtual epithelium profiles, 

while thinner light red and blue lines represent those groups detected by subtyping bulk 

expression profiles. Below each KM-plot, hazard ratios (HR) from a Cox proportional hazards 

model (CPHM) and their 80% (blue), 90% (yellow) and 95% (orange) confidence interval are 

compared between Basal-like and Classical tumors as detected in virtual epithelial (ve) and 

bulk expression profiles, respectively. (D-F) Kaplan-Meier (KM) survival analysis depicts 

overall survival relative to stromal subtype. Classifications derived from bulk tumor profiles 

are shown with thin lines while those derived from virtual stroma profiles are shown with thick 

lines. Below each KM-plot, hazard ratios (HR) from a univariate Cox proportional hazards 

model (CPHM) are shown with 80% (blue), 90% (yellow) and 95% (orange) confidence 

intervals (CI), comparing ECM–rich and Immune–rich tumors as detected in virtual stromal 

(vs) and bulk tumor profiles. Stromal subtypes are only associated with outcome in the ICGC 

cohort with ECM-rich tumors having a worse prognosis. (G-I) KM survival analysis of 

combined epithelial and stromal subtypes in the indicated cohorts. Red lines indicate Basal-

like tumors with an ECM-rich stroma while blue lines indicate Classical tumors with an 

Immune-rich stroma. All other tumors are represented as a grey line. Pie charts summarize 

the proportion of each category per cohort. HRs from a CPHM demonstrate that the combined 

Basal-like/ECM-rich subtype is strongly associated with reduced survival in PDA patients in 

all three cohorts. 
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