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Abstract

Encoding models for mapping voxelwise semantic tuning are typically estimated separately for
each individual, limiting their generalizability. In the current report, we develop a method for
estimating semantic encoding models that generalize across individuals. Functional MRI was
used to measure brain responses while participants freely viewed a naturalistic audiovisual
movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic
content were assigned to each imaging volume based on an annotation of the film. We
constructed both conventional within-subject semantic encoding models and between-subject
models where the model was trained on a subset of participants and validated on a left-out
participant. Between-subject models were trained using cortical surface-based anatomical
normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to
project group data into an individual’s unique anatomical space via a common representational
space, thus leveraging a larger volume of data for out-of-sample prediction while preserving
the individual’s fine-grained functional-anatomical idiosyncrasies. Our findings demonstrate
that anatomical normalization degrades the spatial specificity of between-subject encoding
models relative to within-subject models. Hyperalignment, on the other hand, recovers the
spatial specificity of semantic tuning lost during anatomical normalization, and yields model
performance exceeding that of within-subject models.

Keywords: fMRI, forward encoding models, functional alignment, hyperalignment, individual
variability, natural vision, semantic representation

Introduction

Recent neuroimaging work has revealed widespread cortical representation of semantic
content conveyed by visual and linguistic stimuli (Huth et al., 2012, 2016; Pereira et al., 2018;
Wehbe et al., 2014). These findings hinge on the development of forward encoding models,
which find a mapping from stimuli to voxelwise responses via a complex intermediate feature
space (Naselaris et al., 2011). These feature spaces may capture distributional properties of
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large corpora of text (e.g., word co-occurrence) in the case of semantic representation (e.g.,
Huth et al., 2016; Mitchell et al., 2008), or comprise neurally-inspired models of vision (e.g.,
Gulcli and van Gerven, 2015; Kay et al., 2008; Nishimoto et al., 2011) or audition (e.g., de Heer
et al., 2017; Santoro et al., 2014). If the intermediate feature space adequately captures
stimulus qualities of interest and the model is trained on a sufficiently diverse sample of stimuli,
the estimated model will generalize well to novel stimuli. Naturalistic stimuli and tasks (such as
watching movies, listening to stories) enhance this approach by evoking reliable neural
responses (Hasson et al., 2010) and broadly sampling stimulus space (Haxby et al., 2014), as
well as increasing ecological validity (Felsen and Dan, 2005) and participant engagement
(Vanderwal et al., 2017).

Although encoding models provide a fine-grained voxel-specific measure of functional tuning,
they are typically estimated independently for each participant (e.g., Huth et al., 2012, 2016).
This is problematic because we can collect only a limited volume of data in any one participant,
and each participant’s model has limited generalizability across individuals (cf. Gi¢li and van
Gerven, 2017; Vodrahalli et al., 2017; Yamada et al., 2015). Recent work has demonstrated that
group-level estimates of functional organization obscure marked individual-specific
idiosyncrasies (Braga and Buckner, 2017; Gordon et al., 2017; Laumann et al., 2015). This is
because functional-anatomical correspondence—the mapping between functional tuning and
macroanatomical structure—varies considerably across individuals (Aine et al., 1996; Frost and
Goebel, 2012; Riddle and Purves, 1995; Watson et al., 1993; Zhen et al., 2015, 2017). While
macroanatomical normalization (i.e., nonlinear volumetric or cortical surface-based alignment)
may be sufficient for capturing commonalities in coarse-grained functional areas, it cannot in
principle align fine-grained functional topographies across individuals (cf. Conroy et al., 2013;
Sabuncu et al., 2010). If we hope to predict functional tuning across individuals at the
specificity of individual cortical vertices, we need to circumvent the correspondence problem
between function and anatomy (Dubois and Adolphs, 2016; Poldrack, 2017).

In the following, we outline an approach for estimating encoding models that can make
detailed predictions of responses to novel stimuli in novel individuals at the specificity of
cortical vertices. To accommodate idiosyncratic functional topographies, we use
hyperalignment to derive transformations to map each individual’s responses into a common
representational space (Guntupalli et al., 2016; Haxby et al., 2011). The searchlight
hyperalignment algorithm learns a locally-constrained whole-cortex transformation rotating
each individual’s anatomical coordinate space into a common space that optimizes the
correspondence of representational geometry (in this case, the response patterns to the movie
stimulus at each time point) across brains. We use a dynamic, naturalistic stimulus—the Life
nature documentary narrated by David Attenborough—for the dual purpose of deriving
hyperalignment transformations and fitting the encoding model. Using a naturalistic paradigm
that thoroughly samples both stimulus space and neural response space is critical for robustly
fitting the encoding model and ensuring the hyperalignment transformations generalize to novel
experimental contexts (Guntupalli et al., 2016; Haxby et al., 2011).
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Although hyperalignment dramatically improves between-subject decoding (Guntupalli et al.,
2016; Haxby et al., 2011), relatively few attempts have been made to integrate hyperalignment
and voxelwise encoding models. Yamada and colleagues (2015) used a many-to-one sparse
regression to predict voxel responses to simple visual stimuli across pairs of participants.
Bilenko and Gallant (2016) implemented hyperalignment using regularized kernel canonical
correlation analysis (Xu et al., 2012) to compare encoding models across subjects. Recent
work (Vodrahalli et al., 2017) using a probabilistic, reduced-dimension variant of
hyperalignment (Chen et al., 2015) has suggested that encoding models perform better in a
lower-dimensional shared response space. Finally, Gig¢li and van Gerven (2017) have
employed hyperalignment in conjunction with a deep convolutional neural network (Tran et al.,
2015) to predict responses to video clips in six dorsal stream visual areas (Nishimoto et al.,
2011). They demonstrated that estimating an encoding model in a common representational
space does not diminish model performance, and that aggregating additional subjects in the
common spaces can improve performance.

To evaluate hyperalignment in the context of encoding models, we compared within-subject
encoding models and between-subject encoding models where a model trained on
three-fourths of the movie in a subset of participants is used to predict responses at each
cortical vertex for the left-out fourth of the movie in a left-out participant. We compared
between-subject models using high-performing surface-based anatomical normalization
(Fischl, 2012; Klein et al., 2010) and surface-based searchlight whole-cortex hyperalignment
(Guntupalli et al., 2016). We model semantic tuning at each cortical vertex based on distributed
word embeddings (word2vec; Mikolov et al., 2013) assigned to each imaging volume based on
an annotation of the documentary. We first show that constructing between-subject models
using anatomical alignment reduces the spatial specificity of vertex-wise semantic tuning
relative to within-subject models. Next, we demonstrate that hyperalignment generally leads to
improved between-subject model performance, exceeding within-subject models.
Hyperalignment effectively recovers the specificity of within-subject models, allowing us to
leverage a large volume of group data for individualized prediction at the specificity of
individual voxels or cortical vertices.

Materials and methods

Participants

Eighteen right-handed adults (10 female) with normal or corrected-to-normal vision participated
in the experiment. Participants reported no neurological conditions. All participants gave
written, informed consent prior to participating in the study, and the study was approved by the
Institutional Review Board of Dartmouth College. These data have been previously used for the
purpose of hyperalignment in a published report by Nastase and colleagues (2017).

Stimuli and design

Participants freely viewed four segments of the Life nature documentary narrated by David
Attenborough. The four runs were of similar duration (15.3 min, 14 min, 15.4 min, and 16.5
min), totaling 63 minutes. The movie stimulus included both the visual and auditory tracks, and
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sound was adjusted to a comfortable level for each participant. The video was back-projected
on a screen placed at the rear of the scanner bore, and was viewed with a mirror attached to
the head coil. Audio was delivered using MRI-compatible fiber-optic electrodynamic
headphones (MR confon GmbH, Magdeburg, Germany). Participants were instructed to remain
still and watch the documentary as though they were watching a movie at home. Note that this
free viewing task contrasts with prior forward-encoding studies that enforced central fixation
while viewing videos (e.g., Huth et al. 2012; Nishimoto et al. 2011), which we expect to affect
the comparative performance of forward encoding models, especially in early visual cortex;
however, a full treatment of the magnitude of such effects is beyond the scope of this paper.
Stimuli were presented using PsychoPy (Peirce, 2007).

Image acquisition

Structural and functional images were acquired using a 3T Philips Intera Achieva MRI scanner
(Philips Medical Systems, Bothell, WA) with a 32-channel phased-array SENSE (SENSitivity
Encoding) head coil. Functional, blood-oxygenation-level-dependent (BOLD) images were
acquired in an interleaved fashion using single-shot gradient-echo echo-planar imaging with fat
suppression and a SENSE parallel acceleration factor of 2: TR/TE = 2500/35 ms, flip angle =
90°, resolution = 3 mm?® isotropic voxels, matrix size = 80 x 80, FOV = 240 x 240 mm?, 42
transverse slices with full brain coverage and no gap, anterior—posterior phase encoding. Four
runs were collected for each participant, consisting of 374, 346, 377, and 412 dynamic scans,
or 935 s, 865 s, 942.5 s, and 1030 s, respectively. A T1-weighted structural scan was obtained
using a high-resolution 3D turbo field echo sequence: TR/TE = 8.2/3.7 ms, flip angle = 8°,
resolution = 0.9375 x 0.9375 x 1.0 mm?, matrix size = 256 x 256 x 220, and FOV = 240 x 240 x
220 mm?.

Preprocessing

Raw data were organized to conform to the Brain Imaging Data Structure (BIDS; Gorgolewski
et al., 2016) specifications and were preprocessed using fmriprep (Esteban et al., 2017;
Gorgolewski et al., 2011, 2017), which provides a streamlined, state-of-the-art preprocessing
pipeline that incorporates various software packages. Within the fmriprep framework, cortical
surfaces were reconstructed from the T1-weighted structural images using FreeSurfer (Dale et
al., 1999) and spatially normalized to the fsaverage6 template based on sulcal curvature (Fischl
et al., 1999). Prior to spatial normalization, T2*-weighted functional volumes were slice-time
corrected (Cox, 1996), realigned for head motion (Jenkinson et al., 2002), aligned to the
anatomical image (Greve and Fischl, 2009), and sampled to the cortical surface. Time-series
data were detrended using AFNI’s 3dTproject (Cox, 1996), which removes nuisance variables
and trends via a single linear regression model. The regression model included a framewise
displacement regressor (Power et al., 2012), the first six principal components from
cerebrospinal fluid (Behzadi et al., 2007), head motion parameters, first- and second-order
polynomial trends, and a band-pass filter (0.00667 to 0.1 Hz). All surface data were visualized
in SUMA (Saad et al., 2004).


https://doi.org/10.1101/288605
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/288605; this version posted March 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 InterrgtioPal license. . . . .
etween-subject semantic encoding models

Whole-brain hyperalignment

Surface-based searchlight whole-cortex hyperalignment (Guntupalli et al., 2016; Haxby et al.,
2011) was performed based on the data collected while participants viewed the Life nature
documentary using leave-one-run-out cross-validation: three of four runs were used to
estimate the hyperalignment transformations for all participants; these transformations were
then applied to the left-out run for model evaluation. The hyperalignment algorithm, described
in detail by Guntupalli and colleagues (Guntupalli et al., 2016, 2018), uses iterative pairwise
applications of the Procrustes transformation (Gower, 1975), effectively rotating a given
subject’s multivariate response space to best align their patterns of response to time-points in
the movie with a reference time series of response patterns.

In the first iteration, the response trajectory of an arbitrarily-chosen subject serves as the
reference, and a second subject’s data are rotated via the Procrustes transformation into
alignment with that reference. For each additional subject, a new reference trajectory is
computed by averaging the previously aligned subject’s data and the reference, and the new
subject is aligned to this reference. Aligning and averaging all subjects’ data in this way results
in an intermediate template. In the second iteration, each subject’s data is again aligned to this
intermediate reference, and the average of all subjects’ aligned response vectors are
recomputed. This average response trajectory serves as the final functional template in a
common representational space. For each subject, we calculate a final transformation to this
functional template. These hyperalignment transformations can then be used to project data
from a left-out run into the common representational space, or the transpose of a given
subject’s transformation matrix can be used to project from the common space into a particular
subject’s response space.

To locally constrain hyperalignment, we compute these transformations separately within large
20 mm radius surface-based searchlight disks centered on each cortical vertex (Guntupalli et
al., 2016; Kriegeskorte et al., 2006; Oosterhof et al., 2011). Each searchlight comprised on
average 610 vertices (SD = 162, median = 594, range: 237-1,238 vertices). The resulting
rotation parameters are only defined for vertices within a given searchlight; however,
searchlights are heavily overlapping. These local transformations are aggregated by summing
overlapping searchlight transformation parameters to construct a single sparse transformation
for each cortical hemisphere. For each subject, this results in two N x N transformation
matrices, one for each cortical hemisphere, where N is the number of vertices in a hemisphere
(40,962 for the fsaverage6 template). These matrices contain non-zero values only for vertices
within the radius of a searchlight. Because each vertex is a constituent of many overlapping
searchlights, the final rotation parameters for a given vertex will reflect transformations for all
searchlights to which it contributes. Response time series for each vertex are z-scored before
and after each application of the Procrustes transformation. All functional data were
anatomically normalized to the fsaverage6 template prior to hyperalignment. This procedure is
not strictly necessary for hyperalignment (and is not optimal due to interpolation during surface
projection), but is used here for simplicity and to facilitate comparison between anatomically
normalized and hyperaligned data. Note that hyperalignment does not yield a one-to-one
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mapping between voxels or vertices across subjects, but rather models each voxel’s or vertex’s
response profile in a given subject as a weighted sum of local response profiles in the common
space.

The searchlight hyperalignment algorithm generates an abstract feature space that does not
directly map onto the anatomical space of any particular subject. This means we cannot
directly compare, vertex by vertex, data in the common space generated by hyperalignment to
data in any individual subject’s anatomical space. To directly compare the hyperaligned
between-subject model to the other two types of models, for each leave-one-subject-out
cross-validation fold we first transformed the training data—three runs for each of 17
subjects—into the common space using each subject’s unique hyperalignment transformation,
and then mapped all 17 training subjects’ response vectors from the common space into the
left-out test subject’s anatomical space (hormalized to the fsaverage6 template) using the
transpose of the left-out test subject’s hyperalignment transformation matrix. That is, for each
left-out test subject, we mapped responses for the 17 training subjects into the left-out
subject’s space via the common space. We then averaged response time series across training
subjects. We did not apply any hyperalignment transformations to the validation data (the
left-out test subject’s left-out test run). Note, however, that the whole-cortex matrix of local
transformations learned by the searchlight hyperalignment algorithm is not orthogonal. This
approach allows us to directly compare the three types of vertex-wise models on a
subject-by-subject basis (i.e., when performing paired statistical tests). Whole-brain
hyperalignment and several of the subsequent analyses were implemented using PyMVPA
(Hanke et al., 2009).

Semantic features

The Life documentary was annotated with a list of words describing the agents (i.e., animals),
actions, objects, and scene for each camera angle of the movie. For example, if one camera
angle depicted a giraffe eating grass on the savannah, the corresponding annotation would be
the list of words “giraffe”, “eating”, “grass”, and “savannah”. Then, the camera angle
annotations were interpolated for every 2.5 s of the movie, so that every imaging volume was
assigned semantic labels. The annotation contained 277 unique words in total, and each

imaging volume was assigned on average 5.28 words (SD = 1.91).

Next, we assigned a 300-dimensional word2vec semantic feature vector to each label in the
annotation. We used pre-trained word2vec embeddings comprising a vocabulary of 3 million
words and phrases trained on roughly 100 billion words from the Google News text corpus
using the skip-gram architecture (Mikolov et al., 2013). Semantic vectors for all labels assigned
to a given imaging volume were averaged to create a single 300-dimensional semantic vector
per volume (cf. Vodrahalli et al., 2017). Mikolov and colleagues (2013) demonstrated that the
word representations learned by the skip-gram model exhibit a linear structure that makes it
possible to meaningfully combine words by an element-wise addition of their vector
representations.
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To accommodate the delayed hemodynamic response, we concatenated semantic vectors
from the previous TRs (2.5, 5.0, 7.5, and 10.0 s; similarly to, e.g., Huth et al., 2012). The final
vector assigned to each imaging volume for training and testing the encoding model comprised
a concatenated 1,200-dimensional vector capturing the semantic content of the four preceding

time points.
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Figure 1. Schematic for constructing between-subject semantic encoding models using
hyperalignment. The schematic depicts one fold of the nested leave-one-out cross-validation
procedure repeated for four test runs and 18 test participants (72 cross-validation folds in
total). (A) Training between- subject semantic encoding models using ridge regression.
Regression coefficients (weights) are estimated to predict response time series per vertex
based on three training runs. (B) Testing semantic encoding models. Regression weights
estimated on training data to are used to predict response time series for a fourth test run.
Model prediction performance is evaluated by computing the Pearson correlation between the
predicted responses andare the actual response time series per vertex. (C) Hyperalignment for
between-subject semantic encoding models. For each test subject in the
leave-one-subject-out cross-validation procedure, we first projected each training subject’s
data into the common space using their subject-specific hyperalignment transformations. We
then use the transpose of the test subject’s hyperalignment transformation to project all
training subjects’ data into the test subject’s space. We averaged response vectors for all
training subjects in the test subject’s space, then trained the encoding model on this averaged
response trajectory. Finally, we evaluated between-subject model performance by predicting
vertex-wise response time series for the left-out test run in the left-out test participant, and
computed the Pearson correlation between the predicted time series and the actual time series
per vertex.

Regularized regression

We estimated vertex-wise forward encoding models using the L2-penalized linear least squares
regression (i.e., ridge regression) in three different ways: (a) within-subject models; (b)
between-subject models using anatomical normalization; and (c) between-subject models
using hyperalignment following anatomical normalization. All models were evaluated using
leave-one-run-out cross-validation. In each of these leave-one-out runs, the within-subject and
between-subject models were trained as follows: within-subject models were trained on three
of the four imaging runs, then tested on the left-out fourth run separately for each subject.
Between-subject models were trained on the averaged time series of 17 of the 18 participants
over three of the four runs. The estimated between-subject models were then tested on the
left-out fourth run in the left-out 18th participant. This yielded 72 total data folds for each of the
three types of models. Figure 1 schematically depicts our approach for constructing
between-subject semantic encoding models using hyperalignment.

In these models, the number of predictor variables (1,200) exceeds the number of observations
(ranging from 1,097 to 1,163 imaging volumes). We used ridge regression to estimate
regression coefficients (weights) for the semantic predictor variables so as to best predict the
response time series at each vertex. We used a modified implementation of ridge regression
authored by Huth and colleagues (2012). Ridge regression uses a regularization
hyperparameter to control the magnitude of the regression coefficients, where a larger
regularization parameter yields greater shrinkage and reduces the effect of collinearity among
predictor variables. The regularization parameter was chosen using leave-one-run-out
cross-validation nested within each set of training runs. We estimated regression coefficients for
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a grid of 20 regularization parameters log-spaced from 1-1,000 at each vertex within each set of
two runs in the training set of three runs. We then predicted the responses for the held-out third
run (within the training set) and evaluated model prediction performance by computing the
correlation between the predicted and actual responses. These correlations were averaged over
the three cross-validation folds nested within the training set, then averaged across all vertices.
We then selected the regularization parameter with the maximal model performance across runs
and vertices. Selecting a single regularization parameter across all vertices ensures that
estimated regression coefficients are comparable across vertices. This regularization parameter
was then used at the final stage when estimating the encoding model across all three training
runs for evaluation on the left-out fourth run. Note, however, that different regularization
parameters were chosen for each of the four leave-one-run-out cross-validation folds (where
both stimuli and hyperalignment transformation differed for each set of training runs), and for
each of the 18 leave-one-subject-out cross-validation folds used for between-subject models.
For the two between-subject models, the optimal regularization parameter was either 12.74 or
18.33 for every test subject (due to averaging response time series across training subjects).
Note that these regularization parameters are considerably lower than those reported by Huth
and colleagues (2016). This may be due to several factors, including our procedure for
averaging time series across subjects during training, having fewer time points in the training
set, and our use of the relatively dense lower-dimensional word2vec embeddings. However, for
within-subject models, the optimal regularization parameter were more variable, likely due to
increased noise.

To evaluate the vertex-wise forward encoding models, we used the regression coefficients from
the model trained on three training runs to predict the response time series for the left-out
fourth run. For between-subject models, we used the regression coefficients estimated on the
training runs in the training subjects (transformed into the test subject’s space via the common
space estimated using hyperalignment) to predict responses for the left-out run in the left-out
subject. For between-subject models, both the hyperalignment transformations and encoding
models were cross-validated to previously unseen data; the test run in the test subject played
no role in estimating the hyperalignment transformations or the regression weights of the
encoding model. For each vertex, we then computed the Pearson correlation between the
predicted time series and actual time series for that run to measure model prediction
performance (as in, e.g., Huth et al., 2012). Pearson correlations were Fisher z-transformed
prior to statistical tests. We then averaged together the Pearson correlations for each of the
four held-out test runs for visualization.

Results

Inter-subject correlations

To ensure that the common space learned by hyperalignment finds common bases for
fine-grained functional topographies across subjects, we computed ISCs for both vertex-wise
response time series and searchlight representational geometries using anatomical
normalization and hyperalignment. To assess how hyperalignment impacts time series ISCs
(Hasson et al., 2004), for each run of the movie we computed the correlations between each
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subject’s time series per surface vertex and the average of all other subjects before and after
hyperalignment (Guntupalli et al., 2016). We then averaged these ISCs across all four movie
runs; this results in a correlation for each subject for each vertex. We visualized the mean
correlation across subjects for each vertex. Hyperalignment improved inter-subject correlations
of time series. Figure 2A shows cortical maps of time series ISCs before and after
hyperalignment. Hyperalignment increased the mean ISC of time series across vertices from
0.077 to 0.151.

We next analyzed the ISC of local representational geometries by calculating representational
dissimilarity matrices (RDMs) comprising pairwise correlations between response vectors for all
time points (Kriegeskorte et al., 2006; Oosterhof et al., 2011) in the test run of the movie using
9 mm radius surface-based searchlight disks (Kriegeskorte et al., 2006; Oosterhof et al., 2011).
This procedure was repeated for each of the four runs. We averaged all pairwise correlations in
the upper triangle of this matrix as well as averaging across runs. All operations involving
correlations were performed after Fisher z-transformation and the results were inverse Fisher
transformed for visualization. Hyperalignment also improved inter-subject correlations of
searchlight representational geometries. Figure 2B shows cortical maps of ISCs of
representational geometries before and after hyperalignment. Hyperalignment increased mean
ISC of representational geometries across vertices from 0.157 to 0.230.

0.8

A

=
before /(

after

Inter-subject correlation

0.2

0.6

B

before

Inter-subject correlation

after

0.2

Figure 2. Hyperalignment improves inter-subject correlation (ISC) of response profiles and
representational geometry. (A) ISC of vertex-wise response time series before and after
hyperalignment. Colored vertices reflect the mean ISC across subjects, thresholded at a mean
correlation of 0.2. ISCs are highest in the superior temporal gyrus (in the vicinity of auditory
cortex), as well as the dorsal and ventral visual pathways, comprising early visual, lateral
occipitotemporal, ventral temporal, posterior parietal and intraparietal cortices. (B) ISC of
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searchlight representational geometries (time-point representational dissimilarity matrices in 9
mm radius searchlights) before and after hyperalignment. Colored vertices reflect the mean
pairwise correlation across subjects for each searchlight, thresholded at a mean correlation of
0.2, revealing a broader extent of cortex with improved alignment of functional topography
after hyperalignment. ISCs were Fisher z-transformed before averaging across all subjects and
inverse Fisher transformed before mapping onto the cortical surface for visualization. All maps
are rendered on the fsaverage6 surface template.

Differences in model performance

We formally compared three types of semantic encoding models: within-subject models,
between-subject models using anatomical normalization, and between-subject models using
hyperalignment. For each subject, the within-subject model was compared to the
between-subject models where that subject served as the test subject. For the hyperaligned
between-subject model, group data were projected into the test subject’s space prior to model
estimation. Figure 3 depicts model prediction performance for the three model types in two
representative subjects, while Figure 4 depicts average model performance across subjects.

subject 9

0.2

Model prediction performance

Figure 3. Model prediction performance maps for two representative subjects (left and right).
Colored vertices reflect the Pearson correlation between the predicted and actual time series
averaged across the four test runs. Three types of models are presented: (A) within-subject
model performance maps; (B) between-subject anatomically aligned model performance maps;
and (C) between-subject hyperaligned model performance maps. All maps are unthresholded
and uncorrected for multiple tests.
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Figure 4. Model prediction performance maps averaged across subjects. Colored vertices
reflect the Pearson correlation between the predicted and actual time series averaged across
the four test runs and averaged across subjects. Three types of models are presented: (A)
within-subject model performance maps; (B) between-subject anatomically aligned model
performance maps; and (C) between-subject hyperaligned model performance maps. All maps
are unthresholded and uncorrected for multiple tests.

Model prediction performance

0

We summarized differences in model performance across the entire cortex in two ways. To
constrain our analysis to well-predicted vertices, for each subject we selected the 10,000
vertices with highest model performance separately for each model. We then considered only
the union of well-predicted vertices across all three models (on average 15,436 vertices per
subject, SD = 1,196 across subijects). First, for each pair of models, we computed the
proportion of vertices with greater model prediction performance (i.e., correlation between
predicted and actual time series for the test data) for one model relative to the other. We
calculated these proportions per subject, then computed a paired t-test to assess statistical
significance per model pair. When comparing the model performance for the within-subject and
the between-subject models, the between-subject model using anatomical alignment yielded
higher correlations in 50.3% of selected cortical vertices (t(17) = 0.307, p = 0.762). The
between-subject model using hyperalignment yielded better performance than the
within-subject model in 58.8% of selected cortical vertices (t(17) = 8.486, p < 0.001). The
between-subject model using hyperalignment also yielded better performance than the
between-subject model using anatomical alignment (59.3% of cortical vertices; t(17) = 20.200,
p < 0.001).

Second, we assessed the difference in model prediction performance averaged across the
same subset of well-predicted vertices. The between-subject model using anatomical
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alignment performed similarly to the within-subject model (0.127 and 0.131, respectively; {(17)
=1.851, p = 0.082). The between-subject model using hyperalignment performed better than
the within-subject model (0.143 and 0.131, respectively; t(17) = 7.384, p < 0.001). Additionally,
hyperalignment exceeded anatomical alignment when comparing the performance of
between-subject models (0.143 and 0.127, respectively; {(17) = 16.185, p < 0.001).

To visualize differences in model performance, we compared model performance maps on the
cortical surface (Figure 5). We computed vertex-wise paired t-tests for each of the three model
comparisons. For visualization, we thresholded maps at a t-value of 2.11 (p < .05, two-tailed
test, uncorrected for multiple tests).

difference between model fits

-0.07

Figure 5. Differences in semantic encoding model performance maps. (A) Paired differences in
model performance between between-subject models using anatomical normalization and
within-subject models. Warm colors indicate vertices where the anatomically-aligned
between-subject model performance exceeds within-subject model performance, and cool
colors indicate where within-subject model performance exceeds anatomically-aligned
between-subject model performance. (B) Paired differences in model performance between
between-subject models using hyperalignment and within-subject models. Warm colors
indicate vertices where the hyperaligned between-subject model performance exceeds
within-subject model performance, and cool colors indicate where within-subject model
performance exceeds hyperaligned between-subject model performance. (C) Paired
differences in model performance for between-subject models using hyperalignment and
anatomical normalization. Warm colors indicate vertices where the hyperaligned
between-subject model performance exceeds anatomically-aligned between-subject model
performance, and cool colors indicate where anatomically-aligned between-subject model
performance exceeds hyperaligned between-subject model performance. Colored vertices
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reflect mean paired differences in model performance, thresholded at an absolute t-value of
t(17) = 2.11, p < .05, uncorrected for multiple comparisons.

Spatial specificity of semantic tuning

To compare the spatial specificity of semantic tuning across model types, we computed the
spatial point spread function (PSF) of the semantic model predictions (Figure 6). To constrain
our analysis to well-predicted vertices, for each subject we again selected the 10,000 vertices
with highest model performance separately for each model and considered only the union of
these well-predicted vertices across all three models. For each well-predicted vertex, we
computed the model prediction performance (Pearson correlation between predicted and
actual time series) for that vertex, and for neighboring vertices using the same prediction
equation at 2 mm intervals up to 12 mm. That is, we used the encoding model at each vertex
to predict the actual time series at neighboring, increasingly distant vertices. Each “ring” of
vertices (e.g., the ring of vertices at a radius 10-12 mm from the central vertex of interest) was
2 mm wide and excluded vertices sampled at smaller radii. For a given ring of vertices, model
performance was computed at each vertex in the ring and averaged across those vertices.
Model performances at each radius per vertex were then averaged across the set of selected
well-predicted vertices. To statistically assess PSFs, we computed bootstrapped confidence
intervals around the model performance estimates at each radius by resampling subjects with
replacement. To quantify the decline in spatial specificity of model performance over radii, we
fit a logarithmic function to the PSF for each model at the midpoint of each ring (i.e., the vertex
of interest, 1 mm, 3 mm, etc.) and reported the slope of this fit. The spatial point-spread
function of the model predictions for the between-subject model using anatomical alignment
was relatively flat (negative slope of the logarithmic fit = 0.0230 [0.0222, 0.0237]), reflecting
spatially smooth semantic tuning. By contrast, the within-subject and hyperaligned
between-subject models have steeper slopes (0.0424 [0.0397, 0.0453] and 0.0420 [0.0404,
0.0437], respectively; both p < 0.001), indicating greater spatial specificity in semantic tuning.
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Figure 6. Spatial point spread function of semantic tuning. (A) Correlation between the
predicted time series of one vertex and the actual time-series of its neighboring vertices up to
12 mm away. Correlations were aggregated based on distance from the central vertex of
interest and averaged across vertices and subjects. Error bars denote 68% confidence
intervals (standard error of the mean). (B) The within-subjects and hyperaligned

14


https://doi.org/10.1101/288605
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/288605; this version posted March 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 InterrBtioPal license. . . . .
etween-subject semantic encoding models

between-subject models have the steepest slopes (negative of the slope based on logarithmic
curve fitting). Error bars denote 95% confidence intervals obtained by bootstrapping subjects
20,000 times with replacement.

The prediction performance maps for each model varied in their spatial smoothness (Figure 7).
We computed the full width at half maximum (FWHM) of the model performance maps using
SUMA’s SurfFWHM. Spatial smoothness was computed per run in each hemisphere in each
participant and averaged across hemispheres. Model performance maps for the
between-subject model using anatomical alignment were significantly more spatially blurred
than for the within-subject model (5.043 mm FWHM and 4.439 mm FWHM, respectively; t(17) =
26.807, p < 0.001). The between-subject model using hyperalignment recovered the spatial
specificity of the within-subject maps, and in fact yielded less smooth model performance
maps (3.711 mm FWHM) than the within-subject model (t(17) = 21.451, p < 0.001).

Smoothness (mm)
1 E

C
A W N =

Within-subject Between-subject Between-subject
(anatomical) (hyperalignment)
Method

Figure 7. Spatial smoothness (FWHM) of model prediction performance maps on the cortical
surface. The between-subject model performance maps using anatomical alignment are
blurred relative to the within-subject model performance maps, while the hyperaligned
between-subject model recovers the spatial specificity of the within-subject model. The height
of each bar indicates spatial smoothness averaged across hemispheres and participants for
each run. Error bars indicate bootstrapped 95% confidence intervals estimated by resampling
participants (1,000 bootstrap samples).

We also assessed how well the between-subject model performance maps approximated the
spatial organization of the within-subject model performance maps by computing the Pearson
correlation between model performance maps (Figure 8). Correlations were computed across
both cortical hemispheres within each participant and run. The spatial correlation between the
model performance maps for the within-subject and between-subject models was .544 using
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anatomical normalization and .721 when using hyperalignment. That is, the spatial correlation
between the map of within-subject model fits and the map of between-subject model fits
increased by .177 after hyperalignment (a 33% increase; t(17) = 22.454, p < 0.001).
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Figure 8. Spatial correlation between within-subject model prediction performance maps and
between-subject model prediction performance maps using either anatomical alignment or
hyperalignment. The between-subject model using hyperalignment yielded a model
performance map that is more similar to the within-subject model than the model performance
map of the between-subject model using anatomical alignment. The height of each bar
indicates mean spatial correlation across participants for each run. Error bars indicate
bootstrapped 95% confidence intervals estimated by resampling participants (1,000 bootstrap
samples).

Discussion

We developed a framework for constructing between-subject semantic encoding models that
generalize to both novel stimuli and novel subjects. Vertex-wise forward encoding models were
used in conjunction with hyperalignment to translate fine-grained functional topographies
across individuals. Naturalistic experimental paradigms that broadly sample neural
representational space play a critical role in this procedure, effectively enhancing the
generalizability of both the encoding model and the hyperalignment transformations (Haxby et
al., 2011, 2014).

Typically, encoding models are estimated separately for each subject using a relatively large
volume of data (e.g., Huth et al., 2012; Mitchell et al., 2008; Pereira et al., 2018). Mirroring
recent reports on resting-state functional connectivity in highly-sampled individuals (Gordon et
al., 2017; Laumann et al., 2015), these within-subject models can reveal highly detailed,
idiosyncratic functional organization. However, there is a trade-off: we can only acquire large
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volumes of data in relatively few individuals (often the authors themselves, e.g., Gordon et al.,
2017; Huth et al., 2012, 2016; Laumann et al., 2015; Nishimoto et al., 2011). This inherently
limits the generality of conclusions drawn from within-subject models and undercuts efforts to
relate the acquired data to between-subject variables. Constructing between-subject models
that make individualized predictions in novel subjects is a critical step toward increasing the
utility of cognitive neuroscience (Gabrieli et al., 2015). Although between-subject models can
be constructed using anatomical normalization, this obscures considerable heterogeneity in
functional organization because fine-scale variations in functional tuning are not tightly tethered
to macroanatomical features (Guntupalli et al., 2016, 2018). Hyperalignment affords
aggregation of data across individuals that aligns these fine-scale variations, thus alleviating
this tension. In constructing a common representational space, we decouple functional tuning
from anatomy, registering representational geometries rather than anatomical features. Unlike
anatomical normalization, averaging across subjects in this space does not collapse responses
that map onto topographies that are idiosyncratic to individual brains. Critically, we also
preserve each individual’s idiosyncratic functional-anatomical mapping in their respective
transformation matrix, allowing us to project group data into any individual subject’s anatomical
space with high fidelity. This precision mapping enables out-of-sample prediction on the scale
of individual voxels (Dubois and Adolphs, 2016; Poldrack, 2017).

Overall, our findings demonstrate that between-subject models estimated using
hyperalignment outperform within-subject models. Between-subject models estimated using
anatomical normalization yield artificially smooth maps of semantic tuning. Hyperalignment, on
the other hand, retained the spatial specificity of within-subject models. The semantic
encoding model used here best predicted responses in a network of areas previously
implicated in representing animal taxonomy (Connolly et al., 2012, 2016; Sha et al., 2015) and
observed action (Nastase et al., 2017; Oosterhof et al., 2013; Wurm et al., 2016; Wurm and
Lingnau, 2015), including ventral temporal, lateral occipitotemporal, anterior intraparietal, and
premotor cortices. Interestingly, inter-subject correlations were highest in superior temporal
cortex, encompassing auditory areas. Although this suggests that the auditory narrative evoked
highly reliable neural responses, in the present analyses the linguistic content of the narrative
was hot explicitly included in the semantic annotation.

The current approach for constructing between-subject encoding models using hyperalignment
differs in several ways from related reports. Yamada and colleagues (2015) introduced a sparse
regression algorithm for predicting voxel responses across pairs of subjects. This algorithm
estimates a more flexible mapping than the Procrustes transformation between pairs of
subjects and does not yield a common representational space across all subjects. Their
approach was evaluated in early visual cortex using 10 pixel x 10 pixel black-and-white
geometric images. While more recent work by Gicli and van Gerven (2017) used naturalistic
visual stimuli, subjects in this study were required to perform a highly non-naturalistic central
fixation task (Nishimoto et al., 2011). Both Yamada et al. (2015) and Gug¢li and van Gerven
(2017) validated their models in a limited cohort of three subjects. Vodrahalli and colleagues
(2017) used a variant of hyperalignment to estimate encoding models in a lower-dimensional
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(20 dimensions) common space. Models were evaluated in this low-dimensional shared space
using a scene classification analysis. Their findings suggest that using a weighted averaging
scheme for aggregating word embeddings assigned to a given imaging volume can improve
model performance. However, in that experiment, annotators provided natural-language
descriptions of the film (including many uninformative words). In the current study, the
annotation included only the most salient or descriptive labels, effectively filtering out stop
words and otherwise uninformative labels. Unlike previous reports, which limited their analyses
to one or several regions of interest, we used searchlight hyperalignment to derive a
locally-constrained common space for each cortical hemisphere and estimated
between-subject encoding models across the entire cortex. Finally, none of the previously
mentioned studies projected group data (via the common space) into each test subject’s
idiosyncratic response space prior to model estimation. Here, we used data from a naturalistic
stimulus and task, transformed through a high-dimensional common space into each subject’s
idiosyncratic anatomical space, to estimate between-subject models across all cortical
vertices.

Although the current findings demonstrate the utility of hyperalignment in constructing
between-subject encoding models, there are several open questions. Under what
circumstances will a between-subject model outperform within-subject models? Averaging
group data in a common representational space provides a more robust estimate of response
trajectories without sacrificing anatomical specificity. This should provide an advantage when
predicting semantic tuning for noisy features in a given test subject, as the group estimate will
be more robust. In addition to leveraging a larger volume of group data with the precision of
within-subject models, hyperalignment effectively filters response profiles, suppressing
variance not shared across subjects (Guntupalli et al., 2018). More generally, between-subject
models can improve performance in areas where responses are highly stereotyped across
individuals. For example, in the current study, both types of between-subject models improved
model performance in anterior intraparietal areas, which are implicated in observed action
representation during natural vision (Nastase et al., 2017).

When will hyperalignment fall short of within-subject performance? First, within-subject
performance should be superior by virtue of capturing idiosyncratic functional tuning, but it is
usually impractical or impossible to collect sufficient data in each subject. Because
hyperalignment largely preserves each subject’s representational geometry, we expect any
advantage will be attenuated when the test subject’s representational geometry is
idiosyncratic, irrespective of functional-anatomical correspondence (Charest et al., 2014;
Kriegeskorte and Kievit, 2013). Note, however, that hyperalignment may serve to disentangle
idiosyncrasies in representation from idiosyncrasies in functional-anatomical correspondence.
Furthermore, we would not expect an advantage from hyperalignment if the stimulus or
experimental paradigm used to derive the hyperalignment transformations did not adequately
sample the neural representational subspaces important for estimating the encoding model.
This concern becomes relevant if, in contrast to the current study, hyperalignment parameters
and the encoding model are estimated on data derived from experimental paradigms that are
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more restricted and non-naturalistic. Finally, representations that are encoded in a
coarse-grained or anatomically stereotyped manner will benefit less from hyperalignment, and
anatomical normalization may be sufficient. However, as the resolution and sensitivity of
functional measurements improves, and as more sophisticated encoding models begin to
make finer-grained predictions, hyperalignment will become increasingly necessary.
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