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16 Abstract

17 Network analysis helps us to understand how genes jointly affect biological
18  functions. Weighted Gene Co-expression Network Analysis (WGCNA) is a
19 frequently used method to build gene co-expression networks. WGCNA may
20 be calculated with signed or unsigned correlations, with both methods having
21 strengths and weaknesses, but both methods fail to capture weak and
22 moderate negative correlations, which may be important in gene regulation.
23 Combining the advantages and removing the disadvantages of both methods
24 in one analysis would be desirable. In this study, we present a combination of
25  signed and unsigned WGCNA (csuWGCNA), which combines the signed and
26 unsigned methods and improves the detection of negative correlations. We
27  applied csuWGCNA in 14 simulated datasets, six ground truth datasets and two
28 large human brain datasets. Multiple metrics were used to evaluate csuWGCNA
29 at gene pair and gene module levels. We found that csuWGCNA provides
30 robust module detection and captures more negative correlations than the other
31  methods, and is especially useful for non-coding RNA such as microRNA
32 (miRNA) and long non-coding RNA (IncRNA). csuWGCNA enables detection of
33  more informative modules with biological functions than signed or unsigned
34  WGCNA, which enables discovery of novel gene regulation and helps
35 interpretations in systems biology.
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42  Introduction

43 Biological functions are controlled by a group of co-regulated or co-expressed
44  genes in the context of a network in systems biology. Network analyses helps
45  to explore system-level functionality of genes, such as global interpretation of
46  transcriptome and putative regulation relationships between genes. Numerous
47  approaches and algorithms have been proposed for module detection in gene
48  expression data’.

49 Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used
50 method for detecting important gene pairs and modules?. WGCNA is completed
51 in three steps, the first being construction of gene co-expression networks
52 (GCNs) from a matrix of the correlations between expression of genes across
53 samples. Then an adjacency matrix is constructed based on the correlation
54  matrix. The genes and their connection strengths are regarded as nodes and
55 edges, respectively, in the GCNs. In the second step, gene modules are
56  obtained via hierarchical clustering and tree cutting. Lastly gene modules are
57 related to external information to interpret their biological functions and gene
58 regulation in modules can also be revealed. Detecting the group or module of
59  co-expressed genes has generated insights in brain transcriptome architecture?,
60 evolution?, aging®, cell diversity®, and psychiatric disorders®”.

61 The adjacency matrix is the foundation of the WGCNA procedure. According
62 to the definition of adjacency matrix, WGCNA can be classified into two major
63 types: signed method and unsigned method. The two methods treat negative
64  correlations differently. Consider the gene expression matrix Gmxn, where m is
65 the number of genes and n is the number of samples. The WGCNA procedure
66 generates a correlation matrix S from G via pair-wise correlations®. Then the
67 adjacency matrix A is constructed from S, depending on whether the adjacency
68 is signed or unsigned. In the signed method, positive correlations are prioritized
69 over the negative correlations. Larger positive correlations have larger
70 adjacency, and larger negative correlations have smaller adjacency. The
71 adjacency of strong negative correlations is close to zero. In the unsigned
72 method, negative and positive correlations are considered equally. Adjacency
73 is only determined by the size of correlations without considering direction. The
74  adjacency of strong negative correlations is close to 1. Adjacency for genes i
75 and j is defined as follows in these two methods, where power B is set to keep
76  the network with scale-free topology property® (Only a few nodes in the network
77 are highly connected and most of the gene are connected with a few genes).

78 signed a;; = |(1 + cor(xi,xj))/2|ﬁ (formula 1)

79 unsigned a;; = |cor(xi,xj)|ﬁ (formula 2)

80

81 The signed and unsigned methods have advantages and disadvantages.

82  The modules detected by the signed method are more robust to their biological
2
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83 functions than unsigned modules. A previous study on embryonic stem cells
84 showed that the signed method identifies modules with more specific
85  expression patterns than the unsigned method'. The unsigned method can
86  capture more negatively correlated genes than the signed method, for example,
87 non-coding RNA and their targets. Detecting this type of negatively correlated
88 genes is difficult because they are considered not connected by the signed
89 method. However, the unsigned method is only capable of detecting strong
90  correlations. Negative regulation relationships in biological systems are usually
91  weak or moderate so they will not be detected using the unsigned method. For
92 example, a study reported that the more than 50% of microRNA (miRNA)-
93  mRNA correlations in 35 human tissues were 0~-0.3 and only one correlation
94  was lower than -0.5"".

95 Regulation by suppression is common in functional biology pathways. For
96 example, miRNA and long non-coding RNA (IncRNA) are two types of non-
97 coding RNAs reported to repress target genes'>'*. MiRNAs can regulate
98  gene transcription and inhibit translation of mMRNA'-17. Brain-specific miRNA
99  miR-134 was reported to inhibit Limk1 translation in mice and may contribute
100 to synaptic development'®. LncRNA is another type of regulating RNA, and 40%
101 of the known IncRNAs are expressed specfically in brain'®. LncRNAs have been
102 implicated in regulating gene expression at diverse levels, such as
103  transcription, RNA processing and translation?’-?'. In the nucleus, IncRNA
104 regulates the gene by interacting with chromatin-modifying complex or
105 transcriptional factors. For example, the IncRNA RMST has been reported to
106 be down-regulated by the transcriptional factor REST, and RMST regulates
107  neurogenesis by binding SOX2 in vitro?>. LncRNA BDNF-AS is the natural
108  antisense transcript to BDNF, itself a key contributor to synaptic function?3. By
109 dynamically repressing BDNF expression in response to neuronal
110  depolarization, BDNF-AS modulates synaptic function. Researchers should be
111 careful not to neglect moderate repression roles in co-expression networks.
112 Both miRNA and IncRNA are likely to have negative correlations with other
113  genes and are likely to be undetected by WGCNA.

114 In this study, we developed a new method named csuWGCNA that combines
115  signed and unsigned WGCNA methods to detect more negative correlations.
116  We used 14 simulation data sets, 8 ground truth data sets with known modules,
117  and two brain gene expression data sets from Stanley Medical Research
118 Institute and the PsychENCODE project to comprehensively evaluate signed,
119  unsigned, and csuWGCNA methods at pairwise gene and module levels. We
120 showed that csuWGCNA is more effective at capturing negative correlations
121 such as those involving miRNA-target and IncRNA-gene pairs. We also showed
122 that csuWGCNA can robustly detect modules with biological functions. This
123  method balances the signed and unsigned methods and provides a more
124  effective way to analyze whole-transcriptome data.
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125 Results

126 Combining signed and unsigned WGCNA

127 To combine the signed and unsigned WGCNA, we developed a new method
128 named csuWGCNA for gene co-expression network construction. The
129  csuWGCNA defines the adjacency matrix as follows,

130

131 csu aij=((1+|cor(xi,xj)|)/2)? (formula 3)

132

133  For the genes i, and j, cor(xiX) is the correlation and aj is the adjacency
134  between them. This method combines adjacency calculations used in signed
135  and unsigned methods (Figure 1A) and csuWGCNA considers weak, moderate,
136  and strong correlations as well as their direction (Figure 1B). The process of
137  csuWGCNA includes power selection, adjacency calculation based on similarity
138  matrix, topological overlap Matrix (TOM) construction, hierarchical clustering,
139  dynamic tree cutting, and module merging.
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142 Figure 1 The correlations captured by three methods for gene co-expression network
143 construction. (A). Network adjacency (y-axis) versus correlation (x-axis) for weighted networks
144  for the signed method, unsigned method, and csuWGCNA. The color of the line denotes the
145 power used. Note that correlation=-1 leads to adjacency = 0 in the signed network and
146 adjacency =1 in the unsigned and csuWGCNA network. (B). The types of correlations captured
147 by three networks. The strong and weak denote the degree of correlations, the “-” and “+”

148  denote the direction of correlations. The “¥” and “x” denote the possibility of capturing the
149 corresponding types of correlation.
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151  Evaluation workflow

152 We evaluated signed, unsigned, and csuWGCNA methods on 22 gene
153  expression datasets (Figure 2). We tested 14 simulated datasets, six ground
154  truth datasets with known regulation networks for E. coli, yeast and synthetic
155  data, and two real gene expression datasets from human brains (Figure 2A).
156  We set three types of metrics to evaluate the three methods at the gene pair
157  and gene module levels. To evaluate the capture of negative correlations, we
158 examined the proportion of negatively correlated gene pairs in observed
159 modules and their targets. To compare the observed modules with known
160 modules, we chose six metrics: specificity, sensitivity, positive predictive value
161  (PPV), negative predictive value (NPV), recovery, and relevance. To evaluate
162  the biological functions of observed modules, we applied false discovery rate
163  (FDR) to predict the enrichment of Kyoto Encyclopedia of Genes and Genomes
164  (KEGG) pathway. The final score for each method was the sum of z-scores of
165  all metrics used.

® Two human brain datasets

® 14 Simulated datasets . - SMRI: mRNA and miRNA expression
) ) ® Six Ground truth datasets ) )
2] - Simulated expression of 2000 genes . in parietal cortex from SCZ, BD and
6 - Gene expression data with known
D in 50 samples CTL (N=75)
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167 Figure 2 Overview of evaluation. Up panel is total 22 datasets used in this evaluation which

168 including simulation data, ground truth data and human brain data. Bottom panel is the metrics
169 used to evaluate the performance of the method which classified in three categories: detection
170 negative correlations, comparison with known modules, and biological pathway prediction. The
171 arrow indicates the combination of datasets and metrics.

172

173 csuWGCNA captures more weak-negative correlations than signed and
174  unsigned methods in simulation analysis

175 To evaluate the detection of negative correlations, we simulated gene
176  expression of 2000 genes from 50 samples in 14 scenarios with increased
177  proportions of negative correlations. To assess the types of correlations
178  captured, we classified all correlations as follows: weak (|bicor|<0.3), moderate
179  (0.3<|bicor|<0.6), and strong (|bicor|>0.6). Based on the predicted adjacency
180  curves for the three methods, the csuWGCNA was expected to detect more

5


https://doi.org/10.1101/288225
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/288225; this version posted February 20, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

181 negative correlations than the unsigned method, especially for weak and
182  moderate correlations (Figure 3A).

183 The simulation result showed that csuWGCNA captured 5%~9% of the weak
184  correlations which is higher than that of both of unsigned and signed methods,
185  respectively (Bonferroni-Holm (BH) adjusted PcsuwccNAsigned =5.2e-05,
186  PcsuwGcNA-unsigned =1.1e-04, two-sample Wilcoxon test). csuWGCNA captured
187  1%~12% of the moderate correlations, which is significantly higher than that of
188  signed method (BH adjusted P =5.2e-05) but only 5% higher than that of
189  unsigned methods with an insignificant p-value 0.73. Both csuWGCNA and
190 unsigned method capture 0.4%~5% strong correlations while the signed
191  method is unable to detect strong correlations (BH adjusted P =1.5e-05 for both
192  signed-csuWGCNA and signed-unsigned comparison). Meanwhile,
193 csuWGCNA and the unsigned method captured an increasing proportion of
194 negative correlations when the proportion of negative correlations in the data
195 increased. In contrast, the performance of the signed method did not change
196  with increasing numbers of negative correlations and had poor detection
197  throughout the range. The simulation result was in accord with the adjacency
198  distribution and suggests that csuWGCNA is capable of capturing more
199 negatively correlated gene pairs than both signed and unsigned methods,
200 especially for those that are weakly correlated.
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204 Figure 3 simulation result. (A) distribution of adjacency calculated by three methods for gene
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205 co-expression network construction. The dashed line denotes the boundary of weak, moderate
206 and strong correlations. (B) the proportion of negative correlation captured by the three
207 methods. The axis is the proportion of negative correlations pre-set in each simulation data.
208

209 csuWGCNA captures more negative correlations and retains robust
210 module reproducibility in ground truth data

211 To evaluate the three methods at the gene module level, we used six ground
212 truth datasets with gene expression and corresponding known modules for E.
213 coli, yeast and synthetic regulatory networks.

214 We evaluated module reproducibility using the following metrics: positive
215  predictive value (PPV), negative predictive value (NPV), recovery, relevance,
216  sensitivity and specificity (Supplemental Figure). We synthesized the six
217 metrics into one metric named “module score” to represent module
218  reproducibility. We found that the module score of csuWGCNA is slightly higher
219  than that of signed and unsigned methods with insignificant p-value (Figure 4A).
220 We considered negative correlations in this ground truth comparison. The
221 proportion of negative correlations captured by gene modules (negpros) of
222 csuWGCNA and the unsigned methods were higher than that of the signed
223 method (BH adjusted PcsuWGCNA-signed =0006, PcsuWGCNA-unsigned =0.015, two-
224  sample Wilcoxon tests, Figure 4B). No difference was detected between negpro
225  of csuWGCNA and unsigned method.

226 A normalized final score combining module score and negpro was used to
227  represent the performance of a particular method on a given dataset. The score
228 of csuWGCNA is significantly higher than both the signed and unsigned
229 methods (BH adjusted PcsuWGCNA-signed =0.004, PcsuWGCNA-unsigned =0003, Figure
230 4C). The unsigned method also performs better than the signed method (BH
231 adjusted P value=0.003). This suggests that csuWGCNA can detect more
232 negative correlations than signed and unsigned methods and performs as well
233 as these two methods in detecting known modules.
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237 Figure 4 Overall performance of signed, unsigned and csuWGCNA in ground truth data. (A)
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238 The module score synthesizing individual metrics. (B) The negpro of three methods in given
239 dataset. (C) The final score synthesizing module score and negpro. Two-sample Wilcoxon test
240  was used to test the difference (N=8). ns denotes non-significance. “**” and “***” denotes p-
241 value< 0.01 and p-value<0.001, respectively.

242

243 csuWGCNA captures more negatively correlated miRNA-targets and
244  IncRNA-mRNA pairs

245 We next examined the improvement of csuWGCNA in complex human brain
246 data. MiRNA and IncRNA are two types of non-coding RNA that have been
247 reported to negatively regulate their target genes. We used two gene
248  expression datasets that measured expression of miRNA and IncRNA from
249  human brain, SMRI and BrainGVEX, as our test datasets.

250 We evaluated the methods from two aspects, the proportion of negative
251 correlations by miRNA/IncRNA and the biological functions of the modules. The
252 biological functions are represented by prediction of KEGG pathways. We
253 tested 58,069 miRNA-target interactions (MTI) from miRTarBase in SMRI data
254 and 7,334,095 IncRNA-gene pairs with significantly negative bicor values
255 (FDR<0.05) in BrainGVEX data. Because the MTIs collected were validated
256  experimentally, we only set the criteria that correlation<O on them. The final
257  score is a sum of z-scores of two metrics above.

258 Overall, the csuWGCNA performed best among three methods. At the gene
259  level, csuWGCNA captured 16% of the MTls and 33% of the IncRNA-gene pairs,
260 which was more than that of signed and unsigned methods (chi-square test,
261  PcsuwGeNA -unsigned<1.89e-09, all other P<2.2e16, Figure 5A, Figure 5B). We
262  found that 98% MTIs captured by csuWGCNA were functionally validated by
263 RT-PCR, Western blot or RNA sequencing (Supplemental Figure 2). At the
264  module level, we found that csuWGCNA and the signed method both detected
265 the modules and have a lower FDR in prediction of KEGG pathway than the
266  unsigned method (Figure 5C, Figure 5D), especially in the brainGVEX data with
267 alarge sample size. This suggested that csuWGCNA is able to detect modules
268  corresponding to known biological pathways as well as the signed method and
269  better than unsigned method. By combining these two criteria, final scores
270  indicate that the csuWGCNA performs better than both signed and unsigned
271 methods in SMRI and BrainGVEX data (Figure S5E, Figure 5F).

272
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273
274  Figure 5. Summary of coexpression analysis of SMRI data (upper panel) and BrainGVEX data

275 (bottom panel). (A-B) Negpro of miRNA - target and IncRNA - gene. (C-D) The FDR of predicting
276  KEGG pathway (n=254, two-sample Wilcoxon test). (E-F) Final score of three method’s
277 performance. The final score is a sum of zscore of detecting negtative correlations and
278  predicting KEGG pathway.

279 Discussion

280 Here we introduced csuWGCNA, which is a combination method of signed
281 and unsigned WGCNA that captures more negative correlations. The
282  csuWGCNA works by treating the positive and negative correlations equally
283 and giving high connection strength to the weak and moderate correlations. We
284  tested csuWGCNA on 22 datasets and compared the results to those of signed
285 and unsigned methods. We showed that csuWGCNA is capable of detecting
286 negative correlations and maintaining robust module detection in gene co-
287  expression network analysis.

288 We showed the effectiveness of csuWWGCNA from simple simulation data and
289 complex human brain data. Our comparison includes, the detection of negative
290 correlations and module reproducibility. In simulation data, we found that
291  csuWGCNA was better than signed and unsigned methods in detecting weak
292 and moderate correlations as predicted. This is an important improvement
293  because most biologically negative correlations are small. We calculated the
294  correlation between validated miRNA and targets and found that the majority of
295  correlations are between -0.4~0 (Supplemental Figure 1). In ground truth data,
296 we showed that csuWGCNA can reproduce known modules well in multiple
297 datasets. The module score of csuWGCNA was not significantly improved.
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298  This was predicted because csuWGCNA aims to strengthen the detection of
299  weakly correlated genes and global gene detection is still preserved in the three
300 methods.

301 The real data is much more complex than the simulated data where gene co-
302 expression is largely unknown. In the brain data, we showed that csuWGCNA
303 can capture a higher proportion of negative MTls and IncRNA-gene pairs than
304 the other two methods. The importance of this is two-fold. First, we proved that
305 the experimentally validated gene pairs have consistent co-expression at the
306 whole transcriptome level in csuWGCNA. Second, it suggests promising
307 application of csuWGCNA in detecting novel negative gene relationships. We
308 also showed that csuWGCNA modules contain more functional pathways,
309 especially compared to the unsigned method (p=0.13 in SMRI, p=0.0001 in
310 BrainGVEX), even though the modules are preserved in both signed and
311  unsigned networks (Supplemental Figure 3, Supplemental Figure 4). This
312  suggests that csuWGCNA has the potential to obtain a larger number of
313  informative modules. By extension, this further suggests that csuWGCNA may
314  capture novel negative relationships related to specific biological functions.

315 The major advantage of csuWGCNA is that it is able to capture more disease-
316  related negatively correlated INcRNA-mRNA pairs than the signed or unsigned
317 methods. We found some IncRNAs and potential targets related to
318  schizophrenia only by csuWGCNA. . For example, INncRNA LINC00473 is a hub
319 gene of a module downregulated in the schizophrenia (log2FC=-0.003,
320 FDR=4.81E-05). LINC00473 is negatively correlated with TMEM245, which has
321  beenreported to be associated with negative symptoms of schizophrenia (Pmeta-
322 analysis<6.22x10-6)?*. This pair was only detected by the csuWGCNA method.
323  As another example, NEAT1 is a brain-expressed IncRNA, which has been
324 reported to change expressions in schizophrenia and neurodegenerative
325 disease®®?®, In the csuWGCNA module, NEAT1 negatively correlated with
326 DPEP2 and ABCC12 which are downregulated in schizophrenia. In summary,
327 csuWGCNA is a promising method to detect negatively correlated genes in
328 transcriptome studies.

329

330 Conclusion

331 csuWGCNA is an effective method for constructing gene co-expression
332  networks. It can capture more negative correlations and maintain robust module
333  detection compared to the original WGCNA procedure. Applying csuWGCNA
334  on transcriptome data will help interpretations in systems biology.

335 Methods

336 Datasets and quality control

10
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337 Simulation. We simulated 14 gene expression datasets containing 2000
338 genes and 50 samples using function simulateDatExpr. The proportion of
339  negative correlations in each dataset was from 0.01 to 0.3, which was controlled
340 by parameter propNegativeCor.

341 Ground truth data. We used six expression datasets for ground truth
342  analyses, two from E. col?728, two from yeast
343  (synapse.org/#!Synapse:syn2787209/wiki/70349), and two synthetic datasets.
344  These datasets were collected by Saelens et al. in a comprehensive evaluation
345 of module detection methods’ and were quality controlled and quantile
346 normalized. The known modules were extracted from known gene regulatory
347  networks?%-3! used the strict module definition from Saelens et al. Strictly co-
348  regulated modules were defined as groups of genes known to be regulated by
349  exactly the same set of regulators. We downloaded the data from a Zenodo
350 repository (doi: 10.5281/zenodo.1157938).

351 Human brain data. We used two different datasets from human brain: data
352  from Stanley Medical Research Institute Neuropathology Consortium and Array
353 collections (SMRI) and BrainGVEX, as real test data. The gene profiling and
354  data pre-processing are described in Supplemental Materials.

355 SMRI data. We used parietal cortex tissue. The data measured the
356  expression of mMiRNA and mRNA in SCZ and BD patients and controls. We
357 removed non-Europeans, duplicates, and samples missing any of the mRNA or
358  miRNA. After filtering, we retained 75 samples (25 SCZ, 25 BD, 24 controls),
359  yielding data for 19,984 mRNAs and 470 miRNAs for subsequent analyses.
360 BrainGVEX data. We used RNA-Seq data of frontal cortex samples from the
361 PsychENCODE project. The samples included 248 healthy control, 71 BD and
362 90 SCZ patient brains. Genes with Transcripts Per Million (TPM) lower than 0.1
363 in more than 25% of samples, mitochondrial genes, and pseudoautosomal
364 genes were dropped. We calculated co-expression between samples, and
365 samples with z-score normalized connectivity with other samples lower than -2
366  were removed. After filtering, 409 samples and 25774 genes were retained for
367 subsequent analyses. Linear regression was used to remove the effect of
368  covariates including age, sex, RIN, PMI, brain bank, batches, and principal
369 components of sequencing statistics (seqPC). The seqPCs were the top 29
370  principal components of PCA on sequencing statistics. The covariates were
371  selected by Multivariate adaptive regression splines (MARS).

372 network construction

373 We completed signed, unsigned and csuWGCNA on all the datasets
374  independently. Bicor was chosen to calculate the correlation between genes.
375  We set power =12 for all the simulation datasets. Other parameters were as
376  follows: ds = 2; minModSize = 30; dthresh = 0.1; pam = FALSE. For the ground
377 truth data, the power of the three methods on each dataset calculated
378  (Supplemental Table 1). Other parameters were as follows: ds = 4; minModSize
379 = 20; dthresh = 0.2; pam = TRUE. For SMRI data, the soft power for signed,
380 unsigned, and csuWGCNA was 5, 3 and 6, respectively. The parameters were
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381 as follows: TOMtype was unsigned, deepSplit was 4, minimum module size was
382 30 and mergeCutHeight wass 0.2, pamStage was true. For BrainGVEX data,
383 the soft power for signed, unsigned, and csuWGCNA was 12, 4 and 10,
384  respectively. The parameters were as follows: TOMtype was unsigned,
385  deepSplit was 4, minimum module size was 40 and mergeCutHeight was 0.2,
386 and pamStage was false. cutreeHybrid function was used to cut the gene tree.
387

388  Evaluation metrics

389 We used three different types of metrics to evaluate signed, unsigned and
390 WGCNA at gene pair and gene module levels. At the gene pair level, we used
391  negpro, which is. At the gene module level, we considered the robustness and
392 the biological functions of modules. The robustness of modules was used for
393  comparison between known modules and observed modules in ground truth
394 data. We used six classic metrics for comparing modules: specificity, sensitivity,
395 NPV, PPV, relevance and recovery. Following are the formulas for the metrics
396 where G represents all genes in a given dataset, M represents a gene setin an
397 observed module, and m represents a gene set in a known module. For each
398 M and m, the metrics are defined as:

399
400 specificity = G- Mum
(G-MUm)+ (M —m)
401
L Mnm
402 sensitivity = Mam) +m—M
403
) o G—-MUm
404 negative predictive value (NPV) = G =MUm) + (m=M
405
" - Mnm
406 positive predictive value (PPV) = G=Mum) +M=m)
407

408 We compared every known module m and observed module M. For each M,
409  we calculated the max value of a metric, such as specificity, sensitivity, or others,
410 across all m. We averaged these max values to define the final value of a metric
411  in a given dataset. The relevance and recovery are two metrics used to assess
412 whether every observed module can be matched with a known module. We
413  started by calculating the Jaccard index between every m and M.
414

) Mnm
415 Jaccard index = —(M om)
416
417  Relevance wass defined as the median value of the maximum Jaccard index
418 value across all m for a given dataset. Recovery was defined as the median
419  value of the maximum Jaccard index value across all M for a given dataset.
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420 In the ground truth analysis, we calculated the module score as follows for
421  evaluating module reproducibility.

422

423 module score = 1 2 1 t— Tt relevence + recovery
sensitivity | specificity PPV ' NPV

424

425  Afinal score combining module score and negpro was calculated.

426

427 final score = Zscore(module score) + Zscore(negpro)

428

429 In the human brain data analysis, we replaced the module score with the
430 prediction of from the KEGG pathway. The prediction of the KEGG pathway
431  was represented by false discovery rate (FDR) defined as follows. For a KEGG
432  pathway P and an observed module M, we calculated the minimum FDR across
433  all M for a given P.

434
M-P
435 FR= =P rmnp)
436
437 Negative correlated miRNA-target interactions
438 To obtain the experimentally validated MTls, we downloaded human MTlIs

439  from miRTarBase®?. There were 502654 MTls collected including 15064 genes
440  and 2599 miRNAs. Among them, 117945 MTls were detected by our SMRI data
441 and 58069 MTIs showed negative correlations. The MTIs are cataloged by
442  experimental evidence in miRTarBase. The strong evidence was considered to
443  be reporter assay or Western blot and the weak evidence was considered to be
444  microarray or pSILAC.

445 KEGG pathways

446 To evaluate the prediction of biological pathway, 289 KGML files for human
447 species were downloaded from the KEGG website®3. The R package
448 KEGGgraph®* was used to operate the KGML file and extract the gene
449  members.

450 Code Availability

451 The code of csuWGCNA is available from
452  https://github.com/RujiaDai/csuWWGCNA.
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