

1 **csuWGCNA: a combination of signed and unsigned WGCNA to capture**
2 **negative correlations**

3
4 Ruija Dai^{1,2}, Yan Xia^{1,2}, Chunyu Liu^{1,2,3*}, Chao Chen^{1,4*}

5
6 ¹Center for Medical Genetics, School of Life Sciences, Central South University,
7 Changsha, China 410078

8 ²Department of Psychiatry, SUNY Upstate Medical University, NY, USA 13205

9 ³School of Psychology, Shaanxi Normal University, Xi'an, China, 710062

10 ⁴National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
11 Central South University, Changsha, China 410078

12
13 * Corresponding author

14 E-mail: chenchao@sklmq.edu.cn

15 liuch@upstate.edu

16 **Abstract**

17 Network analysis helps us to understand how genes jointly affect biological
18 functions. Weighted Gene Co-expression Network Analysis (WGCNA) is a
19 frequently used method to build gene co-expression networks. WGCNA may
20 be calculated with signed or unsigned correlations, with both methods having
21 strengths and weaknesses, but both methods fail to capture weak and
22 moderate negative correlations, which may be important in gene regulation.
23 Combining the advantages and removing the disadvantages of both methods
24 in one analysis would be desirable. In this study, we present a combination of
25 signed and unsigned WGCNA (csuWGCNA), which combines the signed and
26 unsigned methods and improves the detection of negative correlations. We
27 applied csuWGCNA in 14 simulated datasets, six ground truth datasets and two
28 large human brain datasets. Multiple metrics were used to evaluate csuWGCNA
29 at gene pair and gene module levels. We found that csuWGCNA provides
30 robust module detection and captures more negative correlations than the other
31 methods, and is especially useful for non-coding RNA such as microRNA
32 (miRNA) and long non-coding RNA (lncRNA). csuWGCNA enables detection of
33 more informative modules with biological functions than signed or unsigned
34 WGCNA, which enables discovery of novel gene regulation and helps
35 interpretations in systems biology.

36
37 **Keywords:** gene co-expression network, WGCNA, system biology, miRNA,
38 lncRNA, human brain

39

40

41

42 **Introduction**

43 Biological functions are controlled by a group of co-regulated or co-expressed
44 genes in the context of a network in systems biology. Network analyses helps
45 to explore system-level functionality of genes, such as global interpretation of
46 transcriptome and putative regulation relationships between genes. Numerous
47 approaches and algorithms have been proposed for module detection in gene
48 expression data¹.

49 Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used
50 method for detecting important gene pairs and modules². WGCNA is completed
51 in three steps, the first being construction of gene co-expression networks
52 (GCNs) from a matrix of the correlations between expression of genes across
53 samples. Then an adjacency matrix is constructed based on the correlation
54 matrix. The genes and their connection strengths are regarded as nodes and
55 edges, respectively, in the GCNs. In the second step, gene modules are
56 obtained via hierarchical clustering and tree cutting. Lastly gene modules are
57 related to external information to interpret their biological functions and gene
58 regulation in modules can also be revealed. Detecting the group or module of
59 co-expressed genes has generated insights in brain transcriptome architecture³,
60 evolution⁴, aging⁵, cell diversity⁵, and psychiatric disorders^{6,7}.

61 The adjacency matrix is the foundation of the WGCNA procedure. According
62 to the definition of adjacency matrix, WGCNA can be classified into two major
63 types: signed method and unsigned method. The two methods treat negative
64 correlations differently. Consider the gene expression matrix $G_{m \times n}$, where m is
65 the number of genes and n is the number of samples. The WGCNA procedure
66 generates a correlation matrix S from G via pair-wise correlations⁸. Then the
67 adjacency matrix A is constructed from S , depending on whether the adjacency
68 is signed or unsigned. In the signed method, positive correlations are prioritized
69 over the negative correlations. Larger positive correlations have larger
70 adjacency, and larger negative correlations have smaller adjacency. The
71 adjacency of strong negative correlations is close to zero. In the unsigned
72 method, negative and positive correlations are considered equally. Adjacency
73 is only determined by the size of correlations without considering direction. The
74 adjacency of strong negative correlations is close to 1. Adjacency for genes i
75 and j is defined as follows in these two methods, where power β is set to keep
76 the network with scale-free topology property⁹ (Only a few nodes in the network
77 are highly connected and most of the gene are connected with a few genes).

78
$$signed \ a_{ij} = |(1 + cor(x_i, x_j))/2|^\beta \quad (formula \ 1)$$

79
$$unsigned \ a_{ij} = |cor(x_i, x_j)|^\beta \quad (formula \ 2)$$

80
81 The signed and unsigned methods have advantages and disadvantages.
82 The modules detected by the signed method are more robust to their biological

83 functions than unsigned modules. A previous study on embryonic stem cells
84 showed that the signed method identifies modules with more specific
85 expression patterns than the unsigned method¹⁰. The unsigned method can
86 capture more negatively correlated genes than the signed method, for example,
87 non-coding RNA and their targets. Detecting this type of negatively correlated
88 genes is difficult because they are considered not connected by the signed
89 method. However, the unsigned method is only capable of detecting strong
90 correlations. Negative regulation relationships in biological systems are usually
91 weak or moderate so they will not be detected using the unsigned method. For
92 example, a study reported that the more than 50% of microRNA (miRNA)-
93 mRNA correlations in 35 human tissues were 0~-0.3 and only one correlation
94 was lower than -0.5¹¹.

95 Regulation by suppression is common in functional biology pathways. For
96 example, miRNA and long non-coding RNA (lncRNA) are two types of non-
97 coding RNAs reported to repress target genes¹²⁻¹⁴. MiRNAs can regulate
98 gene transcription and inhibit translation of mRNA¹⁵⁻¹⁷. Brain-specific miRNA
99 miR-134 was reported to inhibit Limk1 translation in mice and may contribute
100 to synaptic development¹⁸. lncRNA is another type of regulating RNA, and 40%
101 of the known lncRNAs are expressed specifically in brain¹⁹. lncRNAs have been
102 implicated in regulating gene expression at diverse levels, such as
103 transcription, RNA processing and translation²⁰⁻²¹. In the nucleus, lncRNA
104 regulates the gene by interacting with chromatin-modifying complex or
105 transcriptional factors. For example, the lncRNA RMST has been reported to
106 be down-regulated by the transcriptional factor REST, and RMST regulates
107 neurogenesis by binding SOX2 in vitro²². lncRNA BDNF-AS is the natural
108 antisense transcript to BDNF, itself a key contributor to synaptic function²³. By
109 dynamically repressing BDNF expression in response to neuronal
110 depolarization, BDNF-AS modulates synaptic function. Researchers should be
111 careful not to neglect moderate repression roles in co-expression networks.
112 Both miRNA and lncRNA are likely to have negative correlations with other
113 genes and are likely to be undetected by WGCNA.

114 In this study, we developed a new method named csuWGCNA that combines
115 signed and unsigned WGCNA methods to detect more negative correlations.
116 We used 14 simulation data sets, 8 ground truth data sets with known modules,
117 and two brain gene expression data sets from Stanley Medical Research
118 Institute and the PsychENCODE project to comprehensively evaluate signed,
119 unsigned, and csuWGCNA methods at pairwise gene and module levels. We
120 showed that csuWGCNA is more effective at capturing negative correlations
121 such as those involving miRNA-target and lncRNA-gene pairs. We also showed
122 that csuWGCNA can robustly detect modules with biological functions. This
123 method balances the signed and unsigned methods and provides a more
124 effective way to analyze whole-transcriptome data.

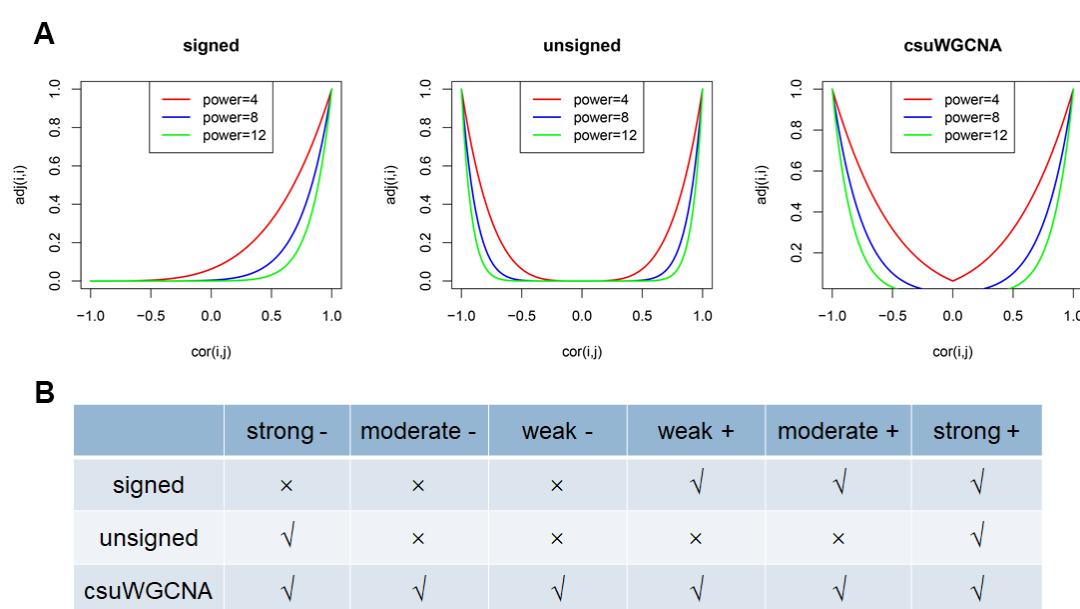
125 **Results**

126 Combining signed and unsigned WGCNA

127 To combine the signed and unsigned WGCNA, we developed a new method
128 named csuWGCNA for gene co-expression network construction. The
129 csuWGCNA defines the adjacency matrix as follows,

$$131 \quad \text{csu } a_{ij} = ((1 + |\text{cor}(x_i, x_j)|)/2)^{\beta} \quad (\text{formula 3})$$

133 For the genes i , and j , $\text{cor}(x_i, x_j)$ is the correlation and a_{ij} is the adjacency
134 between them. This method combines adjacency calculations used in signed
135 and unsigned methods (Figure 1A) and csuWGCNA considers weak, moderate,
136 and strong correlations as well as their direction (Figure 1B). The process of
137 csuWGCNA includes power selection, adjacency calculation based on similarity
138 matrix, topological overlap Matrix (TOM) construction, hierarchical clustering,
139 dynamic tree cutting, and module merging.

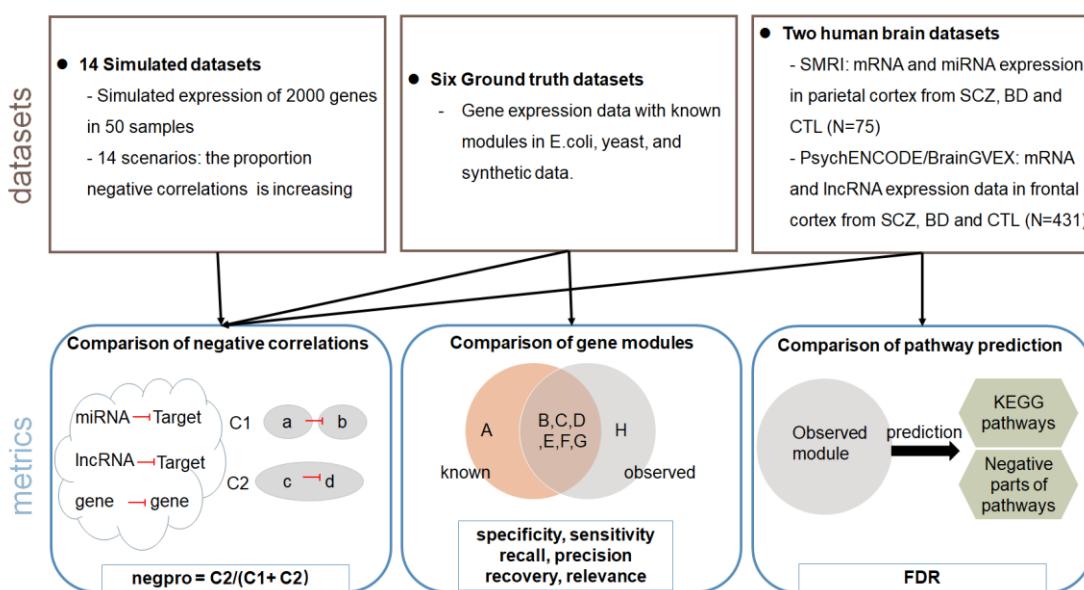


141

142 Figure 1 The correlations captured by three methods for gene co-expression network
143 construction. (A). Network adjacency (y-axis) versus correlation (x-axis) for weighted networks
144 for the signed method, unsigned method, and csuWGCNA. The color of the line denotes the
145 power used. Note that correlation=-1 leads to adjacency = 0 in the signed network and
146 adjacency =1 in the unsigned and csuWGCNA network. (B). The types of correlations captured
147 by three networks. The strong and weak denote the degree of correlations, the “-” and “+”
148 denote the direction of correlations. The “√” and “x” denote the possibility of capturing the
149 corresponding types of correlation.

151 **Evaluation workflow**

152 We evaluated signed, unsigned, and csuWGCNA methods on 22 gene
153 expression datasets (Figure 2). We tested 14 simulated datasets, six ground
154 truth datasets with known regulation networks for *E. coli*, yeast and synthetic
155 data, and two real gene expression datasets from human brains (Figure 2A).
156 We set three types of metrics to evaluate the three methods at the gene pair
157 and gene module levels. To evaluate the capture of negative correlations, we
158 examined the proportion of negatively correlated gene pairs in observed
159 modules and their targets. To compare the observed modules with known
160 modules, we chose six metrics: specificity, sensitivity, positive predictive value
161 (PPV), negative predictive value (NPV), recovery, and relevance. To evaluate
162 the biological functions of observed modules, we applied false discovery rate
163 (FDR) to predict the enrichment of Kyoto Encyclopedia of Genes and Genomes
164 (KEGG) pathway. The final score for each method was the sum of z-scores of
165 all metrics used.



167 Figure 2 Overview of evaluation. Up panel is total 22 datasets used in this evaluation which
168 including simulation data, ground truth data and human brain data. Bottom panel is the metrics
169 used to evaluate the performance of the method which classified in three categories: detection
170 negative correlations, comparison with known modules, and biological pathway prediction. The
171 arrow indicates the combination of datasets and metrics.

172

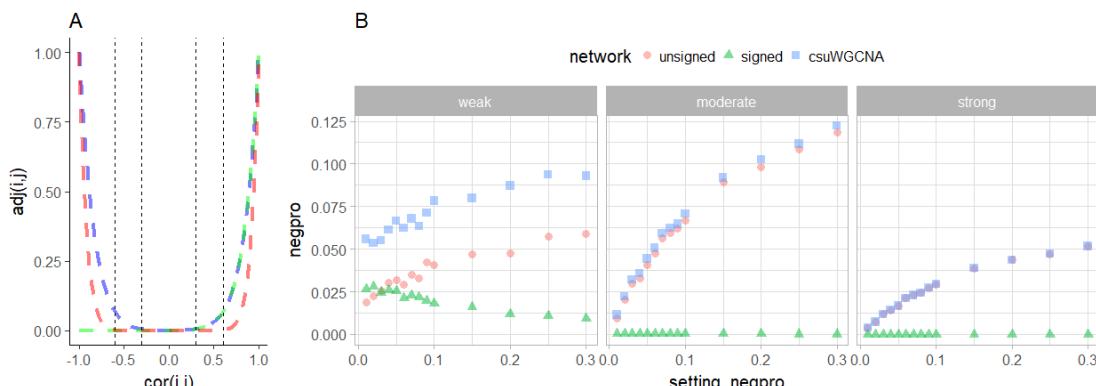
173 **csuWGCNA captures more weak-negative correlations than signed and
174 unsigned methods in simulation analysis**

175 To evaluate the detection of negative correlations, we simulated gene
176 expression of 2000 genes from 50 samples in 14 scenarios with increased
177 proportions of negative correlations. To assess the types of correlations
178 captured, we classified all correlations as follows: weak ($|bcor|<0.3$), moderate
179 ($0.3\leq|bcor|\leq0.6$), and strong ($|bcor|>0.6$). Based on the predicted adjacency
180 curves for the three methods, the csuWGCNA was expected to detect more

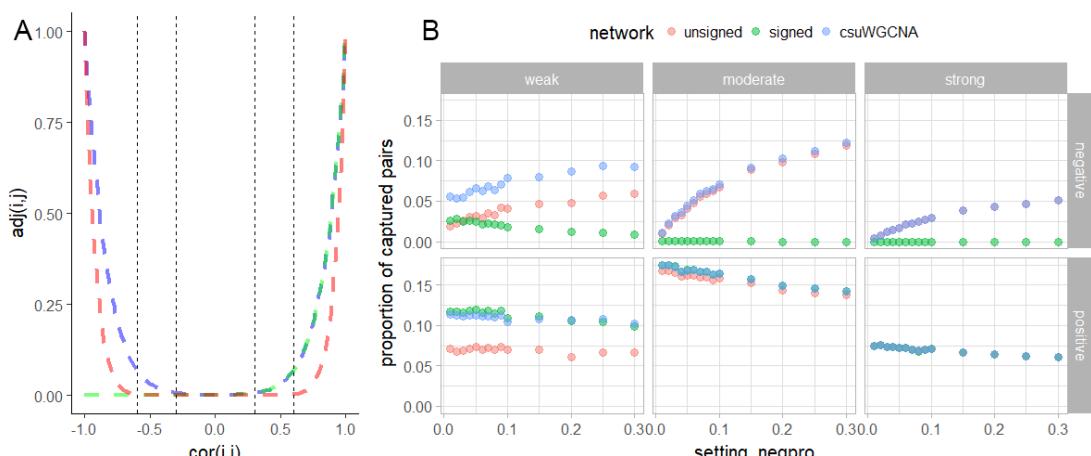
181 negative correlations than the unsigned method, especially for weak and
 182 moderate correlations (Figure 3A).

183 The simulation result showed that csuWGCNA captured 5%~9% of the weak
 184 correlations which is higher than that of both of unsigned and signed methods,
 185 respectively (Bonferroni-Holm (BH) adjusted $P_{\text{csuWGCNA-signed}} = 5.2\text{e-}05$,
 186 $P_{\text{csuWGCNA-unsigned}} = 1.1\text{e-}04$, two-sample Wilcoxon test). csuWGCNA captured
 187 1%~12% of the moderate correlations, which is significantly higher than that of
 188 signed method (BH adjusted $P = 5.2\text{e-}05$) but only 5% higher than that of
 189 unsigned methods with an insignificant p-value 0.73. Both csuWGCNA and
 190 unsigned method capture 0.4%~5% strong correlations while the signed
 191 method is unable to detect strong correlations (BH adjusted $P = 1.5\text{e-}05$ for both
 192 signed-csuWGCNA and signed-unsigned comparison). Meanwhile,
 193 csuWGCNA and the unsigned method captured an increasing proportion of
 194 negative correlations when the proportion of negative correlations in the data
 195 increased. In contrast, the performance of the signed method did not change
 196 with increasing numbers of negative correlations and had poor detection
 197 throughout the range. The simulation result was in accord with the adjacency
 198 distribution and suggests that csuWGCNA is capable of capturing more
 199 negatively correlated gene pairs than both signed and unsigned methods,
 200 especially for those that are weakly correlated.

201



202



203

204 Figure 3 simulation result. (A) distribution of adjacency calculated by three methods for gene

205 co-expression network construction. The dashed line denotes the boundary of weak, moderate
206 and strong correlations. (B) the proportion of negative correlation captured by the three
207 methods. The axis is the proportion of negative correlations pre-set in each simulation data.
208

209 **csuWGCNA captures more negative correlations and retains robust**
210 **module reproducibility in ground truth data**

211 To evaluate the three methods at the gene module level, we used six ground
212 truth datasets with gene expression and corresponding known modules for *E.*
213 *coli*, yeast and synthetic regulatory networks.

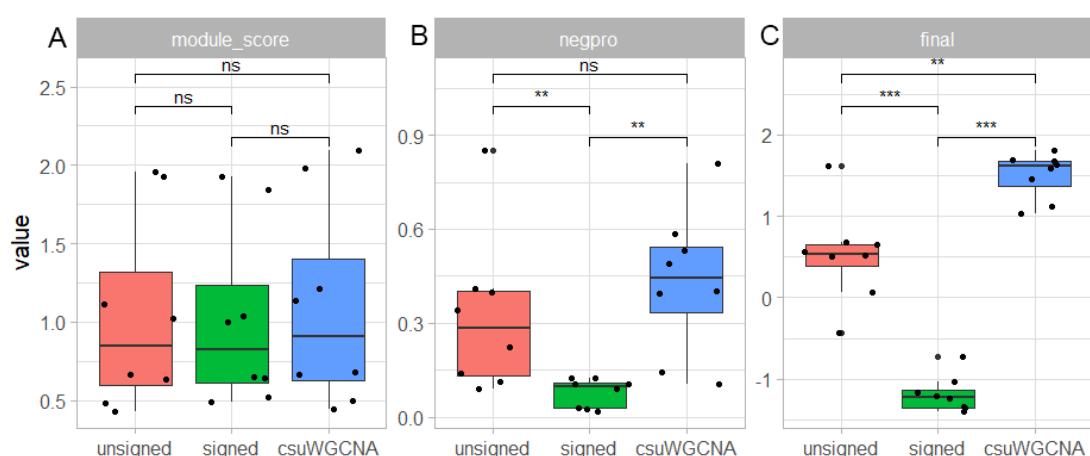
214 We evaluated module reproducibility using the following metrics: positive
215 predictive value (PPV), negative predictive value (NPV), recovery, relevance,
216 sensitivity and specificity (Supplemental Figure). We synthesized the six
217 metrics into one metric named “module score” to represent module
218 reproducibility. We found that the module score of csuWGCNA is slightly higher
219 than that of signed and unsigned methods with insignificant p-value (Figure 4A).

220 We considered negative correlations in this ground truth comparison. The
221 proportion of negative correlations captured by gene modules (negpros) of
222 csuWGCNA and the unsigned methods were higher than that of the signed
223 method (BH adjusted $P_{\text{csuWGCNA-signed}} = 0.006$, $P_{\text{csuWGCNA-unsigned}} = 0.015$, two-
224 sample Wilcoxon tests, Figure 4B). No difference was detected between negpro
225 of csuWGCNA and unsigned method.

226 A normalized final score combining module score and negpro was used to
227 represent the performance of a particular method on a given dataset. The score
228 of csuWGCNA is significantly higher than both the signed and unsigned
229 methods (BH adjusted $P_{\text{csuWGCNA-signed}} = 0.004$, $P_{\text{csuWGCNA-unsigned}} = 0.003$, Figure
230 4C). The unsigned method also performs better than the signed method (BH
231 adjusted P value=0.003). This suggests that csuWGCNA can detect more
232 negative correlations than signed and unsigned methods and performs as well
233 as these two methods in detecting known modules.

234

235



236

237 **Figure 4** Overall performance of signed, unsigned and csuWGCNA in ground truth data. (A)

238 The module score synthesizing individual metrics. (B) The negpro of three methods in given
239 dataset. (C) The final score synthesizing module score and negpro. Two-sample Wilcoxon test
240 was used to test the difference (N=8). ns denotes non-significance. “**” and “***” denotes p-
241 value< 0.01 and p-value<0.001, respectively.

242

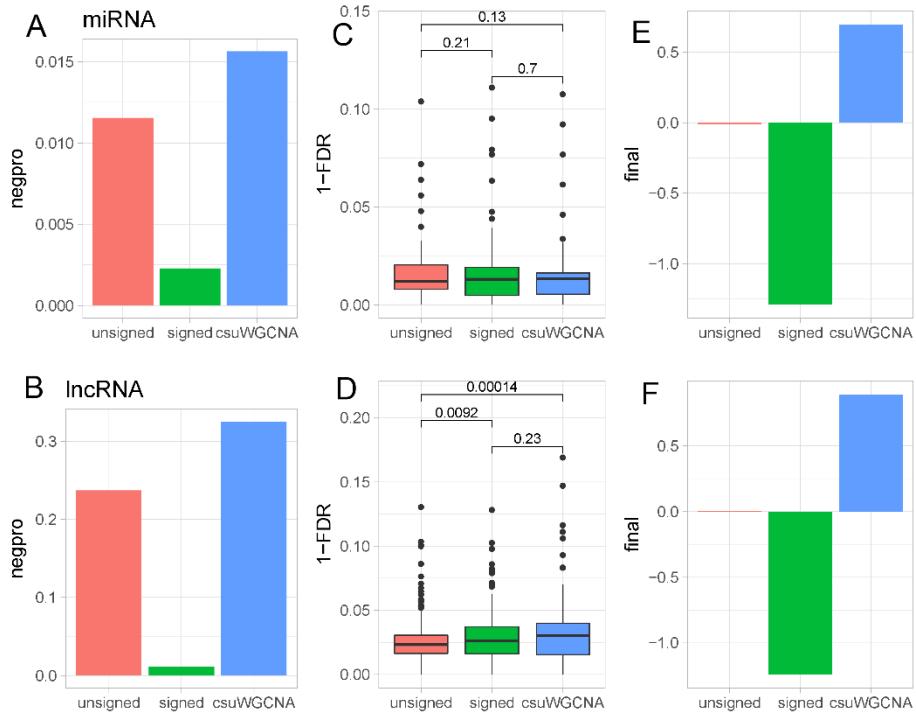
243 **csuWGCNA captures more negatively correlated miRNA-targets and** 244 **lncRNA-mRNA pairs**

245 We next examined the improvement of csuWGCNA in complex human brain
246 data. MiRNA and lncRNA are two types of non-coding RNA that have been
247 reported to negatively regulate their target genes. We used two gene
248 expression datasets that measured expression of miRNA and lncRNA from
249 human brain, SMRI and BrainGVEX, as our test datasets.

250 We evaluated the methods from two aspects, the proportion of negative
251 correlations by miRNA/lncRNA and the biological functions of the modules. The
252 biological functions are represented by prediction of KEGG pathways. We
253 tested 58,069 miRNA-target interactions (MTI) from miRTarBase in SMRI data
254 and 7,334,095 lncRNA-gene pairs with significantly negative bicor values
255 (FDR<0.05) in BrainGVEX data. Because the MTIs collected were validated
256 experimentally, we only set the criteria that correlation<0 on them. The final
257 score is a sum of z-scores of two metrics above.

258 Overall, the csuWGCNA performed best among three methods. At the gene
259 level, csuWGCNA captured 16% of the MTIs and 33% of the lncRNA-gene pairs,
260 which was more than that of signed and unsigned methods (chi-square test,
261 $P_{\text{csuWGCNA -unsigned}} < 1.89e-09$, all other $P < 2.2e16$, Figure 5A, Figure 5B). We
262 found that 98% MTIs captured by csuWGCNA were functionally validated by
263 RT-PCR, Western blot or RNA sequencing (Supplemental Figure 2). At the
264 module level, we found that csuWGCNA and the signed method both detected
265 the modules and have a lower FDR in prediction of KEGG pathway than the
266 unsigned method (Figure 5C, Figure 5D), especially in the brainGVEX data with
267 a large sample size. This suggested that csuWGCNA is able to detect modules
268 corresponding to known biological pathways as well as the signed method and
269 better than unsigned method. By combining these two criteria, final scores
270 indicate that the csuWGCNA performs better than both signed and unsigned
271 methods in SMRI and BrainGVEX data (Figure 5E, Figure 5F).

272



273

274 Figure 5. Summary of coexpression analysis of SMRI data (upper panel) and BrainGVEX data
275 (bottom panel). (A-B) Negpro of miRNA - target and lncRNA - gene. (C-D) The FDR of predicting
276 KEGG pathway (n=254, two-sample Wilcoxon test). (E-F) Final score of three method's
277 performance. The final score is a sum of zscore of detecting negative correlations and
278 predicting KEGG pathway.

279

Discussion

280

281 Here we introduced csuWGCNA, which is a combination method of signed
282 and unsigned WGCNA that captures more negative correlations. The
283 csuWGCNA works by treating the positive and negative correlations equally
284 and giving high connection strength to the weak and moderate correlations. We
285 tested csuWGCNA on 22 datasets and compared the results to those of signed
286 and unsigned methods. We showed that csuWGCNA is capable of detecting
287 negative correlations and maintaining robust module detection in gene co-
288 expression network analysis.

289

290 We showed the effectiveness of csuWGCNA from simple simulation data and
291 complex human brain data. Our comparison includes, the detection of negative
292 correlations and module reproducibility. In simulation data, we found that
293 csuWGCNA was better than signed and unsigned methods in detecting weak
294 and moderate correlations as predicted. This is an important improvement
295 because most biologically negative correlations are small. We calculated the
296 correlation between validated miRNA and targets and found that the majority of
297 correlations are between -0.4~0 (Supplemental Figure 1). In ground truth data,
298 we showed that csuWGCNA can reproduce known modules well in multiple
299 datasets. The module score of csuWGCNA was not significantly improved.

298 This was predicted because csuWGCNA aims to strengthen the detection of
299 weakly correlated genes and global gene detection is still preserved in the three
300 methods.

301 The real data is much more complex than the simulated data where gene co-
302 expression is largely unknown. In the brain data, we showed that csuWGCNA
303 can capture a higher proportion of negative MTIs and lncRNA-gene pairs than
304 the other two methods. The importance of this is two-fold. First, we proved that
305 the experimentally validated gene pairs have consistent co-expression at the
306 whole transcriptome level in csuWGCNA. Second, it suggests promising
307 application of csuWGCNA in detecting novel negative gene relationships. We
308 also showed that csuWGCNA modules contain more functional pathways,
309 especially compared to the unsigned method ($p=0.13$ in SMRI, $p=0.0001$ in
310 BrainGVEX), even though the modules are preserved in both signed and
311 unsigned networks (Supplemental Figure 3, Supplemental Figure 4). This
312 suggests that csuWGCNA has the potential to obtain a larger number of
313 informative modules. By extension, this further suggests that csuWGCNA may
314 capture novel negative relationships related to specific biological functions.

315 The major advantage of csuWGCNA is that it is able to capture more disease-
316 related negatively correlated lncRNA-mRNA pairs than the signed or unsigned
317 methods. We found some lncRNAs and potential targets related to
318 schizophrenia only by csuWGCNA. For example, lncRNA LINC00473 is a hub
319 gene of a module downregulated in the schizophrenia ($\log_{2}FC=-0.003$,
320 $FDR=4.81E-05$). LINC00473 is negatively correlated with TMEM245, which has
321 been reported to be associated with negative symptoms of schizophrenia (P_{meta-}
322 analysis> 6.22×10^{-6})²⁴. This pair was only detected by the csuWGCNA method.
323 As another example, NEAT1 is a brain-expressed lncRNA, which has been
324 reported to change expressions in schizophrenia and neurodegenerative
325 disease^{25,26}. In the csuWGCNA module, NEAT1 negatively correlated with
326 DPEP2 and ABCC12 which are downregulated in schizophrenia. In summary,
327 csuWGCNA is a promising method to detect negatively correlated genes in
328 transcriptome studies.

329

330 Conclusion

331 csuWGCNA is an effective method for constructing gene co-expression
332 networks. It can capture more negative correlations and maintain robust module
333 detection compared to the original WGCNA procedure. Applying csuWGCNA
334 on transcriptome data will help interpretations in systems biology.

335 Methods

336 Datasets and quality control

337 **Simulation.** We simulated 14 gene expression datasets containing 2000
338 genes and 50 samples using function `simulateDatExpr`. The proportion of
339 negative correlations in each dataset was from 0.01 to 0.3, which was controlled
340 by parameter `propNegativeCor`.

341 **Ground truth data.** We used six expression datasets for ground truth
342 analyses, two from *E. coli*^{27,28}, two from yeast
343 (synapse.org/#/Synapse:syn2787209/wiki/70349), and two synthetic datasets.
344 These datasets were collected by Saelens *et al.* in a comprehensive evaluation
345 of module detection methods¹ and were quality controlled and quantile
346 normalized. The known modules were extracted from known gene regulatory
347 networks²⁹⁻³¹ used the strict module definition from Saelens *et al.* Strictly co-
348 regulated modules were defined as groups of genes known to be regulated by
349 exactly the same set of regulators. We downloaded the data from a Zenodo
350 repository (doi: 10.5281/zenodo.1157938).

351 **Human brain data.** We used two different datasets from human brain: data
352 from Stanley Medical Research Institute Neuropathology Consortium and Array
353 collections (SMRI) and BrainGVEX, as real test data. The gene profiling and
354 data pre-processing are described in Supplemental Materials.

355 SMRI data. We used parietal cortex tissue. The data measured the
356 expression of miRNA and mRNA in SCZ and BD patients and controls. We
357 removed non-Europeans, duplicates, and samples missing any of the mRNA or
358 miRNA. After filtering, we retained 75 samples (25 SCZ, 25 BD, 24 controls),
359 yielding data for 19,984 mRNAs and 470 miRNAs for subsequent analyses.

360 BrainGVEX data. We used RNA-Seq data of frontal cortex samples from the
361 PsychENCODE project. The samples included 248 healthy control, 71 BD and
362 90 SCZ patient brains. Genes with Transcripts Per Million (TPM) lower than 0.1
363 in more than 25% of samples, mitochondrial genes, and pseudoautosomal
364 genes were dropped. We calculated co-expression between samples, and
365 samples with z-score normalized connectivity with other samples lower than -2
366 were removed. After filtering, 409 samples and 25774 genes were retained for
367 subsequent analyses. Linear regression was used to remove the effect of
368 covariates including age, sex, RIN, PMI, brain bank, batches, and principal
369 components of sequencing statistics (seqPC). The seqPCs were the top 29
370 principal components of PCA on sequencing statistics. The covariates were
371 selected by Multivariate adaptive regression splines (MARS).

372 **network construction**

373 We completed signed, unsigned and csuWGCNA on all the datasets
374 independently. Bicor was chosen to calculate the correlation between genes.
375 We set power =12 for all the simulation datasets. Other parameters were as
376 follows: `ds` = 2; `minModSize` = 30; `dthresh` = 0.1; `pam` = FALSE. For the ground
377 truth data, the power of the three methods on each dataset calculated
378 (Supplemental Table 1). Other parameters were as follows: `ds` = 4; `minModSize`
379 = 20; `dthresh` = 0.2; `pam` = TRUE. For SMRI data, the soft power for signed,
380 unsigned, and csuWGCNA was 5, 3 and 6, respectively. The parameters were

381 as follows: TOMtype was unsigned, deepSplit was 4, minimum module size was
382 30 and mergeCutHeight was 0.2, pamStage was true. For BrainGVE data,
383 the soft power for signed, unsigned, and csuWGCNA was 12, 4 and 10,
384 respectively. The parameters were as follows: TOMtype was unsigned,
385 deepSplit was 4, minimum module size was 40 and mergeCutHeight was 0.2,
386 and pamStage was false. cutreeHybrid function was used to cut the gene tree.
387

388 **Evaluation metrics**

389 We used three different types of metrics to evaluate signed, unsigned and
390 WGCNA at gene pair and gene module levels. At the gene pair level, we used
391 negpro, which is. At the gene module level, we considered the robustness and
392 the biological functions of modules. The robustness of modules was used for
393 comparison between known modules and observed modules in ground truth
394 data. We used six classic metrics for comparing modules: specificity, sensitivity,
395 NPV, PPV, relevance and recovery. Following are the formulas for the metrics
396 where G represents all genes in a given dataset, M represents a gene set in an
397 observed module, and m represents a gene set in a known module. For each
398 M and m, the metrics are defined as:

399

$$400 \text{ specificity} = \frac{G - M \cup m}{(G - M \cup m) + (M - m)}$$

401

$$402 \text{ sensitivity} = \frac{M \cap m}{(M \cap m) + (m - M)}$$

403

$$404 \text{ negative predictive value (NPV)} = \frac{G - M \cup m}{(G - M \cup m) + (m - M)}$$

405

$$406 \text{ positive predictive value (PPV)} = \frac{M \cap m}{(G - M \cup m) + (M - m)}$$

407

408 We compared every known module m and observed module M. For each M,
409 we calculated the max value of a metric, such as specificity, sensitivity, or others,
410 across all m. We averaged these max values to define the final value of a metric
411 in a given dataset. The relevance and recovery are two metrics used to assess
412 whether every observed module can be matched with a known module. We
413 started by calculating the Jaccard index between every m and M.

414

$$415 \text{ Jaccard index} = \frac{M \cap m}{(M \cup m)}$$

416

417 Relevance was defined as the median value of the maximum Jaccard index
418 value across all m for a given dataset. Recovery was defined as the median
419 value of the maximum Jaccard index value across all M for a given dataset.

420 In the ground truth analysis, we calculated the module score as follows for
421 evaluating module reproducibility.

422

423
$$\text{module score} = \frac{2}{\frac{1}{\text{sensitivity}} + \frac{1}{\text{specificity}}} + \frac{2}{\frac{1}{\text{PPV}} + \frac{1}{\text{NPV}}} + \text{relevance} + \text{recovery}$$

424

425 A final score combining module score and negpro was calculated.

426

427
$$\text{final score} = \text{Zscore}(\text{module score}) + \text{Zscore}(\text{negpro})$$

428

429 In the human brain data analysis, we replaced the module score with the
430 prediction of from the KEGG pathway. The prediction of the KEGG pathway
431 was represented by false discovery rate (FDR) defined as follows. For a KEGG
432 pathway P and an observed module M, we calculated the minimum FDR across
433 all M for a given P.

434

435
$$\text{FDR} = \frac{M - P}{(M - P) + (M \cap P)}$$

436

437 **Negative correlated miRNA-target interactions**

438 To obtain the experimentally validated MTIs, we downloaded human MTIs
439 from miRTarBase³². There were 502654 MTIs collected including 15064 genes
440 and 2599 miRNAs. Among them, 117945 MTIs were detected by our SMRI data
441 and 58069 MTIs showed negative correlations. The MTIs are cataloged by
442 experimental evidence in miRTarBase. The strong evidence was considered to
443 be reporter assay or Western blot and the weak evidence was considered to be
444 microarray or pSILAC.

445 **KEGG pathways**

446 To evaluate the prediction of biological pathway, 289 KGML files for human
447 species were downloaded from the KEGG website³³. The R package
448 KEGGgraph³⁴ was used to operate the KGML file and extract the gene
449 members.

450 **Code Availability**

451 The code of csuWGCNA is available from
452 <https://github.com/RujiaDai/csuWGCNA>.

453 **Acknowledgement**

454 This work was supported by NSFC grants 81401114, 31571312, the National
455 Key Plan for Scientific Research and Development of China
456 (2016YFC1306000), and Innovation-Driven Project of Central South University
457 (No. 2015CXS034, 2018CX033) (to C.Chen), and NIH grants 1U01 MH103340-
458 01, 1R01ES024988 (to C.Liu). All the data contributors are sincerely thanked

459 for data provided.

460 **Reference**

461 1 Saelens, W., Cannoodt, R. & Saeys, Y. A comprehensive evaluation of module
462 detection methods for gene expression data. *Nature communications* **9**, 1090,
463 doi:10.1038/s41467-018-03424-4 (2018).

464 2 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
465 analysis. *BMC bioinformatics* **9**, 559, doi:10.1186/1471-2105-9-559 (2008).

466 3 Oldham, M. C. *et al.* Functional organization of the transcriptome in human brain.
467 *Nature neuroscience* **11**, 1271-1282, doi:10.1038/nn.2207 (2008).

468 4 Oldham, M. C., Horvath, S. & Geschwind, D. H. Conservation and evolution of gene
469 coexpression networks in human and chimpanzee brains. *Proceedings of the National
470 Academy of Sciences of the United States of America* **103**, 17973-17978,
471 doi:10.1073/pnas.0605938103 (2006).

472 5 Miller, J. A., Oldham, M. C. & Geschwind, D. H. A systems level analysis of
473 transcriptional changes in Alzheimer's disease and normal aging. *The Journal of
474 neuroscience : the official journal of the Society for Neuroscience* **28**, 1410-1420,
475 doi:10.1523/JNEUROSCI.4098-07.2008 (2008).

476 6 Voineagu, I. *et al.* Transcriptomic analysis of autistic brain reveals convergent
477 molecular pathology. *Nature* **474**, 380-384, doi:10.1038/nature10110 (2011).

478 7 Gandal, M. J. *et al.* Shared molecular neuropathology across major psychiatric
479 disorders parallels polygenic overlap. *Science* **359**, 693-697,
480 doi:10.1126/science.aad6469 (2018).

481 8 Langfelder, P. & Horvath, S. Fast R Functions for Robust Correlations and Hierarchical
482 Clustering. *Journal of statistical software* **46** (2012).

483 9 Albert, R. Scale-free networks in cell biology. *Journal of cell science* **118**, 4947-4957,
484 doi:10.1242/jcs.02714 (2005).

485 10 Mason, M. J., Fan, G., Plath, K., Zhou, Q. & Horvath, S. Signed weighted gene co-
486 expression network analysis of transcriptional regulation in murine embryonic stem
487 cells. *BMC genomics* **10**, 327, doi:10.1186/1471-2164-10-327 (2009).

488 11 Ritchie, W., Rajasekhar, M., Flamant, S. & Rasko, J. E. Conserved expression patterns
489 predict microRNA targets. *PLoS computational biology* **5**, e1000513,
490 doi:10.1371/journal.pcbi.1000513 (2009).

491 12 Yoon, J. H., Abdelmohsen, K. & Gorospe, M. Functional interactions among microRNAs
492 and long noncoding RNAs. *Seminars in cell & developmental biology* **34**, 9-14,
493 doi:10.1016/j.semcd.2014.05.015 (2014).

494 13 Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into
495 functions. *Nature reviews. Genetics* **10**, 155-159, doi:10.1038/nrg2521 (2009).

496 14 Hobert, O. Gene regulation by transcription factors and microRNAs. *Science* **319**,
497 1785-1786, doi:10.1126/science.1151651 (2008).

498 15 Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and
499 mRNA degradation by miRNAs and siRNAs. *Genes & development* **20**, 515-524,
500 doi:10.1101/gad.1399806 (2006).

501 16 Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-
502 transcriptional regulation by microRNAs: are the answers in sight? *Nature reviews. Genetics* **9**, 102-114, doi:10.1038/nrg2290 (2008).

504 17 Kim, D. H., Saetrom, P., Snove, O., Jr. & Rossi, J. J. MicroRNA-directed transcriptional
505 gene silencing in mammalian cells. *Proceedings of the National Academy of Sciences
506 of the United States of America* **105**, 16230-16235, doi:10.1073/pnas.0808830105
507 (2008).

508 18 Schrott, G. M. *et al.* A brain-specific microRNA regulates dendritic spine development.
509 *Nature* **439**, 283-289, doi:10.1038/nature04367 (2006).

510 19 Derrien, T. *et al.* The GENCODE v7 catalog of human long noncoding RNAs: analysis
511 of their gene structure, evolution, and expression. *Genome research* **22**, 1775-1789,
512 doi:10.1101/gr.132159.111 (2012).

513 20 Elling, R., Chan, J. & Fitzgerald, K. A. Emerging role of long noncoding RNAs as
514 regulators of innate immune cell development and inflammatory gene expression.
515 *European journal of immunology* **46**, 504-512, doi:10.1002/eji.201444558 (2016).

516 21 Briggs, J. A., Wolvetang, E. J., Mattick, J. S., Rinn, J. L. & Barry, G. Mechanisms of
517 Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity,
518 Disease, and Evolution. *Neuron* **88**, 861-877, doi:10.1016/j.neuron.2015.09.045 (2015).

519 22 Ng, S. Y., Bogu, G. K., Soh, B. S. & Stanton, L. W. The long noncoding RNA RMST
520 interacts with SOX2 to regulate neurogenesis. *Molecular cell* **51**, 349-359,
521 doi:10.1016/j.molcel.2013.07.017 (2013).

522 23 Modarresi, F. *et al.* Inhibition of natural antisense transcripts in vivo results in gene-
523 specific transcriptional upregulation. *Nature biotechnology* **30**, 453-459,
524 doi:10.1038/nbt.2158 (2012).

525 24 Xu, C. *et al.* BCL9 and C9orf5 are associated with negative symptoms in schizophrenia:
526 meta-analysis of two genome-wide association studies. *PLoS one* **8**, e51674,
527 doi:10.1371/journal.pone.0051674 (2013).

528 25 Katsel, P. *et al.* The expression of long noncoding RNA NEAT1 is reduced in
529 schizophrenia and modulates oligodendrocytes transcription. *NPJ schizophrenia* **5**, 3,
530 doi:10.1038/s41537-019-0071-2 (2019).

531 26 Salta, E. & De Strooper, B. Noncoding RNAs in neurodegeneration. *Nature reviews.
532 Neuroscience* **18**, 627-640, doi:10.1038/nrn.2017.90 (2017).

533 27 Meysman, P. *et al.* COLOMBOS v2.0: an ever expanding collection of bacterial
534 expression compendia. *Nucleic acids research* **42**, D649-653, doi:10.1093/nar/gkt1086
535 (2014).

536 28 Marbach, D. *et al.* Wisdom of crowds for robust gene network inference. *Nature
537 methods* **9**, 796-804, doi:10.1038/nmeth.2016 (2012).

538 29 Salgado, H. *et al.* RegulonDB v8.0: omics data sets, evolutionary conservation,
539 regulatory phrases, cross-validated gold standards and more. *Nucleic acids research*
540 **41**, D203-213, doi:10.1093/nar/gks1201 (2013).

541 30 MacIsaac, K. D. *et al.* An improved map of conserved regulatory sites for
542 *Saccharomyces cerevisiae*. *BMC bioinformatics* **7**, 113, doi:10.1186/1471-2105-7-113
543 (2006).

544 31 Ma, S., Kemmeren, P., Gresham, D. & Statnikov, A. De-novo learning of genome-scale

545 regulatory networks in *S. cerevisiae*. *PLoS one* **9**, e106479,
546 doi:10.1371/journal.pone.0106479 (2014).

547 32 Chou, C. H. *et al.* miRTarBase update 2018: a resource for experimentally validated
548 microRNA-target interactions. *Nucleic acids research* **46**, D296-D302,
549 doi:10.1093/nar/gkx1067 (2018).

550 33 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
551 acids research* **28**, 27-30 (2000).

552 34 Zhang, J. D. & Wiemann, S. KEGGgraph: a graph approach to KEGG PATHWAY in R
553 and bioconductor. *Bioinformatics* **25**, 1470-1471, doi:10.1093/bioinformatics/btp167
554 (2009).

555