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Abstract 16 

Network analysis helps us to understand how genes jointly affect biological 17 

functions. Weighted Gene Co-expression Network Analysis (WGCNA) is a 18 

frequently used method to build gene co-expression networks. WGCNA may 19 

be calculated with signed or unsigned correlations, with both methods having 20 

strengths and weaknesses, but both methods fail to capture weak and 21 

moderate negative correlations, which may be important in gene regulation. 22 

Combining the advantages and removing the disadvantages of both methods 23 

in one analysis would be desirable. In this study, we present a combination of 24 

signed and unsigned WGCNA (csuWGCNA), which combines the signed and 25 

unsigned methods and improves the detection of negative correlations. We 26 

applied csuWGCNA in 14 simulated datasets, six ground truth datasets and two 27 

large human brain datasets. Multiple metrics were used to evaluate csuWGCNA 28 

at gene pair and gene module levels. We found that csuWGCNA provides 29 

robust module detection and captures more negative correlations than the other 30 

methods, and is especially useful for non-coding RNA such as microRNA 31 

(miRNA) and long non-coding RNA (lncRNA). csuWGCNA enables detection of 32 

more informative modules with biological functions than signed or unsigned 33 

WGCNA, which enables discovery of novel gene regulation and helps 34 

interpretations in systems biology.  35 

 36 
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Introduction 42 

Biological functions are controlled by a group of co-regulated or co-expressed 43 

genes in the context of a network in systems biology. Network analyses helps 44 

to explore system-level functionality of genes, such as global interpretation of 45 

transcriptome and putative regulation relationships between genes. Numerous 46 

approaches and algorithms have been proposed for module detection in gene 47 

expression data1. 48 

Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used 49 

method for detecting important gene pairs and modules2. WGCNA is completed 50 

in three steps, the first being construction of gene co-expression networks 51 

(GCNs) from a matrix of the correlations between expression of genes across 52 

samples. Then an adjacency matrix is constructed based on the correlation 53 

matrix. The genes and their connection strengths are regarded as nodes and 54 

edges, respectively, in the GCNs. In the second step, gene modules are 55 

obtained via hierarchical clustering and tree cutting. Lastly gene modules are 56 

related to external information to interpret their biological functions and gene 57 

regulation in modules can also be revealed. Detecting the group or module of 58 

co-expressed genes has generated insights in brain transcriptome architecture3, 59 

evolution4, aging5, cell diversity5, and psychiatric disorders6,7. 60 

 The adjacency matrix is the foundation of the WGCNA procedure. According 61 

to the definition of adjacency matrix, WGCNA can be classified into two major 62 

types: signed method and unsigned method. The two methods treat negative 63 

correlations differently. Consider the gene expression matrix Gmxn, where m is 64 

the number of genes and n is the number of samples. The WGCNA procedure 65 

generates a correlation matrix S from G via pair-wise correlations8. Then the 66 

adjacency matrix A is constructed from S, depending on whether the adjacency 67 

is signed or unsigned. In the signed method, positive correlations are prioritized 68 

over the negative correlations. Larger positive correlations have larger 69 

adjacency, and larger negative correlations have smaller adjacency. The 70 

adjacency of strong negative correlations is close to zero. In the unsigned 71 

method, negative and positive correlations are considered equally. Adjacency 72 

is only determined by the size of correlations without considering direction. The 73 

adjacency of strong negative correlations is close to 1. Adjacency for genes i 74 

and j is defined as follows in these two methods, where power β is set to keep 75 

the network with scale-free topology property9 (Only a few nodes in the network 76 

are highly connected and most of the gene are connected with a few genes).  77 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑖𝑗 = |(1 + cor(𝑥𝑖, 𝑥𝑗))/2|𝛽  (formula 1) 78 

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑖𝑗 = |cor(𝑥𝑖, 𝑥𝑗)|𝛽  (formula 2) 79 

 80 

The signed and unsigned methods have advantages and disadvantages.  81 

The modules detected by the signed method are more robust to their biological 82 
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functions than unsigned modules. A previous study on embryonic stem cells 83 

showed that the signed method identifies modules with more specific 84 

expression patterns than the unsigned method10.  The unsigned method can 85 

capture more negatively correlated genes than the signed method, for example, 86 

non-coding RNA and their targets. Detecting this type of negatively correlated 87 

genes is difficult because they are considered not connected by the signed 88 

method.  However, the unsigned method is only capable of detecting strong 89 

correlations. Negative regulation relationships in biological systems are usually 90 

weak or moderate so they will not be detected using the unsigned method. For 91 

example, a study reported that the more than 50% of microRNA (miRNA)-92 

mRNA correlations in 35 human tissues were 0~-0.3 and only one correlation 93 

was lower than -0.511.  94 

Regulation by suppression is common in functional biology pathways. For 95 

example, miRNA and long non-coding RNA (lncRNA) are two types of non-96 

coding RNAs  reported to repress target genes12-14. MiRNAs can regulate  97 

gene transcription and inhibit  translation of mRNA15-17. Brain-specific miRNA 98 

miR-134 was reported to inhibit Limk1 translation in mice and may contribute 99 

to synaptic development18. LncRNA is another type of regulating RNA, and 40% 100 

of the known lncRNAs are expressed specfically in brain19. LncRNAs have been 101 

implicated in regulating  gene expression at diverse levels, such as 102 

transcription, RNA processing and translation20-21. In the nucleus, lncRNA 103 

regulates the gene by interacting with chromatin-modifying complex or 104 

transcriptional factors. For example, the lncRNA RMST has been reported to 105 

be down-regulated by the transcriptional factor REST, and RMST regulates 106 

neurogenesis by binding SOX2 in vitro22. LncRNA BDNF-AS is the natural 107 

antisense transcript to BDNF, itself a key contributor to synaptic function23. By 108 

dynamically repressing BDNF expression in response to neuronal 109 

depolarization, BDNF-AS modulates synaptic function. Researchers should be 110 

careful not to neglect moderate repression roles in co-expression networks.  111 

Both miRNA and lncRNA are likely to have negative correlations with other 112 

genes and are likely to be undetected by WGCNA. 113 

In this study, we developed a new method named csuWGCNA that combines 114 

signed and unsigned WGCNA methods to detect more negative correlations. 115 

We used 14 simulation data sets, 8 ground truth data sets with known modules, 116 

and two brain gene expression data sets from Stanley Medical Research 117 

Institute and the PsychENCODE project to comprehensively evaluate signed, 118 

unsigned, and csuWGCNA methods at pairwise gene and module levels. We 119 

showed that csuWGCNA is more effective at capturing negative correlations 120 

such as those involving miRNA-target and lncRNA-gene pairs. We also showed 121 

that csuWGCNA can robustly detect modules with biological functions. This 122 

method balances the signed and unsigned methods and provides a more 123 

effective way to analyze whole-transcriptome data.  124 
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Results 125 

Combining signed and unsigned WGCNA 126 

To combine the signed and unsigned WGCNA, we developed a new method 127 

named csuWGCNA for gene co-expression network construction. The 128 

csuWGCNA defines the adjacency matrix as follows,  129 

 130 

                csu aij=((1+|cor(xi,xj)|)/2)β          (formula 3) 131 

 132 

For the genes i, and j, cor(xi,xj) is the correlation and aij is the adjacency 133 

between them. This method combines adjacency calculations used in signed 134 

and unsigned methods (Figure 1A) and csuWGCNA considers weak, moderate, 135 

and strong correlations as well as their direction (Figure 1B). The process of 136 

csuWGCNA includes power selection, adjacency calculation based on similarity 137 

matrix, topological overlap Matrix (TOM) construction, hierarchical clustering, 138 

dynamic tree cutting, and module merging.  139 

 140 

 141 

Figure 1 The correlations captured by three methods for gene co-expression network 142 

construction. (A). Network adjacency (y-axis) versus correlation (x-axis) for weighted networks 143 

for the signed method, unsigned method, and csuWGCNA. The color of the line denotes the 144 

power used. Note that correlation=-1 leads to adjacency = 0 in the signed network and 145 

adjacency =1 in the unsigned and csuWGCNA network. (B). The types of correlations captured 146 

by three networks. The strong and weak denote the degree of correlations, the “-” and “+” 147 

denote the direction of correlations. The “√” and “×” denote the possibility of capturing the 148 

corresponding types of correlation. 149 

 150 
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Evaluation workflow 151 

We evaluated signed, unsigned, and csuWGCNA methods on 22 gene 152 

expression datasets (Figure 2). We tested 14 simulated datasets, six ground 153 

truth datasets with known regulation networks for E. coli, yeast and synthetic 154 

data, and two real gene expression datasets from human brains (Figure 2A). 155 

We set three types of metrics to evaluate the three methods at the gene pair 156 

and gene module levels. To evaluate the capture of negative correlations, we 157 

examined the proportion of negatively correlated gene pairs in observed 158 

modules and their targets. To compare the observed modules with known 159 

modules, we chose six metrics: specificity, sensitivity, positive predictive value 160 

(PPV), negative predictive value (NPV), recovery, and relevance. To evaluate 161 

the biological functions of observed modules, we applied false discovery rate 162 

(FDR) to predict the enrichment of Kyoto Encyclopedia of Genes and Genomes 163 

(KEGG) pathway. The final score for each method was the sum of z-scores of 164 

all metrics used.  165 

 166 

Figure 2 Overview of evaluation. Up panel is total 22 datasets used in this evaluation which 167 

including simulation data, ground truth data and human brain data. Bottom panel is the metrics 168 

used to evaluate the performance of the method which classified in three categories: detection 169 

negative correlations, comparison with known modules, and biological pathway prediction. The 170 

arrow indicates the combination of datasets and metrics.  171 

 172 

csuWGCNA captures more weak-negative correlations than signed and 173 

unsigned methods in simulation analysis 174 

To evaluate the detection of negative correlations, we simulated gene 175 

expression of 2000 genes from 50 samples in 14 scenarios with increased 176 

proportions of negative correlations. To assess the types of correlations 177 

captured, we classified all correlations as follows: weak (|bicor|<0.3), moderate 178 

(0.3≤|bicor|≤0.6), and strong (|bicor|>0.6).  Based on the predicted adjacency 179 

curves for the three methods, the csuWGCNA was expected to detect more 180 
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negative correlations than the unsigned method, especially for weak and 181 

moderate correlations (Figure 3A).  182 

The simulation result showed that csuWGCNA captured 5%~9% of the weak 183 

correlations which is higher than that of both of unsigned and signed methods, 184 

respectively (Bonferroni-Holm (BH) adjusted PcsuWGCNA-signed =5.2e-05, 185 

PcsuWGCNA-unsigned =1.1e-04, two-sample Wilcoxon test). csuWGCNA captured 186 

1%~12% of the moderate correlations, which is significantly higher than that of 187 

signed method (BH adjusted P =5.2e-05) but only 5% higher than that of 188 

unsigned methods with an insignificant p-value 0.73. Both csuWGCNA and 189 

unsigned method capture 0.4%~5% strong correlations while the signed 190 

method is unable to detect strong correlations (BH adjusted P =1.5e-05 for both 191 

signed-csuWGCNA and signed-unsigned comparison). Meanwhile, 192 

csuWGCNA and the unsigned method captured an increasing proportion of 193 

negative correlations when the proportion of negative correlations in the data 194 

increased. In contrast, the performance of the signed method did not change 195 

with increasing numbers of negative correlations and had poor detection 196 

throughout the range. The simulation result was in accord with the adjacency 197 

distribution and suggests that csuWGCNA is capable of capturing more 198 

negatively correlated gene pairs than both signed and unsigned methods, 199 

especially for those that are weakly correlated.  200 

 201 

 202 

 203 

Figure 3 simulation result. (A) distribution of adjacency calculated by three methods for gene 204 
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co-expression network construction. The dashed line denotes the boundary of weak, moderate 205 

and strong correlations. (B) the proportion of negative correlation captured by the three 206 

methods. The axis is the proportion of negative correlations pre-set in each simulation data. 207 

 208 

csuWGCNA captures more negative correlations and retains robust 209 

module reproducibility in ground truth data  210 

To evaluate the three methods at the gene module level, we used six ground 211 

truth datasets with gene expression and corresponding known modules for E. 212 

coli, yeast and synthetic regulatory networks.  213 

We evaluated module reproducibility using the following metrics: positive 214 

predictive value (PPV), negative predictive value (NPV), recovery, relevance, 215 

sensitivity and specificity (Supplemental Figure). We synthesized the six 216 

metrics into one metric named “module score” to represent module 217 

reproducibility. We found that the module score of csuWGCNA is slightly higher 218 

than that of signed and unsigned methods with insignificant p-value (Figure 4A).  219 

We considered negative correlations in this ground truth comparison. The 220 

proportion of negative correlations captured by gene modules (negpros) of 221 

csuWGCNA and the unsigned methods were higher than that of the signed 222 

method (BH adjusted PcsuWGCNA-signed =0.006, PcsuWGCNA-unsigned =0.015, two-223 

sample Wilcoxon tests, Figure 4B). No difference was detected between negpro 224 

of csuWGCNA and unsigned method. 225 

A normalized final score combining module score and negpro was used to 226 

represent the performance of a particular method on a given dataset. The score 227 

of csuWGCNA is significantly higher than both the signed and unsigned 228 

methods (BH adjusted PcsuWGCNA-signed =0.004, PcsuWGCNA-unsigned =0.003, Figure 229 

4C). The unsigned method also performs better than the signed method (BH 230 

adjusted P value=0.003). This suggests that csuWGCNA can detect more 231 

negative correlations than signed and unsigned methods and performs as well 232 

as these two methods in detecting known modules.  233 

 234 

 235 

 236 

Figure 4 Overall performance of signed, unsigned and csuWGCNA in ground truth data. (A) 237 
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The module score synthesizing individual metrics. (B) The negpro of three methods in given 238 

dataset. (C) The final score synthesizing module score and negpro. Two-sample Wilcoxon test 239 

was used to test the difference (N=8). ns denotes non-significance. “**” and “***” denotes p-240 

value< 0.01 and p-value<0.001, respectively. 241 

 242 

csuWGCNA captures more negatively correlated miRNA-targets and 243 

lncRNA-mRNA pairs 244 

We next examined the improvement of csuWGCNA in complex human brain 245 

data. MiRNA and lncRNA are two types of non-coding RNA that have been 246 

reported to negatively regulate their target genes. We used two gene 247 

expression datasets that measured expression of miRNA and lncRNA from 248 

human brain, SMRI and BrainGVEX, as our test datasets.  249 

 We evaluated the methods from two aspects, the proportion of negative 250 

correlations by miRNA/lncRNA and the biological functions of the modules. The 251 

biological functions are represented by prediction of KEGG pathways. We 252 

tested 58,069 miRNA-target interactions (MTI) from miRTarBase in SMRI data 253 

and 7,334,095 lncRNA-gene pairs with significantly negative bicor values 254 

(FDR<0.05) in BrainGVEX data. Because the MTIs collected were validated 255 

experimentally, we only set the criteria that correlation<0 on them. The final 256 

score is a sum of z-scores of two metrics above.  257 

Overall, the csuWGCNA performed best among three methods. At the gene 258 

level, csuWGCNA captured 16% of the MTIs and 33% of the lncRNA-gene pairs, 259 

which was more than that of signed and unsigned methods (chi-square test, 260 

PcsuWGCNA -unsigned<1.89e-09, all other P<2.2e16, Figure 5A, Figure 5B). We 261 

found that 98% MTIs captured by csuWGCNA were functionally validated by 262 

RT-PCR, Western blot or RNA sequencing (Supplemental Figure 2). At the 263 

module level, we found that csuWGCNA and the signed method both detected 264 

the modules and have a lower FDR in prediction of KEGG pathway than the 265 

unsigned method (Figure 5C, Figure 5D), especially in the brainGVEX data with 266 

a large sample size. This suggested that csuWGCNA is able to detect modules 267 

corresponding to known biological pathways as well as the signed method and 268 

better than unsigned method. By combining these two criteria, final scores 269 

indicate that the csuWGCNA performs better than both signed and unsigned 270 

methods in SMRI and BrainGVEX data (Figure 5E, Figure 5F).  271 

 272 
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 273 
Figure 5. Summary of coexpression analysis of SMRI data (upper panel) and BrainGVEX data 274 

(bottom panel). (A-B) Negpro of miRNA - target and lncRNA - gene. (C-D) The FDR of predicting 275 

KEGG pathway (n=254, two-sample Wilcoxon test). (E-F) Final score of three method’s 276 

performance. The final score is a sum of zscore of detecting negtative correlations and 277 

predicting KEGG pathway. 278 

Discussion  279 

Here we introduced csuWGCNA, which is a combination method of signed 280 

and unsigned WGCNA that captures more negative correlations. The 281 

csuWGCNA works by treating the positive and negative correlations equally 282 

and giving high connection strength to the weak and moderate correlations. We 283 

tested csuWGCNA on 22 datasets and compared the results to those of signed 284 

and unsigned methods. We showed that csuWGCNA is capable of detecting 285 

negative correlations and maintaining robust module detection in gene co-286 

expression network analysis.  287 

We showed the effectiveness of csuWGCNA from simple simulation data and 288 

complex human brain data. Our comparison includes, the detection of negative 289 

correlations and module reproducibility. In simulation data, we found that 290 

csuWGCNA was better than signed and unsigned methods in detecting weak 291 

and moderate correlations as predicted. This is an important improvement 292 

because most biologically negative correlations are small. We calculated the 293 

correlation between validated miRNA and targets and found that the majority of 294 

correlations are between -0.4~0 (Supplemental Figure 1). In ground truth data, 295 

we showed that csuWGCNA can reproduce known modules well in multiple 296 

datasets. The module score of csuWGCNA was not significantly improved.  297 
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This was predicted because csuWGCNA aims to strengthen the detection of 298 

weakly correlated genes and global gene detection is still preserved in the three 299 

methods.  300 

The real data is much more complex than the simulated data where gene co-301 

expression is largely unknown. In the brain data, we showed that csuWGCNA 302 

can capture a higher proportion of negative MTIs and lncRNA-gene pairs than 303 

the other two methods. The importance of this is two-fold. First, we proved that 304 

the experimentally validated gene pairs have consistent co-expression at the 305 

whole transcriptome level in csuWGCNA. Second, it suggests promising 306 

application of csuWGCNA in detecting novel negative gene relationships. We 307 

also showed that csuWGCNA modules contain more functional pathways, 308 

especially compared to the unsigned method (p=0.13 in SMRI, p=0.0001 in 309 

BrainGVEX), even though the modules are preserved in both signed and 310 

unsigned networks (Supplemental Figure 3, Supplemental Figure 4). This 311 

suggests that csuWGCNA has the potential to obtain a larger number of 312 

informative modules. By extension, this further suggests that csuWGCNA may 313 

capture novel negative relationships related to specific biological functions.  314 

The major advantage of csuWGCNA is that it is able to capture more disease-315 

related negatively correlated lncRNA-mRNA pairs than the signed or unsigned 316 

methods. We found some lncRNAs and potential targets related to 317 

schizophrenia only by csuWGCNA. . For example, lncRNA LINC00473 is a hub 318 

gene of a module downregulated in the schizophrenia (log2FC=-0.003, 319 

FDR=4.81E-05). LINC00473 is negatively correlated with TMEM245, which has 320 

been reported to be associated with negative symptoms of schizophrenia (Pmeta-321 

analysis<6.22×10−6)24. This pair was only detected by the csuWGCNA method. 322 

As another example, NEAT1 is a brain-expressed lncRNA, which has been 323 

reported to change expressions in schizophrenia and neurodegenerative 324 

disease25,26. In the csuWGCNA module, NEAT1 negatively correlated with 325 

DPEP2 and ABCC12 which are downregulated in schizophrenia. In summary, 326 

csuWGCNA is a promising method to detect negatively correlated genes in 327 

transcriptome studies.  328 

  329 

Conclusion  330 

csuWGCNA is an effective method for constructing gene co-expression 331 

networks. It can capture more negative correlations and maintain robust module 332 

detection compared to the original WGCNA procedure. Applying csuWGCNA 333 

on transcriptome data will help interpretations in systems biology.  334 

Methods 335 

Datasets and quality control 336 
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Simulation.  We simulated 14 gene expression datasets containing 2000 337 

genes and 50 samples using function simulateDatExpr. The proportion of 338 

negative correlations in each dataset was from 0.01 to 0.3, which was controlled 339 

by parameter propNegativeCor.  340 

Ground truth data. We used six expression datasets for ground truth 341 

analyses, two from E. coli27,28, two from yeast 342 

(synapse.org/#!Synapse:syn2787209/wiki/70349), and two synthetic datasets. 343 

These datasets were collected by Saelens et al. in a comprehensive evaluation 344 

of module detection methods1 and were quality controlled and quantile 345 

normalized. The known modules were extracted from known gene regulatory 346 

networks29-31 used the strict module definition from Saelens et al. Strictly co-347 

regulated modules were defined as groups of genes known to be regulated by 348 

exactly the same set of regulators. We downloaded the data from a Zenodo 349 

repository (doi: 10.5281/zenodo.1157938). 350 

Human brain data. We used two different datasets from human brain: data 351 

from Stanley Medical Research Institute Neuropathology Consortium and Array 352 

collections (SMRI) and BrainGVEX, as real test data. The gene profiling and 353 

data pre-processing are described in Supplemental Materials.  354 

SMRI data. We used parietal cortex tissue. The data measured the 355 

expression of miRNA and mRNA in SCZ and BD patients and controls. We 356 

removed non-Europeans, duplicates, and samples missing any of the mRNA or 357 

miRNA. After filtering, we retained 75 samples (25 SCZ, 25 BD, 24 controls), 358 

yielding data for 19,984 mRNAs and 470 miRNAs for subsequent analyses.    359 

BrainGVEX data. We used RNA-Seq data of frontal cortex samples from the 360 

PsychENCODE project. The samples included 248 healthy control, 71 BD and 361 

90 SCZ patient brains. Genes with Transcripts Per Million (TPM) lower than 0.1 362 

in more than 25% of samples, mitochondrial genes, and pseudoautosomal 363 

genes were dropped. We calculated co-expression between samples, and 364 

samples with z-score normalized connectivity with other samples lower than -2 365 

were removed. After filtering, 409 samples and 25774 genes were retained for 366 

subsequent analyses.  Linear regression was used to remove the effect of 367 

covariates including age, sex, RIN, PMI, brain bank, batches, and principal 368 

components of sequencing statistics (seqPC). The seqPCs were the top 29 369 

principal components of PCA on sequencing statistics. The covariates were 370 

selected by Multivariate adaptive regression splines (MARs).    371 

network construction 372 

We completed signed, unsigned and csuWGCNA on all the datasets 373 

independently. Bicor was chosen to calculate the correlation between genes.  374 

We set power =12 for all the simulation datasets. Other parameters were as 375 

follows: ds = 2; minModSize = 30; dthresh = 0.1; pam = FALSE. For the ground 376 

truth data, the power of the three methods on each dataset calculated 377 

(Supplemental Table 1). Other parameters were as follows: ds = 4; minModSize 378 

= 20; dthresh = 0.2; pam = TRUE. For SMRI data, the soft power for signed, 379 

unsigned, and csuWGCNA was 5, 3 and 6, respectively. The parameters were 380 
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as follows: TOMtype was unsigned, deepSplit was 4, minimum module size was 381 

30 and mergeCutHeight wass 0.2, pamStage was true. For BrainGVEX data, 382 

the soft power for signed, unsigned, and csuWGCNA was 12, 4 and 10, 383 

respectively. The parameters were as follows: TOMtype was unsigned, 384 

deepSplit was 4, minimum module size was 40 and mergeCutHeight was 0.2, 385 

and pamStage was false. cutreeHybrid function was used to cut the gene tree.  386 

 387 

Evaluation metrics 388 

We used three different types of metrics to evaluate signed, unsigned and 389 

WGCNA at gene pair and gene module levels. At the gene pair level, we used 390 

negpro, which is. At the gene module level, we considered the robustness and 391 

the biological functions of modules. The robustness of modules was used for 392 

comparison between known modules and observed modules in ground truth 393 

data. We used six classic metrics for comparing modules: specificity, sensitivity, 394 

NPV, PPV, relevance and recovery. Following are the formulas for the metrics 395 

where G represents all genes in a given dataset, M represents a gene set in an 396 

observed module, and m represents a gene set in a known module. For each 397 

M and m, the metrics are defined as: 398 

 399 

specificity =  
𝐺 − 𝑀 ∪ 𝑚

(𝐺 − 𝑀 ∪ 𝑚) + (𝑀 − 𝑚)
 400 

 401 

sensitivity =  
𝑀 ∩ 𝑚

(𝑀 ∩ 𝑚) + (𝑚 − 𝑀)
 402 

 403 

negative predictive value (NPV) =  
𝐺 − 𝑀 ∪ 𝑚

(𝐺 − 𝑀 ∪ 𝑚) + (𝑚 − 𝑀)
 404 

 405 

positive predictive value (PPV) =  
𝑀 ∩ 𝑚

(𝐺 − 𝑀 ∪ 𝑚) + (𝑀 − 𝑚)
 406 

 407 

We compared every known module m and observed module M. For each M, 408 

we calculated the max value of a metric, such as specificity, sensitivity, or others, 409 

across all m. We averaged these max values to define the final value of a metric 410 

in a given dataset. The relevance and recovery are two metrics used to assess 411 

whether every observed module can be matched with a known module. We 412 

started by calculating the Jaccard index between every m and M.   413 

 414 

Jaccard index =  
𝑀 ∩ 𝑚

(𝑀 ∪ 𝑚)
 415 

 416 

Relevance wass defined as the median value of the maximum Jaccard index 417 

value across all m for a given dataset. Recovery was defined as the median 418 

value of the maximum Jaccard index value across all M for a given dataset.  419 
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In the ground truth analysis, we calculated the module score as follows for 420 

evaluating module reproducibility.  421 

 422 

module score =  
2

1
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+
1

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

+
2

1
𝑃𝑃𝑉

+
1

𝑁𝑃𝑉

+ 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑐𝑒 + 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  423 

 424 

A final score combining module score and negpro was calculated.  425 

 426 

final score = Zscore(module score) + Zscore(negpro)  427 

 428 

In the human brain data analysis, we replaced the module score with the 429 

prediction of from the KEGG pathway. The prediction of the KEGG pathway 430 

was represented by false discovery rate (FDR) defined as follows. For a KEGG 431 

pathway P and an observed module M, we calculated the minimum FDR across 432 

all M for a given P.  433 

 434 

FDR =
𝑀 − 𝑃

(𝑀 − 𝑃) + (𝑀 ∩ 𝑃)
 435 

 436 

Negative correlated miRNA-target interactions 437 

To obtain the experimentally validated MTIs, we downloaded human MTIs 438 

from miRTarBase32. There were 502654 MTIs collected including 15064 genes 439 

and 2599 miRNAs. Among them, 117945 MTIs were detected by our SMRI data 440 

and 58069 MTIs showed negative correlations. The MTIs are cataloged by 441 

experimental evidence in miRTarBase. The strong evidence was considered to 442 

be reporter assay or Western blot and the weak evidence was considered to be 443 

microarray or pSILAC.  444 

KEGG pathways 445 

To evaluate the prediction of biological pathway, 289 KGML files for human 446 

species were downloaded from the KEGG website33. The R package 447 

KEGGgraph34 was used to operate the KGML file and extract the gene 448 

members.  449 

Code Availability 450 

The code of csuWGCNA is available from 451 

https://github.com/RujiaDai/csuWGCNA. 452 
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