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Abstract 
Cancer is a disease of the genome, but the dramatic inter-patient variability in mutation number 
is poorly understood. Tumours of the same type can differ dramatically in their mutation rate. To 
improve our understanding of potential drivers and the consequences of the underlying 
heterogeneity in mutation rate across tumours, we evaluated both local and global measures of 
mutation density (both single-stranded and double-stranded DNA breaks) in 2,460 tumours 
across 38 cancer types. We find that SCNAs in thousands of genes are associated with 
elevated rates of point-mutations, while conversely, SNVs in dozens of genes are associated 
with specific patterns of DNA double-stranded breaks. To supplement this understanding of 
global mutation density, we developed and validated a tool called SeqKat to identify localized 
regions of hypermutation (also known as kataegis). We show that rates of kataegis differ by four 
orders of magnitude across tumour types and that tumours with TP53 point mutations were 2.6-
times more likely to harbour a kataegic event than those without. Furthermore, we identify novel 
subtypes of kataegic events not associated with aberrant APOBEC activity and found that 
kataegic events were associated with patient survival in some, but not all tumour types. Taken 
together, we reveal a landscape of genes driving localized and tumour-specific hyper-mutation, 
and reveal novel mutational processes at play in specific tumour types.  
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Introduction 
Genome instability is one of the hallmarks of cancer, and cancer is often referred to as a 
“disease of the genome”1. Just as cancers are heterogeneous over time and space2-4, they are 
also heterogeneous in the number of mutations they harbour – their “mutational density”. Some 
tumour types, like melanomas and lung cancers, harbour hundreds of thousands or even 
millions of single nucleotide variants (SNVs). These large mutational burdens are thought to 
reflect the effects of environmental carcinogens, like UV radiation and the by-products of 
cigarette smoke. Other tumour types, like prostate cancers, can harbour only a few hundred 
SNVs5-11. This variability in SNV mutational density across tumour types has been well-
demonstrated in previous pan-cancer exome sequencing studies12,13. 

It is less clear however, what drives some tumours to harbour more DNA damage than others. 
Even within an individual cancer type, individual tumours of similar clinical grade and stage can 
vary by orders of magnitude in their number of SNVs. Theoretical modeling studies have 
attributed large fractions of the divergence across tumour types to differences in the number 
and rate of replication-induced errors, rather than the effects of heredity or environmental 
influences14-16. What drives these differences in mutational density at the SNV level? Are these 
differences in mutational density in point-mutations reflected by similar trends in somatic copy 
number aberrations (SCNAs), translocations and other copy-neutral structural variants (SVs) 
and in localized hypermutation events such as kataegis? 

To address these questions, we evaluated both local and global measures of mutation density: 
including numerous metrics of both single-stranded and double-stranded DNA breaks. Using 
mutation data from the PCAWG Network for 2,460 tumours across 38 cancer types, we have 
uncovered potential mechanisms and/or consequences associated with mutational density. 
Specifically, we have identified individual genes whose mutation status is associated with 
changes in the mutation density of different types of aberrations. For example, we identify SNVs 
in dozens of genes as associated with changes in the burden of somatic copy number 
aberrations (SCNAs) and the number of copy-neutral SVs in a pan-cancer analysis. These 
candidate drivers of mutation density preferentially occur early in tumour evolution, appearing 
clonally in all cells of a tumour. 

To further expand this understanding to localized mutation density, we developed and validated 
SeqKat, a tool to identify genomics regions with statistically significance increases in local point-
mutation frequency. These regions are then classified as either kataegic or non-kataegic hyper-
mutation events, based on mutation type and trinucleotide context. Rates of kataegis differed 
dramatically across tumour types, with malignant lymphomas having a particularly high rate. 
Furthermore, we identify novel subtypes of kataegic events not associated with aberrant 
APOBEC activity, and find that these are localized to specific genomic regions and enriched for 
MYC-target genes. Kataegic events were associated with patient survival in some, but not all 
tumour types, highlighting a combination of global and tumour-type specific effects. Taken 
together, we reveal a landscape of genes driving localized and tumour-specific hyper-mutation, 
and reveal novel mutational processes at play in specific tumour types.  
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Results 

Experimental Design 

The ICGC Pan-Cancer Analysis of Whole Genomes (PCAWG) analyzed the whole genomes 
sequences (WGS) of 2,703 tumour-normal pairs of 37 histological subtypes using a consistent 
bioinformatics pipeline (https://dcc.icgc.org/pcawg#!%2Fmutations)17. We excluded samples 
flagged for poor quality, which represented additional specimens from a single donor, where 
donor sex was unknown or where donor age was unknown. The remaining 2,460 tumours were 
evaluated for density of somatic single-stranded breaks, double-stranded breaks, hypermutation 
and kataegis (Supplementary Figure 1; Supplementary Table 1). Selection procedures for 
tumours focused on larger, surgically-managed tumours that yielded sufficient DNA for 
sequencing: the PCAWG marker paper outlines variant calling, coverage and other aspects17-19. 

Drivers of Single Nucleotide Variation 

We first examined the density of somatic SNVs across the PCAWG cohort, and observed a 
broadly consistent number of SNVs, including both coding and non-coding variants, across the 
genome (excluding chromosome Y), with a median of 12,950 SNVs within each 1 Mbp bin 
(Figure 1A). Regions with few SNVs largely correspond to centromeres and telomeres, and 
after control for differential coverage across samples, hypermutated bins did not encompass 
known driver genes (Supplementary Figure 2A). Rather, these reflect replication-timing 
effects, environmental exposures and other signals8,20,21. Across tumour types, we confirm the 
relatively small intra-tumoural heterogeneity seen in previous studies (Figure 1B)6,22-25 with 
99.3% of variance in SNV mutational burden between tumour types and only 0.7% of variance 
within them. However there are also significant differences between tumour types in their 
variability in SNV mutation density. For example at one extreme, median SNV mutation density 
of a melanoma was 26.4 SNVs/Mbp, but this varied dramatically (SD = 54.25, IQR = 45.59). By 
contrast in pilocytic astrocytomas, mutation density was both lower (0.06 SNVs/Mbp) and much 
more consistent across tumours (SD = 0.08, IQR = 0.076; Supplementary Table 2). Thus not 
only does mutation density vary significantly between tumour types, but so too does its 
consistency within them. 

To understand the drivers of increased somatic point mutation density, we focused on their rate 
per Mbp of covered sequence (SNVs/Mbp, Supplementary Figure 2B). We analyzed the 
relationship between SNVs/Mbp and somatic copy number aberrations (SCNAs) in 1,778 
samples with both types of data available. Linear mixed effects modeling with variable intercepts 
for each tumour type was used to quantify the effects of individual SCNAs on SNV mutational 
density, controlling for confounding variables including patient sex, age and average tumour 
ploidy (since changes in ploidy changes the amount of DNA available to accumulate mutations; 
Supplementary Figure 2C-E, Supplementary Table 3). Tumour purity was not correlated with 
SNVs/Mbp (Supplementary Figure 2F) so was used only for validation of specific models. 
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Similarly, less than 1% of variance in this mutation metric could be attributed to sequencing site 
(via project-code), therefore this variable was not included in our models. 

Our analysis identified 16 gene amplifications and 473 gene deletions significantly associated 
with increased SNVs/Mbp (Figure 1C, top; Bonferroni adjusted p-value < 0.01). No genes were 
associated with decreased SNV mutational density (Supplementary Table 3). Some genes 
were associated with very large changes in SNV mutational density, such as amplification of the 
nuclear-encoded mitochondrial gene BCKDHB. Tumours with this gain harboured an additional 
1.66 SNVs/Mbp than those without it across the PCAWG cohort, corresponding to ~5,000 
additional SNVs genome-wide (Figure 1D, left panel). This pan-cancer effect was independent 
of tumour purity. To confirm our multivariable modeling identified trends that occur in individual 
tumour types, we performed subgroup analyses on the five tumour types with the highest 
individual number of tumours in the PCAWG cohort: medulloblastoma, renal cell carcinoma 
(RCC), hepatocellular carcinoma (HCC), pancreatic and prostate adenocarcinomas. Here, 
tumour purity appeared to be a contributing factor (data not shown), as was the scarcity of 
BCKDHB amplifications in these subsets, with deletions showing a more significant association 
in medulloblastoma and prostate adenocarcinomas (Figure 1D, right panel). 

Similarly, deletion of nearly all genes on the q arm of chromosome 5 were associated with an 
increase in SNVs/Mbp. This region encompasses the tumour-suppressor APC, which was 
deleted in 9.6% of samples, and on which we focused. Tumours with deletion of APC showed 
an increase of 1.64 SNV (Figure 1E, left panel); this tumour suppressor and is representative 
of the deletion event, associated with an increase of 1.64 SNVs/Mbp (~5,000 SNVs genome-
wide). A further examination of the five tumour with the largest sample-number confirmed this 
trend with both pancreatic and prostate adenocarcinoma showing significant increases in 
SNVs/Mbp in tumours with APC deletions (Figure 1E, right panel). Thus individual gene-wise 
SCNAs, possibly representing larger SCNA segments, are associated with large-scale changes 
in somatic SNV mutational burden, both pan-cancer and within individual tumour types. 

Genes with SCNAs associated with increased global somatic SNV mutational density were 
assessed for pathway enrichment. Amplified genes associated with increased SNVs/Mbp 
preferentially harboured GTPase activity (including NET1 and ECT2; Supplementary Table 4). 
Conversely, deleted genes associated with increased SNV mutational density were enriched for 
interleukins (growth receptor binding and regulation of STAT) and subunits of the TFIIH 
holoenzyme (Supplementary Table 4). Amplifications were enriched on chromosome 10, while 
deletions were enriched on chromosome 5 (Supplementary Table 5). The majority of 
associated genes originated in subclonal tumour populations26. However, 251 genes affected by 
CN deletions associated with SNV mutational density were identified as clonal in at least 50% of 
patients (Supplementary Table 6), and these were preferentially located on the q arm of 
chromosome 5. 

Finally, to better understand the tumour-type-specificity of candidate drivers of SNV mutational 
density, we performed genome-wide subgroup analyses on the five tumour types with the most 
samples: medulloblastoma, RCC, HCC, pancreatic and prostate adenocarcinomas. We 
replicated our mixed linear modeling strategy for each tumour-type independently, controlling for 
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sex (where appropriate), age and tumour ploidy. Adjacent genes with identical copy-number 
profiles were collapsed within tumour types. Despite considerably smaller sample sizes (n 
ranging from 107-241), we identified multiple regions associated with increased SNV mutational 
density (Bonferroni < 0.1; Figure 1C, Supplementary Table 7). As before, effect-sizes could be 
very large; 9 unique CNA segments on chromosome 8 (representing 34 genes) carried CN 
deletions associated with increases in SNV mutational density of 1.63-1.73 SNVs/Mbp in 
prostate adenocarcinomas (Supplementary Figure 3). Similarly, 80 regions on chromosome 1 
in medulloblastoma harboured CN gains (involving 452 genes) associated with an increase of 
2.06-2.08 SNVs/Mbp (Supplementary Figure 4), independent of tumour purity. In both cases, 
findings were unique to a single tumour type and were not identified within the pan-cancer 
analyses. Taken together, these results uncover a landscape of pan-cancer and tumour-type-
specific effects in driving changes in SNV mutational density. Indeed even the large PCAWG 
dataset employed here likely results in significant false-negative rates for smaller effect-size 
associations. 

Drivers of Copy Number Changes 

We next sought to examine patterns of copy number gains and losses across tumour types. We 
considered a panel of copy-number summary features, including total SCNA count, proportion 
of the genome altered (PGA)27 and average SCNA length. These were further sub-categorized 
by the direction of change (gain, loss or overall; Supplementary Table 1). 

We find that the well-known variability in SNV mutational density (Figure 1A) are paired to even 
larger intra- and inter-tumour type variability in their SCNA alteration patterns. For example, 
pilocytic astrocytomas had few SCNAs, predominantly amplifications (median PGA = 6.5%, 
Figure 2A). On the other end of the spectrum, chromophobe renal cell carcinoma (chRCC) was 
dominated by CN deletions, with few amplifications (median PGA = 0% and 37.3% for 
amplifications and deletions respectively; Supplementary Figure 5, Supplementary Table 2). 
Even within individual tumour types, these metrics ranged dramatically, with some having 
relatively balanced gains and losses and others showing large bias. For example, hepatocellular 
carcinoma (HCC) shows a balance of gains to losses (median ratio = 1), however with a large 
degree of variability around this (IQR = 2.58); similarly pancreatic adenocarcinomas show a 
median ratio of 0.55 (IQR = 0.79). This picture of large inter- and intra-tumour type 
heterogeneity was not restricted to any single feature of the CN landscape, but held true for 
many metrics of SCNA burden, both as an overall metric or when broken down to gains and 
losses separately, as well as for indirect features such as average ploidy and purity. In 
particular, dramatic variability was observed in the distributions of SCNA length across tumour 
types (Supplementary Figure 6). 

To identify potential drivers of this heterogeneity in SCNAs, we again employed mixed effects 
modeling. Here, features of SCNA burden were modeled as a function of gene-wise somatic 
SNV status, considering only those SNVs with predicted functional impact (missense and 
nonsense mutations single base mutations), and controlling for variables including as patient 
sex, age and tumour type (Supplementary Table 3). Given the relative paucity of recurrent 
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pan-cancer SNVs (<10% of genes contained functional SNVs in ≥1% of tumours), we focused 
on consensus driver SNVs28. We identified a diverse landscape of SNV-SCNA associations 
across these metrics (Figure 2B-D, Supplementary Figure 7). In particular, TP53 – the most 
recurrently altered gene (26% of PCAWG tumours harboured at least 1 functional SNV) – was 
associated with nearly every metric tested, including shorter SCNAs (total or by gains alone), 
increased number of SCNAs, increased PGA and estimated tumour ploidy. Somatic point 
mutations in CTNNB1 was associated with an increased rate of amplifications, relative to 
deletions (by SCNA count and PGA) as well as with a decrease in overall deletions (both count 
and PGA) and increased tumour purity. To understand the tumour-type-specificity of these 
results, we again stratified our analysis and focused on the most well-powered tumour types 
(100+ tumours) using a similar linear fixed-effects modeling approach (Supplementary Table 
7). We found minimal recurrence across individual tumour types, with specific genes rarely 
associated with any one metric in multiple tumour types. The predominant exception to this was 
TP53, associated with metrics of SCNA count (total, gain and loss) and PGA (total and loss) in 
multiple individual tumour types. Despite the reduced power, these results confirmed the pan-
cancer findings, and highlight a landscape of tumour-type specific effects. These results suggest 
that in addition to shared biological pathways that increase SCNA mutational density, distinct 
molecular processes are also at play in different tumour types, and that TP53 is unique as a 
strong driver of SCNA burden across many tumour types. 

Drivers of Copy-Neutral Structural Variation 

Next, we repeated the above process to assess copy-number neutral somatic structural variants 
(SVs), in particular translocations and inversions (Supplementary Table 1). The mutational 
density of different SVs were tightly correlated (Spearman’s ρ = 0.81-1.00, p-value < 2.6 x 10-

22). BRCA-driven tumours (breast, ovarian, and uterine cancers) had high levels of both 
translocations (TRAs) and inversions (INVs). Alternatively, tumours often thought to be driven 
by fusion proteins, such as thyroid carcinomas or AML, had fewer total SVs (Figure 3A, 
Supplementary Figure 8). 

To understand the spatial structure of these trends, we collapsed SV events into 1 Mbp bins 
across the genome and visualized those occurring in at least 10 patients (~0.4% recurrence; 
Figure 3B). A total of 149 focal SV hotspots were detected, including two major translocation 
clusters: one on the q-arm of chromosome 12 (containing MDM2 and widely distributed across 
tumour types, however with a predominance in sarcomas) and another between chromosomes 
14 and 18 (within regions that include YY1 on chromosome 14 and BCL2, SMAD4 and SMAD7 
on chromosome 18) present exclusively in non-Hodgkin’s lymphoma and CLL. 

Again, linear mixed-effects modeling was used to identify associations between driver genes 
containing somatic SNVs and metrics of SV mutational density (Figure 3C, Supplementary 
Figure 9). As expected, results were highly correlated across these density metrics, with 
somatic point mutations in TP53 significantly associated with an increase in all SV types (FDR < 
0.01). Additionally, point mutations in CTNNB1, PIK3CA and EZH2 were associated with 
moderately reduced SV density (attributed primarily to inversions; FDR < 0.1). In individual 
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tumour types, CTNNB1 and PIK3CA demonstrated moderate associations with reduced SV 
count in hepatocellular carcinoma (HCC) and breast adenocarcinoma respectively, while TP53 
showed significant positive associations with total SV count in both tumour types 
(Supplementary Table 7, Supplementary Figure 10). In HCC, point mutations in TP53 were 
associated with an increase in inversions (FDR < 0.01); HCC patients with a functional SNV in 
TP53 had an average of 1.75x more inversions than those without. Thus point-mutations in 
multiple genes are associated with an increase in the rate of somatic SVs. 

Kataegis 

To determine if these broad trends in global mutation burden are mirrored at the level of 
localized mutational hotspots, we focused on kataegis: localized hypermutation of somatic 
SNVs29. Kataegis can be caused by AID or APOBEC-mediated events30, although may also 
refer to hypermutation due to environmental factors such as UV31, and has been described in a 
number of tumour types12,29,31-34. Kataegis is an important signature of genomic instability, 
independent of other somatic variants35,36. To quantify kataegis, we created SeqKat: an open-
source tool to predict kataegis from paired tumour and normal WGS via a sliding window 
approach. SeqKat tests deviation of observed somatic SNV trinucleotide content and inter-
mutational distance from that expected by chance, after adjusting for the effects of trinucleotide 
signature and mutation rate (Supplementary Figures 11-12). The resulting kataegic score 
estimates the magnitude of the event, and accounts for features such as deviation from 
expected C/T base change frequency and expected inter-SNV distance within each window. 

We applied SeqKat to all 2,459 PCAWG tumours with consensus SNV calls and complete 
clinical annotation and detected 84,218 hypermutation events, of which 97.3% were classified 
as kataegis (enriched for C>T or C>G mutations in TpCpN trinucleotides). Overall 54% of 
patients had at least one kataegic event (1,327/2,459 patients; Supplementary Table 1), but 
different tumour types varied dramatically in their number and magnitude. For example, bladder 
carcinomas had the highest median rate of kataegis, with a median 22 events per tumour, while 
13 tumour types had a median of zero kataegic events per tumour (Figure 4A). These events 
also differed dramatically in their scores (length and enrichment for trinucleotide features), with 
non-Hodgkin’s lymphomas and squamous carcinomas of the lung showing the strongest events 
(Figure 4B). Again, these differences were dramatic, with median event size and score differing 
by orders of magnitude across tumour types. This heterogeneity among tumour types was 
similarly reflected within tumour types, with colorectal adenocarcinomas showing large 
differences in frequency of events (median = 1, SD = 2189) and non-Hodgkin’s B-Cell 
lymphomas showing the highest variance among in kataegis score (median = 3.2 x 105, SD = 
1.15 x 106; Supplementary Table 2). Individual events could be remarkably strong, with 
massive enrichment of the classic APOBEC-associated TCX mutations in some breast tumours 
(Figure 4C, Supplementary Figure 13A) or other, non-APOBEC mediated TCX mutations 
(Supplementary Figure 13B-D). This heterogeneity confirms previous trends in kataegic 
incidence11,12,29,32,35,37,38 and expands them to dozens of additional tumour types, while 
describing surprising differences in the strength and extent of individual events. 
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To better understand why kataegic events afflict some tumours and regions of the genome more 
than others, we integrated the presence and location of kataegic events with translocations and 
RNA-seq data. Chromosomes 4, 5, 8, 18 were enriched for kataegic events relative to chance 
expectations (q < 0.01; Figure 4D). There were 3,479 genes affected by kataegic events in at 
least 2 patients, ranging from a single tumour type to 11 separate tumour types (Figure 4E). 
CNTNAP2 harbored the highest number of total kataegic events (n = 304) across 34 patients in 
8 different tumour types. This gene, along with 3 other kataegis-enriched genes (LRRC4C, 
CNTN5, and CSMD1), showed significant associations with mutational signatures 7a-d (FDR < 
0.01; Supplementary Table 8), signatures with the characteristic C>T mutations in a TCX 
context39. We observed 7 kataegic hotspots within the genes IGH, IGK, BCL2, BCL6 and MYC, 
exclusively within lymphomas, consistent with previous studies40,41. These genes are either 
targets for somatic hypermutation (SMG) or aberrant somatic hypermutation (aSHM) in B-
Cells40. AID and APOBEC editing deaminases play an important role in the initiation of 
hypermutation and recombination of immunoglobulin genes in B-Cells, which are essential 
processes for the recognition and disposal of pathogens42, explaining the high kataegic rate of 
IGK and IGH genes. During that process however, AID has been shown to aberrantly target 
oncogenes and tumour suppressors such as BCL6 and MYC41. Many of these genes are also in 
close proximity to common fragile sites; while these are typically associated with DSBs and 
structural variants, fragility may also play a role in hypermutation43,44. We assessed the kataegic 
rate for 56,827 genes, normalizing for gene length, and identified 451 kataegic enriched genes 
that are potential targets of aSHM in lymphoma (Supplementary Table 9). 

Aberrant processing by AID also leads to the introduction of translocations via induction of 
double-stranded breaks required by the repair process45. We examined the translocation 
breakpoints in lymphoma patients and found that many of these breakpoints overlapped with 
kataegic hotspots (Figure 5A). One example is the MYC-IGH (chr8-chr14) translocation that 
classically identifies Burkitt’s lymphoma46: patients with this event had an enrichment of kataegis 
events around the translocation breakpoints (10/14 patients). Translocated MYC has a 
consistently lower kataegis score and mutation frequency compared to translocated IGH, 
suggesting that MYC kataegic events occurred after the translocation, while under regulation by 
Ig regulatory elements, as suggested previously47. We also assessed the effect of kataegis on 
MYC transcription; in B-cell non-Hodgkin’s lymphomas, kataegic MYC had significantly higher 
mRNA abundance compared to wild-type MYC (Figure 5B). This form of MYC deregulation has 
been described previously in B-cell lymphoma cell-lines and can be caused by complex 
insertional rearrangements, three way recombinations of MYC-IGH-BCL2 and IGH-MYC 
fusions48,49. The presence of Ig transcriptional enhancers in such translocations leads to 
deregulation of MYC50. Similarly, mRNA abundance of most AID/APOBEC family emembers 
was significantly higher in kataegic samples than non-kataegic ones (Supplementary Figure 
14), including the transcription factor PAX5, which is involved in upregulation of AID51. 

We then assessed the relationship between individual gene-specific mutations and different 
measures of kataegis in each tumour to evaluate its causes and consequences. We again used 
linear mixed effects modelling to associate the mutation status of each gene with its effect on 
kataegis, with adjustments for patient sex, patient age, average tumour ploidy (when evaluating 
associations with SCNA status) and fitting tumour type as a random effect with variable 
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intercepts; both ternary SCNA and somatic SNV status were assessed for each gene 
(Supplementary Table 3, Supplementary Figure 15). Somatic point mutations in TP53 were 
remarkably predictive of kataegis (FDR = 1.81 x 10-10, effect size = 0.97; Figure 5C): tumours 
harbouring a TP53 mutation are 2.6x more likely to have at least one kataegic event then those 
without (Supplementary Figure 16). Alternatively, SNVs in numerous genes, including ERCC6, 
were associated with an increase in number of kataegic events (Supplementary Figure 15A).  
When evaluating the impact of gene-wise SCNAs on kataegis, 151 genes contained CN 
deletions that were associated with both existence and strength of a kataegic event, while 44 
genes with CN amplifications were associated only with strength of kataegis event; no genes 
were associated with the frequency of kataegis events (q < 0.01; Figure 5D, Supplementary 
Figure 15C-D). For example, 19 genes on the p-arm of chromosome 9, including numerous IFN 
genes, demonstrated CN deletion events that were associated with an increased risk of having 
at least 1 kataegic event. For example, patients with a deletion in IFNA5 (the most statistically 
significant event in the locus) were 3.36x more likely to have at least one kataegic event, with a 
stronger than average signal. A large number of gene-wise CN events were found to be 
associated with total number of kataegic events in a tumour-type specific manner (q < 0.01 pan-
cancer, q < 0.1 in individual tumour subsets; Supplementary Table 7). 

Kataegis status, identified through an expression signature, has recently been shown to be 
associated with late onset, better prognosis and higher HER2 levels in breast cancer52. To 
further investigate the prognostic role of kataegis, a Cox regression was fit for overall survival 
between kataegic and kataegis-free patients, adjusting for age and sex for each cancer type. As 
IGHV status is a strong prognostic factor in CLL53-55, this was also included as a covariate 
(Supplementary Table 10). Prior to adjustment, kataegis was prognostic in many tumour types, 
but afterwards only in pancreatic adenocarcinoma, for which the prognostic value of a kataegis 
event increased slightly on inclusion of IGHV status (p = 0.043, Figure 5E); this association was 
independent of the number of events, only the presence of one or more kataegic events 
(Supplementary Figure 17). Thus kataegis not only appears to be associated with specific 
driver architectures, but these manifest in a diverse and complex tumour-specific effect on the 
clinical landscape of outcome and treatment response. 

Shared & Divergent Drivers of Mutational Processes 

Throughout our analyses of different types of mutations, TP53 was recurrently associated with 
elevated density of almost all mutational features considered. This is consistent with its central 
role in cancer biology, and a long associating it with DNA damage. These results led us to 
consider whether there were molecular determinants or correlates of other mutational 
processes. For each variant type, associations with mutational signatures derived from single 
base substitutions (SBS) in trinucleotide context, as defined by PCAWG Mutational Signatures 
Working Group39, were evaluated. Of the 65 trinucleotide SBS signatures defined, 23 were 
present to any degree in at least 1% of the sample population. SNVs, SCNAs and kataegis 
events were assessed in a gene-wise fashion (n = 1,722, 19,364 and 27 respectively; 
Supplementary Table 8). Interestingly, TP53 status was rarely associated with these 
signatures, with point mutations showing a positive association with signature 7c (FDR < 0.01) 
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and CN amplifications positively associated with signature 41 (q < 0.01). In fact, a single gene 
was rarely associated with more than a single mutation signature, with exceptions including 
CNTN5, CNTNAP2 and LRRC4C, all of which demonstrate point mutations and kataegis events 
associated with SBS1 (age) and SBS7a-c (UV-induced pyrimidine dimers). This emphasizes the 
diverse and complex relationships between characteristics of mutational profiles and individual 
genes. 

Next, we identified common patterns across the overall mutational profile of cancer (Figure 6A). 
Broadly, the mutational density of any given aspect of a tumour was well-correlated with almost 
every other (Figure 6B): tumours that show elevated amounts of one type of mutation tend to 
show elevated rates of every other type. The one exception was average SCNA length, where 
tumours with longer SCNAs tend to have fewer of other types of mutations. This is surprising, 
and may to some extent reflect reduced accuracy of mutation detection in tetraploid tumours, as 
noted in other studies26. To determine whether or not each mutational process was driven by 
similar mechanisms, we compared the genes significantly associated with each type of 
mutational density, and found minimal overlap across models for different variant types 
(SNVs/Mbp, SCNA, SV, and hypermutation/kataegis metrics). 

We then considered the top genes for each mutation density metric (functional SNVs, Figure 
6C; gene-wise SCNA, Supplementary Figure 18). As expected, TP53 was the most recurrent 
associated gene, showing a positive association both when mutated by SNVs (associated with 
many SCNA, SV and kataegis metrics) and when deleted (associated with metrics of kataegis). 
Numerous genes demonstrated significant associations with metrics of SCNA burden and 
kataegis, however often with opposite directions. Interestingly, a clear difference between the 
two mutation types (SCNAs and SNVs) emerged when examining mutational clonality - SCNAs 
arose predominantly in tumour subclones (with a few exceptions of amplifications arising in the 
trunk; Supplementary Figure 18, Supplementary Table 6), while SNVs were more likely to be 
classified as clonal (Figure 6C, Supplementary Table 6). These results outline both the 
uniqueness of TP53 as the only gene associated with almost all types of DNA damage, and the 
complex, tumour-type specific landscape of mutational drivers revealed by pan-cancer analysis. 
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Discussion 
One of the most striking results of cancer sequencing studies has been the establishment of 
dramatic inter-patient variability in the number and nature of somatic SNVs17. Some of this 
variability has been attributed to differences in “mutational signatures”, which reflect the fidelity 
of a cell’s DNA repair processes and the features of the specific mutagenic insults to which a 
tumour has been exposed. Here, we focused on identifying the genomic changes associated 
with these trends in SNV mutation density, and more broadly with multiple classes of mutation 
density. In particular, we develop new approaches for identifying the associations between 
mutation-density and candidate driver events, and for detecting kataegic events from whole-
genome sequencing data. 

These analyses have confirmed a number of previously observed trends, while providing insight 
into previously unknown oncogenic mechanisms. As expected, tumour types primarily driven by 
environmental factors, including skin and lung cancers, demonstrated high rates of single-
stranded break events while those previously identified as C-class (dominated by copy-number 
events rather than point mutations)24, including ovarian, uterine and breast cancers, 
demonstrated increased genomic instability, with above average rates of SCNAs and SVs. We 
quantify how multiple well-characterized driver genes, like TP53, CTNNB1, PIK3CA and 
MAP3K1 are associated with specific features of the mutational landscape of individual tumours. 
Further, we confirm the associations of kataegic events with translocations and other complex 
structural variants. 

However these general observations obscure the remarkable divergence of different tumour 
types. TP53 is truly an outlier gene, being not only associated with multiple mutational features, 
but often doing so in individual tumour types. By contrast, many other driver events show Janus-
like character. Kataegic events can be associated with either good (e.g. GBM) or poor 
prognostic tumour types (e.g. prostate cancer); DCC point mutations can be associated with 
decreased SCNA length (e.g. hepatocellular carcinoma) or increased PGA (e.g. prostate 
cancer). Additionally, many of the identified SCNA events identified as associated with 
increased SNV mutational density and/or kataegis may be confounded by the presence of 
nearby fragile sites, as these are known to be involved with deletions and other structural 
events43,44, however no comprehensive database yet exists for these data. These divergences 
highlight the critical importance of appropriate statistical modeling in pan-cancer studies. And, 
the given the distinctive landscapes and candidate drivers in each tumour-type, these data 
highlight the ongoing need for large, clinically-homogeneous cohorts with deep WGS to 
improving our understanding of the mutational hallmarks of individual tumours.  
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Methods 

Data assembly and formatting 

Clinical annotations were downloaded from the PCAWG data portal on 2016-08 (syn7772065), 
with survival information obtained from the ICGC data portal on 2017-06-14 (release 25). 
Samples flagged for removal were excluded and a single sample from each multi-sample donor 
was selected according to PCAWG recommendations, resulting in 2,583 specimens carried 
forward for downstream analyses. Consensus SNV calls were obtained on 2016-10-12 
(syn7357330) while consensus CNA calls and information on sample purity and ploidy were 
obtained on 2017-01-25, following the latest PCAWG data release on 2017-01-19 
(syn8042905). SV calls were obtained from the 2016-11 release (syn7596712). Callable base 
files were downloaded on 2017-03-20 (syn8492850). Consensus clonality estimates for SNVs 
were provided in the 2017-03-25 release (syn8532425) while the latest PCAWG ABSOLUTE 
calls (2016-11-01) were used to annotate clonal and subclonal CNAs (downloaded from 
Jamboree on 2017-03-29: 
/pancan/pcawg11/subclonal_architecture/broad/broad_absolute_on_2660_concensus_bp_11_1
_2016.tar.gz). Candidate driver genes were identified by PCAWG-2,5,9,14 and obtained on 
2017-04-22 (syn9757986). Mutation signatures for each patient were downloaded on 2018-05-
15 (syn11726601)39. The RNA-seq expression data was obtained from the 2016-02-12 release 
(syn5553991). The expression matrix contained upper quantile normalized expression values 
for 57,821 genes and 2,011 patients. 

Consensus SNV calls were filtered such that only functional variants (those predicted to result in 
either missense or nonsense mutations by Oncotator, as performed by PCAWG-2,5,9,14) were 
carried forward. Variants were then collapsed to the gene level (n = 18,571 genes), with 
mutation status further reduced to either present (1) or absent (0) for each patient. These were 
then filtered to contain only those genes determined to be amongst driver gene candidates (n = 
152), identified by PCAWG-2,5,9,14. Similarly, consensus SCNA calls were first filtered based 
on confidence level (classified by a “star” system, where one star represents poor caller 
concordance and poor confidence and three stars represent a consensus and high confidence) 
per patient prior to downstream analysis (more details described here: syn8042880). Only 
SCNA calls with a star level of two or three were kept. The remaining SCNA calls were adjusted 
for the estimated ploidy of that sample (based on ploidy data from the latest PCAWG release, 
obtained on 2017-01-25, data release 2017-01-19, syn8042905), in the event that the sample 
was predicted to have a whole genome duplication (WGD) with a status of “certain”, and 
rounded to the nearest whole number. These adjusted calls were referred to as ploidy-adjusted 
copy number changes and were used in subsequent analyses. SCNAs were annotated to genes 
using the GENCODE database (v19). 

Clonality timing estimates for SCNAs and SNVs were collapsed to form gene by sample 
matrices, such that for each sample every gene was classified as either clonal, subclonal or not 
available (indicating either that no variant was present or that timing could not be estimated). A 
consensus classification was generated across patients (pan-cancer or for the top-powered 
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tumour types) for each gene and event type (CN gain/loss and SNV) using the proportion of 
patients with a variant that was deemed subclonal in origin (where 0 indicates a clonal event in 
100% of patients and 1 a subclonal event; Supplementary Table 3). 

Sample summary, along with mutation metrics used, are available in Supplementary Table 1. 
All visualizations were made using the BPG package (v5.6.19) for R, with lattice (v0.20-34) and 
latticeExtra (v0.6-28) packages. 

Data Processing 

Associating overall single-stranded break events with variant 
status 

Statistical modeling across the cohort 

Uncondensed SNV matrices were first loaded into the R statistical environment (v3.3.1) and 
overall SNV density was determined for each sample as the total number of single nucleotide 
variants (SNVs) per callable megabase, ranging from less than 1 to greater than 850 SNVs/Mbp 
per sample. As this distribution is highly skewed, we defined mutation density for downstream 
analyses as log10 SNVs/Mbp (determined using the total number of bases with a minimum 
coverage of 14 or 8 reads in the tumour and normal BAMs respectively; Supplementary Figure 
2A-B). A total of 2,450 patients had the available callable base data to calculate this metric. 

In order to associate specific genomic events with SNVs/Mbp, ternary SCNA status (n = 20,229 
genes; n = 1,778/2,450 patients) was used. Genes were first assessed for recurrence to remove 
those with a SCNA present in less than 1% of the cohort (19,361 genes passed this threshold). 
For each gene, a mixed effects linear model was applied using the lme4 (v1.1-12) and lmerTest 
(v2.0-33) packages for R, to explain mutation density across all samples using SCNA status 
(VS; gain/loss/neutral), sex, age and ploidy with tumour type included as the random effect to 
set variable intercepts (Equation 1). SCNA status, sex and tumour type were treated as factors 
while age and ploidy were treated as continuous variables. Bonferroni adjustment of the p-
values was applied to correct for multiple testing (Supplementary Table 3). Tumour purity 
estimates were not correlated with SNVs/Mbp and were therefore not included as covariates 
(Supplementary Figure 2C-F). 

(Eq 1) ܦܯ௧ ൌ 	ܸ ௌܵ஼ே஺,௧ ൅ ܽ݃݁ ൅ ݔ݁ݏ ൅ ݕ݀݅݋݈݌ ൅ ሺ1|	ݎݑ݋݉ݑݐ	݁݌ݕݐሻ 

Pathway Analysis 

For each model term, query lists containing genes significantly associated with SNVs/Mbp (q < 
0.01) were generated and separate pathway analyses was performed using gProfileR56 (v0.6.1) 
with default parameters, however with FDR correction for multiple testing and using only the 
gene ontology (GO) database. Significantly enriched pathways were identified as those with 
FDR < 0.01 and ordered according to precision (the proportion of term genes present in the 
query list; Supplementary Table 4). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/287839doi: bioRxiv preprint 

https://doi.org/10.1101/287839
http://creativecommons.org/licenses/by-nd/4.0/


Chromosome enrichment 

Chromosome enrichment of genes statistically associated with SNVs/Mbp was assessed using 
genes classified as either protein_coding or processed_transcript in the gencode (v19) 
database. For each chromosome, a hypergeometric test was used to assess the overlap of 
significantly associated genes (q < 0.01) and all genes present on that chromosome, from a 
total pool of all genes (Supplementary Table 5). 

Statistical modeling per tumour type 

To increase the power of our analyses, models were run as above on each of the 5 most 
powered tumour types (those with ≥ 100 samples after filtering). For each tumour type (t), a 
linear model was applied using variant status (as above), patient age, sex (where applicable) 
and average tumour ploidy (Equations 2 and 3) to identify tumour type specific associations 
with mutation density. Bonferroni adjustment was applied for each tumour type independently. 
Analyses were run using ternary SCNA status for collapsed regions (adjacent genes with 
identical SCNA profiles across each tumour type subset) as the predictor variable 
(Supplementary Table 7). 

(Eq 2) ܦܯ௧ ൌ 	ܸ ௌܵ஼ே஺,௧ 	൅ ܽ݃݁	 ൅  ݔ݁ݏ	

(Eq 3) ܦܯ௧ ൌ 	ܸ ௌܵ஼ே஺,௧ 	൅ ܽ݃݁ 

Associating double-stranded break events with mutation metrics 

Statistical modeling 

Analysis was conducted in the R statistical environment (v3.3.1) for explanation of double-
stranded break event metrics (i.e., total SCNA count, PGA, total SV count; full list available in 
Supplementary Table 1). A total of 2,410 samples had the necessary data types for this 
analysis. Here, driver genes (n = 152) with a functional SNV (described above) in at least 1% of 
patients were evaluated for associations with these metrics using a similar method to Eq 1 
described above, however without ploidy as a covariate, as all SCNA metrics were previously 
adjusted for this estimate (to correct for cases of WGD, etc.). Here, binary somatic SNV status, 
considering only functionally impactful variants (missense, nonsense), replaced SCNA status for 
each gene. Prior to modeling, metrics were transformed as necessary (no transformation for 
pga_total, purity, cna_gain_loss_ratio, pga_gain_loss_ratio; log10 transformation for total_sv_tra, 
ploidy; box-cox transform was used for the remainder, using gene-specific lambda values; 
metrics involving ratios were trimmed to remove extreme values at either end that caused a 
skew in the distribution, prior to transformation). For response variables showing a non-
Gaussian error distribution (ploidy, purity, total_pga and pga_gain), we re-estimated our test 
statistics using a bootstrap approach (Eq 4; tumour types with fewer than 10 samples were 
combined) and found largely similar results with no optimism bias in the p-values using the 
linear mixed modeling procedure. For each metric, p-values were adjusted for multiple testing 
using FDR (rather than Bonferroni, due to the reduced number of tests applied; Supplementary 
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Table 3). Models were again repeated for individual tumour types, as described above using a 
gene-wise approach (modified Eq 2 and 3 to remove ploidy; Supplementary Table 7). 

(Eq 4) ܦܯ ൌ 	ܸ ௌܵே௏ ൅ ܽ݃݁ ൅ ݔ݁ݏ ൅  ݁݌ݕݐ	ݎݑ݋݉ݑݐ

SeqKat: a tool for assessing hypermutation and kataegis 

Overview 

Genome instability is one of the hallmarks of cancer57. A relatively new measure of genome 
instability is kataegis, which is a pattern of localized substitution hypermutation. Kataegis was 
first identified in breast cancer29 where clusters of C>T and/or C>G mutations were observed in 
TpCpN trinucleotides on the same strand. Despite the frequent number of studies that have 
examined kataegis in cancer, its causes and association with other genomic features, there is 
currently no publicly available bioinformatic tool that can detect and visualize kataegis events 
per patient using a probabilistic approach. Since kataegis is observed at different rates in 
different cancer types, a tool that can dynamically optimize kataegis detection per cancer type 
and assess significance of kataegis events would be of a great use to the scientific community. 
Here we present SeqKat, a novel tool that automates the detection and visualisation of kataegic 
regions (Supplementary Figure 11). 

The input to SeqKat is a standard VCF file containing a list of recurrent somatic single 
nucleotide variants per patient. SeqKat uses a sliding window (of fixed width) approach to test 
deviation of observed SNV trinucleotide content and inter-mutational distance from expected by 
chance alone. Additionally, an exact binomial test is performed to test that the proportion of 
each of the 32 tri-nucleotides within each window is higher than expected. The resulting p-
values are then adjusted for multiple hypothesis testing using FDR. Hypermutation and kataegic 
scores are calculated for each window as follows: 

(Eq 5) ݄݊݋݅ݐܽݐݑ݉ݎ݁݌ݕ	݁ݎ݋ܿݏ ൌ 	െ݈݃݋ଵ଴ሺܾ݈݅݊ܽ݅݉݋	݌௔ௗ௝ሻ 	∗
ே	௢௕௦௘௥௩௘ௗ	௠௨௧௔௧௜௢௡௦

ே	௘௫௣௘௖௧௘ௗ	௠௨௧௔௧௜௢௡௦
 

(Eq 6) ݇ܽݏ݅݃݁ܽݐ	݁ݎ݋ܿݏ ൌ 	݁ݎ݋ܿݏ	݊݋݅ݐܽݐݑ݉ݎ݁݌ݕ݄	 ∗ 	
ே	்஼௑	௕௔௦௘௦

ே	௘௫௣௘௖௧௘ௗ	்஼௑	௕௔௦௘௦
 

Finally, any statistically significant windows, within an optimized maximum inter-mutation 
distance, are then combined to obtain regions of hypermutation. Output consists of a text file 
indicating all potential hypermutated and kataegic regions, their genomic position, and their 
corresponding hypermutation and kataegic scores. 

Visualization 

The rainfall plot is a comprehensive way of visualizing hypermutation and kataegis events that 
incorporates both inter-mutational distance and genomic position for each mutation. SeqKat can 
automatically generate these plots both at the whole genome level and for individual 
chromosomes (such as only those with a statistically significant event). Hypermutation clusters 
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can be easily recognized using such plots and can be further classified as kataegic events by 
showing the specific base change composition of the cluster (Supplementary Figure 13). 

Parameter Optimization 

Mutation data for 149 samples across 7 different cancer types (ALL, breast cancer, CLL, liver 
cancer, lung adenocarcinoma, B-cell lymphoma and pancreatic cancer) was downloaded from 
Alexandrov’s “Signature of mutational processes in human cancer” paper 
(ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/)12. Data was 
available as tab delimited files grouped by cancer type. Files were downloaded and converted to 
BED format per patient. To validate SeqKat, we performed cross validation using these data 
and tuned the tool’s parameters to maximize prediction performance. Parameters tuned include: 
1) Hypermutation score cut-off, used to classify each sliding window as significant 2) Maximum 
inter-mutation distance cut-off, used to classify significant windows as separate hypermutated 
events and 3) cut-off for minimum number of SNVs within a single window for it to be classified 
as hypermutated/kataegic. A 5-fold cross validation was performed and various parameter 
combinations were run. The combination that maximized the F score across cancer types was 
selected and used to set defaults (Supplementary Figure 11D). 

Application 

SeqKat was applied using the optimized parameters on a cohort of 251 primary whole genome 
pancreatic cancer samples that are part of the International Cancer Genome Consortium 
(ICGC). At least one kataegic event was detected in 80% of the cohort. Kataegic samples had 
an average of four events per sample. Clinical information such as overall survival status (OS), 
time to OS, grade, age, and sex were obtained for 238 samples. To further investigate the 
consequence of kataegis on patient overall survival, a Cox regression was fit and overall 
survival was compared between kataegic and kataegis-free patients adjusting for age and sex. 
Kataegic patients have significantly poorer prognosis compared to non-kataegis patients 
(Supplementary Figure 12). 

Download 

SeqKat (v0.0.6) is an R package that is currently available in CRAN and can be downloaded 
from the following link: (https://cran.r-project.org/web/packages/SeqKat/index.html). 

Assessing Prognostic Role of Kataegis 

Clinical information such as overall survival status (OS), time to OS, grade, age, and sex were 
obtained for 1,704 PCAWG samples. To further investigate the consequence of kataegis on 
patient overall survival, a Cox regression was fit and overall survival was compared between 
kataegic and kataegis-free patients adjusting for patient age and sex, as well as IGHV SNV 
status53-55. The analysis was conducted on cancer types that had at least 25 patients with 
survival and kataegis information available. The test p-values along with the hazard ratios are 
reported for each cancer type (Supplementary Table 10). 
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Associating hypermutation and kataegis with mutation metrics 

Statistical modeling 

SeqKat (v0.0.4) was used to identify hypermutation events, classified as either APOBEC-
mediated kataegis or not, using the PCAWG consensus SNV calls. SeqKat was run using the 
default, globally optimized parameters (hypermutation score cut-off = 5, maximum inter-
mutation distance cut-off = 3.2 and minimum SNV count cut-off = 4) and scores were generated 
as described above. Kataegis events were identified as those hypermutation events with a 
kataegic score > 0. This identified between 1 and 19,951 kataegic events per sample (mean = 
33, median = 1). Where multiple events were called within a single tumour, the event with the 
highest kataegic score was used to represent the kataegic status of that sample for downstream 
analyses.  

To assess chromosomal enrichment, the genome was split into 1Mbp bins. The expected 
kataegic rate was calculated by dividing the number of kataegic bins over the total bins in the 
genome. For each chromosome, the fraction of kataegic bins was calculated and a binomial test 
was used to test the deviation of observed chromosomal kataegic rate from the expected rate.  

For each hypermutation metric (presence of any hypermutation/kataegis event, frequency and 
score of such events), a mixed effects model was applied as above (Eq 1) using either SCNA 
status (gain/loss/neutral; Supplementary Table 3) or gene-wise somatic SNV status of driver 
genes containing functionally relevant SNVs, again with a 1% recurrence threshold in the 
dataset (148 genes in 2,563 patients; again, ploidy was not included; Supplementary Table 3). 
Finally, analyses were repeated for each powered tumour type independently (Eq 2 and 3 for 
SCNAs and modified versions for SNVs, with appropriate distributions, Supplementary Table 
7). 
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Associating specific events with trinucleotide mutation signatures 

Analysis was conducted in the R statistical environment (v3.4.0). For each patient, the number 
of mutations contributing to each trinucleotide profile were obtained and converted to 
proportions to standardize across patients. Each mutation signature was then modeled as 
described above using a linear mixed effects model, with SCNA status (gain/loss/neutral, Eq 1), 
presence of SNVs or kataegis events in each gene (modified Eq 1, without ploidy), as the 
independent variable, and controlling for patient sex, age and tumour type. A total of 23 
mutation signatures were present to any degree in at least 1% of the cohort. For the 
independent variables, 1,722, 19,364 and 27 genes had a recurrent event (>1% of samples) 
related to SNVs, SCNAs or kataegis respectively. Models were run separately for each data 
type with FDR (SNVs, kataegis) or Bonferroni (SCNAs) adjustment applied to correct for 
multiple testing (Supplementary Table 8). 

Integration across mutation metrics 

Mutation enrichment of 1 Mbp bins along the genome was assessed using the rank product of a 
subset of individual mutation metrics (Figure 6A). The large collection of mutation metrics used 
were compared using pairwise Spearman’s correlations across all available patients (the 
number of patients differed for each comparison as not all metrics were available for all patients; 
Figure 6B). Furthermore, the top associated SNV or SCNA containing genes from each 
analysis were compared. Gene-wise functional SNVs were used for associations with DSBs and 
kataegis metrics, while SCNAs were used to find associations with SSBs and kataegis metrics. 
For each metric, the top associated genes were selected based on adjusted p-values and 
magnitude of the coefficient and compared across the different metrics (Figure 6C, 
Supplementary Figure 18). 
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Figure Legends 
Figure 1: Specific SCNAs are associated with an increased SNV density. A) Total SNV 
count across all available patients within each 1Mbp bin along the genome; red points indicate 
bins containing known driver genes. B) Mutation rate (SNVs/Mbp), stratified by tumour type; red 
bars indicate median SNVs/Mbp for each type. Volcano plots showing the coefficient and FDR-
adjusted p-value for all C) CN gains or losses in the pan-cancer or individual tumour type 
models. D) Tumours with CN-amplification of BCKDH8 show elevated SNV mutation rates in a 
pan-cancer multivariate analysis (left boxplot) and in multiple individual tumour types (violin 
plots stratified by CN type (deletion = -1, neutral = 0, amplification = 1); coloured violins reflect 
statistical mixed effects model, FDR < 0.1). The tumour types selected for subgroup analysis 
are those with the largest sample number (CNS-Medullo, RCC, HCC, pancreatic 
adenocarcinomas and prostate adenocarcinomas), in boxplots as indicated by the covariates 
with colours corresponding to part B. E) CKMT2 loss is associated with elevated mutation 
density. Figure structure is similar to 1D). 

Figure 2: Distinct SNVs are associated with a number of SCNA metrics. A) Ratio of PGA 
attributed to CN gains vs. losses (autosomes only) differed by several folds across tumour 
types; tumour types are ordered according to median PGA gain-to-loss ratio; samples within 
each tumour type are similarly ordered. On the far left, piloastrocytomas harboured few CN 
deletions, while on the far right chromophobe renal cell carcinoma presented with few CN 
amplifications (median ratio = 0). Linear mixed-effects regression models were used to find 
associations between various SCNA metrics and gene-wise SNV status: B) PGA gain-to-loss 
ratio (autosomes only), C) total SCNA count and D) total PGA, following FDR. 

Figure 3: Distinct SNVs are associated with a number of SV metrics. A) The total number of 
translocations can differ by 2-3 folds across tumour. B) To identify potential patterns in overall 
SV trend, SVs were first binned and subsequently filtered based on recurrence, this unveiling 
some interesting patterns in translocations for chromosomes 1, 12, 14 and 18. C) Linear mixed 
effects modelling identified 9 genes that were statistically significantly associated with 
translocation count following adjustment for multiple testing. 

Figure 4: Summary of kataegic events. A) Frequency of kataegis events or B) maximum 
SeqKat score per patient, stratified by tumour type. C) Rainfall plot depicting kataegis event on 
chromosome 6 for a single patient with adenocarcinoma of the breast. D) Circos plot displaying 
the chromosomal distribution of kataegic events in the pan-cancer cohort. E) Top frequent 
kataegic genes. 

Figure 5: Specific SNVs and SCNAs are associated with an increased in kataegic rate. A) 
Chromosomal distribution of translocations (centre) in the lymphoma cohort, aligned to recurrent 
kataegis events (middle layer). B) RNA abundance of MYC was significantly higher in non-
Hodgkin’s lymphomas patients demonstrating kataegis within this gene than those without. C) 
Volcano plot demonstrating the results of the mixed effects models using gene-wise SNVs in 
known driver genes to predict the presence of any kataegis event; a single gene (TP53) was 
significantly associated (FDR < 0.01) with the presence of at least one kataegic event. D) 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/287839doi: bioRxiv preprint 

https://doi.org/10.1101/287839
http://creativecommons.org/licenses/by-nd/4.0/


Similarly, p-values for each gene-wise SCNA to predict binary kataegis status were plotted to 
identify larger, multi-gene events; top (red) bars indicate p-values for gene-wise amplifications 
while bottom (blue) indicates deletions; dashed black lines indicate Bonferroni-adjusted 
thresholds (q = 0.1 or 0.01). E) Kaplan-Meier plot demonstrating the overall survival differences 
between kataegic and kataegis-free patients in pancreatic adenocarcinoma, adjusted for patient 
sex, age and IGHV status. 

Figure 6: Summary of mutation metrics and key associations. A) Each chromosome was 
divided into 1 Mbp bins, and the total number of events across patients were calculated for each 
mutation type, including functional SNV counts, total SCNA counts (divided into gains/losses), 
total number of transversions, and total number of APOBEC-mediated kataegic events (from 
bottom to top); counts were then ranked, with the scaled rank product (top) showing mutation 
enrichment in specific bins. B) Pairwise Spearman’s correlation analyses were performed to 
assess metric similarity. Dot size indicates the strength of the correlation, with colour indicating 
direction (red for positive correlation, blue for negative). Background shading indicates the p-
value of the correlation. C) Top associated SNVs across the dataset: (left) dot colour represents 
direction of association (green for positive, purple for negative), while background shading 
indicates FDR-adjusted p-value; (middle) clonal status of each SNV for the selected genes, dot 
position indicates the proportion of samples in which this mutation was identified as subclonal; 
(right) associations with trinucleotide mutation signatures (FDR < 0.01): dot colour indicates 
direction of associated CN event (red for amplification, blue for deletion) while background 
shading indicates direction of association (green for positive, purple for negative). For simplicity, 
all p-values are truncated to 10-4. 
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Supplementary Figure Legends 
Supplementary Figure 1: Experimental Design. 

Supplementary Figure 2: Summary of single-stranded break variants. A) Median somatic 
SNV frequency across the pan-cancer dataset for each 1 Mbp bin; red points indicate bins 
encompass known driver genes. B) The distribution of SNVs/Mbp (genome-wide calculation) 
after log10 transformation. The distribution of SNVs/Mbp according to C) patient sex, D) patient 
age, E) average tumour ploidy and F) estimated tumour purity coloured to distinguish different 
tumour types. G) Residuals and predictions were collected from each model; residuals are well 
distributed. 

Supplementary Figure 3: CN deletions of chromosome 8 associated with SNVs/Mbp in 
prostate adenocarcinoma. Model results for individual tumour types. Each panel indicates p-
values for each tested gene (with SCNA deletions in at least 1% of the cohort) for a different 
tumour type. Red line indicates Bonferroni-adjusted threshold for α = 0.1 (gene-wise); blue line 
indicates same threshold calculated using collapsed CN regions. 

Supplementary Figure 4: CN amplifications of chromosome 1 associated with SNVs/Mbp 
in medulloblastoma. Model results for individual tumour types. Each panel indicates p-values 
for each tested gene (with SCNA amplifications in at least 1% of the cohort) for a different 
tumour type. Red line indicates Bonferroni-adjusted threshold for α = 0.1 (gene-wise); blue line 
indicates same threshold calculated using collapsed CN regions. 

Supplementary Figure 5: Several tumours present with notable differences in PGA 
gain:loss ratio. The SCNA profiles of five tumour types are shown; CNS-PiloAstro consistently 
has high PGA gain:loss while Prost-AdenoCA generally has low PGA gain:loss ratio. Within 
each tumour type, samples are ordered by the PGA gain:loss ratio, calculated using autosomes 
only, as depicted in top plots. Genomic regions are collapsed by gene and organized along the 
y-axis by their chromosomal locations. 

Supplementary Figure 6: Summary of DSB mutation metrics (SCNA). The distribution of 14 
SCNA-derived measures of DSB density across tumours. For each metric, tumour types were 
ranked according to the median. Dot size indicates rank (where the tumour type with the highest 
median metric is ranked 1). Background shading indicates variance for each metric in log10 
space. 

Supplementary Figure 7: Associations between variant genes and SCNA metrics. The 
results of linear mixed effects modelling for assessing gene specific associations with various 
SCNA-derived metrics of DSB density: Average SCNA length: A) total, B) gains, C) losses or D) 
gain to loss ratio; total SCNA count divided by E) gains only or F) losses only; PGA calculated 
for G) gains only or H) losses only; I) Estimated tumour ploidy and J) purity. P-values were 
adjusted for multiple testing using FDR and statistical significance was defined at FDR < 0.1. To 
ensure appropriateness of these models, the distribution of the residuals, aggregated across all 
genes, were evaluated; results were similar for all metrics. For example, K) total SCNA count 
and L) average SCNA length. Rare exceptions were further contrasted using an alternate 
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method, for example M) distribution of residuals generated using Eq 1 for PGA by gains and N) 
correlation of p-values from 2 separate methods; red points indicate results for known driver 
genes. O) Estimated tumour ploidy demonstrated a non-Gaussian distribution with moderate 
deviation of p-values between the two methods. 

Supplementary Figure 8: Summary of DSB mutation metrics (SV). The distribution of 5 SV-
derived measures of DSB density across tumours. For each metric, tumour types were ranked 
according to the median. Dot size indicates rank (where the tumour type with the highest 
median metric is ranked 1). Background shading indicates variance for each metric in log10 
space. 

Supplementary Figure 9: Associations between variant genes and SV metrics. Model 
results for assessing SNV associations with SV-derived metrics of DSB density; volcano plot 
demonstrating coefficient and FDR-adjusted p-values for known driver genes, and histogram of 
the residuals, aggregated across all genes, for: A) total SV count, B) total number of inversions 
and inversions subdivided by C) head to head and D) tail to tail inversions. 

Supplementary Figure 10: Point mutations in TP53 are associated with SV burden. Genes 
found to be associated with metrics of SV burden in a pan-cancer analysis were further 
assessed in individual tumour types. Four genes were determined to be significantly associated 
with either A) total SV burden (translocations and inversions) or B) total inversions, at the pan-
cancer level but rarely in individual tumour types. Dot sizes represent the coefficient from the 
mixed-effects models and background shading denotes the FDR-adjusted p-values. C) Tumours 
with a functional SNV in TP53 show elevated SV inversion rates in a pan-cancer multivariate 
analysis (left boxplot) and in hepatocellular carcinoma (HCC); violin plots stratified by SNV 
status; coloured violins reflect statistical mixed effects model, FDR < 0.1. The tumour types 
selected for subgroup analysis are those with the largest sample number (breast 
adenocarcinoma, pancreatic adenocarcinoma, HCC, melanoma, ovarian and prostate 
adenocarcinomas). 

Supplementary Figure 11: SeqKat algorithm development. A) Algorithm workflow 
highlighting the tuned parameters. B) Overlapping significant windows are stitched together to 
establish kataegic boundaries. C) Distribution of tumour types used for parameter tuning. D) 
Performance results following parameter tuning using cross validation. E) Kataegic events can 
be visualized using rainfall plots; each event has an associated hypermutation and kataegic 
score.  

Supplementary Figure 12: Application of SeqKat in pancreatic cancer. Kaplan-Meier plot 
demonstrating the overall survival differences between kataegic and kataegis-free patients in a 
pancreatic patient cohort. 

Supplementary Figure 13: Kataegis in numerous tumour types. Kataegic events were 
detected in numerous tumour types, including previously described types such as A) breast 
adenocarcinoma (e.g. chromosome 8 for a single tumour shown), B) B-Cell lymphoma (e.g. 
chromosome 22 shown) and C) melanoma, where the majority of variants are C>T (e.g. 
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chromosome 17 shown), but also in tumour types previously undescribed as kataegic, for 
example D) lung squamous cell carcinoma (chromosome 1 shown). 

Supplementary Figure 14: mRNA expression profiles of APOBEC family genes. Gene 
expression across the APOBEC family of proteins, stratified by global kataegis status across 
912 tumours (across 24 tumour types) with RNA-seq data; groups were compared using a 
Student’s t-test. A) AICDA, B) APOBEC3B, C) APOBEC3D, D) APOBEC3C, E) APOBEC3G 
and F) PAX5. 

Supplementary Figure 15: Associations between variant genes and kataegis metrics. 
Mixed effects linear modelling was applied to assessing gene associations with kataegis-based 
metrics. Gene-wise SNV status (driver genes only) was used to predict A) total count of 
kataegis events or B) maximum kataegis score as a continuous variable, with FDR-adjustment 
of the p-values. Similarly, gene-wise SCNA status was used to predict C) total count of kataegis 
events or D) maximum kataegis score, with Bonferroni adjustment of the p-values due to the 
increased number of tests performed. 

Supplementary Figure 16: TP53 status is associated with kataegis events. The proportion 
of patients with and without kataegis events is significantly different between patients with and 
without SNVs in TP53 (Proportion Test P-value = 5.35 x 10-59) in a pan-cancer setting. 

Supplementary Figure 17: Kataegis is associated with overall survival in pancreatic 
cancer. Kaplan-Meier plots demonstrating the overall survival differences between kataegic and 
kataegis-free patients across different tumour types: CLL stratified by A) occurrence or B) 
frequency of kataegis events; GBM stratified by C) occurrence or D) frequency of kataegis 
events; E) OV stratified by binary kataegis status; F) pancreatic adenocarcinoma stratified by 
frequency of kataegis events. 

Supplementary Figure 18: Summary of mutation metrics. Top associated SCNAs across the 
dataset; (left) dot colour represents direction of association (green for positive, purple for 
negative), while background shading indicates Bonferroni-adjusted p-value; (middle) clonal 
status of each SCNA type (red = amplification or blue = deletion) for the selected genes, dot 
position indicates the proportion of samples in which this mutation was identified as subclonal; 
(right) associations with trinucleotide mutation signatures; only Signature 3 was significantly 
associated (Bonferroni < 0.01) with the selected genes: dot colour indicates direction of 
associated CN event (red for amplification, blue for deletion) while background shading 
indicates direction of association (green for positive, purple for negative). For simplicity, p-
values are truncated to 10-4. 
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Supplementary Table Legends 
Supplementary Table 1: Mutation density metrics. All available mutation metrics for each 
patient. 

Supplementary Table 2: Summary of mutation density metrics per tumour type. Median, 
standard deviation and interquartile range for each metric, stratified by tumour type; values were 
determined after removing patients with unknown sex/age. 

Supplementary Table 3: Gene-wise model results. Results of linear mixed effects models for 
all SSB (using gene-wise ternary SCNAs), DSB (using functional SNVs in driver genes only) 
and kataegis (ternary SCNAs and functional SNVs in driver genes) metrics in pan-cancer 
analyses. 

Supplementary Table NN [to delete]: Collapsed, binary SCNA based model results. 
Results of linear mixed effects models for binarized SCNA segments predicting SNVs/Mbp. 

Supplementary Table 4: Pathway analysis for genes associated with SNVs/Mbp. Genes 
containing statistically significantly associated SCNAs were utilized for pathway analyses. 
Statistically significantly enriched pathways are shown. 

Supplementary Table 5: Chromosome Enrichment. Genes that were found to be significantly 
associated with SNVs/Mbp (when considering CN gains/losses) were assessed for 
chromosome enrichment. 

Supplementary Table 6: Consensus of clonal/subclonal classification of gene-wise 
variants. The proportion of samples demonstrating a subclonal SCNA or SNV was calculated 
for each gene (proportion ≤ 0.5 = probable clonal variant). 

Supplementary Table 7: Model application to individual tumour types. Results of linear 
models for each powered (n ≥ 100 patients) tumour type with the required data for predicting 
metrics of SSBs (using gene-wise ternary SCNAs), DSBs (using functional SNVs in driver 
genes only) or kataegis (ternary SCNAs or functional SNVs in driver genes). 

Supplementary Table 8: Mutation signatures are associated with SNVs, SCNAs and 
kataegis events. Results of linear mixed effects models for each variant type (genes containing 
functional SNVs or kataegis events as well as collapsed SCNA segments) modeled 
independently. 

Supplementary Table 9: Kataegic Enriched Genes. Summary of genes that are enriched in 
kataegic events along with the number of samples and tumour types affected. 

Supplementary Table 10: Kataegis association with overall survival. Summary of Coxph 
models testing for overall survival differences between kataegic and kataegis-free patients 
across tumour types with sample size larger than 25 patients. 
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