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Abstract 

Background. Our work was motivated by the need to, given serum availability and/or financial 

resources, decide on which samples to test for different pathogens in a serum bank. Simulation-

based sample size calculations were performed to determine the age-based sampling structures 

and optimal allocation of a given number of samples for testing across various age groups best 

suited to estimate key epidemiological parameters (e.g., seroprevalence or force of infection) 

with acceptable precision levels in a cross-sectional seroprevalence survey. 

Methods. Statistical and mathematical models and three age-based sampling structures (survey-

based structure, population-based structure, uniform structure) were used. Our calculations are 

based on Belgian serological survey data collected in 2002 where testing was done, amongst 

others, for the presence of IgG antibodies against measles, mumps, and rubella, for which a 

national mass immunisation programme was introduced in 1985 in Belgium, and against 

varicella-zoster virus and parvovirus B19 for which the endemic equilibrium assumption is 

tenable in Belgium. 

Results. The optimal age-based sampling structure to use in the sampling of a serological survey 

as well as the optimal allocation distribution varied depending on the epidemiological parameter 

of interest for a given infection and between infections. 

Conclusions. When estimating key epidemiological parameters with acceptable levels of 

precision within the context of a single cross-sectional serological survey, attention should be 

given to the age-based sampling structure. Simulation-based sample size calculations in 

combination with mathematical modelling can be utilised for choosing the optimal allocation of 

a given number of samples over various age groups.  
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Introduction 

Several key epidemiological parameters such as the prevalence, the force of infection (i.e., the 

instantaneous rate at which susceptible individuals become infected) or the basic reproduction 

number R0 (i.e., the expected number of secondary cases produced by a typical infected person 

during his/her entire period of infectiousness when introduced into a totally susceptible 

population) can be computed through the use of mathematical models. 

Mathematical models for infectious diseases often rely on data from serological surveys and the 

usefulness of these surveys has recently been highlighted.1 Specifically, in a cross-sectional 

survey, samples taken from individuals at a certain time point provide (at least partial) 

information about whether or not these individuals have been immunised (infected or vaccinated) 

before that time point (depicting current status data). In practice, antibodies which were formed 

in response to an infecting organism or following vaccination are identified in the serum. 

Typically, the antibody levels from serological data are compared to a predetermined cut-off 

level to determine the individuals’ humoral immunological status. Under the assumptions of 

lifelong humoral immunity and an epidemic in a steady state (i.e., at equilibrium), the age-

specific force of infection can be estimated from such data.2 

Publications that used mathematical modelling to inform the design of studies, including cross-

sectional studies, are scarce.3 Moreover, only a few studies used mathematical or statistical 

models to inform the design of serological surveys. Marschner4 introduced a method for 

determining the sample size of a cross-sectional seroprevalence survey to estimate the age-

specific incidence of an irreversible disease, based on the illness-death model assuming time 

homogeneity and non-differential mortality as described in Keiding’s 1991 paper.5 More 

recently, Nishiura et al.6 proposed a framework to compute the uncertainty bounds of the final 
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epidemic size to H1N1-2009 and to determine the minimum sample size required. Sepúlveda and 

Drakeley7 proposed two sample size calculators, depending on whether the seroreversion rate 

(i.e., rate of antibody decay) is known, for estimating the seroconversion rate in malaria 

transmission in low endemicity settings using a reverse catalytic model. They extended the 

method to determine the sample size required to detect a reduction in the seroconversion rate at a 

given time point before survey sampling caused by a field intervention.8 Lastly, Vinh and Boni9 

assessed the power of serial serological studies in inferring key epidemiological parameters using 

a mathematical model. 

In this paper, simulation-based sample size calculations are performed in order to determine the 

age-based sampling structures and optimal allocation distributions best suited to estimate key 

epidemiological parameters with acceptable precision levels. Specifically, we use four models 

and three age-based sampling structures within the context of a single cross-sectional 

seroprevalence survey. We differentiate between endemic and non-endemic settings. In the latter 

case, we limit ourselves to estimating the prevalence and defer extensions thereof to future work. 

The objectives of this paper are i) to investigate to what extent the precision of key 

epidemiological parameters is modified in these models when assuming different age-based 

sampling structures, thereby giving insights into the optimal age structure; ii) to provide an order 

of magnitude of the sample size required to attain a specified precision for a particular 

parameter; and iii) to give insights into the optimal allocation of a fixed sample size among age 

groups. 

Our work is motivated by the need to, given serum availability and/or financial resources, decide 

on which samples to test for different pathogens in a serum bank. 
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Methods 

Data 

A serological survey testing for the presence of, amongst others, measles, mumps, rubella, 

varicella-zoster virus (VZV), and parvovirus B19 IgG antibodies was conducted on large 

representative national serum banks in Belgium. The sera were collected between 2001 and 2003 

and were obtained from residual sera submitted for routine laboratory testing (individuals aged 

<18 years) or from blood donors (18 years and over). This survey was designed as proposed by 

the European Sero-Epidemiology Network (ESEN) which aimed to standardize the serological 

surveillance of immunity to various diseases in European countries.10 In particular, children and 

adolescents were oversampled in the survey. A total of 3378 samples were collected and the age 

of the individuals ranged from 0 to 65 years. The number of samples with immunological status 

with regard to measles, mumps, rubella, VZV, and parvovirus B19 infection were 3190, 3004, 

3195, 3256, and 3080, respectively. Samples from children aged less than 6 months or 1 year 

were omitted in our analyses because of distortions expected from the presence of maternal 

antibodies against the various pathogens. Since a national immunisation programme against 

measles, mumps, and rubella has been introduced in 1985 in Belgium with gradually increasing 

vaccine coverage in the targeted age groups (infants, adolescents aged 11-13 years, and catch-up 

campaigns in adults), endemic equilibrium for these infections in 2002 cannot be assumed. In 

constrast, no immunisation programme against VZV and parvovirus B19 has been introduced, 

making endemic equilibrium a tenable assumption for both infections. 

Ethical approval for the setup of the 2002 serum set was obtained from the Ethics Committee of 

the University of Antwerp. 
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Models 

Here, we briefly present an overview of the methods used to derive key epidemiological 

parameters from serological survey data and we refer to Hens et al.2 for a more in-depth 

explanation of the methodology. We start from the basic concept of an age-specific prevalence 

and gradually move to the force of infection and other key epidemiological parameters such as 

the basic and effective reproduction numbers in endemic equilibrium. 

Age-specific seroprevalence can be modelled in the framework of generalized linear models 

(GLMs; see e.g. Hens et al.11). For estimating the (age-specific) force of infection from 

seroprevalence data, various statistical methods have been used in the literature including linear 

and non-linear parametric (e.g., fractional polynomials or catalytic model) and non-parametric 

approaches. Complementarily, the flow of individuals between the mutually exclusive stages of 

an infectious disease can be described using compartmental dynamic transmission models. The 

simplest such model, the SIR model, describes the flow between the susceptible (𝑆), the infected 

and infectious (𝐼), and recovered class (𝑅). The following set of partial differential equations in 

continuous age and time can be used to describe the SIR dynamics mathematically: 

𝜕𝑆 𝑎, 𝑡
𝜕𝑎 +

𝜕𝑆 𝑎, 𝑡
𝜕𝑡 = −𝜆 𝑎, 𝑡 𝑆 𝑎, 𝑡 − 𝜇 𝑎, 𝑡 𝑆 𝑎, 𝑡 ,

𝜕𝐼 𝑎, 𝑡
𝜕𝑎 +

𝜕𝐼 𝑎, 𝑡
𝜕𝑡 = 𝜆 𝑎, 𝑡 𝑆 𝑎, 𝑡 − 𝜎 𝑎, 𝑡 𝐼 𝑎, 𝑡 − 𝜇 𝑎, 𝑡 𝐼 𝑎, 𝑡 ,

𝜕𝑅 𝑎, 𝑡
𝜕𝑎 +

𝜕𝑅 𝑎, 𝑡
𝜕𝑡 = 𝜎 𝑎, 𝑡 𝐼 𝑎, 𝑡 − 𝜇 𝑎, 𝑡 𝑅 𝑎, 𝑡 ,

 

with the age- and time-specific population size given by 𝑁 𝑎, 𝑡 = 	𝑆 𝑎, 𝑡 + 	𝐼 𝑎, 𝑡 + 	𝑅 𝑎, 𝑡  

and with 𝜆 𝑎, 𝑡  the force of infection, 𝜎 𝑎, 𝑡  the recovery rate, and 𝜇 𝑎, 𝑡  the all-cause 

mortality rate.  
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Assuming a closed population of size 𝑁 in demographic and endemic equilibrium, we obtain a 

set of ordinary differential equations (ODEs): 

𝑑𝑆 𝑎
𝑑𝑎 = −𝜆 𝑎 𝑆 𝑎 − 𝜇 𝑎 𝑆 𝑎 ,

𝑑𝐼 𝑎
𝑑𝑎 = 𝜆 𝑎 𝑆 𝑎 − 𝜎 𝑎 𝐼 𝑎 − 𝜇 𝑎 𝐼 𝑎 ,

𝑑𝑅 𝑎
𝑑𝑎 = 𝜎 𝑎 𝐼 𝑎 − 𝜇 𝑎 𝑅 𝑎 .

 

Solving the above set of ODEs, the following expression for the seroprevalence of individuals of 

age 𝑎 is obtained: 

𝜋 𝑎 = 1 − 𝑒𝑥𝑝 − 𝜆 𝑢 𝑑𝑢8
9 . 

It is possible to solve the above equation numerically by turning to a discrete age framework, 

thereby assuming a constant force of infection 𝜆: in each age class 𝑎 : , 𝑎 :;< , 𝑘 = 1,⋯ , 𝐽.12 

The seroprevalence at age 𝑎 in the 𝑗th age interval is approximated by: 

𝜋 𝑎 = 1 − 𝑒𝑥𝑝 − 𝜆: 𝑎 :;< − 𝑎 : − 𝜆A 𝑎 − 𝑎 A

AB<

:C<

		(Eq.	1), 

where 𝑎 < = 0 and 𝑎 I;< = 𝐿 (the life expectancy). 

From this model, other key epidemiological parameters can be calculated such as the basic and 

effective reproduction number (R0 and Reff respectively; Reff reflects the actual average number 

of secondary cases that can be observed in a partially immune population) or the average age at 

infection. 

Since seropositive results for measles, mumps, and rubella are a mix of vaccine- and infection-

induced immunity, implying time-heterogeneity which is beyond the scope of this paper, only 
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the age-specific seroprevalence for these diseases was modelled. We considered a logistic model 

with piecewise constant prevalence values within the following age classes based (partially) on 

vaccination policies: [1,2), [2,11), [11,16), [16,21), [21,31), and [31,65] years. The estimates of 

the coefficients using this model (on the logit scale) are denoted by 𝛽. 

For infections under endemic equilibrium, three mathematical models for estimating the force of 

infection were considered. The first is an MSIR model with piecewise constant force of infection 

which is a slight adaptation of the model in (Eq. 1). The seroprevalence at age 𝑎 in the 𝑗th age 

interval is approximated by: 

𝜋 𝑎 = 1 − 𝑒𝑥𝑝 − 𝜆: 𝑎 :;< − 𝑎 : − 𝜆A 𝑎 − 𝑎 A

AB<

:C<

, 

with 𝑎 < = 𝐴, where 𝐴 is the age at which maternal immunity is lost. In this paper, we 

considered an MSIR model with piecewise constant force of infection within the following six 

age classes based on school enrollment ages in Belgium (except for the oldest age group): [1,2), 

[2,6), [6,12), [12,19), [19,31), and [31,65] years. 

The second model considered in this paper is the exponentially damped model for the force of 

infection as described by Farrington.13 This model assumes that the force of infection increases 

to a peak in a linear fashion followed by an exponential decrease, and can be formulated as 

follows: 

𝜆 𝑎 = 𝛼<𝑎 − 𝛼N 𝑒BOP8 + 𝛼N, 

with 𝛼<, 𝛼Q and 𝛼N the model parameters to be estimated from the data. Integrating 𝜆 𝑎  results 

in a non-linear model for the seroprevalence, i.e.,  
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𝜋 𝑎 = 1 − 𝑒𝑥𝑝 OR
OP
𝑎𝑒BOP8 + <

OP

OR
OP
− 𝛼N 𝑒BOP8 − 1 − 𝛼N𝑎 . 

We considered a third model for parvovirus B19 infection, a mathematical model allowing for 

boosting and waning immunity, since lifelong protection against infection upon recovery from 

parvovirus B19 is questionable.14-17 Goeyvaerts et al.18 considered several extensions of the 

MSIR model to account for waning of disease-acquired antibodies and/or for boosting of low 

immunity by exposure to infectious individuals. Here, we used the model with the best Akaike 

information criterion (AIC) value which was the compartmental model allowing for age-specific 

waning of disease-acquired antibodies and boosting of low immunity, denoted by “MSIRWb-ext 

AW” (see the Supplementary Material). In this model, individuals move from a high immunity 

state R to a low immunity state W at a rate 𝜀< and 𝜀Q for age group <35 and ≥35 years 

respectively. In addition, low immunity can be boosted by exposure to infectious individuals; the 

boosting rate was assumed to be proportional to the force of infection by a factor of 𝜑. The 

transmission rates are assumed to be directly proportional to age-specific rates of making social 

contact with a proportionality factor 𝑞. To be consistent with the aforementioned paper, only the 

samples from children aged less than 6 months were omitted for this analysis. 

The first two columns of Table 1 show a summary of the models used for each of the pathogens 

studied. Formulas to calculate the key epidemiological parameters (i.e., age-standardized 

seroprevalence and force of infection, R0, Reff, and the average age of infection) can be found in 

the Supplementary Material. The age-specific sero-prevalence and force of infection were 

calculated in the following age groups: [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65] years. 
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Estimating the model parameters 

Maximum likelihood estimates were obtained for each model and pathogen assuming that the 

observed prevalence follows a binomial distribution. The analyses were performed using R 

software (version 3.3.1).19 Using the estimated values of the parameters for each model and 

pathogen (with age values rounded down to integer values), age-specific “true” prevalence 

values were calculated which were used in the simulations (see next section). 

 

Simulations 

Figure 1 gives a schematic representation of the approach used in this paper. Three age structures 

were compared: the age structure derived from the pathogen-specific data of the serological 

survey in which children and adolescents were oversampled (survey-based), the age structure of 

the Belgian population in 2003 (population-based),20 and a uniform age structure (see 

Supplementary Material: Figure S1 and Table S1). In order to calculate the (simulation-based) 

precision of the estimates of the epidemiological parameters, 500 datasets were generated for 

each model using a binomial distribution with model- and age-specific “true” prevalence values 

and age-specific sample sizes. These age-specific sample sizes depend on the age structure and 

the total sample size (N=1650, 3300, 6600, 9900, 13200, or 19800) that are used. The precision 

around the estimated key epidemiological parameters is defined to be half the length of the 95% 

percentile-based confidence interval (CI) calculated over the 500 simulations. In the MSIR 

model with piecewise constant force of infection for the VZV infection, simulations with 

biologically implausible estimated values (>10) were excluded; such values were obtained in the 

age group >30 years due to a simulated prevalence of 100% in this age group. These simulations 
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were replaced. Here, the simulations will give insights into the age structure best suited to 

estimate given key parameters but also provide insights into the sample size needed. 

Alternatively, if resources are available for a predetermined number of samples or if one wants to 

test samples previously collected without prior knowledge of age-based sampling structure, the 

proportion of the samples to allocate in each age group could be investigated to obtain the 

highest precision for a given parameter. Here, the optimal allocation was determined by 

calculating the precisions obtained using different distributions. To restrict the number of 

distributions to compare, we varied the proportions among the six age groups ([1,2), [2,6), 

[6,12), [12,19), [19,31), and [31,65] years) from 10% to 50% (leading to 126 distributions) and 

assuming a uniform distribution within each age group. We investigated the optimal allocation 

for several values of the total number of samples available: N= 1650, 3300, 6600, 9900, 13200, 

or 19800. Five hundred datasets were generated for each distribution and each sample size. For 

the seroprevalence and force of infection by age group, the age distribution providing the best 

joint precision, defined as the sum of the precisions in each age group, is reported. 

 

Results 

Estimates of the model parameters obtained using the observed serological survey data 

The model estimates for each of the different pathogens are given in Table 1. Figure S3 

(Supplementary Material) shows the estimated prevalence and force of infection for each model 

and disease. The results between the models were close; however, as expected, for parvovirus 

B19, the MSIRWb-ext AW model was able to capture, though only slightly, the decrease in 
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seroprevalence around age 30. In this model, the force of infection had a bimodal shape (with 

modes around ages 7 and 35 years; Figure S3).  

Since our simulations were based on integer age values, the MSIR and MSIRWb-ext AW models 

were re-run after rounding continuous age values down to integers; however, the estimates were 

close when using continuous or integer values. The estimates obtained using the MSIR model 

with piecewise constant force of infection were: 𝜆V<W = 0.077,0.104,0.100,0.035,0,0.014 , 

𝜆\]\ = 0.404,0.337,0.200,0,0.076,0.113 . The following estimates were obtained using the 

MSIRWb-ext AW model for parvovirus B19: 𝑞 = 0.089, 𝜀< = 0.014, 𝜀Q = 0, and 𝜑 = 0.359. 

Estimates of the key epidemiological parameters are provided in the Supplementary Material 

(Tables S2-S4). 

Comparisons of the three age-based sampling structures 

For the overall seroprevalence of measles and VZV, in both models used, the survey-based age 

structure led to the best precision (Figures 2 and 3, Table S5, Tables S8-S9). However, when 

modelling mumps and parvovirus B19, in the three models used, the precision of the overall 

seroprevalence was found to be better using a uniform or population-based age structure (Figures 

2 and 4, Table S6, Tables S10-12). Finally, the precision for the estimated overall rubella 

seroprevalence was similar for the three different age structures (Figure 2, Table S7).  

The precision of the estimated overall force of infection was better when using the survey-based 

age structure for VZV infection, in both models used (Figure 3, Tables S8-9) and for parvovirus 

B19 infection under the MSIRWb-ext AW model, and using a uniform or population-based age 

structure for parvovirus B19 infection in the two other models used (Figure 4, Tables S10-12). 
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For all the pathogens, as could be expected given the oversampling in children and adolescents in 

the survey-based age structure, the precision of the estimated seroprevalence by age group was 

better when using the survey-based age structure in the young age groups and the uniform or 

population-based age structure for the oldest age groups (see Tables S5-S12 in the 

Supplementary Material). The same pattern was observed for the force of infection of VZV and 

parvovirus B19 by age group (see Tables S8-S12 in the Supplementary Material). 

In the exponentially damped model, the precision of R0 and the average age at infection was 

slightly better using the uniform or population-based age structure for parvovirus B19 while it 

was better using the survey-based age structure for VZV (see Tables S8 and S10). In the 

MSIRWbext-AW model, the precision of R0, Reff, and the average age at infection of parvovirus 

B19 was slightly better using the survey-based age structure while that of the relative boosting 

factor (𝜑) was better using the uniform or population-based age structure (Figure 5 and Table 

S12). However, the precision of this factor was poor, with large confidence intervals, and the 

average age at infection should be interpreted with caution given the bimodal force of infection. 

Sample size needed 

To obtain a 2% precision around the overall seroprevalence estimate, the sample size needed 

would be around 1650 for mumps and parvovirus B19, while a lower number of samples would 

be sufficient for measles, VZV, and rubella; to obtain a 1% precision the sample size needed 

would be around 6600 for mumps and parvovirus B19, and 1650 for measles, VZV, and rubella 

(Figures 2-4; Tables S5-S12). These results were quite consistent across age structures. 
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Optimal allocation of a fixed sample size among age groups 

For the overall seroprevalence of measles, mumps, or rubella, the optimal allocation (distribution 

over age groups) of a fixed number of samples would be a distribution with a high percentage of 

the data among age groups [19,31) and [31,65] years, for each sample size used (Table S13-S15 

in the Supplementary Material). Regarding the seroprevalence by age group, for measles, mumps 

and rubella, we have noticed some variations across the sample sizes; the optimal allocations 

were broadly uniform across the age groups. 

The optimal allocation for overall VZV seroprevalence or force of infection estimates varied 

with sample size; the oldest two age groups would rather be favoured (Figure 6 and Table S16-

S17 in the Supplementary material). The optimal allocation for the overall parvovirus B19 

seroprevalence estimate would be a distribution with a high percentage of data in the oldest age 

group, for each model and sample size used (Figure 7 and Table S18-S20 in the Supplementary 

Material). Regarding the overall force of infection of parvovirus B19, the optimal allocation 

would entail a distribution with high percentage among the oldest age group in the MSIR model 

with piecewise constant force of infection and exponentially damped model, while more equally 

distributed over the various age groups for the MSIRWb-ext AW model. 

Regarding the seroprevalence or force of infection by age group for VZV and parvovirus B19, 

some variations between models and sizes were observed; the optimal allocations were broadly 

uniform across the age groups. 
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Discussion 

Considering sample size and optimal allocation is essential since efficient usage of resources is 

needed in the context of limited human or financial resources and/or time constraints for 

performing a serological survey. Since analytical formulas for complex models are not available, 

simulation-based analyses are a flexible alternative to address these considerations. In this paper, 

we proposed a simulation-based approach for sample size and age structure considerations, and 

optimal allocation of resources, in order to estimate key epidemiological parameters with 

acceptable levels of precision within the context of a single cross-sectional serological survey. 

Our results showed that the best age structure to use in the sampling of a serological study as 

well as the optimal allocation distribution varied with the epidemiological parameters of interest. 

To our knowledge, only a few studies investigated, using mathematical or statistical models, the 

optimal allocation of a given number of samples over age groups to obtain good precision. 

Marschner4 showed, using an example of measles infection, that a uniform age distribution 

should not be optimal to obtain a good joint precision of the force of infection. 

For all the infections investigated, due to the oversampling of individuals under 20 years old in 

the serological survey purposefully, the precision of the estimated seroprevalence by age group 

was better with the survey-based age structure in the young age groups and the uniform or 

population age structure for the oldest age groups. Moreover, because of the formulas used to 

compute the basic or effective reproduction number and the average age at infection, the age 

structure best suited to estimate these parameters was related to that of the prevalence in the 

exponentially damped model and of the force of infection in the MSIRWb-ext AW model. In 

case the boosting rate is of interest, sufficiently sampling adults is essential. Anyway, the 
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precision of this rate was poor as was also observed in previous analyses.18 This could be 

explained by the complexity of the model used. 

An important finding was that the age-specific prevalence profile, and thus the age-specific force 

of infection profile, had an effect on the optimal age structure to use in a serological survey or 

the optimal allocation for estimating the overall seroprevalence. Indeed, the optimal age structure 

varied between VZV and parvovirus B19 infections, the seroprevalence increasing more sharply 

between ages 1 and 10 for VZV compared to parvovirus B19. 

Our analyses could be extended to power analyses in the context of hypothesis testing. Indeed, 

data sets could be simulated assuming that an alternative hypothesis is true, then tested against 

the null hypothesis to calculate the proportion of simulated data sets in which the null hypothesis 

is rejected, thereby providing an estimate of the statistical power.  

Other possible extensions are related to non-endemic settings. An endemic equilibrium cannot be 

assumed for vaccine-preventable infections such as measles, mumps, and rubella for which a 

national immunisation programme is in place. In such settings, dynamical mathematical models 

allowing time considerations could be used to calculate the sample size needed for estimating 

time-varying parameters with acceptable precision levels or to perform power calculations to 

detect changes in parameter values over time, but this needs to be investigated. In particular, 

these analyses could make use of serial seroprevalence surveys (i.e., repeated collections of 

cross-sectional population-representative serological samples).9 Finally, our analyses could also 

be extended to more complex models, for example transmission models incorporating the 

presence of individual heterogeneities.21,22 
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Our analyses had some limitations. First, a limited number of 500 datasets were generated to 

estimate the precisions in the sample size and optimal allocation considerations. However, 

similar results were obtained when generating 1000 or 1500 datasets (data not shown).  

Second, the number of age groups to optimally allocate a given number of samples had to be 

limited to avoid a huge number of combinations. Here, six age groups were used leading to 126 

distributions. Alternative age groups of interest or a predetermined age distribution (e.g., derived 

from previous surveys or population-based) can be used. Moreover, the optimal allocation will 

depend on the rule used to calculate the joint precision. Here, we used the sum of the age-

specific precisions. Alternative rules could be considered such as the sum of the relative 

precisions. However, favouring very small values could result in a very large sample size or be 

of less interest (e.g., if force of infection in older age groups is known to be small). 

Third, the use of measurements of antibody levels based on diagnostic tests relies on the 

assumption of a perfect test (i.e., both sensitive and specific). In lack of which, due to 

misclassification, the seroprevalence is not exactly equal to the disease prevalence, which would 

alter the estimates of the overall and age-specific prevalence, even more if sensitivity and 

specificity vary with age.23 The estimate of the seroprevalence can be corrected if estimates of 

the sensivity and specificity of the test(s) applied are available.24 Alternatively, mixture 

modelling of continuous antibodiy titers can be used, however the combination of this technique 

with  mathematical models needs further investigations.2,25-27 In the current work, considering 

misclassifications negligible appeared reasonable. 

Finally, like other standard methods, the approach presented here would require prior knowledge 

about parameter values: e.g., (sero)prevalence or force of infection by age (group) to simulate 

data. However, sensitivity analyses may be performed to assess how this prior knowledge affects 
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the sample size needed or optimal allocation and would inform about the minimum sample size 

needed.  

In any case, the choice of sampling design or modelling approach should be adapted to prior 

knowledge about the infection and the precision of estimates (overall or age-specific) should be 

considered in the context of the study goals and the anticipated implications for infection control 

measures or vaccine programs.  

The main conclusions from the presented analyses are that attention should be given to the age-

based sampling structure when estimating key epidemiological parameters with acceptable levels 

of precision within the context of a single cross-sectional serological survey, and that simulation-

based sample size calculations in combination with mathematical modelling can be utilised for 

choosing the optimal allocation of a given number of samples over various age groups. 
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Tables 

Table 1. Summary of the models considered for each of the pathogens and the corresponding 

model parameter estimates using the observed serological survey data 

Serological 

data 

Models Estimates 

Measles Logistic model with piecewise 

constant prevalence 
𝛽bc8decd = 0.108, 1.733, 1.412, 1.819, 2.479, 3.863  

Mumps Logistic model with piecewise 

constant prevalence 
𝛽bfghd = −0.575, 1.317, 1.990, 1.950, 2.145, 2.112  

Rubella Logistic model with piecewise 

constant prevalence 
𝛽ifj = 0.050, 1.912, 2.356, 2.419, 3.099, 3.339  

VZV MSIR piecewise constant force 

of infection 
𝜆\]\ = 0.330,0.301,0.245,0,0.071,0.116  

Exponentially damped model 

for force of infection 
𝛼\]\ = 0.476,0.468,0.071  

Parvovirus 

B19 

MSIR piecewise constant force 

of infection 
𝜆V<W = 0.065,0.086,0.114,0.036,0,0.014  

Exponentially damped model 

for force of infection 
𝛼V<W = 0.076,0.241,0.006  
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MSIR model with boosting and 

waning (MSIRWb-ext AW) 
𝑞 = 0.085, 𝜀< = 0.012, 𝜀Q = 0, and 𝜑 = 0.334. 

VZV: varicella-zoster virus. See the Models section for the descritption of the symbols used for 

the parameters. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/287581doi: bioRxiv preprint 

https://doi.org/10.1101/287581
http://creativecommons.org/licenses/by-nc-nd/4.0/


    

23 

Figures 
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Figure 5  
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Figure legends 

Figure 1. Schematic representation of the approach used in this paper. 

Figure 2. Measles, mumps, rubella serological data: mean, median, and 95% confidence interval 

for the overall seroprevalence over 500 simulations as a function of the total number of sampled 

individuals (N) using the logistic model with piecewise constant prevalence. Top left: Measles. 

Top right: Rubella. Bottom: Mumps. “True” overall seroprevalence is the estimated overall 

seroprevalence using the models on the observed serological survey data (with integer age 

values). The y-axes have different ranges of values for better legibility. 

Figure 3. VZV serological data: mean, median, and 95% confidence interval for the overall 

seroprevalence (left) and overall force of infection (right) over 500 simulations as a function of 

the total number of sampled individuals (N) for the MSIR model with piecewise constant force 

of infection (top) and the exponentially damped model (bottom). “True” overall seroprevalence 

is the estimated overall seroprevalence using the models on the observed serological survey data 

(with integer age values). 

Figure 4. Parvovirus B19 serological data: mean, median, and 95% confidence interval for the 

overall seroprevalence (left) and overall force of infection (right) over 500 simulations as a 

function of the total number of sampled individuals (N) for the MSIR model with piecewise 

constant force of infection (top), the exponentially damped model (middle), and the 

MSIRWbext-AW model (bottom). “True” overall seroprevalence is the estimated overall 

seroprevalence using the models on the observed serological data (with integer age values). 

Figure 5. Parvovirus B19 serological data: mean, median, and 95% confidence interval for the 

relative boosting factor 𝜑 (left) and basic reproduction number 𝑅9 (right) over 500 simulations as 
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a function of the total number of sampled individuals (N) for the MSIRWbext-AW model. 

“True” value is the value estimated using the model on the observed serological data (with 

integer age values).	The y-axes have different ranges of values for better legibility.	

Figure 6. VZV serological data: optimal allocation (N=3300) for various key epidemiological 

parameters and by model (y-axis) among the six age groups (with lighter shades with increasing 

age group): [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65].  

Figure 7. Parvovirus B19 serological data: optimal allocation (N=3300) for various key 

epidemiological parameters and by model (y-axis) among the six age groups (with lighter shades 

with increasing age group): [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65].  
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