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Abstract

Background. Our work was motivated by the need to, given serum availability and/or financial
resources, decide on which samples to test for different pathogens in a serum bank. Simulation-
based sample size calculations were performed to determine the age-based sampling structures
and optimal allocation of a given number of samples for testing across various age groups best
suited to estimate key epidemiological parameters (e.g., seroprevalence or force of infection)
with acceptable precision levels in a cross-sectional seroprevalence survey.

Methods. Statistical and mathematical models and three age-based sampling structures (survey-
based structure, population-based structure, uniform structure) were used. Our calculations are
based on Belgian serological survey data collected in 2002 where testing was done, amongst
others, for the presence of IgG antibodies against measles, mumps, and rubella, for which a
national mass immunisation programme was introduced in 1985 in Belgium, and against
varicella-zoster virus and parvovirus B19 for which the endemic equilibrium assumption is
tenable in Belgium.

Results. The optimal age-based sampling structure to use in the sampling of a serological survey
as well as the optimal allocation distribution varied depending on the epidemiological parameter
of interest for a given infection and between infections.

Conclusions. When estimating key epidemiological parameters with acceptable levels of
precision within the context of a single cross-sectional serological survey, attention should be
given to the age-based sampling structure. Simulation-based sample size calculations in
combination with mathematical modelling can be utilised for choosing the optimal allocation of

a given number of samples over various age groups.
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Introduction

Several key epidemiological parameters such as the prevalence, the force of infection (i.e., the
instantaneous rate at which susceptible individuals become infected) or the basic reproduction
number Ry (i.e., the expected number of secondary cases produced by a typical infected person
during his/her entire period of infectiousness when introduced into a totally susceptible

population) can be computed through the use of mathematical models.

Mathematical models for infectious diseases often rely on data from serological surveys and the
usefulness of these surveys has recently been highlighted.' Specifically, in a cross-sectional
survey, samples taken from individuals at a certain time point provide (at least partial)
information about whether or not these individuals have been immunised (infected or vaccinated)
before that time point (depicting current status data). In practice, antibodies which were formed
in response to an infecting organism or following vaccination are identified in the serum.
Typically, the antibody levels from serological data are compared to a predetermined cut-off
level to determine the individuals’ humoral immunological status. Under the assumptions of
lifelong humoral immunity and an epidemic in a steady state (i.e., at equilibrium), the age-

specific force of infection can be estimated from such data.”

Publications that used mathematical modelling to inform the design of studies, including cross-
sectional studies, are scarce.’ Moreover, only a few studies used mathematical or statistical
models to inform the design of serological surveys. Marschner® introduced a method for
determining the sample size of a cross-sectional seroprevalence survey to estimate the age-
specific incidence of an irreversible disease, based on the illness-death model assuming time
homogeneity and non-differential mortality as described in Keiding’s 1991 paper.” More

recently, Nishiura ef al.® proposed a framework to compute the uncertainty bounds of the final
y prop p y
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epidemic size to HIN1-2009 and to determine the minimum sample size required. Sepulveda and
Drakeley’ proposed two sample size calculators, depending on whether the seroreversion rate
(i.e., rate of antibody decay) is known, for estimating the seroconversion rate in malaria
transmission in low endemicity settings using a reverse catalytic model. They extended the
method to determine the sample size required to detect a reduction in the seroconversion rate at a
given time point before survey sampling caused by a field intervention.® Lastly, Vinh and Boni’
assessed the power of serial serological studies in inferring key epidemiological parameters using

a mathematical model.

In this paper, simulation-based sample size calculations are performed in order to determine the
age-based sampling structures and optimal allocation distributions best suited to estimate key
epidemiological parameters with acceptable precision levels. Specifically, we use four models
and three age-based sampling structures within the context of a single cross-sectional
seroprevalence survey. We differentiate between endemic and non-endemic settings. In the latter
case, we limit ourselves to estimating the prevalence and defer extensions thereof to future work.
The objectives of this paper are i) to investigate to what extent the precision of key
epidemiological parameters is modified in these models when assuming different age-based
sampling structures, thereby giving insights into the optimal age structure; ii) to provide an order
of magnitude of the sample size required to attain a specified precision for a particular
parameter; and iii) to give insights into the optimal allocation of a fixed sample size among age

groups.

Our work is motivated by the need to, given serum availability and/or financial resources, decide

on which samples to test for different pathogens in a serum bank.
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Methods

Data

A serological survey testing for the presence of, amongst others, measles, mumps, rubella,
varicella-zoster virus (VZV), and parvovirus B19 IgG antibodies was conducted on large
representative national serum banks in Belgium. The sera were collected between 2001 and 2003
and were obtained from residual sera submitted for routine laboratory testing (individuals aged
<18 years) or from blood donors (18 years and over). This survey was designed as proposed by
the European Sero-Epidemiology Network (ESEN) which aimed to standardize the serological
surveillance of immunity to various diseases in European countries.'® In particular, children and
adolescents were oversampled in the survey. A total of 3378 samples were collected and the age
of the individuals ranged from 0 to 65 years. The number of samples with immunological status
with regard to measles, mumps, rubella, VZV, and parvovirus B19 infection were 3190, 3004,
3195, 3256, and 3080, respectively. Samples from children aged less than 6 months or 1 year
were omitted in our analyses because of distortions expected from the presence of maternal
antibodies against the various pathogens. Since a national immunisation programme against
measles, mumps, and rubella has been introduced in 1985 in Belgium with gradually increasing
vaccine coverage in the targeted age groups (infants, adolescents aged 11-13 years, and catch-up
campaigns in adults), endemic equilibrium for these infections in 2002 cannot be assumed. In
constrast, no immunisation programme against VZV and parvovirus B19 has been introduced,

making endemic equilibrium a tenable assumption for both infections.

Ethical approval for the setup of the 2002 serum set was obtained from the Ethics Committee of

the University of Antwerp.
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Models

Here, we briefly present an overview of the methods used to derive key epidemiological
parameters from serological survey data and we refer to Hens ez al.” for a more in-depth
explanation of the methodology. We start from the basic concept of an age-specific prevalence
and gradually move to the force of infection and other key epidemiological parameters such as

the basic and effective reproduction numbers in endemic equilibrium.

Age-specific seroprevalence can be modelled in the framework of generalized linear models
(GLMs; see e.g. Hens et al.'"). For estimating the (age-specific) force of infection from
seroprevalence data, various statistical methods have been used in the literature including linear
and non-linear parametric (e.g., fractional polynomials or catalytic model) and non-parametric
approaches. Complementarily, the flow of individuals between the mutually exclusive stages of
an infectious disease can be described using compartmental dynamic transmission models. The
simplest such model, the SIR model, describes the flow between the susceptible (S), the infected
and infectious (1), and recovered class (R). The following set of partial differential equations in

continuous age and time can be used to describe the SIR dynamics mathematically:

( 0S(a,t) 0S(a,t)
0t —A(a, t)S(a, t) — u(a, t)S(a,t),
. alf;;’ ) + al(aat’ 2 Aa,t)S(a,t) —o(a,t)I(a,t) — ula, t)i(a,t),
OR(a, O0R(a,
k gz D, g‘; b _ o(a,O)I(a,t) — u(a, OR(a, t),

with the age- and time-specific population size given by N(a,t) = S(a,t) + I(a,t) + R(a,t)
and with A(a, t) the force of infection, o (a, t) the recovery rate, and u(a, t) the all-cause

mortality rate.


https://doi.org/10.1101/287581
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/287581; this version posted March 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Assuming a closed population of size N in demographic and endemic equilibrium, we obtain a

set of ordinary differential equations (ODEs):

ds
( d(aa) = —A(a)S(a) — u(a)S(a),
dl(a)
1 da - AMa)S(a) —a(a)I(a) — u(a)I(a),
dR
\ dia) = g(a)I(a) — p(a)R(a).

Solving the above set of ODEs, the following expression for the seroprevalence of individuals of

age a is obtained:

n(a) =1—exp(— foa A(w)du).

It is possible to solve the above equation numerically by turning to a discrete age framework,
thereby assuming a constant force of infection A, in each age class [a[k], a[k+1]], k=1,-,]."
The seroprevalence at age a in the j™ age interval is approximated by:

j—1

n(a)=1—exp| — z Ak(a[kﬂ] — a[k]) — Aj(a — a[j]) (Eq. 1),
k=1

where ap;) = 0 and aj;44) = L (the life expectancy).

From this model, other key epidemiological parameters can be calculated such as the basic and
effective reproduction number (Ry and Resr respectively; Regr reflects the actual average number
of secondary cases that can be observed in a partially immune population) or the average age at

infection.

Since seropositive results for measles, mumps, and rubella are a mix of vaccine- and infection-

induced immunity, implying time-heterogeneity which is beyond the scope of this paper, only


https://doi.org/10.1101/287581
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/287581; this version posted March 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

the age-specific seroprevalence for these diseases was modelled. We considered a logistic model
with piecewise constant prevalence values within the following age classes based (partially) on

vaccination policies: [1,2), [2,11), [11,16), [16,21), [21,31), and [31,65] years. The estimates of

the coefficients using this model (on the logit scale) are denoted by f.

For infections under endemic equilibrium, three mathematical models for estimating the force of
infection were considered. The first is an MSIR model with piecewise constant force of infection
which is a slight adaptation of the model in (Eq. 1). The seroprevalence at age a in the j™ age

interval is approximated by:

j—-1

m(a) =1—exp| — z he(@pess) = apg) = A(a —ay) )
k=1

with aq; = A, where A is the age at which maternal immunity is lost. In this paper, we

considered an MSIR model with piecewise constant force of infection within the following six
age classes based on school enrollment ages in Belgium (except for the oldest age group): [1,2),

[2,6), [6,12), [12,19), [19,31), and [31,65] years.

The second model considered in this paper is the exponentially damped model for the force of
infection as described by Farrington."> This model assumes that the force of infection increases
to a peak in a linear fashion followed by an exponential decrease, and can be formulated as

follows:
Ala) = (a0 — az)e 2% + a3,

with a4, @, and a5 the model parameters to be estimated from the data. Integrating A(a) results

in a non-linear model for the seroprevalence, i.e.,

10
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n(a) =1—exp {Z—: ae~%2% 4 aiz [Z—: - a3] [e”®2% — 1] — aga}.

We considered a third model for parvovirus B19 infection, a mathematical model allowing for
boosting and waning immunity, since lifelong protection against infection upon recovery from
parvovirus B19 is questionable.'*'” Goeyvaerts ef al.'® considered several extensions of the
MSIR model to account for waning of disease-acquired antibodies and/or for boosting of low
immunity by exposure to infectious individuals. Here, we used the model with the best Akaike
information criterion (AIC) value which was the compartmental model allowing for age-specific
waning of disease-acquired antibodies and boosting of low immunity, denoted by “MSIRWb-ext
AW? (see the Supplementary Material). In this model, individuals move from a high immunity
state R to a low immunity state W at a rate &; and ¢, for age group <35 and >35 years
respectively. In addition, low immunity can be boosted by exposure to infectious individuals; the
boosting rate was assumed to be proportional to the force of infection by a factor of ¢. The
transmission rates are assumed to be directly proportional to age-specific rates of making social
contact with a proportionality factor g. To be consistent with the aforementioned paper, only the

samples from children aged less than 6 months were omitted for this analysis.

The first two columns of Table 1 show a summary of the models used for each of the pathogens
studied. Formulas to calculate the key epidemiological parameters (i.e., age-standardized
seroprevalence and force of infection, Ry, R, and the average age of infection) can be found in
the Supplementary Material. The age-specific sero-prevalence and force of infection were

calculated in the following age groups: [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65] years.

11
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Estimating the model parameters

Maximum likelihood estimates were obtained for each model and pathogen assuming that the
observed prevalence follows a binomial distribution. The analyses were performed using R
software (version 3.3.1)." Using the estimated values of the parameters for each model and
pathogen (with age values rounded down to integer values), age-specific “true” prevalence

values were calculated which were used in the simulations (see next section).

Simulations

Figure 1 gives a schematic representation of the approach used in this paper. Three age structures
were compared: the age structure derived from the pathogen-specific data of the serological
survey in which children and adolescents were oversampled (survey-based), the age structure of
the Belgian population in 2003 (population-based),*® and a uniform age structure (see
Supplementary Material: Figure S1 and Table S1). In order to calculate the (simulation-based)
precision of the estimates of the epidemiological parameters, 500 datasets were generated for
each model using a binomial distribution with model- and age-specific “true” prevalence values
and age-specific sample sizes. These age-specific sample sizes depend on the age structure and
the total sample size (N=1650, 3300, 6600, 9900, 13200, or 19800) that are used. The precision
around the estimated key epidemiological parameters is defined to be half the length of the 95%
percentile-based confidence interval (CI) calculated over the 500 simulations. In the MSIR
model with piecewise constant force of infection for the VZV infection, simulations with
biologically implausible estimated values (>10) were excluded; such values were obtained in the

age group >30 years due to a simulated prevalence of 100% in this age group. These simulations

12
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were replaced. Here, the simulations will give insights into the age structure best suited to

estimate given key parameters but also provide insights into the sample size needed.

Alternatively, if resources are available for a predetermined number of samples or if one wants to
test samples previously collected without prior knowledge of age-based sampling structure, the
proportion of the samples to allocate in each age group could be investigated to obtain the
highest precision for a given parameter. Here, the optimal allocation was determined by
calculating the precisions obtained using different distributions. To restrict the number of
distributions to compare, we varied the proportions among the six age groups ([1,2), [2,6),
[6,12), [12,19), [19,31), and [31,65] years) from 10% to 50% (leading to 126 distributions) and
assuming a uniform distribution within each age group. We investigated the optimal allocation
for several values of the total number of samples available: N= 1650, 3300, 6600, 9900, 13200,
or 19800. Five hundred datasets were generated for each distribution and each sample size. For
the seroprevalence and force of infection by age group, the age distribution providing the best

joint precision, defined as the sum of the precisions in each age group, is reported.

Results

Estimates of the model parameters obtained using the observed serological survey data

The model estimates for each of the different pathogens are given in Table 1. Figure S3
(Supplementary Material) shows the estimated prevalence and force of infection for each model
and disease. The results between the models were close; however, as expected, for parvovirus

B19, the MSIRWb-ext AW model was able to capture, though only slightly, the decrease in

13
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seroprevalence around age 30. In this model, the force of infection had a bimodal shape (with

modes around ages 7 and 35 years; Figure S3).

Since our simulations were based on integer age values, the MSIR and MSIRWb-ext AW models
were re-run after rounding continuous age values down to integers; however, the estimates were
close when using continuous or integer values. The estimates obtained using the MSIR model
with piecewise constant force of infection were: Az, = (0.077,0.104,0.100,0.035,0,0.014),
Ayzv = (0.404,0.337,0.200,0,0.076,0.113). The following estimates were obtained using the
MSIRWb-ext AW model for parvovirus B19: § = 0.089, & = 0.014, & = 0, and ¢ = 0.359.
Estimates of the key epidemiological parameters are provided in the Supplementary Material

(Tables S2-S4).

Comparisons of the three age-based sampling structures

For the overall seroprevalence of measles and VZV, in both models used, the survey-based age
structure led to the best precision (Figures 2 and 3, Table S5, Tables S8-S9). However, when
modelling mumps and parvovirus B19, in the three models used, the precision of the overall
seroprevalence was found to be better using a uniform or population-based age structure (Figures
2 and 4, Table S6, Tables S10-12). Finally, the precision for the estimated overall rubella

seroprevalence was similar for the three different age structures (Figure 2, Table S7).

The precision of the estimated overall force of infection was better when using the survey-based
age structure for VZV infection, in both models used (Figure 3, Tables S8-9) and for parvovirus
B19 infection under the MSIRWb-ext AW model, and using a uniform or population-based age

structure for parvovirus B19 infection in the two other models used (Figure 4, Tables S10-12).

14
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For all the pathogens, as could be expected given the oversampling in children and adolescents in
the survey-based age structure, the precision of the estimated seroprevalence by age group was
better when using the survey-based age structure in the young age groups and the uniform or
population-based age structure for the oldest age groups (see Tables S5-S12 in the
Supplementary Material). The same pattern was observed for the force of infection of VZV and

parvovirus B19 by age group (see Tables S8-S12 in the Supplementary Material).

In the exponentially damped model, the precision of Ry and the average age at infection was
slightly better using the uniform or population-based age structure for parvovirus B19 while it
was better using the survey-based age structure for VZV (see Tables S8 and S10). In the
MSIRWbext-AW model, the precision of Ry, Res, and the average age at infection of parvovirus
B19 was slightly better using the survey-based age structure while that of the relative boosting
factor (¢) was better using the uniform or population-based age structure (Figure 5 and Table
S12). However, the precision of this factor was poor, with large confidence intervals, and the

average age at infection should be interpreted with caution given the bimodal force of infection.

Sample size needed

To obtain a 2% precision around the overall seroprevalence estimate, the sample size needed
would be around 1650 for mumps and parvovirus B19, while a lower number of samples would
be sufficient for measles, VZV, and rubella; to obtain a 1% precision the sample size needed
would be around 6600 for mumps and parvovirus B19, and 1650 for measles, VZV, and rubella

(Figures 2-4; Tables S5-S12). These results were quite consistent across age structures.

15
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Optimal allocation of a fixed sample size among age groups

For the overall seroprevalence of measles, mumps, or rubella, the optimal allocation (distribution
over age groups) of a fixed number of samples would be a distribution with a high percentage of
the data among age groups [19,31) and [31,65] years, for each sample size used (Table S13-S15
in the Supplementary Material). Regarding the seroprevalence by age group, for measles, mumps
and rubella, we have noticed some variations across the sample sizes; the optimal allocations

were broadly uniform across the age groups.

The optimal allocation for overall VZV seroprevalence or force of infection estimates varied
with sample size; the oldest two age groups would rather be favoured (Figure 6 and Table S16-
S17 in the Supplementary material). The optimal allocation for the overall parvovirus B19
seroprevalence estimate would be a distribution with a high percentage of data in the oldest age
group, for each model and sample size used (Figure 7 and Table S18-S20 in the Supplementary
Material). Regarding the overall force of infection of parvovirus B19, the optimal allocation
would entail a distribution with high percentage among the oldest age group in the MSIR model
with piecewise constant force of infection and exponentially damped model, while more equally

distributed over the various age groups for the MSIRWb-ext AW model.

Regarding the seroprevalence or force of infection by age group for VZV and parvovirus B19,
some variations between models and sizes were observed; the optimal allocations were broadly

uniform across the age groups.
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Discussion

Considering sample size and optimal allocation is essential since efficient usage of resources is
needed in the context of limited human or financial resources and/or time constraints for
performing a serological survey. Since analytical formulas for complex models are not available,
simulation-based analyses are a flexible alternative to address these considerations. In this paper,
we proposed a simulation-based approach for sample size and age structure considerations, and
optimal allocation of resources, in order to estimate key epidemiological parameters with

acceptable levels of precision within the context of a single cross-sectional serological survey.

Our results showed that the best age structure to use in the sampling of a serological study as
well as the optimal allocation distribution varied with the epidemiological parameters of interest.
To our knowledge, only a few studies investigated, using mathematical or statistical models, the
optimal allocation of a given number of samples over age groups to obtain good precision.
Marschner* showed, using an example of measles infection, that a uniform age distribution

should not be optimal to obtain a good joint precision of the force of infection.

For all the infections investigated, due to the oversampling of individuals under 20 years old in
the serological survey purposefully, the precision of the estimated seroprevalence by age group
was better with the survey-based age structure in the young age groups and the uniform or
population age structure for the oldest age groups. Moreover, because of the formulas used to
compute the basic or effective reproduction number and the average age at infection, the age
structure best suited to estimate these parameters was related to that of the prevalence in the
exponentially damped model and of the force of infection in the MSIRWb-ext AW model. In

case the boosting rate is of interest, sufficiently sampling adults is essential. Anyway, the
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.. . . . 18 .
precision of this rate was poor as was also observed in previous analyses. = This could be

explained by the complexity of the model used.

An important finding was that the age-specific prevalence profile, and thus the age-specific force
of infection profile, had an effect on the optimal age structure to use in a serological survey or
the optimal allocation for estimating the overall seroprevalence. Indeed, the optimal age structure
varied between VZV and parvovirus B19 infections, the seroprevalence increasing more sharply

between ages 1 and 10 for VZV compared to parvovirus B19.

Our analyses could be extended to power analyses in the context of hypothesis testing. Indeed,
data sets could be simulated assuming that an alternative hypothesis is true, then tested against
the null hypothesis to calculate the proportion of simulated data sets in which the null hypothesis

is rejected, thereby providing an estimate of the statistical power.

Other possible extensions are related to non-endemic settings. An endemic equilibrium cannot be
assumed for vaccine-preventable infections such as measles, mumps, and rubella for which a
national immunisation programme is in place. In such settings, dynamical mathematical models
allowing time considerations could be used to calculate the sample size needed for estimating
time-varying parameters with acceptable precision levels or to perform power calculations to
detect changes in parameter values over time, but this needs to be investigated. In particular,
these analyses could make use of serial seroprevalence surveys (i.e., repeated collections of
cross-sectional population-representative serological samples).” Finally, our analyses could also
be extended to more complex models, for example transmission models incorporating the

. . .. 21.22
presence of individual heterogeneities.”
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Our analyses had some limitations. First, a limited number of 500 datasets were generated to
estimate the precisions in the sample size and optimal allocation considerations. However,

similar results were obtained when generating 1000 or 1500 datasets (data not shown).

Second, the number of age groups to optimally allocate a given number of samples had to be
limited to avoid a huge number of combinations. Here, six age groups were used leading to 126
distributions. Alternative age groups of interest or a predetermined age distribution (e.g., derived
from previous surveys or population-based) can be used. Moreover, the optimal allocation will
depend on the rule used to calculate the joint precision. Here, we used the sum of the age-
specific precisions. Alternative rules could be considered such as the sum of the relative
precisions. However, favouring very small values could result in a very large sample size or be

of less interest (e.g., if force of infection in older age groups is known to be small).

Third, the use of measurements of antibody levels based on diagnostic tests relies on the
assumption of a perfect test (i.e., both sensitive and specific). In lack of which, due to
misclassification, the seroprevalence is not exactly equal to the disease prevalence, which would
alter the estimates of the overall and age-specific prevalence, even more if sensitivity and
specificity vary with age.” The estimate of the seroprevalence can be corrected if estimates of
the sensivity and specificity of the test(s) applied are available.** Alternatively, mixture
modelling of continuous antibodiy titers can be used, however the combination of this technique
with mathematical models needs further investigations.”*>" In the current work, considering

misclassifications negligible appeared reasonable.

Finally, like other standard methods, the approach presented here would require prior knowledge
about parameter values: e.g., (sero)prevalence or force of infection by age (group) to simulate

data. However, sensitivity analyses may be performed to assess how this prior knowledge affects
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the sample size needed or optimal allocation and would inform about the minimum sample size

needed.

In any case, the choice of sampling design or modelling approach should be adapted to prior
knowledge about the infection and the precision of estimates (overall or age-specific) should be
considered in the context of the study goals and the anticipated implications for infection control

measures or vaccine programs.

The main conclusions from the presented analyses are that attention should be given to the age-
based sampling structure when estimating key epidemiological parameters with acceptable levels
of precision within the context of a single cross-sectional serological survey, and that simulation-
based sample size calculations in combination with mathematical modelling can be utilised for

choosing the optimal allocation of a given number of samples over various age groups.
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Tables

Table 1. Summary of the models considered for each of the pathogens and the corresponding

model parameter estimates using the observed serological survey data

Serological Models Estimates
data
Measles Logistic model with piecewise
Breasies = (0.108,1.733,1.412,1.819,2.479, 3.863)
constant prevalence
Mumps Logistic model with piecewise
Brumps = (—0.575,1.317,1.990, 1.950, 2.145,2.112)
constant prevalence
Rubella Logistic model with piecewise
Brup = (0.050,1.912,2.356,2.419,3.099, 3.339)
constant prevalence
VZV MSIR piecewise constant force
/iVZV = (0.330,0.301,0.245,0,0.071,0.116)
of infection
Exponentially damped model
@yzy = (0.476,0.468,0.071)
for force of infection
Parvovirus  MSIR piecewise constant force
/1319 = (0.065,0.086,0.114,0.036,0,0.014)
B19 of infection

Exponentially damped model

for force of infection

@pyo = (0.076,0.241,0.006)
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MSIR model with boosting and
g =0.085,4, =0.012, &, = 0, and ¢ = 0.334.
waning (MSIRWb-ext AW)

VZV: varicella-zoster virus. See the Models section for the descritption of the symbols used for

the parameters.
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Figure legends

Figure 1. Schematic representation of the approach used in this paper.

Figure 2. Measles, mumps, rubella serological data: mean, median, and 95% confidence interval
for the overall seroprevalence over 500 simulations as a function of the total number of sampled
individuals (N) using the logistic model with piecewise constant prevalence. Top left: Measles.
Top right: Rubella. Bottom: Mumps. “True” overall seroprevalence is the estimated overall
seroprevalence using the models on the observed serological survey data (with integer age

values). The y-axes have different ranges of values for better legibility.

Figure 3. VZV serological data: mean, median, and 95% confidence interval for the overall
seroprevalence (left) and overall force of infection (right) over 500 simulations as a function of
the total number of sampled individuals (V) for the MSIR model with piecewise constant force
of infection (top) and the exponentially damped model (bottom). “True” overall seroprevalence
is the estimated overall seroprevalence using the models on the observed serological survey data

(with integer age values).

Figure 4. Parvovirus B19 serological data: mean, median, and 95% confidence interval for the
overall seroprevalence (left) and overall force of infection (right) over 500 simulations as a
function of the total number of sampled individuals (V) for the MSIR model with piecewise
constant force of infection (top), the exponentially damped model (middle), and the
MSIRWbext-AW model (bottom). “True” overall seroprevalence is the estimated overall

seroprevalence using the models on the observed serological data (with integer age values).

Figure 5. Parvovirus B19 serological data: mean, median, and 95% confidence interval for the

relative boosting factor ¢ (left) and basic reproduction number R, (right) over 500 simulations as
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a function of the total number of sampled individuals (V) for the MSIRWbext-AW model.
“True” value is the value estimated using the model on the observed serological data (with

integer age values). The y-axes have different ranges of values for better legibility.

Figure 6. VZV serological data: optimal allocation (N=3300) for various key epidemiological
parameters and by model (y-axis) among the six age groups (with lighter shades with increasing

age group): [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65].

Figure 7. Parvovirus B19 serological data: optimal allocation (N=3300) for various key
epidemiological parameters and by model (y-axis) among the six age groups (with lighter shades

with increasing age group): [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65].
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