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Abstract 
 
Transcriptome-wide association analysis is a powerful approach to studying the 
genetic architecture of complex traits. A key component of this approach is to build a 
model to impute gene expression levels from genotypes using samples with matched 
genotypes and gene expression data in a given tissue. However, it is challenging to 
develop robust and accurate imputation models with a limited sample size for any 
single tissue. Here, we first introduce a multi-task learning method to jointly impute 
gene expression in 44 human tissues. Compared with single-tissue methods, our 
approach achieved an average 39% improvement in imputation accuracy and 
generated effective imputation models for an average 120% more genes. We then 
describe a summary statistic-based testing framework that combines multiple 
single-tissue associations into a powerful metric to quantify the overall gene-trait 
association. We applied our method, called UTMOST, to multiple genome wide 
association results and demonstrate its advantages over single-tissue strategies.   
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Introduction 
 
Genome-wide association studies (GWAS) have successfully identified numerous 
single-nucleotide polymorphisms (SNPs) associated with complex human traits and 
diseases. Despite these successes, significant problems remain in statistical power 
and biological interpretation of GWAS results1,2. In particular, the complex 
architecture of linkage disequilibrium (LD) and context-dependent regulatory 
machinery in the genome hinder our ability to accurately identify disease genes from 
GWAS, thereby raising challenges in downstream functional validation and 
therapeutics development. Recently, large-scale consortia, such as the 
Genotype-Tissue Expression (GTEx) project3,4, have generated matched genotype 
and expression data for various human tissues. These rich data sets have provided 
great insights into the mechanisms of cross-tissue transcriptional regulation and 
accelerated discoveries for expression quantitative trait loci (eQTL)4-7. In addition, 
integrating eQTL information in genetic association analysis has become an effective 
way to bridge SNPs, genes, and complex traits. Many methods have been developed 
to co-localize eQTL with loci identified in GWAS to identify candidate risk genes for 
complex traits8-13. Two recent studies addressed this issue through an innovative 
approach that is sometimes referred to as transcriptome-wide association analysis. 
First, based on an externally-trained imputation model, gene expression is imputed 
using genotype information in GWAS samples. Next, gene-level association is 
assessed between imputed gene expression and the trait of interest14,15. These 
methods have gained popularity in the past two years due to their capability to 
effectively utilize signals from multiple eQTL with moderate effects and to reduce the 
impact of reverse causality in expression-trait association analysis. The applications 
of these methods have led to novel insights into the genetic basis of many diseases 
and traits16-18.  
 
Despite these successes, existing methods have several limitations. First, due to the 
tissue-dependent nature of transcription regulation, existing methods train separate 
imputation models for different tissues. This practice ignores the similarity in 
transcription regulation across tissues, thereby limiting the effective sample sizes for 
tissues that are difficult to acquire. Second, a hypothesis-free search across genes 
and tissues increases the burden of multiple testing and thus reduces statistical 
power. Pinpointing a subset of tissues based on prior knowledge may resolve this 
issue to some extent. However, for many complex traits, biologically relevant tissues 
are unknown. Further, reports have shown that eQTL with large effects tend to 
regulate gene expression in multiple tissues4. Genetic correlation analysis has also 
suggested substantial sharing of local expression regulation across tissues19. This 
would inevitably result in statistically significant associations in tissues irrelevant to 
the trait of interest, a phenomenon that has been extensively discussed recently20. 
Jointly analyzing data from multiple genetically-correlated tissues has the potential to 
resolve these issues. It has been demonstrated that multi-trait analysis could improve 
accuracy of genetic risk prediction21-23. Multi-tissue modeling has also been shown to 
improve the statistical power in eQTL discovery24-27 and gene network studies28. In 
this work, we demonstrate that a cross-tissue strategy could also improve 
transcriptome-wide association analysis. 
 
We introduce UTMOST (Unified Test for MOlecular SignaTures), a principled method 
to perform cross-tissue expression imputation and gene-level association analysis. 
We demonstrate its performance through internal and external imputation validation, 
simulation studies, analyses of 50 complex traits, a case-study on low-density 
lipoprotein cholesterol (LDL-C), and a multi-stage association study for late-onset 
Alzheimer’s disease (LOAD). We show that UTMOST substantially improves the 
accuracy of expression imputation in all available tissues. In the downstream 
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association analysis, UTMOST provides a powerful metric that summarizes 
gene-level associations across tissues and can be extended to integrate various 
molecular phenotypes.  
 
 
 
Results 
 
Model overview 
The UTMOST framework consists of three main stages (Figure 1). First, for each 
gene in the genome, we train a cross-tissue expression imputation model using the 
genotype information and matched expression data from 44 tissues in GTEx. Next, 
we test associations between the trait of interest and imputed expression in each 
tissue. Lastly, a cross-tissue test is performed for each gene to summarize 
single-tissue association statistics into a powerful metric that quantifies the overall 
gene-trait association. Here, we briefly introduce the UTMOST framework. All the 
statistical details are discussed in the Online Methods. 
 
We formulate cross-tissue expression imputation as a penalized multivariate 
regression problem: 

𝑌"×$ = 𝑋"×'𝐵'×$ + 𝜀"×$, 
where 𝑁, 𝑀, and 𝑃 denote the sample size in the training data, the number of SNPs 
in the imputation model, and the total number of tissues, respectively. As only a 
subset of tissues was collected from each individual, expression data in matrix 𝑌 
were incomplete and sample sizes for different tissues were unbalanced. We estimate 
𝐵 by minimizing the squared loss function with a lasso penalty on the columns 
(within-tissue effects) and a group-lasso penalty on the rows (cross-tissue effects) 
(Online Methods). 

𝐵. = argmin
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where 𝑌9, 𝑋9, and 𝑁9 denote the observed expressions, genotypes, and sample size 
of the ith tissue, respectively. Parameters 𝜆? and 𝜆= are tuned through 
cross-validation. Our cross-tissue imputation model does not assume eQTL to have 
the same effect direction across tissues. Instead, UTMOST uses a group LASSO 29 
penalty term the framework to encourage the presence of cross-tissue eQTL and 
improve the estimation of their effects. 
 
In the second stage, we test the associations between the trait of interest and imputed 
gene expression in each tissue. We denote imputed gene expression in the ith tissue 
as 𝐸9 = 𝑋9𝐵.∙9 and test associations via a univariate regression model: 

𝑇 = 𝛼9 + 𝐸9𝛾9 + 𝛿9. 
The z-scores for gene-trait associations in the ith tissue can be denoted as  

𝑍9 =
𝛾J9

𝑠𝑒	(𝛾J9)
≈ 𝐵.∙9Q𝛤9𝑍S 

where 𝑍S denotes the SNP-trait z-scores and 𝛤9 is a diagonal matrix whose jth 
diagonal element denotes the ratio between the standard deviation of the jth SNP and 
that of imputed expression in the ith tissue (Online Methods). When there is no 
SNP-trait association, 𝑍S follows a multivariate normal distribution 𝑁(0, 𝐷), where 𝐷 
is the LD matrix for SNPs. The covariance matrix of 𝑍 = (𝑍?, 𝑍=, … , 𝑍$)Q can be 
calculated as 

Σ = 𝑐𝑜𝑣\ΛQ𝑍S^ = ΛQ𝐷Λ 
where Λ = (𝐵.∙?Γ?, 𝐵.∙=Γ=, … , 𝐵.∙$Γ$). 
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Finally, we combine single-tissue gene-trait association results using a generalized 
Berk-Jones (GBJ) test, which takes the covariance among single-tissue test statistics 
into account30. We note that this framework allows gene-trait associations to have 
different directions across tissues. Details on the GBJ statistic and p-value calculation 
are discussed in the Online Methods.  
 
 
Cross-tissue expression imputation accuracy 
We first evaluated the accuracy of cross-tissue expression imputation through 
five-fold cross-validation. We used an elastic net model (i.e. the model used in 
PrediXcan14) trained in each tissue separately as the benchmark for prediction without 
leveraging cross-tissue information. We used squared Pearson correlation (i.e. 𝑅=) 
between the observed and predicted gene expression levels to quantify imputation 
accuracy. Cross-tissue imputation achieved higher imputation accuracy in all 44 
tissues (Figure 2a). On average, imputation accuracy was improved by 38.6% across 
tissues (Figure 2b). The improvement was particularly high in tissues with low sample 
sizes in GTEx (N < 150; an average of 47.4% improvement). Analysis based on 
Spearman correlation also showed consistent results (Supplementary Figure 1). 
Next, we calculated the proportion of genes with increased imputation accuracy. In all 
44 tissues, substantially more genes showed improved imputation performance 
(Supplementary Table 1). Using a false discovery rate (FDR) cutoff of 0.05 as the 
significance threshold, our cross-tissue method achieved 120% more significantly 
predicted genes across tissues. Among tissues with low sample sizes, the 
improvement percentage rose even further to 175% (Figure 2c). Furthermore, we 
compared our method with the Bayesian Sparse Linear Mixed-effects Model 
(BSLMM31), the imputation method used in TWAS15. Similarly, UTMOST achieved 
higher imputation accuracy in all 44 tissues (Supplementary Figure 2). On average, 
imputation accuracy improved 20.3% across tissues. 
 
Next, we performed external validation using two independent datasets. We first used 
our imputation model for whole blood in GTEx to predict gene expression levels in 
GEUVADIS lymphoblastoid cell lines (LCLs)32 (Online Methods). The imputation 
accuracy quantified as R2 showed substantial departure from the expected 
distribution under the null (i.e. expression and SNPs are independent), which 
demonstrates the generalizability of cross-tissue imputation (Supplementary 
Figures 3-4). Compared to single-tissue elastic net, cross-tissue imputation achieved 
significantly higher prediction accuracy in different quantiles (P = 3.43 × 10-7; 
Kolmogorov-Smirnov test), which is consistent with our findings from cross-validation. 
Two examples of well-predicted genes are illustrated in Figure 2d-e, showing 
improved concordance between observed (gene expressions adjusted for potential 
confounding effects; Online Methods) and predicted expression values via 
cross-tissue imputation. Analysis on CommonMind consortium data33 showed similar 
results (Online Methods, Supplementary Figure 5-6).  
 
 
Cross-tissue association test  
Another key advancement in the UTMOST framework is a novel gene-level 
association test that combines statistical evidence across multiple tissues. We 
performed simulation studies using samples from the Genetic Epidemiology Research 
Study on Adult Health and Aging (GERA; N = 12,637) to assess the association test’s 
type-I error rate and statistical power in a variety of settings (Online Methods). We 
did not observe inflation in the type-I error rate in two different simulation studies 
(Supplementary Table 2-3). We observed a substantial improvement in statistical 
power of the multi-tissue joint test when gene expressions in multiple tissues were 
causally related to the trait. The improvement was also consistent under different 
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simulated genetic architectures (Figure 3). When the trait was affected by expression 
in only one tissue, statistical power of the joint test was comparable to that of a 
single-tissue test in the causal tissue. Compared to the naïve test that combines 
results across tissues while applying an additional Bonferroni correction, our joint test 
was consistently more powerful (improvement ranged from 15.3% to 24.1%).  
 
 
UTMOST identifies more associations in relevant tissues  
To evaluate the performance of single-tissue association test based on cross-tissue 
expression imputation, we applied UTMOST to the summary statistics from 50 GWAS 
(Ntotal≈4.5 million without adjusting for sample overlap across studies; 
Supplementary Table 4) and compared the results with those of PrediXcan14 and 
TWAS15. To identify tissue types that are biologically relevant to these complex traits, 
we applied LD score regression34 to these datasets and partitioned heritability by 
tissue-specific functional genome predicted by GenoSkyline-Plus annotations35. 
Tissue-trait relevance was ranked based on enrichment p-values (Methods). 
Compared to PrediXcan and TWAS, UTMOST identified substantially more 
associations in the most relevant tissue for each analyzed trait, showing 69.2% 
improvement compared to PrediXcan (P = 8.79 × 10-5; paired Wilcoxon rank test) and 
188% improvement compared to TWAS (P = 7.39 × 10-8, Figure 4). Such 
improvement was consistently observed across traits (Supplementary Table 5). In 
contrast, for other tissues, UTMOST identified similar number of genes and showed 
no significant difference compared with PrediXcan (P = 0.52). Comparing tissues that 
were most and least enriched for trait heritability, UTMOST identified significantly 
more associations in tissues strongly enriched for trait heritability than in tissues with 
the least enrichment (P = 0.016) while the contrast was not significant based on 
PrediXcan (P = 0.192) or TWAS (P = 0.085). Finally, we applied the cross-tissue joint 
test to these traits and compared the number of significant genes with the combined 
results from 44 UTMOST single-tissue tests. UTMOST joint test identified more 
associations than single-tissue tests in 43 out of 50 traits (P = 1.74 × 10-8; Wilcox rank 
test; Supplementary Figure 7), showing improved statistical power in cross-tissue 
analysis. 
 
Integrating external QTL resource  
We applied UTMOST to the meta-analysis summary data of LDL-C from the Global 
Lipids Genetics Consortium (N = 173,082)36. Results based on four different analytical 
strategies, i.e. single-tissue test using liver tissue in GTEx (N = 97), single-tissue test 
using liver eQTL from STARNET37 (N = 522), cross-tissue joint test combining 44 
GTEx tissues, and cross-tissue joint test combining 44 GTEx tissues and the liver 
eQTL from STARNET, were compared. We identified 57, 58, 185, and 203 significant 
genes in the four sets of analyses, respectively (Figure 5a). 
 
Among the identified genes in cross-tissue joint test of 44 GTEx tissues and 
STARNET-liver, SORT1 had the most significant association (P = 3.4 × 10-15). SORT1 
is known to causally mediate LDL-C levels, even though the GWAS association signal 
at this locus is clustered around CELSR238,39. Of note, not only was liver not 
implicated as the relevant tissue for SORT1 in the association analysis, association 
signal at SORT1 was completely absent in the single tissue test based on GTEx-liver 
due to its low imputation quality (FDR = 0.064). Limited sample size of liver tissue in 
GTEx (N = 97) restrained the imputation performance of SORT1, and consequently 
reduced the statistical power in association test. On the other hand, UTMOST 
successfully recovered the association signal at SORT1 (P = 3.4 × 10-15). Additionally, 
UTMOST cross-tissue association test is flexible in incorporating external QTL 
resources along with GTEx data (Online Methods). Through integrating single-tissue 
associations in all 44 GTEx tissues and a large external liver dataset (STARNET; N = 
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522), we successfully recovered the association of SORT1 (Figure 5b). Furthermore, 
we performed pair-wise conditional analyses between SORT1 and other significant 
genes at the SORT1 locus, and found that SORT1 remained statistically significant in 
all analyses, showing that its association signal is not shadowed by other genes 
(Supplementary Table 6). Further, when correlations between gene expression were 
moderate, SORT1 was more significant than all other tested genes in conditional 
analysis. Even when correlation was substantial (e.g. CELSR2 and PSRC1 both had 
correlation = 0.9 with SORT1 in STARNET), SORT1 remained statistically significant. 
We compared association based on STARNET only and found that SORT1 is not the 
top signal in the locus in single-tissue analysis and cross-tissue approach does not 
increase the false-positive rate (Supplementary Note). These results suggest that 
integrative analysis of transcriptomic data from multiple tissues and multiple QTL 
resources can effectively increase statistical power in gene-level association 
mapping. UTMOST is a flexible framework and is not limited to GTEx tissues only. 
Integrating relevant external QTL studies via UTMOST may further improve 
downstream association analysis. 
 
 
UTMOST identifies novel risk genes for Alzheimer’s disease 
Finally, to demonstrate UTMOST’s effectiveness in real association studies, we 
performed a multi-stage gene-level association study for LOAD. In the discovery 
stage, we applied UTMOST to the stage-I GWAS summary statistics from the 
International Genomics of Alzheimer’s Project40 (IGAP; N =54,162). Multiple recent 
studies have suggested that functional DNA regions in liver and myeloid cells are 
strongly enriched for LOAD heritability35,41,42. It has also been suggested that 
alternative splicing may be a mechanism for many risk loci of LOAD43. Therefore, in 
addition to 44 tissues from GTEx, we also incorporated liver eQTL from STARNET 
and both eQTL and splicing (s)QTL data in three immune cell types (i.e. CD14+ 
monocytes, CD16+ neutrophils, and naive CD4+ T cells) from the BLUEPRINT44 
consortium in our analysis (Online Methods). Single-tissue association tests were 
performed and then combined using the GBJ test. In total, our cross-tissue analysis 
identified 68 genome-wide significant genes in the discovery stage (Supplementary 
Table 7, Supplementary Figure 8).  
 
Next, we replicated our findings in two independent datasets: using GWAS summary 
statistics based on samples in the Alzheimer’s Disease Genetics Consortium (ADGC) 
that were not used in the IGAP stage-I analysis (N = 7,050), and summary statistics 
from the genome-wide association study by proxy45 (GWAX; N = 114,564). Despite 
the moderate sample size in the ADGC dataset and the ‘proxy’ LOAD phenotype 
based on family history in GWAX analysis, replication rate was high (Supplementary 
Table 7). Seventeen and 15 out of 68 genes were successfully replicated under the 
Bonferroni-corrected significance threshold in ADGC and GWAX, respectively. The 
numbers of replicated genes rose to 41 and 30 under a relaxed p-value cutoff of 0.05. 
Twenty-two out of 68 genes had p-values below 0.05 in both replication datasets. We 
then combined p-values from all three analyses via Fisher’s method. A total of 69 
genes, including 12 genes that were not significant in the discovery stage, reached 
genome-wide significance in the meta-analysis (Figure 6, Supplementary Table 
7-8). These 69 genes were significantly enriched for seven gene ontology terms 
(Supplementary Table 9), with “very-low-density lipoprotein particle” being the most 
significant (adjusted P = 5.8 × 10-3). 
 
Most significant genes are from previously identified LOAD risk loci40,46-51. These 
include CR1 locus on chromosome 1, BIN1 locus on chromosome 2, HBEGF locus on 
chromosome 5, ZCWPW1 and EPHA1 loci on chromosome 7, CLU locus on 
chromosome 8, CELF1, MS4A6A, and PICALM loci on chromosome 11, and the 
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APOE region on chromosome 19. Among these loci, AGFG2 rather than ZCWPW1, 
the previously-suggested index gene at this locus40, was significant in the 
meta-analysis (P = 7.19 × 10-7). Similarly, BIN1 was not statistically significant in our 
analysis. But LIMS2, a gene 500 kb upstream of BIN1, was significantly associated (P 
= 9.43 × 10-12). SNPs in the 3’UTR of LIMS2 have been previously suggested to 
associate with cognitive decline52. GWAS index genes for the rest of the loci were all 
statistically significant in our analysis. 
 
Further, new associations at known risk loci provide novel insights into LOAD 
etiology. We identified a novel gene IL10 for LOAD risk (P = 1.77 × 10-7). IL10 is 700 
kb upstream of CR1, a strong and consistently replicated locus in LOAD GWAS40,51,53. 
CR1 is also significant in our analysis (P = 3.71 × 10-7). Although some SNPs near the 
promoter region of IL10 were moderately associated with LOAD in all three datasets 
(Supplementary Figure 9), the IL10-LOAD association was mostly driven by SNPs 
near CR1 (Supplementary Table 10). An interesting observation is that even when a 
key SNP is missing – the most significant SNP in IGAP and ADGC (i.e. 
rs2093761:A>G) was not present in GWAX, other predictors (e.g. rs6690215:C>T in 
GWAX) still helped recover the association signal at the gene level, leading to a 
genome-wide significant association at IL10. To investigate if IL10 is simply a 
companion association signal due to co-regulation with CR1, we performed a 
cross-tissue conditional analysis using UTMOST with both significant genes CR1 and 
IL10 included in the model (Online Methods). Only IL10 remained significant (P = 1.4 
× 10-7 for IL10 and P = 0.11 for CR1, Supplementary Table 11) in the conditional 
analysis. In addition to strong statistical evidence, the biological function of IL10 also 
supports its association with LOAD. IL10 is associated with multiple immune 
diseases54-57. It is known to encode one of the main anti-inflammatory cytokines 
associated with the occurrence of Alzheimer’s disease and has therapeutic potential 
to improve neurodegeneration58,59. Its protein product is also known to physically 
interact with the Tau protein60.  
 
CLU is another well-replicated risk gene for LOAD. Two independent association 
peaks at this locus, one at CLU and the other at PTK2B, have previously been 
identified in GWAS (Supplementary Figure 10)40,51. In our analysis, in addition to 
CLU (P = 1.66 × 10-10), we identified two more significant genes at this locus, i.e. 
ADRA1A (P = 1.29 × 10-9) and EXTL3 (P = 5.08 × 10-12). PTK2B showed marginal 
association (P = 1.72 × 10-4) with LOAD but did not reach genome-wide significance. 
Interestingly, EXTL3 expression is predicted by a SNP in the LOAD association peak 
at CLU while ADRA1A is regulated by SNPs at both CLU and PTK2B 
(Supplementary Table 12). ADRA1A has been implicated in gene-gene interaction 
analysis for LOAD61. Its protein product physically interacts with amyloid precursor 
protein (APP)60 and an α1-adrenoceptor antagonist has been shown to prevent 
memory deficits in APP23 transgenic mice62. EXTL3 encodes a putative membrane 
receptor for regenerating islet-derived 1α (Reg-1α), whose overexpression and 
involvement in the early stages of Alzheimer’s disease has been reported63. Further, 
the effect of Reg-1α on neurite outgrowth is mediated through EXTL3. Our results 
provide additional evidence that IL10, ADRA1A, and EXTL3 may be involved in LOAD 
etiology. 
 
Finally, we identified five novel loci for LOAD, each represented by one significant 
gene: NICN1 (P = 2.23 × 10-7), RAB43 (P = 1.98 × 10-6), VKORC1 (P = 3.53 × 10-9), 
HPR (P = 3.02 × 10-7), and PARD6G (P = 3.60 × 10-11). The Rab GTPases are central 
regulators of intracellular membrane trafficking64. Although RAB43 has not been 
previously identified in LOAD GWAS, USP6NL, the gene that encodes a 
GTPase-activating protein for RAB43, has been identified to associate with LOAD in 
two recent studies45,50. USP6NL also showed suggestive association with LOAD in 
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the discovery stage of our analysis (P = 0.004). However, the associations at RAB43 
and USP6NL were not strongly supported by ADGC or GWAX datasets. Further, the 
RAB43-LOAD association was driven by SNPs near RPN1, a gene 400 kb 
downstream of RAB43 (Supplementary Figure 11, Supplementary Table 13). This 
locus is associated with a variety of blood cell traits including monocyte count65,66. 
VKORC1 is a critical gene in vitamin K metabolism and is the target of warfarin67, a 
commonly prescribed anticoagulant. It is known that the APOE ε4 allele affects the 
efficacy of warfarin68. HPR has been identified to strongly associate with multiple lipid 
traits69 and interact with APOE60. NICN1 is known to associate with inflammatory 
bowel disease70 and cognitive function71. These results provide potential target genes 
for functional validations in the future. The cross-tissue imputation models of these 
genes were listed in Supplementary Tables 14-20. 
 
 
 
Discussion 
 
Despite the many improvements of UTMOST over existing methods, researchers 
need to be cautious when interpreting findings from UTMOST analyses. First, 
gene-level associations identified in UTMOST do not imply causality. It has been 
recently discussed that correlations among the imputed expression of multiple genes 
at the same locus may lead to apparent associations at non-causal genes20, which is 
comparable to linkage disequilibrium (LD)’s impact on SNP-level associations in 
GWAS. Consequently, TWAS-type approaches have limitations in both inferring 
functional genes and relevant tissues. When eQTL of different genes at the same 
locus are shared or in LD, irrelevant genes may be identified through significant 
associations. Similarly, for a given gene, if eQTL for the same gene in different tissues 
are shared or in LD, irrelevant tissues may show significant association signals. 
UTMOST cross-tissue conditional analysis can resolve the issue of gene prioritization 
to some extent, but fine-mapping of gene-level association remains challenging, 
especially in regions with extensive LD. We performed simulations to show that true 
associations in the causal tissue were consistently stronger than those in the 
non-causal tissue in most scenarios, which indicated that single-tissue association 
analyses have the potential to infer causal tissue (Supplementary Note; 
Supplementary Figure 12). However, as the proportion of shared eQTL increases, 
p-values for associations in the non-causal tissue became increasingly significant. 
Even when two tissues do not share eQTL, associations in the non-causal tissue still 
frequently passed the significance threshold, most likely due to LD between eQTL. 
These results are consistent with our experience and discussions in the literature20,72. 
We also note that these issues may become even more complex when sample sizes 
and imputation power vary across tissues. Further, we emphasize one of the 
principles in hypothesis testing – one should not conclude the null hypothesis when 
an association is not statistically significant. UTMOST is a general framework that 
involves many analytical steps, and technical issues might mask true gene-trait 
associations. For example, SPI1 from the CELF1 locus has been causally linked to 
LOAD risk42. We identified multiple significant associations at this locus but SPI1 was 
not a significant gene in our analysis. Possible reasons for this include insufficient 
imputation quality based on the current model, non-availability of causal tissue in the 
training data, key eQTL missing from the GWAS summary statistics, causal 
mechanism (e.g. alternative splicing) not well-represented in our analysis, or 
insufficient sample sizes. In practice, these issues need to be carefully investigated 
before ruling out any candidate gene. 
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Overall, UTMOST is a novel, powerful, and flexible framework to perform gene-level 
association analysis. It integrates biologically-informed weights with GWAS summary 
statistics via modern statistical techniques. Interpreted with caution, its findings may 
provide insights into disease and trait etiology, motivate downstream functional 
validation efforts, and eventually benefit the development of novel therapeutics. It is 
also exciting that statistical and computational methodology in this field evolves at a 
fast pace. Several methods on mediation analysis and functional gene fine-mapping 
in the context of transcriptome-wide association study have been proposed 
recently73,74. It has been shown that data-adaptive SNP weights could effectively 
improve statistical power at the cost of clear interpretation of associations75. 
Extension of these methods into multi-tissue analysis is an interesting possible future 
direction. As high-throughput data continue to be generated for more individuals, cell 
types, and molecular phenotypes, UTMOST promises to show even better 
performance and provide greater insights for complex disease genetics in the future. 
 
 
 
URLs 
UTMOST software: https://github.com/Joker-Jerome/UTMOST 
BLUEPRINT: ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/qtl_as/ 
STARNET: https://github.com/Wainberg/Vulnerabilities_of_TWAS 
AlzData: http://alzdata.org/index.html 
GLGC: http://lipidgenetics.org 
IGAP: http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php 
TWAS summary statistics:  
ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/UTMOST  
GEUV: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/ 
GWAX: http://gwas-browser.nygenome.org/downloads/ 
GTEx: https://www.gtexportal.org 
ADGC2 summary statistics: https://www.niagads.org/datasets/ng00076 
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Figure Legends 
Figure 1. UTMOST workflow. Gray and brown boxes denote input data and computed outcomes, 
respectively. 
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Figure 2. Improvement in gene expression imputation accuracy. Compared to single-tissue elastic 
net, UTMOST showed substantially higher (a) average increment in 𝑅= across genes and (b) relative 
improvement (i.e. percentage of increment in 𝑅=) in imputation accuracy. (c) UTMOST identified more 
imputed genes, especially in tissues that have smaller sample sizes in GTEx. Sample sizes of 44 GTEx 
tissues are listed in Supplementary Table 1, predictability tested by F-test with d.f. 1 and n – 2. Panels 
(d-e) show the imputation improvement in two specific examples in whole blood tissue, shaded region 
represents the 95% confidence band. 
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Figure 3. Cross-tissue analysis improves statistical power. We compared the statistical power of 
UTMOST, a single-tissue association test, and a simple union of findings from single-tissue analysis with 
various disease architectures. Left/right panels represent the cases that genes explain 1%/0.1% of trait 
variance in total (denoted as high/low phenotypic effects). Muscle is the only causal tissue in setting 1. 
Both muscle and skin are causal tissues in setting 2. All three tissues are causal in setting 3. 
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Figure 4. UTMOST identified more associations in biologically relevant tissues for 50 complex 
traits. Boxes on the left show the number of genes identified in all other tissues. Boxes on the right show 
the number of genes identified in the most relevant tissue for each trait. In each box, the two horizontal 
borders represent the upper and lower quartiles, solid line in the middle represent median. The highest 
and lowest points indicate the maxima and minima. P-values were calculated via one-sided paired 
Wilcoxon rank tests (n = 50). 
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Figure 5. Multi-tissue analysis identifies more associations for LDL cholesterol. (a) Number of 
significant genes identified in four sets of analyses. (z-score test for single-tissue and generalized 
Berk-Jones for cross-tissue test, Bonferroni-corrected thresholds were used, i.e. 4.49 × 10-6, 8.39 × 10-6, 
3.31 × 10-6 and 3.31 × 10-6) (b) Associations at the SORT1 locus, values on the x-axis were based on the 
transcription start site of each gene. The horizontal line indicates the Bonferroni-corrected genome-wide 
significance threshold (n = 173,082, generalized Berk-Jones test). 
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Figure 6. Manhattan plot for LOAD meta-analysis. P-values are truncated at 1 × 10-30 for visualization 
purpose. The horizontal line marks the genome-wide significance threshold. The most significant gene at 
each locus is labeled. (n = 168,726, generalized Berk-Jones test) 
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Online Methods 
 
Penalized regression model for cross-tissue expression imputation 
Given a gene, we use genotype information to predict its covariate-adjusted 
expression levels in 𝑃 tissues. We use SNPs between 1 Mb upstream of the 
transcription start site and 1 Mb downstream of the transcription end site of the given 
gene as predictor variables in the model. This is denoted as an 𝑁 ×𝑀 matrix 𝑋 
where 𝑁 is the total number of individuals and 𝑀 denotes the number of SNPs. 
Throughout the paper, we assume each column of 𝑋 to be centered but not 
standardized. Of note, expression data may not be available for all individuals since 
only a subset of tissues were collected from each individual. For the 𝑖th tissue, we 
use 𝑁9 to denote its sample size. We further use an 𝑁9-dimensional vector 𝑌9 to 
denote the observed expression data in the 𝑖th tissue, and use an 𝑁9 × 𝑀 matrix 𝑋9 
to denote the genotype information for the subset of individuals. Then, cross-tissue 
gene expression imputation can be formulated as the following regression problem.  

𝑌9 = 𝑋9𝐵∙9 + 𝜀9	,			𝑖 = 1,… , 𝑃.	
Here, the 𝑀 × 𝑃 matrix 𝐵 summarizes SNPs’ effects on the given gene with its 𝑖th 
column 𝐵∙9 denoting the effect sizes of SNPs in the 𝑖th tissue and the 𝑗th row 𝐵B∙ 
denoting the effect sizes of the 𝑗th SNP in all 𝑃 tissues. To effectively select 
biologically relevant and statistically predictive SNPs, accurately estimate their effects 
across tissues, and address technical issues including shared samples and 
incomplete data, we propose the following penalized least-squares estimator for 
genetic effects matrix 𝐵: 

𝐵. = argmin
5

6
1
2𝑁9

‖𝑌9 − 𝑋9𝐵∙9‖==
$

9>?

+ 𝜆?6
1
𝑁9
‖𝐵∙9‖?

$

9>?

+ 𝜆=6A𝐵B∙A=

'

B>?

 

Here, ‖. ‖? and ‖. ‖= denote the 𝑙? and 𝑙= norms, respectively (i.e. ‖𝑥e×?‖?
= ∑ |𝑥h|e

h>?  and ‖𝑥e×?‖= = i∑ 𝑥h=e
h>? ). The first term in the loss function is the 

standard least-squares error. We use the 𝑙? penalty to select predictive variables and 
impose shrinkage in effect size estimation. The penalty on each tissue is set 
adaptively based on the sample sizes, which reflects the idea that models for tissues 
with a larger sample size are more robust to overfitting and therefore are penalized 
less. To integrate information across multiple tissues, we introduced the third term - a 
group-lasso penalty on the effect sizes of one SNP 29. By imposing this joint penalty 
across tissues, UTMOST encourages eQTLs shared across tissues but still keeps 
tissue-specific eQTLs with strong effects. Although the penalty on tissue-specific 
eQTL may cause the model to exclude some true predictors, recent evidence 76 
suggested that tissue-specific eQTL have substantially weaker effect sizes and will 
most likely not have major influences on association analysis (Supplementary Note). 
Tuning parameters λ1 and λ2 control the within-tissue and cross-tissue sparsity, 
respectively. They are selected through cross-validation. Details of optimization were 
attached in Supplementary Note. 
 
 
Model training and evaluation 
We trained our cross-tissue gene expression imputation model using genotype and 
normalized gene expression data from 44 tissues in the GTEx project (version V6p, 
dbGaP accession code: phs000424.v6.p1)3. Sample sizes for different tissues ranged 
from 70 (uterus) to 361 (skeletal muscle). SNPs with ambiguous alleles or minor allele 
frequency (MAF) < 0.01 were removed. Normalized gene expressions were further 
adjusted to remove potential confounding effects from sex, sequencing platform, top 
three principal components of genotype data, and top probabilistic estimation of 
expression residuals (PEER) factors77. As previously recommended17, we included 15 
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PEER factors for tissues with 𝑁 < 150, 30 factors for tissues with 150 ≤ 𝑁 < 250, 
and 35 factors for tissues with 𝑁 ≥ 250. All covariates were downloaded from the 
GTEx portal website (URLs). We applied a 5-fold cross-validation for model tuning 
and evaluation. Specifically, we randomly divided individuals into five groups of equal 
size. Each time, we used three groups as the training set, one as the intermediate set 
for selecting tuning parameters, and the last one as the testing set for performance 
evaluation. Squared correlation between predicted and observed expression (i.e. 𝑅=) 
was used to quantify imputation accuracy. For each model, we selected gene-tissue 
pairs with FDR < 0.05 for downstream testing. External validation of imputation 
accuracy was performed using whole-blood expression data from 421 samples in the 
1000 Genomes Project (GEUVADIS consortium)32 and the CommonMind 
consortium33, which collected expression in across multiple regions from > 1,000 
postmortem brain samples (mainly corresponding to Brain_Frontal_Cortex_BA9 in 
GTEx) from donors with schizophrenia, bipolar disorder, and individuals with no 
neuropsychiatric disorders. For CommonMind data, we focused our analysis on 147 
controls with no neuropsychiatric disorders. Average improvements in 𝑅= in both 
external validation datasets are shown in Supplementary Figure 4. Although not 
statistically significant due to the limited sample size, the accuracy of the cross-tissue 
method was consistently higher than that of the single-tissue approach in different 
quantiles. Furthermore, comparing the tissue-tissue similarity based on the observed 
and imputed gene expressions indicated that cross-tissue imputation removed 
stochastic noises in the expression data without losing tissue-specific correlational 
patterns (Supplementary Note; Supplementary Figure 5-6). 
 
 
Gene-level association test 
We combined GWAS summary statistics with SNP effects estimated in the 
cross-tissue imputation model (i.e. 𝐵. ) to quantify gene-trait associations in each 
tissue. For a given gene, we modeled its imputed expression in the 𝑖th tissue (i.e. 
𝐸9 = 𝑋9𝐵.∙9) and the phenotype 𝑇 using a linear model 

𝑇 = 𝛼9 + 𝐸9𝛾9 + 𝛿9 
Then, the association statistic for effect size in the 𝑖th tissue (i.e. 𝛾9) on the trait of 
interest is 

𝑍9 =
𝛾J9

𝑠𝑒	(𝛾J9)
 

where 𝛾J9 denotes the point estimate for effect size and 𝑠𝑒	(𝛾J9) denotes its standard 
error. From the linear model, we have 

𝛾J9 =
𝑐𝑜𝑣(𝐸9, 𝑇)
𝑣𝑎𝑟(𝐸9)

=
𝐵.∙9Q𝑐𝑜𝑣(𝑋9, 𝑇)

𝜂9=
= 𝐵.∙9Q𝛤9=𝛽S 

where 𝛤9 is an 𝑀 ×𝑀 diagonal matrix with the 𝑗th term equal to rs
tu

, where 𝜎B is the 
standard deviation of the 𝑗th SNP, and 𝜂9 is the standard deviation of imputed gene 
expression in the 𝑖th tissue. These parameters could be estimated using a reference 
panel. 𝛽S denotes the SNP-level effect size estimates acquired from GWAS summary 
statistics. Regarding the standard error of 𝛾J9, we have 

se(𝛾J9) = y
𝑣𝑎𝑟(𝛿9)
𝑁z{|}𝜂9=

≈
𝜎~

�𝑁z{|}𝜂9
 

Here, 𝜎~ denotes the standard deviation of phenotype 𝑇 and 𝑁z{|} is the sample 
size in GWAS. The approximation 𝑣𝑎𝑟(𝛿9) ≈ 𝜎~= is based on the empirical 
observation that each gene only explains a very small proportion of phenotypic 
variability78. The same argument can be extended to association statistics at the SNP 
level. For the 𝑗th SNP in the model, we have 
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se\𝛽SB^ ≈
𝜎~

�𝑁z{|}𝜎B
. 

Therefore, SNP-level z-scores can be denoted as 

𝑍SB =
𝛽SB

se\𝛽SB^
≈
�𝑁z{|}𝜎B𝛽SB

𝜎~
, 𝑗 = 1,… ,𝑀 

In matrix form, this is 

𝑍S ≈
�𝑁z{|}
𝜎~

�
𝜎?

⋱
𝜎'
�𝛽S 

Combining the derivations above, we can denote the gene-level z-score as 

𝑍9 =
𝛾J9

𝑠𝑒	(𝛾J9)
≈ 𝐵.∙9Q𝛤9=𝛽S ×

�𝑁z{|}𝜂9
𝜎~

=
�𝑁z{|}
𝜎~

𝐵.∙9Q𝛤9 �
𝜎?

⋱
𝜎'
�𝛽S ≈ 𝐵.∙9Q𝛤9𝑍S 

Under the null hypothesis (i.e. no SNP-trait association), 𝑍S follows a multivariate 
normal distribution 𝑍S~𝑁(0, 𝐷), where 𝐷 is the LD matrix for SNPs and could be 
estimated using an external reference panel. Denoting the cross-tissue gene-trait 
z-scores as 𝑍 = (𝑍?, 𝑍=, … , 𝑍$)Q, the covariance matrix of 𝑍 could be calculated as 

Σ = 𝑐𝑜𝑣\ΛQ𝑍S^ = ΛQ𝐷Λ, 
where Λ = (𝐵.∙?Γ?, 𝐵.∙=Γ=, … , 𝐵.∙$Γ$). 
 
In order to combine gene-trait associations across multiple tissues, we applied the 
generalized Berk-Jones (GBJ) test with single-tissue association statistics 𝑍 and 
their covariance matrix Σ as inputs. This approach provides powerful inference 
results while explicitly taking the correlation among single-tissue test statistics into 
account even under a sparse alternative (i.e. biologically meaningful associations are 
only present in a small number tissues)30. The GBJ test statistic can be calculated as 

𝐺 = 𝑚𝑎𝑥
?�9�$/=

𝑙𝑜𝑔 �
𝑃𝑟	(𝑆\|𝑍|($�9�?)^ = 𝑖	|	𝐸(𝑍) = 𝜇̂9, 𝑐𝑜𝑣(𝑍) = 𝛴)
𝑃𝑟	(𝑆\|𝑍|($�9�?)^ = 𝑖	|	𝐸(𝑍) = 0, 𝑐𝑜𝑣(𝑍) = 𝛴)

� × 𝐼 �2𝛷�\|𝑍|($�9�?)^ <
𝑖
𝑃� 

where |𝑍|(9) denotes the 𝑖th order statistic of the absolute value of gene-trait 
z-scores in an increasing order; 𝑆(𝑡) = ∑ 1(|𝑍9| ≥ 𝑡)$

9>?  denotes the number of 
gene-trait z-scores with absolute value greater than a threshold 𝑡; 𝜇̂9 denotes the 
corresponding value of 𝐸(𝑍) that maximizes the probability of event 𝑆\|𝑍|($�9�?)^ = 𝑖; 
and Φ�(𝑡) = 1 − Φ(𝑡) is the survival function of the standard normal distribution. The 
GBJ test statistic can be interpreted as the maximum of a series of one-sided 
likelihood ratio test statistics on the mean of 𝑆(𝑡), where the denominator denotes the 
maximum likelihood when no gene-trait association exists in any tissue (all z-scores 
have zero mean) and the numerator denotes the unconstrained maximum likelihood. 
Of note, calculating the exact distribution of 𝑆(𝑡) is difficult when z-scores are 
correlated. As previously suggested, we calculate 𝐺 by approximating the 
distribution of 𝑆(𝑡) with an extended beta-binomial (EBB) distribution. As a 
maximum-based global statistic, the p-value of GBJ test could be written as 

𝑝𝑣𝑎𝑙𝑢𝑒 = 1 − 𝑃𝑟(𝑆(𝑏9) ≤ (𝑑 − 𝑖), ∀𝑖 = 1,2, … , 𝑃	| 𝑍~𝑀𝑉𝑁(0, Σ)) 
where 0 ≤ 𝑏? ≤ 𝑏= ≤ ⋯ ≤ 𝑏$ are ‘boundary points’ derived from inversion of the test 
statistic, which depends on 𝐺, 𝑃 and Σ. The last quantity in the equation can be 
calculated recursively with the EBB approximation30. 
 
P-value cut-offs for gene-level association tests were determined by Bonferroni 
correction. For each method, we used 0.05 divided by the total number of genes 
tested across 44 tissues (i.e. 5.76 × 10-7 for TWAS, 2.44 × 10-7 for PrediXcan, and 
1.28 × 10-7 for UTMOST, respectively) as the significance threshold. As more genes 
can be accurately imputed (𝑅= significantly larger than zero with FDR < 0.05) in our 
cross-tissue imputation, the significance cutoff was the most stringent in UTMOST. 
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Cross-tissue conditional analysis 
Genes that are physically close to the true risk gene may be identified in marginal 
association analyses due to co-regulation of multiple genes by the same eQTL and 
LD between eQTL of different genes. In order to prioritize gene-level associations at 
the same locus, we expand UTMOST to perform cross-tissue conditional analysis. 
There are two major steps in this framework:  
 
First, at any pre-defined locus, we can derive the formula of conditional analysis 
based on marginal associations. Denote 𝑇 as the trait of interest. The goal is to 
perform a multiple regression analysis using 𝐾 imputed gene expressions in the 𝑖th 
tissue (i.e. 𝐸9?, ..., 𝐸9¡) as predictor variables: 

𝑇 = 	𝐸9∗𝛾9∗ + 𝛿9∗ 
Here, we use 𝐸9∗ = (𝐸9?, … , 𝐸9¡) to denote an 𝑁 × 𝐾 matrix for 𝐾 imputed gene 
expressions in the 𝑖th tissue. Regression coefficients 𝛾9∗ = (𝛾9?, … , 𝛾9¡)Q are the 
parameters of interest. To simplify algebra, we also assume that trait 𝑇 and all SNPs 
in the genotype matrix 𝑋 are centered so there is no intercept term in the model, but 
the conclusions apply to the general setting. Similar to univariate analysis, gene 
expressions 𝐸9?, … , 𝐸9¡ are imputed from genetic data via linear prediction models: 

𝐸9∗ = 𝑋𝐵9∗ 
where 𝐵9∗ are imputation weights assigned to SNPs. The 𝑘th column of 𝐵9∗ denotes 
the imputation model for gene expression 𝐸9¤. Then, the OLS estimator 𝛾J∗ and its 
variance-covariance matrix can be denoted as follows: 

𝛾J9∗ = ((𝐸9∗)Q𝐸9∗)�?(𝐸9∗)Q𝑇 
𝑐𝑜𝑣(𝛾J9∗) ≈ 𝑣𝑎𝑟(𝑇)((𝐸9∗)Q𝐸9∗)�? 

The approximation is based on the assumption that imputed gene expressions 
𝐸9?, … , 𝐸9¡ collectively explain little variance in 𝑇, which is reasonable in complex 
gene expression genetics if 𝐾 is not large. We further denote: 

𝑈9 ≔ 𝑁((𝐸9∗)Q𝐸9∗)�? = §
𝑣𝑎𝑟(𝐸9?) ⋯ 𝑐𝑜𝑣(𝐸9?, 𝐸9¡)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝐸9¡, 𝐸9?) ⋯ 𝑣𝑎𝑟(𝐸9¡)

©

�?

 

All elements in matrix 𝑈9 can be approximated using a reference panel 𝑋S. Therefore, 
the z-score for 𝛾9¤	(1 ≤ 𝑘 ≤ 𝐾) is 

𝑍9¤ =
𝛾J9¤

𝑠𝑒(𝛾J9¤)
	

=
𝐼¤Q𝑈9(𝐵9∗)Q𝑋Q𝑇
�𝑁(𝑈9)¤¤𝑣𝑎𝑟(𝑇)

	

=
1

�(𝑈9)¤¤
𝐼¤Q𝑈9(𝐵9∗)QΘ𝑍S 

where 𝐼¤ is the 𝐾 × 1 vector with the 𝑘th element being 1 and all other elements 
equal to 0, Θ is a 𝑀 ×𝑀 diagonal matrix with the 𝑗th diagonal element being 

i𝑣𝑎𝑟\𝑋B^, and similar to the notation in univariate analysis, 𝑍S is the vector of 

SNP-level z-scores from the GWAS of trait 𝑇. Importantly, we note that given 
imputation models for 𝐾 gene expressions (i.e. 𝐵9∗), GWAS summary statistics for 
trait 𝑇 (i.e. 𝑍S), and an external genetic dataset to estimate 𝑈9 and Θ, conditional 
analysis can be performed without individual-level genotype and phenotype data. 
 
In the second step, we combine the conditional analysis association statistics across 
different tissues using the GBJ test. Note this is different from the final stage of 
UTMOST, which combines the marginal gene-trait-tissue associations. Through these 
two steps, LD between eQTL and co-regulation across tissues has been taken into 
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account in the test. Specifically, under the null hypothesis (i.e. no SNP-trait 
association), 𝑍S follows a multivariate normal distribution 𝑍S~𝑁(0, 𝐷), where 𝐷 is the 
LD matrix for SNPs and could be estimated using an external reference panel. 
Denoting the cross-tissue gene-trait z-scores for gene 𝑘 as 𝑍¤ = (𝑍?¤, 𝑍=¤, … , 𝑍$¤)Q, 
the covariance matrix of 𝑍¤ could be calculated as 

Σ¤ 	= 𝑐𝑜𝑣\Λ¤
Q𝑍S^ =Λ¤

Q𝐷Λ¤, 
where Λ¤ =

(� ?
�(«¬)­­

𝐼¤Q𝑈?(𝐵?∗)QΘ�
Q
, � ?
�(«®)­­

𝐼¤Q𝑈=(𝐵=∗)QΘ�
Q
, … , � ?

�(«¯)­­
𝐼¤Q𝑈$(𝐵$∗)QΘ�

Q
). 

 
 
Simulation settings 
Genotype data from 12,637 individuals in the GERA dataset (dbGaP accession: 
phs000674), including 7,432 type-2 diabetes cases (phenotypic information not used) 
and 5,205 healthy controls, were used in the simulation studies. We removed SNPs 
with missing rate above 0.01 and individuals with genetic relatedness coefficients 
above 0.05. The genotype data were imputed to the 1000 Genomes Project Phase 
1v3 European samples using the Michigan Imputation Server79. After imputation, we 
further removed SNPs with MAF < 0.05. After quality control, 5,932,546 SNPs 
remained in the dataset.  
 
We performed two different simulation studies to evaluate the type-I error rate of our 
cross-tissue association test. First, we directly simulated quantitative traits from a 
standard normal distribution independent from the genotype data, and then performed 
single-tissue association tests for 44 tissues in GTEx and GBJ cross-tissue 
association test for all genes using the simulated data. In the second setting, we 
simulated genetically-regulated expression components and then simulated the 
GWAS trait based on gene expression values. For each gene, we simulated its 
expression in three tissues, namely skeletal muscle (N = 361), skin from sun-exposed 
lower leg (N = 302), and whole blood (N = 338). Within the 𝑖 th tissue, the 
cis-component of gene expression was generated as	𝐸9 = 𝑋9𝐵.∙9. We used real effect 
sizes 𝐵.∙9 estimated in our joint imputation model so that the genetic architecture of 
gene expression was preserved in the simulations. Next, the quantitative trait value 
was simulated as 𝑌 = 𝑤?𝐸? + 𝑤=𝐸= + 𝑤±𝐸± + 𝜀 , where 𝑤9  is the effect of gene 
expression on the trait in the 𝑖th tissue. To evaluate type-I error, we set 𝑤? = 𝑤= =
𝑤± = 0, i.e. none of the three tissues are relevant to the trait. 
 
To simulate data under the alternative hypothesis, we generated diverse disease 
architectures by considering different number of causal tissues (i.e. 1, 2, or 3) and two 
heritability settings (i.e. 0.01 and 0.001). Specifically, we fixed the total variance 
explained by 𝐸?, 𝐸=, and 𝐸± and varied 𝑤9  to simulate different levels of tissue 
specificity of the trait. We generated traits using the following three settings: 
 
Setting 1. 𝑤? = 1, 𝑤= = 𝑤± = 0. Only the first tissue contributes to the disease, the 
other two tissues are not relevant. 
 
Setting 2. 𝑤? = 𝑤= =

?
=
, 	𝑤± = 0 . Both the first and the second tissue contribute 

equally to disease, the third tissue is irrelevant to the disease. 
 
Setting 3. 𝑤? = 𝑤= = 𝑤± =

?
±
. All three tissues contribute equally to the disease. 

 
Single-tissue and cross-tissue gene-trait associations were then estimated using the 
UTMOST framework. We repeated the whole procedure on 200 randomly selected 
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genes. For each gene, we further replicated 5 times. Statistical power is calculated as 
the proportion of test p-values reaching the significance threshold, i.e. 0.05/15000 for 
both single-tissue and cross-tissue tests and 0.05/45000 for single tissue tests while 
accounting for the number of tissues. 
 
 
GWAS data analysis 
We applied UTMOST to GWAS summary statistics for 50 complex diseases and 
traits. Details of these 50 studies are summarized in Supplementary Table 4. GWAS 
summary statistics for LDL cholesterol was downloaded from the Global Lipids 
Genetics Consortium website (URLs). Summary statistics from the IGAP stage-I 
analysis was downloaded from the IGAP website (URLs). GWAX result for LOAD was 
downloaded from New York Genome Center website (URLs). ADGC phase 2 
summary statistics were generated by first analyzing individual datasets using logistic 
regression adjusting for age, sex and the first three principal components in the 
program SNPTest v280. Meta-analysis of the individual dataset results was then 
performed using the inverse-variance weighted approach in METAL81. 
 
To identify trait-related tissue, we first used GenoSkyline-Plus, an unsupervised 
learning framework trained on various epigenetic marks from the Roadmap 
Epigenomics Project 82, to quantify tissue-specific functionality in the human genome 
83. We then estimated the enrichment for trait heritability in each tissue’s predicted 
functional genome using LD score regression 34. More specifically, 
annotation-stratified LD scores were estimated using the 1000 Genomes samples of 
European ancestry and a 1-centiMorgan window. GenoSkyline-Plus annotations for 
27 tissues that can be matched between Roadmap and GTEx were included in the LD 
score regression model together with 53 baseline annotations, as previously 
suggested 34. For each tissue-specific annotation, partitioned heritability was 
estimated and enrichment was calculated as the ratio of the proportion of explained 
heritability and the proportion of SNPs in each annotated category. Tissue-trait 
relevance was then ranked based on enrichment p-values. We use term “most 
enriched tissues” to denote the tissues that were most significantly enriched for 
heritability of each trait. Authors of 84 also applied LDSC with tissue specific 
annotations based on GTEx data to infer trait-related tissues. Since UTMOST was 
based on GTEx data, we used an independent data from the Roadmap project to infer 
trait-relevant tissues for the purpose of fair comparison. 
 
In the UTMOST analytical framework, multiple parameters need to be estimated using 
an external reference panel (e.g. LD). We used samples with European ancestry from 
the 1000 Genomes Project for this estimation85. When performing cross-tissue 
association tests, we combined single-tissue statistics from tissues that passed FDR 
< 0.05 criteria to reduce noise in the analysis. Genome-wide significance was defined 
as 3.3 × 10-6 (i.e. Bonferroni correction based on 15,120 genes that passed the quality 
control steps). For heritability enrichment analysis, we applied LDSC to 27 
GenoSkyline-Plus tissue-specific annotations that have matched tissue types in GTEx 
(Supplementary Table 21). The 53 LDSC baseline annotations were also included in 
the model as previously recommended34. The most and least relevant tissues were 
selected based on the enrichment test p-values. Gene ontology enrichment analysis 
was performed using DAVID86. Protein-protein interaction information was acquired 
from AlzData website (URLs)60. Locus plots for SNP-level GWAS associations were 
generated using LocusZoom87. Manhattan plots were generated using the qqman 
package in R88. 
 
 
Additional QTL data  
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Imputation model for liver tissue in the STARNET study (N = 522) was downloaded 
from (URLs). Predictor effects were trained using an elastic-net model with variants 
within 500kb range of the transcription-starting site. Details on the quality control 
procedure has been previously reported20. We have also collected additional eQTL 
and sQTL data for three immune cell types (CD14+ monocytes, CD16+ neutrophils, 
and naive CD4+ T cells; 169-194 samples per tissue) from the BLUEPRINT 
consortium (URLs). eQTLs with FDR < 0.01 and sQTLs with FDR < 0.05 were used in 
the gene-level association analysis for LOAD. 
 
We also downloaded monocyte eQTL summary statistics from the Immune Variation 
Project89 as a comparison with BLUEPRINT results in LOAD. We first compared the 
monocyte eQTL identified in BLUEPRINT with what was identified in this dataset 
(denote as ImmVar). Only a very low fraction (3.5%) of the eQTLs could be replicated 
in ImmVar. We further performed single-tissue analysis on LOAD with weights 
constructed from ImmVar and compared the identified associations with those 
identified using BLUEPRINT data (Supplementary Tables 22-23). Significant genes 
did not match between the two analyses which is most likely due to the small overlap 
of eQTLs between two datasets. However, UTMOST uses the Generalized 
Berk-Jones statistic to combine associations across datasets and therefore has the 
flexibility to incorporate single-tissue associations based on external eQTL studies. As 
we demonstrated in the case study of LDL-C at the SORT1 locus, incorporating 
STARNET liver eQTL significantly increased the statistical power despite the fact that 
liver was an available tissue in GTEx. As sample sizes and tissue types in QTL 
studies continue to grow, UTMOST will be able to incorporate additional data sources 
and provide better results.  
 
Statistical tests 
 
We tested the difference in 𝑅= across genes with one-sided Kolmogorov-Smirnov 
test, which calculates the largest distance between the empirical cumulative 
distribution functions and uses it to test if two distributions are identical 
(Supplementary Figures 3-4).  And we used a paired Wilcoxon rank test to 
compare the number of genes identified in different tissues between different 
methods, which is a non-parametric test used to compare two matched samples to 
access whether their population mean differ (Figure 4, Supplementary Figure 7). 
 
Data Availability 
All data used in the manuscript are publicly available (see URLs). GTEx and GERA 
data can be accessed by application to dbGaP. CommonMind data are available 
through formal application to NIMH. ADGC phase 2 summary statistics used for 
validation are available through NIAGADS portal (see URLs) with accession number 
NG00076. 
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