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Abstract

Transcriptome-wide association analysis is a powerful approach to studying the
genetic architecture of complex traits. A key component of this approach is to build a
model to impute gene expression levels from genotypes using samples with matched
genotypes and gene expression data in a given tissue. However, it is challenging to
develop robust and accurate imputation models with a limited sample size for any
single tissue. Here, we first introduce a multi-task learning method to jointly impute
gene expression in 44 human tissues. Compared with single-tissue methods, our
approach achieved an average 39% improvement in imputation accuracy and
generated effective imputation models for an average 120% more genes. We then
describe a summary statistic-based testing framework that combines multiple
single-tissue associations into a powerful metric to quantify the overall gene-trait
association. We applied our method, called UTMOST, to multiple genome wide
association results and demonstrate its advantages over single-tissue strategies.
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Introduction

Genome-wide association studies (GWAS) have successfully identified numerous
single-nucleotide polymorphisms (SNPs) associated with complex human traits and
diseases. Despite these successes, significant problems remain in statistical power
and biological interpretation of GWAS results'2. In particular, the complex
architecture of linkage disequilibrium (LD) and context-dependent regulatory
machinery in the genome hinder our ability to accurately identify disease genes from
GWAS, thereby raising challenges in downstream functional validation and
therapeutics development. Recently, large-scale consortia, such as the
Genotype-Tissue Expression (GTEX) project**, have generated matched genotype
and expression data for various human tissues. These rich data sets have provided
great insights into the mechanisms of cross-tissue transcriptional regulation and
accelerated discoveries for expression quantitative trait loci (¢QTL)*’. In addition,
integrating eQTL information in genetic association analysis has become an effective
way to bridge SNPs, genes, and complex traits. Many methods have been developed
to co-localize eQTL with loci identified in GWAS to identify candidate risk genes for
complex traits®'®. Two recent studies addressed this issue through an innovative
approach that is sometimes referred to as transcriptome-wide association analysis.
First, based on an externally-trained imputation model, gene expression is imputed
using genotype information in GWAS samples. Next, gene-level association is
assessed between imputed gene expression and the trait of interest’*'®. These
methods have gained popularity in the past two years due to their capability to
effectively utilize signals from multiple eQTL with moderate effects and to reduce the
impact of reverse causality in expression-trait association analysis. The applications
of these methods have led to novel insights into the genetic basis of many diseases
and traits'®"8,

Despite these successes, existing methods have several limitations. First, due to the
tissue-dependent nature of transcription regulation, existing methods train separate
imputation models for different tissues. This practice ignores the similarity in
transcription regulation across tissues, thereby limiting the effective sample sizes for
tissues that are difficult to acquire. Second, a hypothesis-free search across genes
and tissues increases the burden of multiple testing and thus reduces statistical
power. Pinpointing a subset of tissues based on prior knowledge may resolve this
issue to some extent. However, for many complex traits, biologically relevant tissues
are unknown. Further, reports have shown that eQTL with large effects tend to
regulate gene expression in multiple tissues*. Genetic correlation analysis has also
suggested substantial sharing of local expression regulation across tissues'®. This
would inevitably result in statistically significant associations in tissues irrelevant to
the trait of interest, a phenomenon that has been extensively discussed recently?.
Jointly analyzing data from multiple genetically-correlated tissues has the potential to
resolve these issues. It has been demonstrated that multi-trait analysis could improve
accuracy of genetic risk prediction?'?®. Multi-tissue modeling has also been shown to
improve the statistical power in eQTL discovery**?” and gene network studies®. In
this work, we demonstrate that a cross-tissue strategy could also improve
transcriptome-wide association analysis.

We introduce UTMOST (Unified Test for MOlecular SignaTures), a principled method
to perform cross-tissue expression imputation and gene-level association analysis.
We demonstrate its performance through internal and external imputation validation,
simulation studies, analyses of 50 complex traits, a case-study on low-density
lipoprotein cholesterol (LDL-C), and a multi-stage association study for late-onset
Alzheimer’s disease (LOAD). We show that UTMOST substantially improves the
accuracy of expression imputation in all available tissues. In the downstream
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association analysis, UTMOST provides a powerful metric that summarizes
gene-level associations across tissues and can be extended to integrate various
molecular phenotypes.

Results

Model overview

The UTMOST framework consists of three main stages (Figure 1). First, for each
gene in the genome, we train a cross-tissue expression imputation model using the
genotype information and matched expression data from 44 tissues in GTEx. Next,
we test associations between the trait of interest and imputed expression in each
tissue. Lastly, a cross-tissue test is performed for each gene to summarize
single-tissue association statistics into a powerful metric that quantifies the overall
gene-trait association. Here, we briefly introduce the UTMOST framework. All the
statistical details are discussed in the Online Methods.

We formulate cross-tissue expression imputation as a penalized multivariate
regression problem:

Yvxp = XnxmBuxp + Enxps
where N, M, and P denote the sample size in the training data, the number of SNPs
in the imputation model, and the total number of tissues, respectively. As only a
subset of tissues was collected from each individual, expression data in matrix Y
were incomplete and sample sizes for different tissues were unbalanced. We estimate
B by minimizing the squared loss function with a lasso penalty on the columns
(within-tissue effects) and a group-lasso penalty on the rows (cross-tissue effects)
(Online Methods).
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where Y;, X;, and N; denote the observed expressions, genotypes, and sample size
of the ith tissue, respectively. Parameters 1, and A, are tuned through
cross-validation. Our cross-tissue imputation model does not assume eQTL to have
the same effect direction across tissues. Instead, UTMOST uses a group LASSO %
penalty term the framework to encourage the presence of cross-tissue eQTL and
improve the estimation of their effects.

In the second stage, we test the associations between the trait of interest and imputed
gene expression in each tissue. We denote imputed gene expression in the ith tissue
as E; = X;B; and test associations via a univariate regression model:
T = a; +Eiyi + 51'.

The z-scores for gene-trait associations in the ith tissue can be denoted as

Yi ~ PT1 %
“se(@) Sl
where Z denotes the SNP-trait z-scores and I is a diagonal matrix whose jth
diagonal element denotes the ratio between the standard deviation of the th SNP and
that of imputed expression in the ith tissue (Online Methods). When there is no
SNP-trait association, Z follows a multivariate normal distribution N(0,D), where D
is the LD matrix for SNPs. The covariance matrix of Z = (Z;,Z,, ..., Zp)T can be
calculated as

i

T = cov(ATZ) = ATDA
Where A= (B.lrl, E.zrz, '"'B'PFP)'
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Finally, we combine single-tissue gene-trait association results using a generalized
Berk-Jones (GBJ) test, which takes the covariance among single-tissue test statistics
into account®. We note that this framework allows gene-trait associations to have
different directions across tissues. Details on the GBJ statistic and p-value calculation
are discussed in the Online Methods.

Cross-tissue expression imputation accuracy

We first evaluated the accuracy of cross-tissue expression imputation through
five-fold cross-validation. We used an elastic net model (i.e. the model used in
PrediXcan'*) trained in each tissue separately as the benchmark for prediction without
leveraging cross-tissue information. We used squared Pearson correlation (i.e. R?)
between the observed and predicted gene expression levels to quantify imputation
accuracy. Cross-tissue imputation achieved higher imputation accuracy in all 44
tissues (Figure 2a). On average, imputation accuracy was improved by 38.6% across
tissues (Figure 2b). The improvement was particularly high in tissues with low sample
sizes in GTEx (N < 150; an average of 47.4% improvement). Analysis based on
Spearman correlation also showed consistent results (Supplementary Figure 1).
Next, we calculated the proportion of genes with increased imputation accuracy. In all
44 tissues, substantially more genes showed improved imputation performance
(Supplementary Table 1). Using a false discovery rate (FDR) cutoff of 0.05 as the
significance threshold, our cross-tissue method achieved 120% more significantly
predicted genes across tissues. Among tissues with low sample sizes, the
improvement percentage rose even further to 175% (Figure 2¢). Furthermore, we
compared our method with the Bayesian Sparse Linear Mixed-effects Model
(BSLMM?®"), the imputation method used in TWAS'®. Similarly, UTMOST achieved
higher imputation accuracy in all 44 tissues (Supplementary Figure 2). On average,
imputation accuracy improved 20.3% across tissues.

Next, we performed external validation using two independent datasets. We first used
our imputation model for whole blood in GTEXx to predict gene expression levels in
GEUVADIS lymphoblastoid cell lines (LCLs)*? (Online Methods). The imputation
accuracy quantified as R? showed substantial departure from the expected
distribution under the null (i.e. expression and SNPs are independent), which
demonstrates the generalizability of cross-tissue imputation (Supplementary
Figures 3-4). Compared to single-tissue elastic net, cross-tissue imputation achieved
significantly higher prediction accuracy in different quantiles (P = 3.43 x 107;
Kolmogorov-Smirnov test), which is consistent with our findings from cross-validation.
Two examples of well-predicted genes are illustrated in Figure 2d-e, showing
improved concordance between observed (gene expressions adjusted for potential
confounding effects; Online Methods) and predicted expression values via
cross-tissue imputation. Analysis on CommonMind consortium data®® showed similar
results (Online Methods, Supplementary Figure 5-6).

Cross-tissue association test

Another key advancement in the UTMOST framework is a novel gene-level
association test that combines statistical evidence across multiple tissues. We
performed simulation studies using samples from the Genetic Epidemiology Research
Study on Adult Health and Aging (GERA; N = 12,637) to assess the association test’s
type-| error rate and statistical power in a variety of settings (Online Methods). We
did not observe inflation in the type-I error rate in two different simulation studies
(Supplementary Table 2-3). We observed a substantial improvement in statistical
power of the multi-tissue joint test when gene expressions in multiple tissues were
causally related to the trait. The improvement was also consistent under different
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simulated genetic architectures (Figure 3). When the trait was affected by expression
in only one tissue, statistical power of the joint test was comparable to that of a
single-tissue test in the causal tissue. Compared to the naive test that combines
results across tissues while applying an additional Bonferroni correction, our joint test
was consistently more powerful (improvement ranged from 15.3% to 24.1%).

UTMOST identifies more associations in relevant tissues

To evaluate the performance of single-tissue association test based on cross-tissue
expression imputation, we applied UTMOST to the summary statistics from 50 GWAS
(Ntota=4.5 million without adjusting for sample overlap across studies;
Supplementary Table 4) and compared the results with those of PrediXcan' and
TWAS™. To identify tissue types that are biologically relevant to these complex traits,
we applied LD score regression® to these datasets and partitioned heritability by
tissue-specific functional genome predicted by GenoSkyline-Plus annotations®°.
Tissue-trait relevance was ranked based on enrichment p-values (Methods).
Compared to PrediXcan and TWAS, UTMOST identified substantially more
associations in the most relevant tissue for each analyzed trait, showing 69.2%
improvement compared to PrediXcan (P = 8.79 x 10®; paired Wilcoxon rank test) and
188% improvement compared to TWAS (P = 7.39 x 10, Figure 4). Such
improvement was consistently observed across traits (Supplementary Table 5). In
contrast, for other tissues, UTMOST identified similar number of genes and showed
no significant difference compared with PrediXcan (P = 0.52). Comparing tissues that
were most and least enriched for trait heritability, UTMOST identified significantly
more associations in tissues strongly enriched for trait heritability than in tissues with
the least enrichment (P = 0.016) while the contrast was not significant based on
PrediXcan (P = 0.192) or TWAS (P = 0.085). Finally, we applied the cross-tissue joint
test to these traits and compared the number of significant genes with the combined
results from 44 UTMOST single-tissue tests. UTMOST joint test identified more
associations than single-tissue tests in 43 out of 50 traits (P = 1.74 x 10°%; Wilcox rank
test; Supplementary Figure 7), showing improved statistical power in cross-tissue
analysis.

Integrating external QTL resource

We applied UTMOST to the meta-analysis summary data of LDL-C from the Global
Lipids Genetics Consortium (N = 173,082). Results based on four different analytical
strategies, i.e. single-tissue test using liver tissue in GTEx (N = 97), single-tissue test
using liver eQTL from STARNET?*" (N = 522), cross-tissue joint test combining 44
GTEX tissues, and cross-tissue joint test combining 44 GTEXx tissues and the liver
eQTL from STARNET, were compared. We identified 57, 58, 185, and 203 significant
genes in the four sets of analyses, respectively (Figure 5a).

Among the identified genes in cross-tissue joint test of 44 GTEXx tissues and
STARNET-liver, SORT1 had the most significant association (P = 3.4 x 10™"°). SORT1
is known to causally mediate LDL-C levels, even though the GWAS association signal
at this locus is clustered around CELSR2%°. Of note, not only was liver not
implicated as the relevant tissue for SORT1 in the association analysis, association
signal at SORT1 was completely absent in the single tissue test based on GTEx-liver
due to its low imputation quality (FDR = 0.064). Limited sample size of liver tissue in
GTEx (N = 97) restrained the imputation performance of SORT1, and consequently
reduced the statistical power in association test. On the other hand, UTMOST
successfully recovered the association signal at SORT? (P = 3.4 x 107"°). Additionally,
UTMOST cross-tissue association test is flexible in incorporating external QTL
resources along with GTEx data (Online Methods). Through integrating single-tissue
associations in all 44 GTEx tissues and a large external liver dataset (STARNET; N =
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522), we successfully recovered the association of SORT1 (Figure 5b). Furthermore,
we performed pair-wise conditional analyses between SORT1 and other significant
genes at the SORT1 locus, and found that SORT1 remained statistically significant in
all analyses, showing that its association signal is not shadowed by other genes
(Supplementary Table 6). Further, when correlations between gene expression were
moderate, SORT1 was more significant than all other tested genes in conditional
analysis. Even when correlation was substantial (e.g. CELSR2 and PSRC1 both had
correlation = 0.9 with SORT1 in STARNET), SORT1 remained statistically significant.
We compared association based on STARNET only and found that SORT1 is not the
top signal in the locus in single-tissue analysis and cross-tissue approach does not
increase the false-positive rate (Supplementary Note). These results suggest that
integrative analysis of transcriptomic data from multiple tissues and multiple QTL
resources can effectively increase statistical power in gene-level association
mapping. UTMOST is a flexible framework and is not limited to GTEXx tissues only.
Integrating relevant external QTL studies via UTMOST may further improve
downstream association analysis.

UTMOST identifies novel risk genes for Alzheimer’s disease

Finally, to demonstrate UTMOST's effectiveness in real association studies, we
performed a multi-stage gene-level association study for LOAD. In the discovery
stage, we applied UTMOST to the stage-l GWAS summary statistics from the
International Genomics of Alzheimer’s Project*® (IGAP; N =54,162). Multiple recent
studies have suggested that functional DNA regions in liver and myeloid cells are
strongly enriched for LOAD heritability*>#'#2. It has also been suggested that
alternative splicing may be a mechanism for many risk loci of LOAD*®. Therefore, in
addition to 44 tissues from GTEX, we also incorporated liver eQTL from STARNET
and both eQTL and splicing (s)QTL data in three immune cell types (i.e. CD14+
monocytes, CD16+ neutrophils, and naive CD4+ T cells) from the BLUEPRINT*
consortium in our analysis (Online Methods). Single-tissue association tests were
performed and then combined using the GBJ test. In total, our cross-tissue analysis
identified 68 genome-wide significant genes in the discovery stage (Supplementary
Table 7, Supplementary Figure 8).

Next, we replicated our findings in two independent datasets: using GWAS summary
statistics based on samples in the Alzheimer’s Disease Genetics Consortium (ADGC)
that were not used in the IGAP stage-l analysis (N = 7,050), and summary statistics
from the genome-wide association study by proxy*® (GWAX; N = 114,564). Despite
the moderate sample size in the ADGC dataset and the ‘proxy’ LOAD phenotype
based on family history in GWAX analysis, replication rate was high (Supplementary
Table 7). Seventeen and 15 out of 68 genes were successfully replicated under the
Bonferroni-corrected significance threshold in ADGC and GWAX, respectively. The
numbers of replicated genes rose to 41 and 30 under a relaxed p-value cutoff of 0.05.
Twenty-two out of 68 genes had p-values below 0.05 in both replication datasets. We
then combined p-values from all three analyses via Fisher's method. A total of 69
genes, including 12 genes that were not significant in the discovery stage, reached
genome-wide significance in the meta-analysis (Figure 6, Supplementary Table
7-8). These 69 genes were significantly enriched for seven gene ontology terms
(Supplementary Table 9), with “very-low-density lipoprotein particle” being the most
significant (adjusted P = 5.8 x 107®).

Most significant genes are from previously identified LOAD risk loci*®¢*". These
include CR1 locus on chromosome 1, BIN7 locus on chromosome 2, HBEGF locus on
chromosome 5, ZCWPW1 and EPHA1 loci on chromosome 7, CLU locus on
chromosome 8, CELF1, MS4A6A, and PICALM loci on chromosome 11, and the
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APQOE region on chromosome 19. Among these loci, AGFG2 rather than ZCWPW1,
the previously-suggested index gene at this locus*’, was significant in the
meta-analysis (P = 7.19 x 10”). Similarly, BIN1 was not statistically significant in our
analysis. But LIMS2, a gene 500 kb upstream of BIN1, was significantly associated (P
=09.43 x 10™"%). SNPs in the 3’'UTR of LIMS2 have been previously suggested to
associate with cognitive decline®?. GWAS index genes for the rest of the loci were all
statistically significant in our analysis.

Further, new associations at known risk loci provide novel insights into LOAD
etiology. We identified a novel gene IL10 for LOAD risk (P = 1.77 x 107). IL10 is 700
kb upstream of CR1, a strong and consistently replicated locus in LOAD GWAS*05"%3,
CR1 is also significant in our analysis (P = 3.71 x 107). Although some SNPs near the
promoter region of /L 10 were moderately associated with LOAD in all three datasets
(Supplementary Figure 9), the IL10-LOAD association was mostly driven by SNPs
near CR1 (Supplementary Table 10). An interesting observation is that even when a
key SNP is missing — the most significant SNP in IGAP and ADGC (i.e.
rs2093761:A>G) was not present in GWAX, other predictors (e.g. rs6690215:C>T in
GWAX) still helped recover the association signal at the gene level, leading to a
genome-wide significant association at IL70. To investigate if IL10 is simply a
companion association signal due to co-regulation with CR7, we performed a
cross-tissue conditional analysis using UTMOST with both significant genes CR1 and
IL10 included in the model (Online Methods). Only /L 70 remained significant (P = 1.4
x 107 for IL10 and P = 0.11 for CR1, Supplementary Table 11) in the conditional
analysis. In addition to strong statistical evidence, the biological function of IL710 also
supports its association with LOAD. /IL10 is associated with multiple immune
diseases® . It is known to encode one of the main anti-inflammatory cytokines
associated with the occurrence of Alzheimer’s disease and has therapeutic potential
to improve neurodegeneration®®*. Its protein product is also known to physically
interact with the Tau protein®.

CLU is another well-replicated risk gene for LOAD. Two independent association
peaks at this locus, one at CLU and the other at PTK2B, have previously been
identified in GWAS (Supplementary Figure 10)*>*'. In our analysis, in addition to
CLU (P =1.66 x 10'%), we identified two more significant genes at this locus, i.e.
ADRA1A (P =1.29 x 10®°) and EXTL3 (P = 5.08 x 10™'%). PTK2B showed marginal
association (P = 1.72 x 10™*) with LOAD but did not reach genome-wide significance.
Interestingly, EXTL3 expression is predicted by a SNP in the LOAD association peak
at CLU while ADRA1A is regulated by SNPs at both CLU and PTK2B
(Supplementary Table 12). ADRA1A has been implicated in gene-gene interaction
analysis for LOAD®". Its protein product physically interacts with amyloid precursor
protein (APP)®° and an as-adrenoceptor antagonist has been shown to prevent
memory deficits in APP23 transgenic mice®?. EXTL3 encodes a putative membrane
receptor for regenerating islet-derived 1a (Reg-1a), whose overexpression and
involvement in the early stages of Alzheimer’s disease has been reported®®. Further,
the effect of Reg-1a on neurite outgrowth is mediated through EXTL3. Our results
provide additional evidence that IL10, ADRA1A, and EXTL3 may be involved in LOAD
etiology.

Finally, we identified five novel loci for LOAD, each represented by one significant
gene: NICN1 (P =2.23 x 107), RAB43 (P = 1.98 x 10°), VKORC1 (P = 3.53 x 10®),
HPR (P =3.02 x 107), and PARD6G (P = 3.60 x 107""). The Rab GTPases are central
regulators of intracellular membrane trafficking®. Although RAB43 has not been
previously identified in LOAD GWAS, USP6NL, the gene that encodes a
GTPase-activating protein for RAB43, has been identified to associate with LOAD in
two recent studies***°. USP6NL also showed suggestive association with LOAD in
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the discovery stage of our analysis (P = 0.004). However, the associations at RAB43
and USP6NL were not strongly supported by ADGC or GWAX datasets. Further, the
RAB43-LOAD association was driven by SNPs near RPN1, a gene 400 kb
downstream of RAB43 (Supplementary Figure 11, Supplementary Table 13). This
locus is associated with a variety of blood cell traits including monocyte count®>¢®.
VKORC1 is a critical gene in vitamin K metabolism and is the target of warfarin®, a
commonly prescribed anticoagulant. It is known that the APOE €4 allele affects the
efficacy of warfarin®. HPR has been identified to strongly associate with multiple lipid
traits® and interact with APOE®®. NICN1 is known to associate with inflammatory
bowel disease’® and cognitive function”". These results provide potential target genes
for functional validations in the future. The cross-tissue imputation models of these
genes were listed in Supplementary Tables 14-20.

Discussion

Despite the many improvements of UTMOST over existing methods, researchers
need to be cautious when interpreting findings from UTMOST analyses. First,
gene-level associations identified in UTMOST do not imply causality. It has been
recently discussed that correlations among the imputed expression of multiple genes
at the same locus may lead to apparent associations at non-causal genes®’, which is
comparable to linkage disequilibrium (LD)’s impact on SNP-level associations in
GWAS. Consequently, TWAS-type approaches have limitations in both inferring
functional genes and relevant tissues. When eQTL of different genes at the same
locus are shared or in LD, irrelevant genes may be identified through significant
associations. Similarly, for a given gene, if eQTL for the same gene in different tissues
are shared or in LD, irrelevant tissues may show significant association signals.
UTMOST cross-tissue conditional analysis can resolve the issue of gene prioritization
to some extent, but fine-mapping of gene-level association remains challenging,
especially in regions with extensive LD. We performed simulations to show that true
associations in the causal tissue were consistently stronger than those in the
non-causal tissue in most scenarios, which indicated that single-tissue association
analyses have the potential to infer causal tissue (Supplementary Note;
Supplementary Figure 12). However, as the proportion of shared eQTL increases,
p-values for associations in the non-causal tissue became increasingly significant.
Even when two tissues do not share eQTL, associations in the non-causal tissue still
frequently passed the significance threshold, most likely due to LD between eQTL.
These results are consistent with our experience and discussions in the literature®2.
We also note that these issues may become even more complex when sample sizes
and imputation power vary across tissues. Further, we emphasize one of the
principles in hypothesis testing — one should not conclude the null hypothesis when
an association is not statistically significant. UTMOST is a general framework that
involves many analytical steps, and technical issues might mask true gene-trait
associations. For example, SPI1 from the CELF1 locus has been causally linked to
LOAD risk*2. We identified multiple significant associations at this locus but SP/1 was
not a significant gene in our analysis. Possible reasons for this include insufficient
imputation quality based on the current model, non-availability of causal tissue in the
training data, key eQTL missing from the GWAS summary statistics, causal
mechanism (e.g. alternative splicing) not well-represented in our analysis, or
insufficient sample sizes. In practice, these issues need to be carefully investigated
before ruling out any candidate gene.
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Overall, UTMOST is a novel, powerful, and flexible framework to perform gene-level
association analysis. It integrates biologically-informed weights with GWAS summary
statistics via modern statistical techniques. Interpreted with caution, its findings may
provide insights into disease and trait etiology, motivate downstream functional
validation efforts, and eventually benefit the development of novel therapeutics. It is
also exciting that statistical and computational methodology in this field evolves at a
fast pace. Several methods on mediation analysis and functional gene fine-mapping
in the context of transcriptome-wide association study have been proposed
recently”". It has been shown that data-adaptive SNP weights could effectively
improve statistical power at the cost of clear interpretation of associations’.
Extension of these methods into multi-tissue analysis is an interesting possible future
direction. As high-throughput data continue to be generated for more individuals, cell
types, and molecular phenotypes, UTMOST promises to show even better
performance and provide greater insights for complex disease genetics in the future.

URLs

UTMOST software: https://qithub.com/Joker-Jerome/UTMOST
BLUEPRINT: fip:/ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/qtl as/
STARNET: https://qgithub.com/Wainberg/Vulnerabilities of TWAS

AlzData: http://alzdata.org/index.html

GLGC: http://lipidgenetics.org

IGAP: http://web.pasteur-lille.fr/en/recherche/u744/igap/igap download.php
TWAS summary statistics:
ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/ UTMOST

GEUV: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/
GWAX: http://gwas-browser.nygenome.org/downloads/

GTEXx: https://www.gtexportal.org

ADGC2 summary statistics: https://www.niagads.org/datasets/ng00076
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Figure 1. UTMOST workflow. Gray and brown boxes denote input data and computed outcomes,

respectively.
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Figure 2. Improvement in gene expression imputation accuracy. Compared to single-tissue elastic
net, UTMOST showed substantially higher (a) average increment in R? across genes and (b) relative
improvement (i.e. percentage of increment in R?) in imputation accuracy. (¢) UTMOST identified more
imputed genes, especially in tissues that have smaller sample sizes in GTEx. Sample sizes of 44 GTEx
tissues are listed in Supplementary Table 1, predictability tested by F-test with d.f. 1 and n — 2. Panels
(d-e) show the imputation improvement in two specific examples in whole blood tissue, shaded region
represents the 95% confidence band.
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Figure 3. Cross-tissue analysis improves statistical power. We compared the statistical power of
UTMOST, a single-tissue association test, and a simple union of findings from single-tissue analysis with
various disease architectures. Left/right panels represent the cases that genes explain 1%/0.1% of trait
variance in total (denoted as high/low phenotypic effects). Muscle is the only causal tissue in setting 1.
Both muscle and skin are causal tissues in setting 2. All three tissues are causal in setting 3.
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Figure 4. UTMOST identified more associations in biologically relevant tissues for 50 complex
traits. Boxes on the left show the number of genes identified in all other tissues. Boxes on the right show
the number of genes identified in the most relevant tissue for each trait. In each box, the two horizontal
borders represent the upper and lower quartiles, solid line in the middle represent median. The highest
and lowest points indicate the maxima and minima. P-values were calculated via one-sided paired
Wilcoxon rank tests (n = 50).
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Figure 5. Multi-tissue analysis identifies more associations for LDL cholesterol. (a) Number of
significant genes identified in four sets of analyses. (z-score test for single-tissue and generalized
Berk-Jones for cross-tissue test, Bonferroni-corrected thresholds were used, i.e. 4.49 x 106, 8.39 x 10,
3.31 x 10 and 3.31 x 10%) (b) Associations at the SORT1 locus, values on the x-axis were based on the
transcription start site of each gene. The horizontal line indicates the Bonferroni-corrected genome-wide
significance threshold (n = 173,082, generalized Berk-Jones test).
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Figure 6. Manhattan plot for LOAD meta-analysis. P-values are truncated at 1 x 103 for visualization
purpose. The horizontal line marks the genome-wide significance threshold. The most significant gene at
each locus is labeled. (n = 168,726, generalized Berk-Jones test)

APOC1
30 .
25
20 ~
5 :
g 15 :
T MS4A6A :
mApD °
Lims2 TAsznso\EX.TLa e PARDGS :
10 ' 2 VKORC1 .
* HPR
IL10 NICNT RaB43 AGFG2 L picaLm .
A o HBEGF < !’ §; e s
5 - . . . = . !;: v .
: H
0

Chromosome

24


https://doi.org/10.1101/286013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/286013; this version posted January 10, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Online Methods

Penalized regression model for cross-tissue expression imputation
Given a gene, we use genotype information to predict its covariate-adjusted
expression levels in P tissues. We use SNPs between 1 Mb upstream of the
transcription start site and 1 Mb downstream of the transcription end site of the given
gene as predictor variables in the model. This is denoted as an N x M matrix X
where N is the total number of individuals and M denotes the number of SNPs.
Throughout the paper, we assume each column of X to be centered but not
standardized. Of note, expression data may not be available for all individuals since
only a subset of tissues were collected from each individual. For the ith tissue, we
use N; to denote its sample size. We further use an N;-dimensional vector Y; to
denote the observed expression data in the ith tissue, and use an N; X M matrix X;
to denote the genotype information for the subset of individuals. Then, cross-tissue
gene expression imputation can be formulated as the following regression problem.
Yi =XiB-i +€i, i = 1,...,P.
Here, the M x P matrix B summarizes SNPs’ effects on the given gene with its ith
column B, denoting the effect sizes of SNPs in the ith tissue and the jth row B;.
denoting the effect sizes of the jth SNP in all P tissues. To effectively select
biologically relevant and statistically predictive SNPs, accurately estimate their effects
across tissues, and address technical issues including shared samples and
incomplete data, we propose the following penalized least-squares estimator for
genetic effects matrix B:

P P M
~ ) 1 1
B = argmin » =1V, = X;Bill3 + 44 ) - I1Bally + 2 ) 1By
5 Li2N; LN, L1
i= j=

1=

Here, ||.||; and ||.||, denote the I, and [, norms, respectively (i.e. ||xyxq1ll1
=YV _ilx,| and |lxyxqll, = [XY_, x2). The first term in the loss function is the

standard least-squares error. We use the [; penalty to select predictive variables and
impose shrinkage in effect size estimation. The penalty on each tissue is set
adaptively based on the sample sizes, which reflects the idea that models for tissues
with a larger sample size are more robust to overfitting and therefore are penalized
less. To integrate information across multiple tissues, we introduced the third term - a
group-lasso penalty on the effect sizes of one SNP 2°. By imposing this joint penalty
across tissues, UTMOST encourages eQTLs shared across tissues but still keeps
tissue-specific eQTLs with strong effects. Although the penalty on tissue-specific
eQTL may cause the model to exclude some true predictors, recent evidence ®
suggested that tissue-specific eQTL have substantially weaker effect sizes and will
most likely not have major influences on association analysis (Supplementary Note).
Tuning parameters A1 and A, control the within-tissue and cross-tissue sparsity,
respectively. They are selected through cross-validation. Details of optimization were
attached in Supplementary Note.

Model training and evaluation

We trained our cross-tissue gene expression imputation model using genotype and
normalized gene expression data from 44 tissues in the GTEXx project (version V6p,
dbGaP accession code: phs000424.v6.p1)°. Sample sizes for different tissues ranged
from 70 (uterus) to 361 (skeletal muscle). SNPs with ambiguous alleles or minor allele
frequency (MAF) < 0.01 were removed. Normalized gene expressions were further
adjusted to remove potential confounding effects from sex, sequencing platform, top
three principal components of genotype data, and top probabilistic estimation of
expression residuals (PEER) factors’’. As previously recommended'’, we included 15
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PEER factors for tissues with N < 150, 30 factors for tissues with 150 < N < 250,
and 35 factors for tissues with N > 250. All covariates were downloaded from the
GTEXx portal website (URLs). We applied a 5-fold cross-validation for model tuning
and evaluation. Specifically, we randomly divided individuals into five groups of equal
size. Each time, we used three groups as the training set, one as the intermediate set
for selecting tuning parameters, and the last one as the testing set for performance
evaluation. Squared correlation between predicted and observed expression (i.e. R?)
was used to quantify imputation accuracy. For each model, we selected gene-tissue
pairs with FDR < 0.05 for downstream testing. External validation of imputation
accuracy was performed using whole-blood expression data from 421 samples in the
1000 Genomes Project (GEUVADIS consortium)*? and the CommonMind
consortium®, which collected expression in across multiple regions from > 1,000
postmortem brain samples (mainly corresponding to Brain_Frontal_Cortex_BA9 in
GTEXx) from donors with schizophrenia, bipolar disorder, and individuals with no
neuropsychiatric disorders. For CommonMind data, we focused our analysis on 147
controls with no neuropsychiatric disorders. Average improvements in R? in both
external validation datasets are shown in Supplementary Figure 4. Although not
statistically significant due to the limited sample size, the accuracy of the cross-tissue
method was consistently higher than that of the single-tissue approach in different
quantiles. Furthermore, comparing the tissue-tissue similarity based on the observed
and imputed gene expressions indicated that cross-tissue imputation removed
stochastic noises in the expression data without losing tissue-specific correlational
patterns (Supplementary Note; Supplementary Figure 5-6).

Gene-level association test
We combined GWAS summary statistics with SNP effects estimated in the
cross-tissue imputation model (i.e. B) to quantify gene-trait associations in each
tissue. For a given gene, we modeled its imputed expression in the ith tissue (i.e.
E; = X;B,;) and the phenotype T using a linear model
T=ai+El-yi+6i
Then, the association statistic for effect size in the ith tissue (i.e. y;) on the trait of
interest is
Vi
se (V1)
where y; denotes the point estimate for effect size and se (7;) denotes its standard
error. From the linear model, we have
cov(E;, T) Blcov(X;T)
fe= var(E;)) n?

where [; isan M x M diagonal matrix with the jth term equal to 2, where og; isthe

i =

= BiI’p

standard deviation of the jth SNP, and n; is the standard dewatlon of imputed gene

expression in the ith tissue. These parameters could be estimated using a reference

panel. § denotes the SNP-level effect size estimates acquired from GWAS summary
statistics. Regarding the standard error of 7;, we have

@) var(6;) oy
selyi) = =~
l Ngwasniz Ngwasni

Here, oy denotes the standard deviation of phenotype T and Ng, s is the sample
size in GWAS. The approximation var(8;) ~ o is based on the empirical
observation that each gene only explains a very small proportion of phenotypic
variability’®. The same argument can be extended to association statistics at the SNP
level. For the jth SNP in the model, we have
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Oy

se B gy
(b))~ =

Therefore, SNP-level z-scores can be denoted as

7 B Ngwas9iB;

= , j=1,..M
/ se(ﬂj) Oy
In matrix form, this is
. N, 91 ~
7 o N gwas B
Oy Ou
Combining the derivations above, we can denote the gene-level z-score as
?i ATr25 OV Ngwasni vV Ngwas ST % ~ AT 5
i = oy = Bili"B X = Bir; B ~BIrZ
se (Vi) Oy Oy

Om
Under the null hypothesis (i.e. no SNP-trait association), Z follows a multivariate
normal distribution Z~N(0,D), where D is the LD matrix for SNPs and could be
estimated using an external reference panel. Denoting the cross-tissue gene-trait
z-scores as Z = (Zy,Zy, ..., Zp)T, the covariance matrix of Z could be calculated as
T = cov(ATZ) = ATDA,
where A = (BT, B,0y, ..., Bplp).

In order to combine gene-trait associations across multiple tissues, we applied the
generalized Berk-Jones (GBJ) test with single-tissue association statistics Z and
their covariance matrix X as inputs. This approach provides powerful inference
results while explicitly taking the correlation among single-tissue test statistics into
account even under a sparse alternative (i.e. biologically meaningful associations are
only present in a small number tissues)®. The GBJ test statistic can be calculated as

6= max log (PT S(1Zlp-i+n) = l.| E(Z) = fi;, cov(Z) = Z)) %1 (2‘5(|Z|(P—i+1)) < i)

1<isP/2 Pr (S(IZ|(p-i+1y) = i | E(Z) =0, cov(Z) = X) P

where |Z]|;, denotes the ith order statistic of the absolute value of gene-trait

z-scores in an increasing order; S(t) = Yf_, 1(|Z;| = t) denotes the number of
gene-trait z-scores with absolute value greater than a threshold t; f; denotes the
corresponding value of E(Z) that maximizes the probability of event S(|Z|p_;41y) = i
and ®(t) =1 — ®(t) is the survival function of the standard normal distribution. The
GBJ test statistic can be interpreted as the maximum of a series of one-sided
likelihood ratio test statistics on the mean of S(t), where the denominator denotes the
maximum likelihood when no gene-trait association exists in any tissue (all z-scores
have zero mean) and the numerator denotes the unconstrained maximum likelihood.
Of note, calculating the exact distribution of S(t) is difficult when z-scores are
correlated. As previously suggested, we calculate G by approximating the
distribution of S(t) with an extended beta-binomial (EBB) distribution. As a
maximum-based global statistic, the p-value of GBJ test could be written as

pvalue =1—-Pr(S(b;) < (d—1i),Vi=12,..,P|Z~MVN(0,X))
where 0 < b; < b, < -+ < bp are ‘boundary points’ derived from inversion of the test
statistic, which depends on G, P and X. The last quantity in the equation can be
calculated recursively with the EBB approximation®.

P-value cut-offs for gene-level association tests were determined by Bonferroni
correction. For each method, we used 0.05 divided by the total number of genes
tested across 44 tissues (i.e. 5.76 x 107 for TWAS, 2.44 x 10”7 for PrediXcan, and
1.28 x 107 for UTMOST, respectively) as the significance threshold. As more genes
can be accurately imputed (R? significantly larger than zero with FDR < 0.05) in our
cross-tissue imputation, the significance cutoff was the most stringent in UTMOST.
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Cross-tissue conditional analysis

Genes that are physically close to the true risk gene may be identified in marginal
association analyses due to co-regulation of multiple genes by the same eQTL and
LD between eQTL of different genes. In order to prioritize gene-level associations at
the same locus, we expand UTMOST to perform cross-tissue conditional analysis.
There are two major steps in this framework:

First, at any pre-defined locus, we can derive the formula of conditional analysis
based on marginal associations. Denote T as the trait of interest. The goal is to
perform a multiple regression analysis using K imputed gene expressions in the ith
tissue (i.e. E;q, ..., Eix) as predictor variables:
T = Ey +6
Here, we use E; = (Ejy, ..., Eix) to denote an N X K matrix for K imputed gene
expressions in the ith tissue. Regression coefficients y; = (y;1, ..., vix)! are the
parameters of interest. To simplify algebra, we also assume that trait T and all SNPs
in the genotype matrix X are centered so there is no intercept term in the model, but
the conclusions apply to the general setting. Similar to univariate analysis, gene
expressions Ejq, ..., Eix are imputed from genetic data via linear prediction models:
E{ = XB/
where B; are imputation weights assigned to SNPs. The k™ column of B; denotes
the imputation model for gene expression Ej;. Then, the OLS estimator * and its
variance-covariance matrix can be denoted as follows:
7i = (EDTENTEDT
cov(@) = var(T)((E))TE{)™*
The approximation is based on the assumption that imputed gene expressions
E;1, ..., Eix collectively explain little variance in T, which is reasonable in complex
gene expression genetics if K is not large. We further denote:
var(Ey) - cov(Ep, E)\ "
U ==N(E)HTE) ! = ( : : )
cov(Eig,Eyn) - var(Eix) B
All elements in matrix U; can be approximated using a reference panel X. Therefore,
the z-score for y;, (1 <k <K) is
Vi
se(Pi)
ITU,(BHTXTT
VN Uy evar(T)
-1 ITU;(BHTeZ
vV Uik
where I, isthe K x 1 vector with the k™ element being 1 and all other elements
equalto 0, ® isa M x M diagonal matrix with the ;" diagonal element being

Zik

/var(Xj), and similar to the notation in univariate analysis, Z is the vector of

SNP-level z-scores from the GWAS of trait T. Importantly, we note that given
imputation models for K gene expressions (i.e. B;), GWAS summary statistics for
trait T (i.e. Z), and an external genetic dataset to estimate U; and 0, conditional
analysis can be performed without individual-level genotype and phenotype data.

In the second step, we combine the conditional analysis association statistics across
different tissues using the GBJ test. Note this is different from the final stage of
UTMOST, which combines the marginal gene-trait-tissue associations. Through these
two steps, LD between eQTL and co-regulation across tissues has been taken into
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account in the test. Specifically, under the null hypothesis (i.e. no SNP-trait
association), Z follows a multivariate normal distribution Z~N (0, D), where D is the
LD matrix for SNPs and could be estimated using an external reference panel.
Denoting the cross-tissue gene-trait z-scores for gene k as Zy = (Zy, Zoks » Zpi)T
the covariance matrix of Z, could be calculated as

=, = cov(A1Z) = ALD A,
where A, =

T T T
(=11 U,(BDTO) (=1L U, (B)TO) , ..., (=1L Up(B)TO) ).
VWU1kk VWU2)kk VWUP)kk

Simulation settings

Genotype data from 12,637 individuals in the GERA dataset (dbGaP accession:
phs000674), including 7,432 type-2 diabetes cases (phenotypic information not used)
and 5,205 healthy controls, were used in the simulation studies. We removed SNPs
with missing rate above 0.01 and individuals with genetic relatedness coefficients
above 0.05. The genotype data were imputed to the 1000 Genomes Project Phase
1v3 European samples using the Michigan Imputation Server”. After imputation, we
further removed SNPs with MAF < 0.05. After quality control, 5,932,546 SNPs
remained in the dataset.

We performed two different simulation studies to evaluate the type-| error rate of our
cross-tissue association test. First, we directly simulated quantitative traits from a
standard normal distribution independent from the genotype data, and then performed
single-tissue association tests for 44 tissues in GTEx and GBJ cross-tissue
association test for all genes using the simulated data. In the second setting, we
simulated genetically-regulated expression components and then simulated the
GWAS trait based on gene expression values. For each gene, we simulated its
expression in three tissues, namely skeletal muscle (N = 361), skin from sun-exposed
lower leg (N = 302), and whole blood (N = 338). Within the ith tissue, the
cis-component of gene expression was generated as E; = X;B.,;. We used real effect
sizes B,; estimated in our joint imputation model so that the genetic architecture of
gene expression was preserved in the simulations. Next, the quantitative trait value
was simulated as Y =w,E; + w,E;, + w3E; + ¢, where w; is the effect of gene
expression on the trait in the ith tissue. To evaluate type-I error, we set w; = w, =
wsz = 0, i.e. none of the three tissues are relevant to the trait.

To simulate data under the alternative hypothesis, we generated diverse disease
architectures by considering different number of causal tissues (i.e. 1, 2, or 3) and two
heritability settings (i.e. 0.01 and 0.001). Specifically, we fixed the total variance
explained by E;, E,, and E; and varied w; to simulate different levels of tissue
specificity of the trait. We generated traits using the following three settings:

Setting 1. w; =1, w, = wz = 0. Only the first tissue contributes to the disease, the
other two tissues are not relevant.

Setting 2. w; = w, =%, ws = 0. Both the first and the second tissue contribute
equally to disease, the third tissue is irrelevant to the disease.

Setting 3. wy =w, =w; = § All three tissues contribute equally to the disease.

Single-tissue and cross-tissue gene-trait associations were then estimated using the
UTMOST framework. We repeated the whole procedure on 200 randomly selected
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genes. For each gene, we further replicated 5 times. Statistical power is calculated as
the proportion of test p-values reaching the significance threshold, i.e. 0.05/15000 for
both single-tissue and cross-tissue tests and 0.05/45000 for single tissue tests while
accounting for the number of tissues.

GWAS data analysis

We applied UTMOST to GWAS summary statistics for 50 complex diseases and
traits. Details of these 50 studies are summarized in Supplementary Table 4. GWAS
summary statistics for LDL cholesterol was downloaded from the Global Lipids
Genetics Consortium website (URLs). Summary statistics from the IGAP stage-|
analysis was downloaded from the IGAP website (URLs). GWAX result for LOAD was
downloaded from New York Genome Center website (URLs). ADGC phase 2
summary statistics were generated by first analyzing individual datasets using logistic
regression adjusting for age, sex and the first three principal components in the
program SNPTest v2%. Meta-analysis of the individual dataset results was then
performed using the inverse-variance weighted approach in METAL®".

To identify trait-related tissue, we first used GenoSkyline-Plus, an unsupervised
learning framework trained on various epigenetic marks from the Roadmap
Epigenomics Project 82, to quantify tissue-specific functionality in the human genome
8, We then estimated the enrichment for trait heritability in each tissue’s predicted
functional genome using LD score regression 3. More specifically,
annotation-stratified LD scores were estimated using the 1000 Genomes samples of
European ancestry and a 1-centiMorgan window. GenoSkyline-Plus annotations for
27 tissues that can be matched between Roadmap and GTEx were included in the LD
score regression model together with 53 baseline annotations, as previously
suggested 3*. For each tissue-specific annotation, partitioned heritability was
estimated and enrichment was calculated as the ratio of the proportion of explained
heritability and the proportion of SNPs in each annotated category. Tissue-trait
relevance was then ranked based on enrichment p-values. We use term “most
enriched tissues” to denote the tissues that were most significantly enriched for
heritability of each trait. Authors of 8 also applied LDSC with tissue specific
annotations based on GTEx data to infer trait-related tissues. Since UTMOST was
based on GTEx data, we used an independent data from the Roadmap project to infer
trait-relevant tissues for the purpose of fair comparison.

In the UTMOST analytical framework, multiple parameters need to be estimated using
an external reference panel (e.g. LD). We used samples with European ancestry from
the 1000 Genomes Project for this estimation®®. When performing cross-tissue
association tests, we combined single-tissue statistics from tissues that passed FDR
< 0.05 criteria to reduce noise in the analysis. Genome-wide significance was defined
as 3.3 x 10 (i.e. Bonferroni correction based on 15,120 genes that passed the quality
control steps). For heritability enrichment analysis, we applied LDSC to 27
GenoSkyline-Plus tissue-specific annotations that have matched tissue types in GTEx
(Supplementary Table 21). The 53 LDSC baseline annotations were also included in
the model as previously recommended®. The most and least relevant tissues were
selected based on the enrichment test p-values. Gene ontology enrichment analysis
was performed using DAVID®. Protein-protein interaction information was acquired
from AlzData website (URLs)®. Locus plots for SNP-level GWAS associations were
generated using LocusZoom®’. Manhattan plots were generated using the ggman
package in R%.

Additional QTL data
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Imputation model for liver tissue in the STARNET study (N = 522) was downloaded
from (URLs). Predictor effects were trained using an elastic-net model with variants
within 500kb range of the transcription-starting site. Details on the quality control
procedure has been previously reported?’. We have also collected additional eQTL
and sQTL data for three immune cell types (CD14+ monocytes, CD16+ neutrophils,
and naive CD4+ T cells; 169-194 samples per tissue) from the BLUEPRINT
consortium (URLs). eQTLs with FDR < 0.01 and sQTLs with FDR < 0.05 were used in
the gene-level association analysis for LOAD.

We also downloaded monocyte eQTL summary statistics from the Immune Variation
Project® as a comparison with BLUEPRINT results in LOAD. We first compared the
monocyte eQTL identified in BLUEPRINT with what was identified in this dataset
(denote as ImmVar). Only a very low fraction (3.5%) of the eQTLs could be replicated
in ImmVar. We further performed single-tissue analysis on LOAD with weights
constructed from ImmVar and compared the identified associations with those
identified using BLUEPRINT data (Supplementary Tables 22-23). Significant genes
did not match between the two analyses which is most likely due to the small overlap
of eQTLs between two datasets. However, UTMOST uses the Generalized
Berk-Jones statistic to combine associations across datasets and therefore has the
flexibility to incorporate single-tissue associations based on external eQTL studies. As
we demonstrated in the case study of LDL-C at the SORTT locus, incorporating
STARNET liver eQTL significantly increased the statistical power despite the fact that
liver was an available tissue in GTEx. As sample sizes and tissue types in QTL
studies continue to grow, UTMOST will be able to incorporate additional data sources
and provide better results.

Statistical tests

We tested the difference in R? across genes with one-sided Kolmogorov-Smirnov
test, which calculates the largest distance between the empirical cumulative
distribution functions and uses it to test if two distributions are identical
(Supplementary Figures 3-4). And we used a paired Wilcoxon rank test to
compare the number of genes identified in different tissues between different
methods, which is a non-parametric test used to compare two matched samples to
access whether their population mean differ (Figure 4, Supplementary Figure 7).

Data Availability

All data used in the manuscript are publicly available (see URLs). GTEx and GERA
data can be accessed by application to dbGaP. CommonMind data are available
through formal application to NIMH. ADGC phase 2 summary statistics used for
validation are available through NIAGADS portal (see URLs) with accession number
NGO00076.
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