

1 S. M. Vamosi
2 University of Calgary Department of Biological Sciences
3 2500 University Dr NW
4 Calgary, Alberta Canada T2N1N4
5 Phone: 403-220-3293
6 Email: smvamosi@ucalgary.ca

7 A barcoding approach to phylogenetic classification of Aedini mosquitoes (*Aedes*, 8 *Ochlerotatus*)

9 H. Glass¹, E. Carroll¹, D. Curley¹, H. Kienzle¹, D. A. Yee², and S. M. Vamosi¹

10 ¹ University of Calgary Department of Biological Sciences, 2500 University Dr NW Calgary,
11 Alberta Canada T2N2N4

12 ² University of Southern Mississippi, Department of Biological Sciences, 118 College Drive
13 Hattiesburg, Mississippi, United States 39406-0001

14 Abstract

15 Traditionally, entomologists have used morphological characteristics for mosquito taxonomy
16 and systematics. However, this approach does not take into consideration the genetic
17 relatedness of species. In 2000, the *Aedes* genus of mosquitoes in the tribe *Aedini* was split into
18 two genera (*Aedes* and *Ochlerotatus*), thereby elevating *Ochlerotatus* from subgenus to genus
19 rank, strictly based on morphology of adults. Herein, we use the genetic barcoding marker COI
20 to generate a phylogeny of 65 species of *Aedes*, *Ochlerotatus*, and *Anopheles* outgroup from
21 almost 900 sequences downloaded from BOLD systems. Our results reveal evidence of non-
22 random, but polyphyletic clustering of *Aedes* and *Ochlerotatus* species, with a monophyletic
23 outgroup. We do find support for the validity of *Ochlerotatus* as an evolutionary unit, although
24 we find insufficient evidence to support its retention as a genus. We suggest that mosquito
25 phylogenetic analyses incorporate a greater number of genetic markers to help clarify our
26 understanding of *Aedini* species classifications, but caution that recent assessments based
27 solely on morphology may be insufficient.

28 Keywords: DNA barcoding, COI, Aedini, phylogenetics

29 **Introduction**

30 Insects present significant challenges to systematists for several reasons, including their
31 incredible diversity (Labandeira and Sepkoski 1993, Whitfield and Kjer 2008), relatively old age
32 (Dunlop 2010, Whalley 1986), significant variations in diversification rates through time
33 (Barraclough and Volger 2002, Wiegmann et al. 2011), and morphological similarity among
34 congeners, especially in larval specimens (Schultz and Meier 1995). Despite a long history of
35 study as potential vectors of human and animal disease, mosquitoes are no exception to these
36 systematic challenges. There are 3,552 species of Culicidae (Harbach 2016), with the oldest
37 fossil being dated to 90-100 million years old (Borkent and Grimaldi 2004). Although there are
38 few time-calibrated estimates of diversification rates through time, there also is evidence for
39 rapid radiations early in the history of the group (Reidenbach et al. 2009). Adding to these
40 issues of classification, reliable identifications are difficult in various species complexes,
41 especially among some medically relevant species, with some keys requiring male specimens in
42 some groups and female specimens in others (Chan et al. 2014).

43 Within the Culicidae, taxonomic and systematics relationships are particularly unresolved
44 within the Tribe Aedini. Here, we focus on controversies surrounding the existence of, and
45 relationships between, the genera *Aedes* (Meigen 1818, as cited in Harbach 2016) and
46 *Ochlerotatus* (Meigen 1818, as cited in Harbach 2016). Through a series of morphology-
47 informed phylogenetic studies, Reinert et al. (2000, 2004, 2006, 2008, 2009) elevated
48 *Ochlerotatus* to genus status. This decision was based on the analysis of morphological
49 characteristics of 119 Aedini species across all life stages. The resulting morphology-based
50 phylogeny proposed this change to the previous classification that was based solely on adult

51 mosquito morphology. These revisions to the genera created instant controversy among
52 researchers and led to many journals that focus on these medically important species to
53 suggest caution with adopting the new designations (Reisen 2016). Because many species
54 within the genus *Aedes* are of significant medical importance (e.g., *Aedes aegypti*),
55 redesignation of any species would pose challenges for public health officials in relation to
56 using long standing species names when communicating with the public. In addition, as it has
57 been nearly two decades since Reinert first proposed elevating *Ochlerotatus* to a genus (Reinert
58 2000), and using a molecular approach to resolving the phylogenetic relationships among these
59 species is long overdue. Indeed, in an editorial about Aedini mosquitoes, Reisen (2016) noted:
60 “As more mosquito sequencing data become available ... genetic analyses should be done to
61 confirm these phenotypic groupings.”

62 DNA barcoding has been promoted as a universal tool for reliable species identifications
63 (Hebert et al. 2003, Hebert et al. 2004), and also as a tool for helping to resolve phylogenetic
64 relationships among species (Hajibabaei et al. 2007, Erpenbeck et al. 2007). The 648 base-pair
65 mitochondrial cytochrome c oxidase 1 gene (COI) is regarded as the standardized barcode gene
66 for species identification (iBOL 2018). Thus far, there is a mixed record of success of using COI
67 sequences for these purposes for mosquitoes. In an early application of this approach to
68 mosquito identification, Kumar et al. (2007) analyzed 63 species from 15 genera found in India,
69 successfully identifying 62 species. However, they were unable to distinguish between
70 *Ochlerotatus portonovoensis* and *O. wardi*, which are considered closely related species based
71 on morphology (Reinert et al. 2004). Curiously, Kumar et al. (2007) presented a phylogenetic
72 tree of their species, which they claimed (Kumar et al. 2007, pg. 7), “was in general agreement

73 with the taxonomy based on morphology as reported previously”, although it contained several
74 glaring discrepancies from traditional taxonomic schemes. Notably, no *Aedes*, *Culex*, or
75 *Ochlerotatus* were recovered as monophyletic, yet these issues were not explicitly identified.
76 Chan et al. (2014) analyzed 45 species from 13 genera found in Singapore, and reported a 100%
77 success rate in identifying mosquito species. Similar to Kumar et al. (2007), they presented
78 phylogenetic trees but once again did not draw attention to apparent discrepancies. In the
79 phylogeny composed of *Aedes*, *Verrallina*, and *Ochlerotatus* species, the sole *Verrallina*
80 representative (*V. butleri*) was clustered together with an *Aedes* species (*A. collessi*) and an
81 *Ochlerotatus* species (*O. cogilli*) in an interior clade, rendering *Aedes* non-monophyletic.
82 Additionally, the two *Ochlerotatus* species included (*O. cogilli*, *O. vigilax*) did not form a
83 monophyletic grouping. Most recently, Chu et al. (2016) constructed phylogenetic trees for 34
84 mosquito species using complete mitogenomes, as well as the COI barcoding gene. Although
85 their investigation was not designed to resolve the validity of the genus *Ochlerotatus*, with the
86 majority of sequences representing the genus *Anopheles*, it contained three *Aedes* species and
87 one *Ochlerotatus* species. Relevant to our questions, the genus *Aedes* was not found to be
88 monophyletic relative to *O. vigilax* (or *Haemagogus janthinomys*) in either dataset.

89 Herein we make use of publicly available DNA barcode data to assess the validity of the
90 genus *Ochlerotatus* relative to *Aedes*, following Reisen’s (2016) call to action. Unlike previous
91 investigations, which overrepresented other taxa (notably *Anopheles* or *Culex*), we specifically
92 targeted *Aedes* and *Ochlerotatus* sequences with the explicit goal of testing their relative
93 monophyly, using an appropriate outgroup (*Anopheles*). We predicted that if *Ochlerotatus* is a
94 valid evolutionary unit, minimally as a subgenus, that our included *Ochlerotatus* species should

95 cluster together separate from *Aedes* with high bootstrap support.

96 **Methods**

97 **Species Selection**

98 All current and previous genus and species names were confirmed using the literature on
99 Aedini taxonomy (e.g., Wilkerson et al. 2015). The group we call “True *Aedes*” are those species
100 that have previously been classified in the *Aedes* genus and were not part of the *Ochlerotatus*
101 subgenus or reclassified into the new *Ochlerotatus* genus by Reinert et al. (2000, 2004, 2006).
102 The “*Ochlerotatus*” group comprises those species that were previously part of the
103 *Ochlerotatus* subgenus of *Aedes* or were reclassified into the new *Ochlerotatus* genus by
104 Reinert et al. (2000, 2004, 2006). The genus *Anopheles* was selected as the outgroup for the
105 analysis because it is a separate genus that is part of the same family (Culicidae) as
106 *Aedes/Ochlerotatus*.

107 **Obtaining Sequences**

108 Sequences were downloaded from the Barcode of Life Data (BOLD) Systems (Ratnasingham
109 and Hebert 2013) in FASTA file format and later compiled into one master file, comprising a
110 total of 873 sequences. The sequences cover the COI barcode region of the mitochondrial
111 genome, spanning approximately 650 base pairs. All *Aedes* and *Ochlerotatus* species that had
112 repositories on BOLD were downloaded, but we excluded those that had less than three
113 sequences available for a given species to ensure the sample size was large enough to
114 represent that species. The maximum number of sequences used for each species was 20. In
115 most cases, the first 20 sequences were selected and downloaded. Otherwise, the sequence

116 files were viewed in Molecular Evolutionary Genetic Analysis (MEGA) version 7 (Kumar et al.
117 2015), and the ones with the most coverage were randomly selected. All of the sequences were
118 manually inspected in MEGA, and those which had unknown “N” bases, missing data, or were
119 not properly aligned were removed from the analysis. In total, 873 sequences were used for
120 analysis (Table 1).

121 **Table 1.** Total number of species and sequences for each of the three groups used in the
122 analysis of *Aedes-Ochlerotatus* mosquitoes.

	<i>True Aedes</i>	<i>Ochlerotatus</i>	Outgroup
Number of Species	21	36	8
Number of Sequences	269	501	103

123 **Phylogenetic Analyses**

124 Maximum Likelihood (ML), Neighbor Joining (NJ), and Bayesian Inference (BI) methods were
125 employed to generate phylogenies, which were then visualized in FigTree version 1.4.2
126 (Rambaut 2009). This approach allowed us to compare the congruence of resultant trees. The
127 command line program Randomized Accelerated Maximum Likelihood (RAxML) version 8.0.0
128 was used to generate the Maximum Likelihood phylogenetic tree (Stamatakis 2014). A
129 bootstrap analysis with 1000 replicates was performed using the sequence master file with all
130 873 sequences. This tree was inspected to confirm monophyly of species, and those species
131 that failed to be monophyletic were removed from the analysis. Next, one representative
132 sequence from each monophyletic species was selected and the above bootstrap analysis was
133 replicated to generate a ML consensus tree. The trees generated with the master file and with

134 one sequence per species were compared to confirm there were no changes in topology of the
135 tree. Ultimately, 26 True *Aedes*, 37 *Ochlerotatus*, and eight *Anopheles* outgroup species were
136 selected for further analyses.

137 With the same selected sequences from above, a Bayesian Inference analysis with
138 corresponding posterior probability support values was generated using MrBayes version 3.2.6
139 (Ronquist et al. 2012) for 1,000,000 generations. Rate heterogeneity was estimated using a
140 gamma distribution model for the variable sites and the first 25% of samples were discarded as
141 burnin. Because only one outgroup could be specified in the program, *Anopheles marajoara*
142 was randomly selected from the *Anopheles* species to be listed as the outgroup. Finally, a
143 Neighbor Joining tree was generated in MEGA version 7 (Kumar et al. 2015) using a Kimura
144 two-parameter model. Bootstrap values were also calculated with 1,000 replicates.

145 **Results**

146 Phylogenetic trees were generated via ML, NJ, and BI methods. Using all 873 COI barcode
147 sequences for a ML analysis, we determined that a majority of species clustered together as
148 monophyletic (S1 Fig.). Using one representative sequence from each species, we generated
149 consensus phylogenetic trees (Fig. 1, Fig. 2, Fig. 3). As expected, almost all subspecies were
150 recovered and clustered together with significant support values; *A. aegypti* and *A. aegypti*
151 *aegypti* (ML 100, BI 100, NJ 100), *A. flavopictus downsi* and *A. flavopictus miyurai* (ML 100, BI
152 99.2, NJ 100), and *A. vexans* and *A. vexans nipponii* (ML 80, BI 94.8, NJ 100). Conversely, *A.*
153 *japonicus* and *A. japonicus yaeyamensis* were positioned one node away (ML 96, BI 41.3, NJ
154 100), clustering *A. japonicus yaeyamensis* with *A. koreicus* with generally lower support values
155 (ML 63, BI 61.1, NJ 88). Finally, we note that even when we did not specify them as constituting

156 an outgroup (i.e., unrooted phylogeny), *Anopheles* was monophyletic and sister to the group
157 containing the remaining sequences.

158 With regard to our main question, the resulting trees did not totally align with the
159 morphology-based classifications previously suggested by Reinert et al. (2000, 2004, 2006,
160 2008, 2009). Overall, neither *Aedes* nor *Ochlerotatus* were monophyletic in any of the
161 phylogenies generated (Fig. 1, Fig. 2, Fig. 3, S1 Table). We found evidence of non-random
162 clustering consistent across all three phylogenies: (i) in one major group, there was only a single
163 *Ochlerotatus* species (*O. atlanticus*), which was sister to 18 *Aedes* taxa in the ML, BI, and NJ
164 trees, (ii) the remaining *Ochlerotatus* species (N = 36) were contained in the other major group,
165 which were (iii) consistently associated with seven *Aedes* taxa (*A. japonicus*, *A. japonicus*
166 *yaeyamensis*, *A. koreicus*, *A. watasei*, *A. aureostriatus okinawanus*, *A. togoi*, *A. geniculatus*) with
167 generally good agreement between the methods in relative positioning among four of the
168 seven *Aedes* species (Fig. 1, Fig. 2, Fig. 3). By treating the former as the 'Aedes clade' and the
169 latter as the 'Ochlerotatus clade', we performed *post hoc* contingency tests to assess the
170 strength of these associations. Because of the high congruence in the tree resulting from the
171 three methods, we used only the ML tree to prevent pseudoreplication. By doing so, we find
172 that the 'Aedes clade' contained significantly fewer *Ochlerotatus* species than expected by
173 chance (Fisher's exact test, $P = 0.003$). Similarly, the 'Ochlerotatus clade' contained significantly
174 fewer *Aedes* species than expected by chance (Fisher's exact test, $P < 0.001$).

175 **Discussion**

176 Given the medical importance of mosquitoes within the traditional *Aedes* genus, there is a
177 need for robust data to support revisions to longstanding names for species and to clarify

178 relationships among species. Here, we present our first response to Reisen's (2016) call to bring
179 genetic data to bear on morphologically-based species groupings. With extensive debate
180 surrounding the genera *Aedes* and *Ochlerotatus*, our analysis attempted to clarify the
181 phylogeny of these groups using molecular data and to compare our results to phylogenies
182 obtained through morphological characteristics. Our analyses produced three main findings in
183 each of the three phylogenetic methods utilized: (1) Sequences associated with a particular
184 species were generally found to cluster together; (2) *Aedes* and *Ochlerotatus* are not
185 reciprocally monophyletic; and (3) Despite the lack of strict monophyly, our *post hoc* analyses
186 support the existence of non-random associations among *Aedes* and *Ochlerotatus* "congeners"
187 in our dataset. The latter finding suggests that some "*Ochlerotatus*" species may form a valid
188 evolutionary unit, although we find insufficient evidence to support its retention as a genus,
189 which echoes conclusions made by Wilkerson et al. (2015) and Soghigian et al. (2017) based on
190 phenotypic and molecular data, respectively.

191 The observed lack of reciprocal monophyly of *Aedes* and *Ochlerotatus* may result in part,
192 but not completely, from relatively low support values in parts of all three phylogenies. With
193 regard to the ML tree, bootstrap values of 70 and above correlate with $\geq 95\%$ chance that the
194 suggested clade is valid (Hillis and Bull 1993). Thirty nodes have high bootstrap values greater
195 than 70, whereas 38 nodes fall below this threshold (Fig. 1). The node separating the 'Aedes
196 clade' from the 'Ochlerotatus clade' did have high support in both the ML and BI trees (support
197 value = 100 in both cases), although the NJ tree contained a three-way polytomy of these
198 clades together with the outgroup. The low support values associated with some nodes could
199 be a result of the species being too closely related to differentiate, or they could indicate that

200 more molecular markers are needed to analyze these species. The results are unlikely to be
201 based on identification errors, given that we observed only three instances where all 10
202 sequences for a species or subspecies did not cluster together with high bootstrap support. Due
203 to the difficulty of identifying Aedini mosquitoes based on morphological characteristics,
204 inaccurate species naming in BOLD is plausible. Incorrect species naming in online genetic
205 databases has been found in previous studies (e.g., misidentification of spider mite species was
206 detected in COI sequences downloaded from GenBank (Ros and Breeuwer 2007)). With regard
207 to overall bootstrap support, we note that Chu et al. (2016) also reported low values in their
208 phylogeny, including at basal nodes. Our results suggest that morphology alone is not an
209 accurate representation for mosquito systematics, and that molecular differences among the
210 proposed genera point to additional uncertainty in placement of species.

211 Previous studies have identified significant limitations in the application of COI
212 barcoding to molecular phylogenetics (Dupuis et al. 2012, Hajibabaei et al. 2007, Moritz and
213 Cicero 2004). Although COI barcoding is generally quite effective at differentiating between
214 species, it is not considered to be appropriate for illuminating deeper evolutionary relationships
215 (Hajibabaei et al. 2007). However, Hajibabaei et al. (2007) suggested that COI barcoding can be
216 used to aid in choosing taxa for phylogenetic analysis, as well as providing greater confidence
217 for shallow evolutionary divergence between species. This indicates that although a COI-based
218 phylogeny such as this should not be interpreted as providing resolution toward the deep
219 evolutionary history of these genera, it can be considered a first step towards a more
220 comprehensive molecular phylogeny (see also: Reece et al. 2008, Zhang and Hewitt 1997).
221 Interestingly, support values do not consistently decline with depth in any of our trees. We

222 suggest that next steps in resolving these genera may be to (1) apply multiple markers, and (2)
223 perform phylogenetic analyses with those genetic data that include phenotypic data as a data
224 partition. Using multiple markers, such as additional nuclear markers commonly used in insect
225 systematics (e.g., *wng*, H3, 18S), would increase the probability of successful delimitation
226 between closely related species, and ultimately generate a more detailed and robust phylogeny
227 (Dupuis et al. 2012). With regard to phenotypic data, there are 336 characters, of which 14 are
228 ordered characters (Wilkerson et al. 2015) that could be represented as a data partition in a
229 Bayesian phylogenetic approach (Drummond et al. 2012). We suggest that an analysis with a
230 greater number of genetic markers, possibly including phenotypic data, be performed for these
231 species for a more accurate representation of their phylogenetic relationships.

232 Subsequent to commencing our study, we became aware of a related investigation by
233 Soghigian et al. (2017). Soghigian et al. (2017) were particularly interested in the spread of
234 invasive *Aedes* mosquitoes, and attempted to reconstruct the evolution of habitat
235 specialization within the larger group (Aedini). Accordingly, they did not set out to resolve the
236 separation of *Aedes* from *Ochlerotatus*, both of which were treated as *Aedes* subgenera, but
237 their findings are relevant to our overall conclusions. They recovered two major clades with
238 high levels of support, with *Ochlerotatus* being part of Clade B and *Aedes* part of Clade A.
239 However, similar to our findings, *Ochlerotatus* was not monophyletic within its clade.
240 Furthermore, Clade A contained other aedine genera, rendering the genus *Aedes* itself non-
241 monophyletic. Collectively, our results (see also Kumar et al. 2007, Chan et al. 2014, Chu et al.
242 2016) find little evidence for *Ochlerotatus* being a valid genus, or even subgenus as currently
243 described.

244 Because Aedini mosquitos are vectors for disease such as yellow fever, malaria, dengue, and
245 West Nile, having confidence in their phylogenetic relationships has implications for public
246 health management. DNA barcoding is an easy standardized method that is an inexpensive way
247 to account for genetics in taxonomy. In this case, there is little need for specialists to make
248 morphology-based species identifications, because species identities can be based on DNA at
249 any life stage. A genetic barcoding approach should serve as an additional tool for taxonomists
250 to supplement their knowledge as well as being an innovative device for non-experts who need
251 to make a quick identification. Ultimately, entomologists should incorporate both morphology
252 and genetics into species classification analyses, which has never been done before.

253 **Acknowledgements**

254 Author contributions: Methodology, Formal Analysis, Visualization, Project Administration: HG.
255 Data Curation, Resources: EC, DC, HK. Conceptualization, Supervision: SMV, DY. Writing-Original
256 Draft Preparation: HG, EC, DC, HK, SMV. Writing-Review & Editing: HG, SMV, DY.

257 **References**

258 Barraclough, T. G., and A. P. Vogler. 2002. Recent diversification rates in North American tiger
259 beetles estimated from a dated mtDNA phylogenetic tree. *Mol Biol Evol.* 19(10): 1706-1716.
260 Borkent, A., and D. A. Grimaldi. 2004. The earliest fossil mosquito (Diptera: Culicidae), in the
261 mid-cretaceous burmese amber. *An Entomol Soc Am.* 97(5): 882-888.
262 Chan, A., Chiang, L., Hapuarachchi, H. C., Tan, C., Pang, S., Lee, R., Lee, K., Ng, L., and S. Lam-
263 Phua. 2014. DNA barcoding: complementing morphological identification of mosquito
264 species in Singapore. *Parasit Vectors.* 7: 569.

265 Chu, H., Li, C., Guo, X., Zhang, H., Luo, P., Wu, Z., Wang, G., and T. Zhao. 2016. The phylogenetic
266 relationships of known mosquito (Diptera: Culicidae) mitogenomes. Mitochondrial DNA A
267 DNA Mapp Seq Anal. 29(1): 31-35.

268 Drummond, A. J., Suchard, M. A., Xie, D., and A. Rambaut. 2012. Bayesian Phylogenetics with
269 BEAUti and the BEAST 1.7. Mol Biol Evol. 29(8): 1969-1973.

270 Dunlop, J. A. 2010. Geological history and phylogeny of Chelicerata. Arthropod Struct Dev.
271 39(2): 124-142.

272 Dupuis, J. R., Roe, A. D., and F. A. Sperling. 2012. Multi-locus species delimitation in closely
273 related animals and fungi: one marker is not enough. Mol Ecol. 21(18): 4422-4436.

274 Erpenbeck, D., Duran, S., Rützler, K., Paul, V., Hooper, J. N., and G. Wörheide. 2007. Towards a
275 DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial
276 mitochondrial COI gene sequences supports previous rDNA phylogenies and provides a new
277 perspective on the systematics of Demospongiae. J Mar Biol Assoc U.K. 87(06): 1563-1570.

278 Hajibabaei, M., Singer, G. A., Hebert, P. D., and D. A. Hickey. 2007. DNA barcoding: how it
279 complements taxonomy, molecular phylogenetics and population genetics. Trends Genet.
280 23(4): 167-172.

281 Harbach, R. 2016. Mosquito taxonomic inventory valid species. Available from:
282 <http://mosquito-taxonomic-inventory.info/valid-species-list>

283 Hebert, P. D., Cywinska, A., and S. L. Ball. 2003. Biological identifications through DNA barcodes.
284 Proc Biol Sci. 270(1512): 313-321.

285 Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., and C. M. Francis. 2004. Identification of birds
286 through DNA barcodes. PLoS Biol. 2(10): e312.

287 Hillis, D. M., and J. J. Bull. 1993. Empirical testing of bootstrapping as a method for assessing
288 confidence in phylogenetic analysis. *Syst Biol.* 42(2): 182-192.

289 (iBOL) international Barcode of Life. 2018. What is DNA Barcoding? How DNA Barcoding Works
290 and What it Will Do. Available from: <http://ibol.org/about-us/what-is-dna-barcoding/>

291 Kumar, N. P., Rajavel, A. R., Natarajan, R., and P. Jambulingam. 2007. DNA barcodes can
292 distinguish species of Indian mosquitoes (Diptera: Culicidae). *J Med Entomol.* 44(1): 1-7.

293 Kumar, S., Stecher, G., and K. Tamura. 2015. MEGA7: Molecular Evolutionary Genetics Analysis
294 version 7.0. *Mol Biol Evol.* 33(7): 1870-1874.

295 Labandeira, C. C., and J. J. Sepkoski. 1993. Insect diversity in the fossil record. *Science.*
296 261(5119): 310-315.

297 Moritz, C., and C. Cicero. 2004. DNA barcoding: promise and pitfalls. *PLoS Biol.* 2(10), e354.

298 Rambaut, A. 2009. FigTree, version 1.4.2. <http://treebioedacuk/software/figtree/>

299 Ratnasingham, S., and P. D. Hebert. 2013. A DNA-based registry for all animal species: the
300 barcode index number (BIN) system. *PLoS One.* 8(8): e66213.

301 Reece, K. S., Cordes, J. F., Stubbs, J. B., Hudson, K. L., and E. A. Francis. 2008. Molecular
302 phylogenies help resolve taxonomic confusion with Asian *Crassostrea* oyster species. *Mar
303 Biol.* 153(4): 709-721.

304 Reidenbach, K. R., Cook, S., Bertone, M. A., Harbach, R. E., Wiegmann, B. M., and N. J. Besansky.
305 2009. Phylogeny analysis and temporal diversification of mosquitoes (Diptera: Culicidae)
306 based on nuclear genes and morphology. *BMC Evol Biol.* 9: 298.

307 Reinert, J. F. 2000. New classification for the composite genus *Aedes* (Diptera: Culicidae:
308 *Aedini*), elevation of subgenus *Ochlerotatus* to generic rank, reclassification of the other

309 subgenera, and notes on certain subgenera and species. *J Am Mosq Control Assoc.* 16: 175-
310 188.

311 Reinert, J. F., Harbach, R. E., and I. J. Kitching. 2004. Phylogeny and classification of Aedini
312 (Diptera: Culicidae), based on morphological characters of all life stages. *Zool J Linn Soc.*
313 142(3): 289-368.

314 Reinert, J. F., Harbach, R. E., and I. J. Kitching. 2006. Phylogeny and classification of Finlaya and
315 allied taxa (Diptera: Culicidae: Aedini) based on morphological data from all life stages. *Zool J*
316 *Linn Soc.* 148(1): 1-101.

317 Reinert, J. F., Harbach, R. E., and I. J. Kitching. 2008. Phylogeny and classification of
318 Ochlerotatus and allied taxa (Diptera: Culicidae: Aedini) based on morphological data from
319 all life stages. *Zool J Linn Soc.* 153(1): 29-114.

320 Reinert, J. F. 2009. List of abbreviation for currently valid generic-level taxa in family Culicidae
321 (Diptera). *Eur Mosq Bull.* 27: 68-76.

322 Reisen, W. K. 2005. Journal of Medical Entomology policy on names of Aedine mosquito genera
323 and subgenera. *J Med Entomol.* 42(4): 511.

324 Reisen, W. K. 2016. Update on journal policy of Aedine mosquito genera and subgenera. *J Med*
325 *Entomol.* 53(2): 249.

326 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L.,
327 Suchard, M. A., and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic
328 Inference and Model Choice Across a Large Model Space. *Syst Biol.* 61(3): 539-542.

329 Ros, V. I. D., and J. A. J. Breeuwer. 2007. Spider mite (Acari: tetranychidae) mitochondrial COI
330 phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and

331 barcoding. *Exp and App Acarol.* 42(4): 239-262.

332 Schultz, T. R., and R. Meier. 1995. A phylogenetic analysis of the fungus-growing ants
333 (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae. *Syst
334 Entomol.* 20(4): 337-370.

335 Soghigian, J., Andreadis, T. G., and T. P. Livdahl. 2017. From ground pools to treeholes:
336 convergent evolution of habitat and phenotype in *Aedes* mosquitoes. *BMC Evol Biol.* 17: 262.

337 Stamatakis, A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of
338 large phylogenies. *Bioinform.* 30(9): 1312-1313.

339 Whalley, P. 1986. A review of the current fossil evidence of Lepidoptera in the Mesozoic. *Biol J
340 Linn Soc Lond.* 28: 253–271.

341 Whitfield, J. B., and K. M. Kjer. 2008. Ancient rapid radiations of insects: challenges for
342 phylogenetic analysis. *Annu Rev Entomol.* 53: 449-472.

343 Wiegmann, B. M., Trautwein, M. D., Winkler, I. S., Barr, N. B., Kim, J. W., Lambkin, C., Bertone,
344 M. A., Cassel, B. K., Bayless, K. M., Heimberg, A. M., Wheeler, B. M., Peterson, K. J., Pape, T.,
345 Sinclair, B. J., Skevington, J. H., Blagoderov, V., Caravas, J., Kutty, N., Schmidt-Ott, U.,
346 Kampmeier, G. E., Thompson, F. C., Grimaldi, D. A., Beckenbach, A. T., Courtney, G. W.,
347 Freidrich, M., Meier, R., and D. K. Yeates. 2011. Episodic radiations in the fly tree of life. *Proc
348 Natl Acad Sci U S A.* 108(14): 5690-5695.

349 Wilkerson, R. C., Linton, Y. M., Fonseca, D. M., Schultz, T. R., Price, D. C., and D. A. Strickman.
350 2015. Making mosquito taxonomy useful: A stable classification of tribe aedini that balances
351 utility with current knowledge of evolutionary relationships. *PLoS One.* 10(7): e0133602.

352 Zhang, D. X., and G. M. Hewitt. 1997. Assessment of the universality and utility of a set of

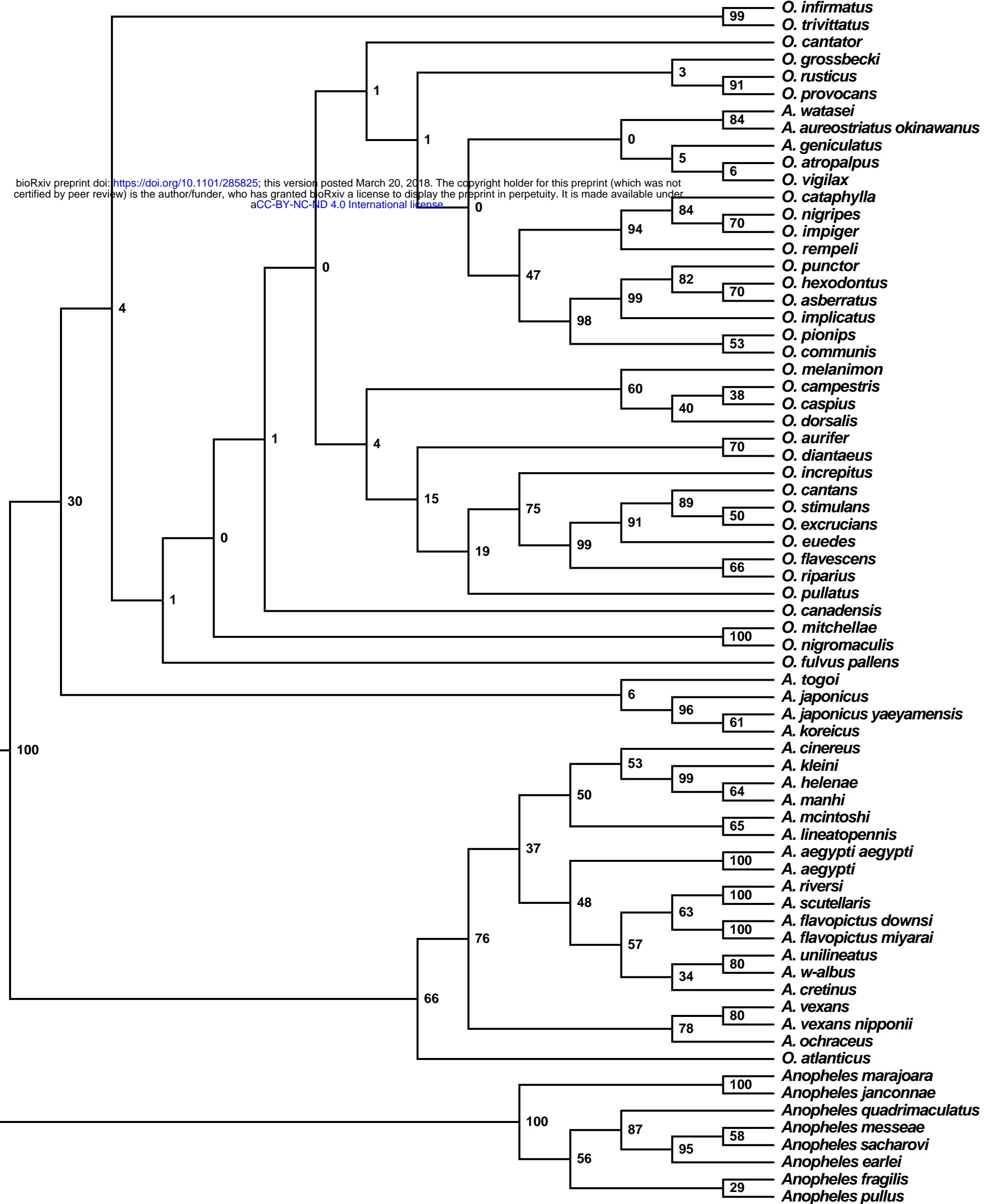
353 conserved mitochondrial COI primers in insects. Insect Mol Biol. 6(2): 143-150.

354 **Figure and Supporting Information Captions**

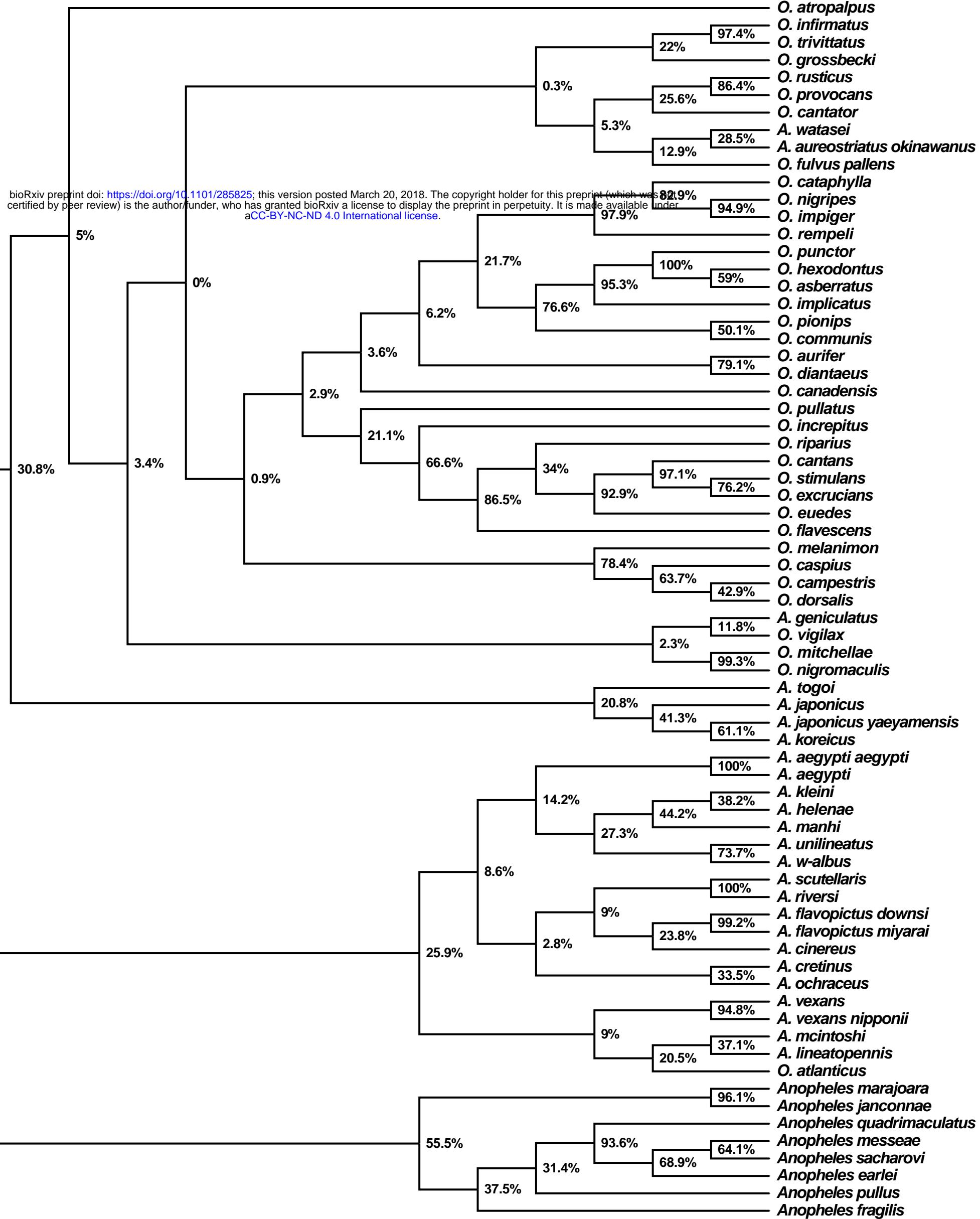
355 **Fig 1. Maximum Likelihood phylogeny of Aedini species based on COI barcoding sequences.**

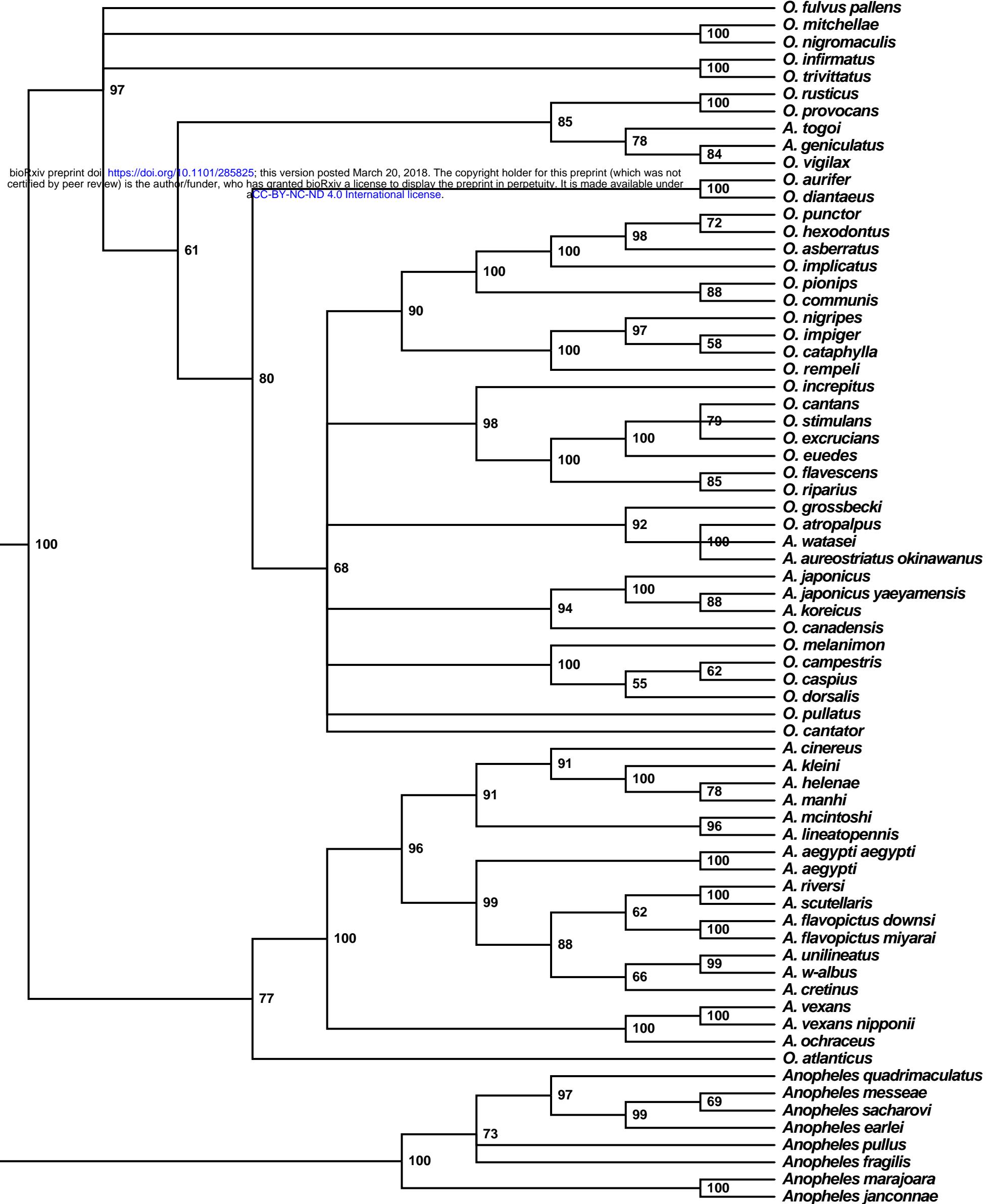
356 Phylogeny generated with RAxML version 8.0.0 (Stamatakis 2014) of True *Aedes*, *Ochlerotatus*,
357 and outgroup species. A. is *Aedes* genus and O. is *Ochlerotatus* genus. Numbers at each node
358 represent bootstrap values. Tree visualized in FigTree version 1.4.2 (Rambaut 2009).

359 **Fig 2. Bayesian Inference phylogeny of Aedini species based on COI barcoding sequences.**


360 Phylogeny generated with MrBayes version 3.2.6 (Ronquist et al. 2012) of True *Aedes*,
361 *Ochlerotatus*, and outgroup species. A. is *Aedes* genus and O. is *Ochlerotatus* genus.
362 Percentages at each node represent posterior probabilities. Tree visualized in FigTree version
363 1.4.2 (Rambaut 2009).

364 **Fig 3. Neighbor Joining phylogeny of Aedini species based on COI barcoding sequences.**


365 Phylogeny generated with MEGA version 7 (Kumar et al. 2015) of True *Aedes*, *Ochlerotatus*, and
366 outgroup species. A. is *Aedes* genus and O. is *Ochlerotatus* genus. Numbers at each node
367 represent bootstrap values. Tree visualized in FigTree version 1.4.2 (Rambaut 2009).


368 **S1 Fig. Maximum Likelihood phylogenetic tree of all 873 sequences.** ML phylogeny generated
369 by RAxML version 8.0.0 as a bootstrap analysis with 1000 replicates and visualized in FigTree
370 (Stamatakis 2014, Rambaut 2009). Each branch tip states the accession number and default
371 species names from BOLD and bootstrap values are at each node. Note that many species are
372 named *Aedes* here because they were uploaded to BOLD before those species were reclassified
373 to *Ochlerotatus*. Genus names in Fig 1 (in text) were changed to reflect species name
374 reclassification.

375 **S1 Table. Species name and accession number for the sequences used in the analysis.** One
376 sequence from each species was randomly selected from the 873 total sequences, and these
377 sequences were used in the bootstrap analysis to generate Fig 1.

bioRxiv preprint doi: <https://doi.org/10.1101/285825>; this version posted March 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

