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Abstract1

Sorting spikes from extracellular recording into clusters associated with distinct2

single units (putative neurons) is a fundamental step in analyzing neuronal popula-3

tions. Such spike sorting is intrinsically unsupervised, as the number of neurons are4

not known a priori. Therefor, any spike sorting is an unsupervised learning problem5

that requires either of the two approaches: specification of a fixed value c for the6

number of clusters to seek, or generation of candidate partitions for several possible7

values of c, followed by selection of a best candidate based on various post-clustering8

validation criteria. In this paper, we investigate the first approach and evaluate the9

utility of several methods for providing lower dimensional visualization of the clus-10

ter structure and on subsequent spike clustering. We also introduce a visualization11

technique called improved visual assessment of cluster tendency (iVAT) to estimate12

possible cluster structures in data without the need for dimensionality reduction. Ex-13

perimental results are conducted on two datasets with ground truth labels. In data14

with a relatively small number of clusters, iVAT is beneficial in estimating the number15

of clusters to inform the initialization of clustering algorithms. With larger numbers16

of clusters, iVAT gives a useful estimate of the coarse cluster structure but sometimes17

fails to indicate the presumptive number of clusters. We show that noise associated18

with recording extracellular neuronal potentials can disrupt computational clustering19

schemes, highlighting the benefit of probabilistic clustering models. Our results show20

that t-Distributed Stochastic Neighbor Embedding (t-SNE) provides representations21

of the data that yield more accurate visualization of potential cluster structure to in-22

form the clustering stage. Moreover, The clusters obtained using t-SNE features were23

more reliable than the clusters obtained using the other methods, which indicates that24
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t-SNE can potentially be used for both visualization and to extract features to be used25

by any clustering algorithm.26

Keywords— spike sorting, single units, cluster assessment, unsupervised learning,27

dimensionality reduction, t-SNE, iVAT, Dunn’s Index word count: 1128828

1 Introduction29

Recording of extracellular signatures of action potentials, referred to as spikes, is a standard30

tool for revealing the activity of populations of individual neurons (single units). Single31

unit activity contains fundamental information for understanding brain microcircuit function32

in vivo and in vitro [Buzsáki, 2004]. Inferences about network activity can be made by33

identifying coincident activity and other temporal relationships among spiking patterns of34

different neurons [Brown et al., 2004]. However, the reliability of these inferences is strongly35

influenced by the quality of spike sorting, i.e., the detection and classification of spike events36

from the raw extracellular traces with the goal of identifying single-unit spike trains. Poor37

sorting quality results in biased cross-correlation estimates of the spiking activity of the38

different identified units [Ventura and Gerkin, 2012].39

The typical workflow for spike sorting includes spike detection, feature extraction, and clus-40

tering. While detection is pretty straightforward and can be efficiently done with simple41

thresholding, the feature extraction and clustering procedures are far from being satisfacto-42

rily settled [Rossant et al., 2016]. It has been estimated that single or tetrode type electrodes43

(i.e. impedance< 100KΩ) can record neuronal activity within a spherical volume of 50 µm44

radius with amplitudes large enough to be detected (> 60µV). This volume of brain tissue45

constitutes about 100 neurons. While noting that many neurons are expected to be silent46

[Buzsáki, 2004, Shoham et al., 2006], commonly, not more than a handful identified neurons47

are reported per electrode. Studies on current sorting algorithms used for individual elec-48

trode recordings have shown that they are limited in distinguishing 8 to 10 out of 20 units49

with less than 50% false positive and false negative rates [Niediek et al., 2016, Pedreira et al.,50

2012]. Other methods using high density electrode arrays reported simulations with no more51

than 10 units [Pachitariu et al., 2016, Yger et al., 2016].52

Since we can’t physiologically verify how many neurons have been recorded, assigning the53

spikes within a recording to individual neurons remains a fundamental technical issue. The54

sorting is in essence an unsupervised learning challenge. Therefore, methods require one55

of two approaches: specification of a fixed value of the number of clusters to seek (c); or56

generation of candidate partitions for several possible values of c, followed by selection of57

a best candidate based on various post-clustering validation criteria. Moreover, improving58

spike classification to correctly identify cell types is a topic of interest highlighted by ini-59

tiatives that aim to characterize and reconstruct different cell types in the brain and their60

role in health and disease [Jorgenson et al., 2015, Markram et al., 2015]. For that goal,61

Armañanzas and Ascoli [2015] list the identification of the number of clusters as the first62
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outstanding question in techniques for neuronal classification.63

In summary, identifying the spike trains of individual units within a recording is a three-64

faceted problem: (i) assessing the cluster tendency in the pre-clustering phase (before initial-65

izing any clustering algorithm); (ii) clustering (i.e. finding partitions of the data); and (iii)66

evaluation of the validity of the clusters that have been isolated, post-clustering [Bezdek,67

2017]. Spike sorting algorithms usually start by projecting the data to a lower dimensional68

space. There are several reasons to do this. For example, lower dimensional data usually69

reduces such as reduction of computation time. In this paper, the fundamental reason for70

dimensionality reduction (essentially to two or three dimensions) is that 2D and 3D projec-71

tions allow visualization of high dimensional input data. In turn, this facilitates the choice of72

a few selected values of the integer c. Pre-specification of c is needed by almost all clustering73

algorithms as an input parameter (hyper parameter). In algorithms such as density based74

clustering or mean shift, the choice of c is implicit in the choice of parameters such as γ75

(cluster density times cluster distance) or h (the bandwidth parameter), respectively. In76

practice, since reduced dimensionality embedding of the data often does not provide visu-77

ally well separated clusters, it is common to exclude large number of spikes and only take78

into account a small core portion of the subsets that seems to have well-isolated clusters79

[Dehghani et al., 2016]. Omitting spikes to obtain well-separated clusters may lead to single80

units with recognizable spike waveforms, but it discards spikes that, as mentioned before, are81

fundamental for analyses of temporal structure of spiking activity [Cohen and Kohn, 2011,82

Pazienti and Grün, 2006]. Therefore, the bottleneck in spike sorting is at the pre-clustering83

stage: viz., inaccuracy of the assumed data structure that is inferred by visualization of it in84

the lower dimensional space. If clustering is to be done in a lower dimensional data space,85

errors here will affect both the initial estimate of the cluster number and the performance86

of the clustering algorithm. Thus, this study concerns itself with visual assessment in the87

pre-clustering stage.88

We compare the visualization of neuronal spike data created using six methods (i) three well-89

known dimensionality reduction techniques: principle component analysis (PCA), t-student90

stochastic neighborhood embedding (t-SNE) and Sammon’s algorithm, (ii) two methods that91

extract features from the waveforms: wavelet decomposition and features such as peak to92

valley amplitude and Energy (PV-E), and (iii) a method that operates directly on waveforms93

in the input space: improved visual assessment of tendency (iVAT). The analysis is performed94

on two different types of ground truth data (labeled data): simulated spike sets and real95

recorded spike sets, called dataset-1 and dataset-2, respectively. Our results indicate that96

iVAT often suggests a most reasonable estimate for the primary (or coarse) cluster structure,97

while t-SNE is often capable of displaying finer cluster structure. While iVAT is only a98

visualization tool, t-SNE can be used for both visualization and to extract features. We99

provide an objective measure of comparison between t-SNE and the other methods, we100

evaluate the quality of partitions obtained by clustering in the upspace (input dimensional101

space; i.e., the waveforms) and also in the five two-dimensional representations. This test102

is performed by running k-means and generating a number of clusters equal to the actual103
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(i.e. known) number of units. The quality of the partitions generated by each method104

is evaluated with Dunn’s index (DI) (an internal index describing the intrinsic quality of105

the generated clusters); the generalized Dunn’s index GDI33; and the Adjusted Rand’s index106

(ARI) (an external measure of agreement between computed partitions and the ground truth107

partition).108

The outline of the paper follows: Section 2 describes the datasets that we used (2.1), de-109

fines the problem (2.2), explains the methods used for data visualization (2.3 and 2.4), and110

lastly describes the measures used for evaluating clustering structure of the data (2.5). The111

results of the experiments on the datasets are given in section 3. Insights gained from the112

experiments are summarized in section 4.113

2 Materials and methods114

2.1 Datasets115

The importance of model data or ground truth data, where the label or membership of116

each spike to an individual neuron is known, for spike sorting validation is emphasized by117

Einevoll et al. [2012]. We use two labeled datasets: our first experiment uses simulations of118

extracellular traces as model data or surrogate ground truth data (hereafter called dataset-119

1), and the second experiment uses data obtained from in-vivo experiments as real ground120

truth data (hereafter called dataset-2).121

Dataset-1 Pedreira et al. [2012] simulated exracellular traces that contain the activity of122

2 to 20 neurons with additive background noise. The single unit spike activity is generated123

by using average spike waveforms (templates) compiled from Basal Ganglia and Neocortical124

recordings. The background noise (i.e., LFP noise) is simulated by superimposition of thou-125

sands of spikes at random times which were then scaled down to a standard deviation of126

0.1. Each simulated trace also contains multi-unit activity, which was generated by super-127

imposing 20 waveforms with normalized amplitudes limited to 0.5. Dataset-1 thus provides128

us with simulated extracellular traces each containing 3 to 21 subsets of spikes. For each129

cluster number c, five simulations using different sets of templates were generated (for a total130

of 95 datasets). The spikes were detected by voltage thresholding. The length of each spike131

waveform is 2 ms, with a sampling rate of 24 kHz, comprising 48 sample points. Thus, the132

upspace dimension for subsets in Dataset-1 is 48.133

Dataset-2: We used the in vivo simultaneous intracellular and extracellular hippocampal134

recording datasets that are publicly available from the CRCNS website [Henze et al., 2009].135

These are raw data of simultaneous intracellular and extracellular recordings from neurons in136

the CA1 region of the hippocampus of anesthetized rats. The experimental procedure con-137

sisted of inserting extracellular electrodes (either tetrodes, 13-µm polyimide-coated nichrome138

wires, or a single 60-µm wire) into the cell body layer of CA1, confirming the presence of139
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unit activity in the recordings, and then inserting intracellular sharp-electrodes into the same140

region in close proximity to the extracellular electrode to impale a single neuron and record141

stable action potentials induced by current injections. With this method, it was possible to142

capture simultaneous spikes in the intracellular and extracellular recordings. We detected143

the intracellular spikes, and used those spike times to extract the extracellular spike train of144

that neuron (i.e. a labeled subset of spikes). Each spike waveform is 2 ms long which, with a145

sampling rate of 40 kHz, results in 80 sample points, so the upspace dimension of each spike146

and subsequent sets in dataset-2 is 80. Dataset-2 is valuable because each spike waveform in147

the subset is a recorded signal from a physiological setting; hence, the variability in the prob-148

ability distribution of each subset comes from either natural (e.g. the effect of other current149

sources in the extracellular medium) or experimental conditions (e.g. electrode drift). Each150

recorded trace has one labeled subset of spikes. Hence, to generate each mixture, we used151

the extracted spike subsets from different traces. In total, we obtained 9 subsets of spikes152

from the database and then used combinations of 2,3,4,... to 9 of these subsets to create153

datasets containing spikes of 2 or more neurons (for a total of 502 datasets).154

In summary, the data for our experiments were mixtures of subets of spikes each with different155

population size in either 48 or 80 dimensional input space.156

2.2 Problem definition157

Let X = {x1, .....xn} ⊂ <p denote a set of vector data representing n spikes generated by one
or multiple neurons. The coordinates of xi are voltage samples that describe a spike event
(they are always voltage samples in this article). The non-degenerate crisp c-partitions of
the n objects in a set X can be represented by a c× n matrix U in Mhcn, written in terms
of the c crisp subsets of it (the clusters Xi) as

Mhcn = {U ∈ <cn : uik ∈ {0, 1}∀1 ≤ i ≤ c, 1 ≤ k ≤ n;
c∑

i=1

uik = 1∀k;
c∑

i=1

uik > 0∀i} (1a)

U ∈Mhcn ↔ X =
c⋃

i=1

Xi;Xi ∩Xj = ∅|i6=j (1b)

Finding clusters in X comprises three steps: deciding how many clusters (c) to look for;158

constructing a set of candidate partitions {U ∈Mhcn} of X; and selecting a ”best” partition159

from CP (cf. equation (2) below) using a cluster validity index (CVI).160

2.3 Dimensionality reduction and feature extraction161

Data vectors in <p usually have high dimensionality (p > 3) (e.g., images, videos, and multi-162

variate data streams). Feature selection and dimensionality reduction algorithms are used163
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to (i) make pre-clustering visual assessment of the structure of the data and (ii) to improve164

the performance of data-driven procedures, such as those for classification and clustering.165

Typical approaches for these procedures include those discussed in Zhao et al. [2013] and van166

der Maaten et al. [2009]. Methods for obtaining an “optimal” set of features (the intrinsic167

dimension of the input data) for clustering abound. Campadelli et al. [2015] have a good168

survey of such methods. We point out finding the intrinsic dimension of a data set is not169

directed towards visual assessment, since the intrinsic dimension (there are many competing170

algorithms that find different features) is usually greater than 2 or 3.171

Here we focus on visualization based on several well-known dimensionality reduction algo-172

rithms that have been used in a multitude of domains including neurosciences; we refer the173

interested reader to van der Maaten et al. [2009] and references therein for technical details.174

Principal component analysis (PCA) is one of the most important and widely utilized linear175

dimensionality reduction techniques [Theodoridis, 2009]. In order to find a low-dimensional176

subspace that accounts for the maximum amount of projected variance, PCA projects the177

data along the directions given by the leading eigenvectors of the data covariance matrix,178

i.e., the directions associated with the largest eigenvalues of the sample covariance matrix.179

In neuroscience research, another common approach is to extract features of the waveforms180

that have a physical meaning such as waveform’s negative or positive amplitudes, known as181

valley and peak, their ratio or width, or waveform’s energy, among others [Hattori et al.,182

2015, Truccolo et al., 2011]. For our experiments we selected peak to valley (PV), and en-183

ergy (E), hereby called PV-E. We remark that the PV-E features contain essentially the184

same information as the min peak-max peak features used by [Takahashi et al., 2003]. An-185

other method based on wavelet transforms that enables visualizing the data in the wavelet186

coefficient subspace has also been successfully implemented in clustering packages such as187

Waveclus and Combinato [Niediek et al., 2016, Quiroga et al., 2004].188

We also consider two nonlinear dimensionality reduction techniques. The first of these is t-189

SNE (t-student Stochastic Neighbor Embedding), developed by van der Maaten and Hinton190

[2008]. It works by converting Euclidean distances between high-dimensional input data into191

conditional probabilities. In doing so, t-SNE converts the geometric notion of similarity into192

a statistical concept: if xj is a neighbor of xi, then the conditional probability pj|i is high.193

Then, t-SNE finds low-dimensional representations yi and yj of xi and xj by minimizing the194

discrepancy between the upspace pj|i and downspace conditional probabilities qj|i, technically195

achieved by minimizing the Kullback-Leibler divergence between them. The objective of t-196

SNE is to minimize the sum of the divergences over all the data points. The downspace197

dimension is a choice made by the user.198

Two features of t-SNE should be noted. First, it is not a linear projection like PCA but rather199

has a non-convex cost function, so its output may be different for different initializations.200

Second, it is a parametric technique. Different settings of hyperparameters such as the201

learning rate, the perplexity, and the iteration rate in the t-SNE algorithm generate different202

maps in the scatterplots, and may cause misinterpretation of the data structure [van der203
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Maaten and Hinton, 2008].204

The main parameter that affects the results of t-SNE is the perplexity, which is the limiting205

condition for the entropy of the probability distribution of the similarities of datapoints206

in the upspace. This means that the variance of the Gaussian that is centered over each207

datapoint, i.e., the extent of the neighborhood around that point, is limited by the choice of208

perplexity.209

This limitation affects each datapoint separately based on the local density of the data. This210

is the feature that enables t-SNE to avoid crowding points in the center of the map so that211

cluster structure of the data in the upspace data is often seen in the t-SNE downspace pro-212

jection. This feature, however, comes at the cost of sacrificing the shape of the distribution213

so that the distances between the clusters may not be meaningful. In other words, it is not214

possible to infer reliable spatial information from the topology of the low-dimensional maps.215

Fortunately, the topology is not relevant for our application: viz. suggesting clusters in216

the neuronal waveform data. The optimal choice of perplexity is dependent on the number217

of points (spikes) in the dataset. We found that for neuronal datasets with thousands of218

spikes (data points), as long as the extreme values in the parameter ranges are not selected,219

the t-SNE algorithm is not very sensitive to changes in perplexity. On the other hand, the220

reliability of t-SNE visualizations seems to decrease as the number of samples decreases. See221

[Mahallati et al., 2018a] for an example.222

We also consider another traditional nonlinear dimensionality reduction technique called the223

Sammon mapping [Sammon, 1969], which is one form of multidimensional scaling. Mul-224

tidimensional scaling (MDS) seeks a low dimensional embedding of the input data while225

preserving all pairwise Euclidean distances (In a more general setting, t-SNE can be inter-226

preted as a form of probabilistic MDS). However, high-dimensional data usually lies on a227

low-dimensional curved manifold, such as in the case of the Swiss roll [Tenenbaum et al.,228

2000]. In such cases, preserving pairwise Euclidean distances will not capture the actual229

neighboring relationships: the actual distance between two points over the manifold might230

be much larger than the distance measured by the length of a straight line connecting them,231

i.e., their Euclidean distance). Sammon mapping improves upon classic multidimensional232

scaling by directly modifying its original cost function, i.e., the distortion measure to be233

minimized. In particular, the Sammon mapping cost function weights the contribution of234

each pair of data points relative to the overall cost by taking into account the inverse of their235

pairwise distance in the original high-dimensional input space. In this way, Sammon map-236

ping often preserves the local structure of the data better than classical multidimensional237

scaling.238

While these five methods do not all produce lower dimensional data with an analytic pro-239

jection function, we will call all downspace data sets projections.240
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2.4 iVAT241

There are a number of imaging techniques that can be applied directly to the upspace242

data before clustering it. Here we describe the iVAT method described in [Havens and243

Bezdek, 2012], which is a generalization of the original VAT algorithm given by [Bezdek and244

Hathaway, 2002]. Improved Visual Assessment of Tendency (iVAT) is a visualization tool245

that uses any dissimilarity matrix, D, of the data to display potential cluster structure. The246

steps of the iVAT method are the following. The vectors in the dataset are represented as247

vertices in a complete graph, with the distances between them the weights of the graph.248

The algorithm first finds the longest edge in the graph. Then, starting at either end, it249

finds the minimal spanning tree (MST) of D based on Prim’s algorithm. Then, it reorders250

the rows (and columns) of D based on the order of edge insertion in the MST, creating D*251

(up to this point this is the original VAT algorithm). Then, iVAT transforms D* to D’*252

by replacing each distance dij in D* with the maximum edge length in the set of paths in253

the MST between vertices i and j. When displayed as a gray-scale image, I(D’*), possible254

clusters are seen as dark blocks along the diagonal of the image. Images of this type are255

often called cluster heat maps in the neuroscience literature.256

iVAT is not a clustering method or measure of performance for clustering algorithms, but a257

method to visually extract some information about the cluster structure from the input space258

before application of any clustering algorithm. iVAT does not alter the physical meaning of259

the input data (even after the shortest path transformation), it just rearranges the objects in260

a way that emphasizes possible cluster substructure. The recursive computation of D′∗ given261

in Havens and Bezdek [2012] is O(n2). Appendix A.2 contains the pseudocode for iVAT. The262

iVAT algorithm requires no parameters to pick other than the dissimilarity function (d) used263

to convert X to D. This input matrix can actually be a bit more general than a true distance264

because its only requirements are that D = DT ; dij ≥ 0∀i, j; dii = 0∀i. The most important265

points about this display technique are that it is applied directly to (a distance matrix of)266

the upspace data, so there is no distortion of the structural information introduced by a267

feature extraction function from the upspace to a chosen downspace, and iVAT preserves the268

physical meaning of the measured features. While any vector norm can be used to build an269

input matrix D(X) from a set X of feature vectors, the only distance used in this article is270

Euclidean distance. It is very important to understand that an iVAT image merely suggests271

that the input data has a certain number of clusters. Since iVAT can produce images from272

data of arbitrary dimensions, we can use it (or its scalable relative siVAT, Kumar et al.273

[2017]) to make a visual estimate of possible cluster structure in any upspace. While the274

iVAT algorithm is occasionally “wrong” (misleading), iVAT images usually provide some275

idea about the cluster structure of the input data [Bezdek, 2017].276

Thus, iVAT provides clues about potential starting points for finding a useful partition of the277

input data. Mahallati et al. [2018a] have shown the connection of VAT and iVAT to Dunn’s278

index and single linkage (SL) clustering. The intensity of the blocks in iVAT images are a279

(more or less) visual representation of the structure identified by single linkage clustering for280
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labeled or unlabeled data. This suggests that iVAT might be regarded as a tool for “taking281

a peek” at a specific type of data structure in the input space.282

2.5 Evaluating cluster quality283

Cluster validity comprises computational models and algorithms that identify a “best” mem-284

ber amongst a set of candidate partitions (CP)285

CP = {U ∈Mhcn : cm ≤ c ≤ cM} (2)

where cm and cM are the minimum and maximum specified values of the numbers of clusters286

sought.287

The approach to identify a “best” partition U (and concomitant value of c) in CP can be288

internal: using only information from the output results of the clustering algorithm, or ex-289

ternal: using the internal information together with an outside reference matrix, usually the290

ground truth labels. Here, we use a classic internal scalar measure called Dunn’s index (DI)291

[Dunn, 1973], and one generalization of it given by Bezdek and Pal [1998] called the gener-292

alized Dunn’s index (GDI33). Dunn defined the diameter of a subset Xk as the maximum293

distance between any two points in that subset (4(Xk)), and the distance between subsets294

Xi and Xj as the minimum distance between any two points of the two subsets (δ(Xij)).295

This index is based on the geometrical premise that “good” sets of clusters are compact296

(dense about their means) and well separated from each other. Larger values of DI imply297

better clusters, so we call DI a max-optimal cluster validity index (CVI).298

Let Xi and Xj be non empty subsets of <p, and let d : <p × <p 7→ <+ be any metric on
<p ×<p. Define the diameter 4 of Xk and the set distance δ between Xi and Xj as:

∆(Xk|d) = max︸︷︷︸
x,y∈Xk

{d(x,y)}, (3)

δ(Xi, Xj|d) = min︸︷︷︸
x ∈ Xi

y ∈ Xj

{d(x,y)} = δSL(Xi, Xj|d). (4)

Then for any partition U ↔ X = X1 ∪ ....Xi ∪ ...Xc, Dunn’s separation index of U is:299

DI(U |d) =

min︸︷︷︸
1≤i≤c

{
min︸︷︷︸

1≤j 6=i≤c

{δ(Xi, Xj|d)}
}

max︸︷︷︸
1≤k≤c

{∆(Xk|d)}
(5)

Since we have labeled mixtures, we can calculate Dunn’s index on ground truth partitions300

in the upspace (input dimensional space) to give a measure of the compactness and isolation301
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quality of the subsets in the original space. We have previously shown that this measure302

usually correlates with the quality of the visual assessment of potential cluster structure303

given by iVAT [Mahallati et al., 2018a]. In the present work, we will also use a generalized304

version of Dunn’s index developed by Bezdek and Pal [1998] that alters the average distance305

from the mean as 4 and the average linkage clustering distance as δ. The Generalized306

Dunn’s index (GDI33) is:307

∆3(Xk|d) = 2

(∑
x∈Xk

d(x, v̄k)

|Xk|

)
(6)

δ3(Xi, Xj|d) =
1

|Xi| |Xj|
∑

x ∈ Xi

y ∈ Xj

d(x,y) (7)

GDI33(U |d) =

min︸︷︷︸
1≤i≤c

{
min︸︷︷︸

1≤j 6=i≤c

{δ3(Xi, Xj|d)}
}

max︸︷︷︸
1≤k≤c

{∆3(Xk|d)}
(8)

where v̄k =
∑

x∈Xk

x
|Xk|

is the mean or centroid of the cluster. The notation |d in equations308

3 to 8 for ∆ and δ indicate that these formulas are valid for any metric d on the input space.309

It has been shown that GDI33 is more robust with regards to sensitivity to outliers and310

hence produces more meaningful values for real life datasets with abundant aberrant points311

[Arbelaitz et al., 2013].312

To evaluate the quality of the different clustering approaches we used the external adjusted313

Rand index (ARI) developed by Hubert and Arabie [1985], which is a well-known and314

fairly reliable criterion for performance assessment of the clustering results. Let V ∈ Mhrn315

be the crisp partition of the n objects possessing r clusters, according to ground truth labels.316

Let U ∈ Mhcn be any crisp partition of n objects with the c clusters generated by any317

clustering algorithm. Note that r does not necessarily equal c. The ARI is a measure of318

similarity between U and V, computed as:319

ARI(U |V ) =
2(ae− bc)

(a+ b)(e+ b) + (a+ c)(e+ c)
(9)

where,320

• a = Number of pairs of data objects belonging to the same subset in U and V.321

• b = Number of pairs belonging to the same subset in V but to different subsets in U322

• c = Number of pairs belonging to the same subset in U but to different subsets in V.323

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/285064doi: bioRxiv preprint 

https://doi.org/10.1101/285064
http://creativecommons.org/licenses/by/4.0/


• e = Number of pairs not in the same subset in V nor the same subset in U.324

Hubert and Arabie [1985] developed this correction to eliminate bias due to chance from325

Rand’s index.The ARI is also a max-optimal index in the sense that larger values imply a326

better match between the ground truth and the results of the clustering. As evident from327

the equation, this formula incorporates simpler measures such as percentage of spikes in the328

real set present in the sorted set or percentage of spikes in the sorted set that come from the329

real set.330

3 Results and discussion331

3.1 Visual assessment of cluster tendency332

It is impossible to make a direct visual assessment of a set of recorded spike waveforms333

X = {x1, .....xn} ⊂ <p, since each waveform has more than three voltage samples (i.e.,334

dimensions), p > 3. The upspace dataset X can be mapped to a downspace dataset Y ⊂ <q by335

a feature extraction function φ : <p 7→ <q in many different ways. Dimensionality reduction336

methods are commonly employed for visualization purposes to gain insights into the data337

structure; and to provide clustering algorithms with lower-dimensional data to increase the338

computational efficiency. Next, we will demonstrate that different dimensionality reduction339

methods provide different scatterplots of the data, and hence, visually suggest different340

numbers of clusters. Towards this end, we used spike subsets of the simulated dataset that341

includes 5 simulations for each combination of different number of spike subsets for c from342

3 to 21. Below we show some representative results: two cases of c=3 (one with low Dunn’s343

index, DI, and one with higher DI) and then one case each for c=5, c=10, c=15 and c=20.344

Figure 1 shows two cases from the dataset with c=3. The colors in Figure 1 correspond to345

the three data labels. Bear in mind, as you view this and subsequent figures, that in the346

real case, the data are always unlabeled, so the projected data will be just one color, and347

the apparent structure will be much less evident than it seems to be in these figures. Figure348

1(a) is a ’good’ case in which all the algorithms map the spikes to projections with visually349

well-separated clusters and iVAT agrees with them (the larger diagonal block contains two350

less apparent,sub-blocks). In 1(b) however, all 2D projections except t-SNE produce a single351

cluster (when plotted without colors), while t-SNE seems most successful in separating the352

three subsets (arguably, t-SNE shows c=2 clusters when colors are omitted). The iVAT353

image suggests c=2, conforming to the apparent (uncolored) pair of t-SNE clusters. The low354

value of DI is a warning that there is not much separation between these three subsets of355

waveforms.356

Figures 2 to 5 show representative mixtures of c=5, 10, 15 and 20 component mixtures.357

These examples, and many others not reported here, show that iVAT and t-SNE usually358

provide useful visual estimates of the number of clusters up to around c=15, but the other359

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/285064doi: bioRxiv preprint 

https://doi.org/10.1101/285064
http://creativecommons.org/licenses/by/4.0/


PCA                PV-E             Wavelet              t-SNE            Sammon       Waveforms              iVAT

(a) DI=0.168

(b) DI=0.068

Figure 1: Two different simulations at c=3

methods almost always fail with c = 4 or more subsets. We had 5 cases for each number of360

subsets (e.g. 5 different cases of mixture at c=10, etc.) and overall t-SNE provided the most361

consistent estimate of the presumptive numbers of mixture components. There were some362

cases for which iVAT failed to display the expected number of dark blocks in mixtures having363

fewer than 10 components. The block structure in some of the reproduced iVAT images is364

more apparent at higher resolutions than shown here. Our experiments suggest that iVAT365

is somewhat sensitive to noise in the waveforms, which often manifests itself as a falloff in366

intensity towards one end of the diagonal. See Figure 2 for an example.367

Overall, from the t-SNE visualizations of the data, we infer that there is a common waveform368

shape among many cells suggested by the existence of a large central region populated by369

most of the clusters. However, there are cells that have clearly distinct signatures. The370

individual clusters exhibit variability: for some neurons the spike waveforms define homoge-371

neous and compact clusters, while others are elongated clusters in the nonlinear space. This372

suggests that the relation between waveform samples for different neurons is different (or the373

way the waveform samples interrelate is different in different neurons’ spikes).374
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PCA                PV-E              Wavelet              t-SNE            Sammon       Waveforms               iVAT

(a) DI=0.158

Figure 2: Simulation at c=5. The iVAT image displays 4 clear blocks and some disconnected
data due to noise in the lower right: the only projection that clearly shows c=5 is t-SNE

PCA                PV-E              Wavelet              t-SNE            Sammon       Waveforms               iVAT

(a) DI=0.121

Figure 3: Simulation at c=10. The iVAT image displays 10 blocks; the projection that
clearly shows c=10 is t-SNE

PCA                PV-E              Wavelet              t-SNE            Sammon       Waveforms               iVAT

(a) DI=0.084

Figure 4: Simulation at c=15. The iVAT image displays 9 blocks and t-SNE shows 13
(colored), and 9 or 10 in black.

PCA                PV-E              Wavelet              t-SNE            Sammon       Waveforms               iVAT

(a) DI=0.057

Figure 5: Simulation at c=20. The iVAT image displays 13 blocks and t-SNE shows 12
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The next example in this section highlights the ability of iVAT to address two additional375

problems encountered in spike sorting, namely, anomaly detection and the need for multistage376

clustering (aka ”re-iteration” amongst subclusters). Figure 6(a) is a set called Z of n=4665377

waveform vectors comprising a mixture of c=10 labeled subsets from simulated dataset-1.378

The 10 waveforms shown in Figure 6(b) are the average waveforms, Z̄10 = {z̄i : 1 ≤ i ≤ 10},379

of the ten labeled subsets.380

Visual inspection of Figure 6(b) suggests that z̄4, the average waveform of the 488 spikes for381

unit 4, here called Z4, is an outlier (an anomaly) to the general shape of the other 9 graphs.382

This (easily seen) visual evidence suggests that Z4 may form an anomalous cluster in the383

input or projection spaces. But this observation does not justify removal of all 488 unit 4384

spikes from the input data. However, the iVAT image of Z4 will corroborate our suspicion385

that Z4 is an anomalous cluster in Z.386

Figure 6(c) is the iVAT image of Z̄10, and Figure 6(d) is the dendrogram of the clusters387

produced by extracting the single linkage hierarchy of clusters from the vectors in Z̄10. The388

integers along the borders of the iVAT image of Z̄10 show the identity of each pixel after389

iVAT reordering. The visualization in 6(c) is quite informative: it not only isolates z̄4 as an390

outlier (the single pixel at the lower right corner of the image), but it also depicts the other391

9 subsets as members of a second large cluster. Moreover, this image suggests a hierarchical392

substructure within the 9x9 block. The intensities of {5,7} and {6,10} suggest that these393

pairs of subsets are closely related. The {3,9} block is next in intensity, followed by the 5x5394

grouping of {8, 5, 7, 9, 3}, which are then coupled to {6,10}, and then this whole structure395

is embedded within the 9x9 block which includes {1,2}. We remark that the SL hierarchy396

is easily extracted by applying a back pass that cuts edges in the iVAT MST that reordered397

Z̄10 (cf. Kumar et al. [2016]). Figures 6(c) and 6(d) make the relationship between iVAT398

and single linkage quite transparent. And Figure 6(c) illustrates how an iVAT image can399

suggest multicluster substructure in a data set.400

Figures 6(e) and 6(f) are scatterplots of t-SNE projections of Z̄10 corresponding to perplexity401

settings of 2 and 3. Both views show the labels of the 10 mean profiles, and both views seem402

to indicate that z̄4 is an outlier in the set Z̄10. We show these two projections to emphasize403

that every run of t-SNE with different settings of its hyperparameters may produce different404

visualizations of its input data. On the other hand, the iVAT image is uniquely determined405

up to a choice of the distance measure used to construct D.406

Figure 7(a) is the iVAT image of the data set Z shown in Figure 6(a). Comparing Figures407

6(c) to 6(f) shows that iVAT very clearly suggests the same coarse cluster structure (c=2) in408

all of the upspace data that it sees in Z̄10, the set of mean profiles. Neither image suggests409

that c=10; instead, both suggest that the best interpretation of the input data or its means410

is to first isolate the unit 4 waveform(s), and then regard the remaining spikes as a new411

cluster, which becomes a candidate for multistage clustering (reclustering, or re-iteration412

per Niediek et al. [2016]). Note that iVAT makes this information available whether the413

data are labeled or not.414
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Finally, Figures 7(b) and 7(c) are labeled and unlabeled t-SNE scatter plots of Z. Both views415

suggest that Z contains 5 clusters. Subset Z4 is isolated in view 7(b), but not more isolated416

than subset Z2, so t-SNE is less assertive about the anomalous nature of Z4 than iVAT is.417

If the labels are available, reclustering might be applied to 9, 7, 5, 8 and/or 3,6,10 to make418

a finer distinction between spike subsets. If the labels are unavailable, it’s hard to see what419

can be inferred from the t-SNE projection about Z beyond the suggestion provided by view420

7(c) that we should seek 5 clusters in Z.421

We conclude this example with some general observations. First, the iVAT image is unique,422

while t-SNE plots are a function of three user-defined parameters. Second, single linkage423

clusters of the input data are available via clusiVAT [Kumar et al., 2016] once an iVAT image424

is built. Third, while Z has 10 labeled subsets of input spikes, neither iVAT nor t-SNE makes425

this prediction. This emphasizes the fact that labeled subsets may not necessarily be clusters426

with respect to any computational scheme designed to detect clusters.427
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(a) Z: n = 4665 mixed spikes
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(b) Z̄10:mean profiles of 10 subsets in Z
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(c) iVAT image of Z̄10
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(d) SL dendrogram of Z̄10

(e) t-SNE plot of Z̄10: perplexity = 2 (f) t-SNE plot of Z̄10 : perplexity = 3

Figure 6: iVAT and t-SNE visualizations of average waveforms of a mixture of 10 subsets
of labeled simulated spikes
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(a) iVAT image of Z

(b) Labeled t-SNE projection of Z (c) unlabeled t-SNE projection of Z

Figure 7: iVAT and t-SNE visualizations of a mixture of 10 subsets of labeled simulated
spikes
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Now we turn to dataset-2 to further investigate the limits of discernible spike subsets since as428

mentioned previously, sets drived from dataset-2 are combinations of real spikes originated429

from pyramidal cells in rat hippocampus (ref to [Henze et al., 2000]). We extracted the spike430

subsets of nine individual neurons obtained from the different experimental trials. From431

these nine subsets, we built 36 mixtures at c=2; 84 mixtures at c=3; 126 mixtures at c=4;432

126 mixtures at c=5; 84 mixtures at c=6; 36 mixtures at c=7; 9 mixtures at c=8; and one433

mixture of all nine subsets (c=9). This yields a total of 502 mixtures of labeled waveforms.434

For the sake of brevity, we showcase four representative units and the various mixtures that435

can be built from them at c=2, c=3, and c=4. Figure 8 shows the four representative subsets436

(all nine subsets of the waveforms are shown in Figure 14).437

Figure 8: The subsets of spikes generated by four representative units: X1, X2, X3, and
X4 containing 1173, 700, 779, and 382 spikes, respectively. Note that the waveforms in X4
are visually different than most of the waveforms in the other three subsets. This fuels an
expectation that mixtures with X4 as one component will be somewhat more separable than
mixtures without it.

Figure 9 shows all six views of pairs (Xi, Xj) made with 2D transformations of the 80D438

(upspace, p=80) datasets for the mixtures of two representative single units. We will name439

the mixtures (Xk, Xj)=Xkj and will follow this convention for all mixtures. For example,440

the mixture of X1 and X2 is X12, and the mixture of X1, X2, and X4 becomes X124. The441

waveforms comprising each mixture are also shown, with the average waveform for each442

single unit in thick black. The colors of points in the 2D scatterplots correspond to class443

labels of the mixed data. It is important to remember that in a real application, the data444

are not labeled, so the associated 2D scatterplots will be mono-color dots in the plane. The445

mixtures are ordered according to increasing values Dunn’s index. Observe that for each446

mixture, different 2D projections may offer different interpretations of the cluster structure447

in the upspace data. In 9(a), all five projections show one big cluster, far more evident if448

the color labeling is missing, which is the case for real experiments in which we do not know449

the membership of the waveforms. In cases like this, since the clusters are projected densely450

side by side, human operators or algorithms tend to select only the core of the clusters. This451

usually produces better values for cluster validity indices, but at the expense of unwarranted452

confidence in subsequent analyses.453
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PCA                PV-E              Wavelet              t-SNE            Sammon     Waveforms             iVAT

(a) X12, DI=0.090

(b) X23, DI=0.091

(c) X13, DI=0.097

(d) X24, DI=0.177

(e) X34, DI=0.185

(f) X14, DI=0.228

Figure 9: Mixture pairs of X1, X2, X3 and X4, ordered by increasing Dunn’s index

First, some general observations. Figures 9(a), 9(b), and 9(c) all have a DI value of around454

0.09. This is a relatively low value that indicates a lack of separation between the two455
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components of the mixture. The iVAT images for these three cases are basically uniform (no456

strongly visible dark blocks), which indicates that the upspace data are not well separated.457

Separation emerges in Figures 9(d), 9(e), and 9(f), the three cases that have X4 as one458

component. Dunn’s index is essentially doubled (0.18 up to 0.23), so upspace separation of459

the pair of clusters has increased. The most visible separation is seen in the t-SNE downspace460

scatterplot, which is mirrored in the upspace iVAT images: the strong dark block corresponds461

to subset X4. Now we will discuss the six cases in more detail.462

In 9(b), PCA, Wavelet, t-SNE, and Sammon show two clusters, while the PV-E plot shows463

just one. In 9(c), PV-E, wavelet, and Sammon projections show one cluster, it can be464

argued that PCA shows two while t-SNE shows two well-seperted clusters. In the other465

images, which include X4, a less distorted and noisy set of spikes, all the projections do a466

good job of mapping the clusters in a separable manner (for the wavelet projection in 9(e),467

it is hard to see two clusters when there are no color labels). The iVAT image also follows468

the same trend: the clarity of the two blocks generally becomes higher with a higher Dunn’s469

index.470

The Peak to Valley and Energy (PV-E), are the only real (physically meaningful) 2D features.471

All the other 2D projections are dimensionless, i.e., they do not have physical meaning. It is472

important to emphasize that neither the 2D projections nor iVAT produce clusters, all these473

visual methods just suggest how many to look for.474

The projections and the iVAT image of X23 with DI = 0.091 (Figure 9(b)) is a bit more475

separable and clear than the mixture of X13 with DI = 0.097 (Figure 9(c)). Both values are476

relatively small, and the difference between these two values (0.008) is negligible, indicat-477

ing that these two cases are somewhat indistinguishable. The iVAT image for X14 clearly478

suggests the c=2 at a Dunn Index of 0.228. This provides a much stronger indication of479

reliability than the smaller DI values. Indeed, Dunn characterized a partition as being com-480

pact and separated if and only if DI > 1. DI values less than about 0.5 usually characterize481

relatively poor cluster structure.482

All the cases of mixtures of three subsets are portrayed in Figure 10, again ordered by483

their Dunn’s index, which is quite low and nearly equal in all four views. The numerator484

of DI is the minimum distance between any pair of subsets, and the denominator is the485

largest distance between points in some clusters, so it is dominated by the smallest between-486

subset distance and largest in-subset distance. Consequently, DI fails to recognize competing487

clusters that cannot dominate either of the two factors in Dunn’s formulation. These non-488

dominant clusters can often be seen in iVAT imagery. For example, in Figure 10(b), the489

small yellow cluster seen in the t-SNE scatterplot of X124 appears as the small dark block in490

the lower right corner of the corresponding iVAT image. In Figure 10(a) all the projections491

except for t-SNE fail to point to c=3 and the iVAT image is not informative either. In Figure492

10(c) for X234, the PV-E and Wavelet projections suggest that c=2, while PCA, t-SNE and493

Sammon point to c=3. The t-SNE features provide the widest and most visible separation494

between the three clusters. The iVAT image of X234 is weakly suggestive of c=3. Figure495
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10(d) for X134 provides a striking contrast in the ability of the visualization methods to496

correctly portray the presumed structure in the data. PV-E and Wavelet suggest c=1, PCA497

and Sammon imply c=2, and t-SNE points clearly to c=3. The iVAT image is pointing to498

c=2, at a relatively low value of DI=0.097.499

PCA                PV-E              Wavelet              t-SNE            Sammon     Waveforms             iVAT

(a) X123, DI=0.074

(b) X124, DI=0.090

(c) X234, DI=0.091

(d) X134, DI=0.097

Figure 10: Three-subset mixtures of X1, X2, X3 and X4 at c=3 ordered by increasing
values of Dunn’s index

Finally, a similar trend continues in the c=4 subset mixture of X1, X2, X3, and X4. The500

PV-E and Wavelet features indicate only one big cluster, and PCA, Sammon, and the iVAT501

image single out X4 while packing the other three sets of waveforms into a single cluster,502

whereas, t-SNE maps the four subsets with arguably enough clarity to declare that X1234503

probably has four clusters. It can be argued that while the input has c=4 labelled subsets,504

the primary visual evidence does not support c=4, nor will there be a “best” set of clusters505

in the upspace at this value of c. In other words, just because the subsets have 4 labels506

does not guarantee that a cluster analysis of the data will agree. When you imagine the507

scatterplots in Figure 11 without colors there are not four distinguishable clusters present.508
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PCA                PV-E              Wavelet              t-SNE            Sammon     Waveforms             iVAT

(a) (b)

Figure 11: X1234 mixture at c=4

In summary, we note again that although the subsets of spikes were obtained from indepen-509

dent trials, they were all induced by intracellular current injections to hippocampal pyramidal510

cells and recorded from their close proximity in extracellular medium. This to some degree511

explains the similar average waveforms and high variability between spikes of one subset. We512

observed that, for example, from the thirty-six mixtures of two subsets that can be created513

from the nine spike sets, not all of them were mapped as two clusters with the same quality514

(i.e. the quality of visualization was not consistent). overall, visualizations of mixtures us-515

ing any of the other projection methods and iVAT did not suggest discernible clusters.This516

points out the challenge in identifying neurons of the same class (e.g., pyramidal) from their517

spike waveforms, at least when they are induced by current injections.518

3.2 Objective assessment of clustering quality using different pro-519

jections of the data520

So far, we have shown that the lower-dimensional representations in our study may give521

different interpretations of the upspace data. This problem is highly dependent on the522

definition of similarity between spike waveforms of different units. Overall, iVAT and t-523

SNE were most helpful in assessing the pre-cluster presumptive structure of the waveform524

mixtures. In order to provide a more quantitative assessment of the effectiveness of the525

different low-dimensional representations in processing spike waveforms, we ran the k-means526

clustering algorithm on each of the 95 mixtures from dataset-1 and the 502 mixtures from527

dataset-2.528

Dunn’s index and its generalizations provide measures of the intrinsic quality of the computed529

clusters (based on their distribution with respect to each other). Figure 12 shows the average530

Dunn’s index (DI) and generalized Dunn’s index (GDI33) of the mixtures for the two datasets.531
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(a) The average(±SD) DI and GDI33 for the 95 mixtures in dataset-1

(b) The average(±SD) DI and GDI33 for the 502 mixtures in dataset-2

Figure 12: The average(±SD) Dunn’s and generalized Dunn’s indices of ground truth
partitions for the mixtures in the two datasets

The two indices have the same trend: they decrease almost monotonically as the number of532

components (c) increases. However, the generalized version, GDI33, provides a much clearer533

idea of the trend than DI because it has higher values that reflect separation more clearly,534

and it avoids the bias of inliers and outliers that may affect Dunn’s index. On the other535

hand, Figure 12 also suggests that both indices tend to favor lower numbers of clusters. This536

is a different type of empirically observed bias that must be accounted for when relying on537

cluster validity indices. See Lei et al. [2017] for a discussion related to this point.538

The DI and GDI33, as internal measures, were used to give a sense of the structure inherent539

in ground truth partitions of the data in the upspace. Then, to evaluate candidate partitions540

produced by k-means in the upspace and downspace data sets, we used the adjusted rand541

index (ARI), which compares the cluster structure of each k-means partition to its ground542

truth partner at every value of c.543

The k-means clustering algorithm is executed on each pair of features obtained with the544
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five methods. The number of clusters to be generated (i.e., c) is set equal to the number of545

labeled subsets in the ground truth partition (i.e., 2, 3, 4,..to 9 for cases in dataset-2 and546

3, 4, 5, ....to 21 for cases in dataset-1). For each computed partition, we calculate the ARI547

measure of agreement between the computed waveform memberships and the memberships548

as given by the ground truth partition (recall that our data is labeled).549

Figures 13(a) and 13(b) report the average ARI for mixtures in dataset-2 and dataset-1,550

respectively. In each figure, the first column is the ARI of the clusters achieved by running551

k-means on the input dimension space (the 48D waveforms for Dataset-1 and the 80D spike552

waveforms for Dataset-2). The next columns show the average ARIs calculated for the553

clusters achieved by k-means clustering on the 2D datasets produced by the five techniques.554

The ARI maximizes at 1, so clustering in the 2D t-SNE downspace data provides k-means555

clusters that, on average, slightly better match the ground truth partitions than k-means556

clusters in the input space.557

In order to highlight the importance of dimensionality reduction and feature extraction tech-558

niques (the pre-clustering stage), this subsection presented a comparison between clustering559

in the different downspaces and also the input space, using the same clustering algorithm in560

all spaces. It is important, however, to recognize that the choice of clustering algorithm also561

contributes to the accuracy of membership assignments. Also, the techniques and parameter562

choices applied in pre-processing of the signals such as in filtering and spike detection phases563

alter the end results. Here, we used the classic k-means clustering algorithm as opposed564

to common spike sorting softwares used by neuroscience community to bypass the different565

pre-processing techniques that may have affected the down-space representation of spikes.566

In this way, we provided a controlled set of spikes to be visualized by the 6 methods in our567

study. Given the good estimate for c provided by visualization with t-SNE projections, a568

logical next step would be be to substitute this t-SNE features with the one used within one569

of the softwares and compare the results. We further note that the choice of 2D as opposed570

to 3D in our manuscript was for publication purposes. Using 3D scatterplots may provide571

more information that improves the visualization and clustering, but this does not address572

the “best features” or “best algorithm” issues that follow pre-clustering assessment. Those573

issues will be addressed in a followup paper.574
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(a) For dataset-1: The average ARIs of clusters obtained by k-means for the simulations of mixtures at each
c value in the 48D upspace and the 5 2D-spaces
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Figure 13: Average validity index (Adjusted Rand index) of the clusters obtained by k-
means on the two datasets
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4 Discussion and conclusions575

Spike sorting is an unsupervised learning problem since the number of neurons associated576

with the recorded spikes are unknown. Hence, what we consider to be the spike train of577

a single unit may, in fact, be the spike train of multiple units. This does not negate the578

usefulness of the previous findings which apply the results of these sorting algorithms to infer579

neural coding and brain function. Most of this research is based on the rate coding principle580

[Dayan and Abbott, 2001], which uses the spike rate of the sorted units to model the neuronal581

response. Rate coding models neglect sorting errors assuming that as long as the spike rate582

changes according to the stimulus, the model will capture the response, whether the spike583

train consists of spikes of one or multiple neurons. However, the real units’ tuning curves584

might be different and a contaminated tuning curve may give misleading results.585

This has been shown instudies concerned with issues arising from sorting quality on the586

results of rate coding models. For example, Todorova et al. [2014] evaluated the quality of587

the off-line reconstruction of arm trajectories from electrode array recordings and showed588

that discarding spikes substantially degrades the decoding of the movement to the extent589

that decoding the unsorted recordings reached higher performance results. They also showed590

that adding the tuning model (temporal features) of the spiking to the sorting process does591

not always improve the sorting based on waveform features. We can use the analogy of a592

verbal fight or discussion among a few people. An observer can tell if the discussion is going593

smoothly or if it is heated based on the overall volume of the voices of the group, even if the594

words uttered by individuals is not discernible. This is why rate coding models are popular595

and successful in certain respects, but they cannot elucidate how neurons interact to give596

rise to brain functions [Akam and Kullmann, 2014, Huxter et al., 2003, Mehta et al., 2002,597

Rullen and Thorpe, 2001, Zuo et al., 2015]. This emphasizes that reliable spike sorting is598

much more critical if any temporal or multiplex coding schemes are to be used to infer neural599

responses.600

Current spike sorting packages use variety of clustering techniques all of which can benefit601

from an insight to the cluster structure in the data: k-means, Gaussian mixture decom-602

position or similar algorithms need explicit specification of the number of neurons to seek;603

mean shift needs the threshold on the bandwidth parameter to be defined; [Comaniciu and604

Meer, 2002] and density based clustering relies on a threshold on density parameter γ for605

the number of density centers[Rodriguez and Laio, 2014]. In high-dimensional data, the role606

of visualization in gaining knowledge of the data structure is critical. There is no doubt, as607

in Plato’s allegory of the cave, that there is always a loss or distortion of structural infor-608

mation in any transformation from the upsace (aka: input space or input dimension) to any609

downspace. We investigated this issue using iVAT, a tool that enables direct visualization610

of cluster structure in the upspace as well as five dimensionality reduction methods, includ-611

ing t-SNE. We showed that better sorting can be achieved by securing a visual assessment612

prior to clustering which affords an estimate of the cluster structure of the data (i.e., the613

number of clusters, c), or at least a small interval of integers that presumably bracket the614
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true (meaning most distinguishable by some clustering algorithm) but unknown number of615

clusters.616

Our examples show that t-SNE is one of the best methods for projection of high dimensional617

data to the viewing plane. We note that t-SNE for the present analysis was parameterized618

with a perplexity of 30 and learning rate of 500. This was the empirically optimized setting619

for our data and we acknowledge that the need for parametrizing based on the data is a620

downside to using t-SNE to provide projected data for clustering. The Barnes-Hut variant621

of t-SNE (publicly available through GitHub) highly accelerates the computations[van der622

Maaten, 2014]. Since this study focused on investigating the fundamental relevance of pre-623

clustering methods using standard ground truth datasets the computation time was not624

substantial to report. Dimitriadis et al. [2016] have a preprint that reports computation625

speeds of hours for big datasets containing > 105 spikes.626

In this paper, we demonstrated that the visual assessment of c from the iVAT images is627

often possible, highlighting that if clustering in the upspace is preferred, a visualization tool628

such as iVAT can be integrated into the package to inform the manual curation process.629

However, there were cases, in particular when c was high (> 10), that the iVAT image did630

not clearly indicate the number of clusters. But the visual assessment of a user that makes631

the estimate of c subjective. We showed that extracellular neuronal waveforms generate632

noisy datasets that at times do not comprise well-separated clusters. So, iVAT does not633

provide the definitive answer to the problem of spike sorting. Nevertheless, it provides634

insight into the coarse structure of the dataset. Moreover, we mentioned the relationship635

between iVAT and the single linkage clustering algorithm that is illustrated in Figures 6(c)636

and 6(d) (See Havens et al. [2009] and Mahallati et al. [2018a] for further discussion). The637

majority of the edges in the MST that iVAT builds connect neighbor points and hence have638

very small values. The largest values in the MST usually correspond to edges that connect639

clusters (and the outlier points). The threshold between the small and large values reflects640

finer distinctions between clusters in the upspace, which can be used in assigning spikes to641

clusters. This feature was integrated into scalable and faster implementations of the iVAT642

algorithm which can be used for big datasets [Rathore et al., 2018].643

Our experiments on visualization of the two labeled datasets provided further insights into644

spike sorting. In the first dataset, simulations were generated using average waveforms ob-645

tained from extracellular recordings in behavioral experiments. For the mixtures of spike646

subsets extracted from this dataset it was possible to estimate the presumptive cluster num-647

ber in the data from the dark blocks in the iVAT images, even in some cases of mixtures648

of twelve subsets. Mixtures of higher subsets were sometimes displayed as compact and649

isolated clusters in the t-SNE projections. Our experiments confirm that when the data650

possess compact, well-separated clusters, visualization can be quite useful. Dataset-1 repre-651

sents mixtures of spike sets that are generated by different cell types, brain regions and brain652

states, and these can be distinguished based on their spike waveforms. In contrast, dataset-653

2 represents mixtures of spike sets that are induced from cells of the same class receiving654

intracellular current injections, hence providing spikes with similar waveforms. Therefore,655
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classifying based on extracellular waveforms alone may not be feasible in the latter case656

(cells of the same type receiving the same input). It should be noted that in sorting of spikes657

for each electrode, different distances of the units from the electrode improves sorting, since658

the amplitude (energy) of the waveforms is different. However, these results indicate that a659

further subtype classification beyond the two main classes of inhibitory and pyramidal cat-660

egories (i.e. subtypes of pyramidal cells) may not be feasible by considering only the spike661

waveforms.662

The extracellularly recorded potentials are already distorted signatures of intracellular ac-663

tion potentials, which makes the dimensionality reduction stage even more critical. The664

problem of crowding in lower dimensional maps such as PCA is well known. Analysis of665

the simultaneous extracellular and intracellular recordings have shown that the probability666

distributions of spikes from different neurons in the PCA feature space have some degree of667

overlap [Harris et al., 2000]. There is an inherent variability in the extracellular waveforms668

imposed by the background field potential [Buzsáki et al., 2012], variations in the intracellu-669

lar action potentials due to factors such as bursting [Henze et al., 2000], and slight electrode670

drift over the course of the experiment [Harris et al., 2016]. Activity of neighboring neurons671

is also a possible source of distortion in the waveform shape. Such activity may sometimes672

overlap in time and make multi-unit spike waveforms. The problem of overlapping spikes673

has been addressed by methods such as independant component analysis, ICA, (if number674

of electrodes is equal to or more than the number of neurons)[Takahashi et al., 2003] or675

template matching [Yger et al., 2018]. It is worth noting that in pre-clustering visualization676

of the data, overlapping spikes (multi-unit spikes) construct a cluster or block. Visuliza-677

tion is not to substitue post-clustering use of ICA or template matching. These methods678

can be used after clustering to extract individual sources of multi-unit spikes and reassign679

these spikes to the previously identified clusters. With regards to the inherent variability680

in the extracellular waveforms, our results show that the t-SNE projection is the most re-681

liable feature extraction scheme (for visualization) that we tested. We believe that t-SNE682

works well since it is a probabilistic-based approach that is appropriate for neuronal data.683

In a nutshell, the variability caused by the noisy spikes can often be circumvented by con-684

verting the deterministic dissimilarity measure between two waveforms into a probability of685

dissimilarities.686

Another reason why having a reliable dimensionality reduction stage is important is revealed687

by our results on Dunn’s index, which showed that, DI, in common with many other internal688

cluster validity indices, tends to be monotonic in c. This emphasizes the point that the689

common practice of running a clustering algorithm for several values of c and then choosing690

the best partition based on the optimal value of any cluster validity index may not be very691

effective. Moreover, by computing both DI and GDI33 for the same data, we demonstrated692

that there is no agreement about a generic CVI, a fact that has been shown before in previous693

experiments on internal CVIs [Vendramin et al., 2010]. Indeed, in the real (unlabeled data)694

case, it is wise to compute a number of different internal CVIs, with a view towards ensemble695

aggregation of the results. To appreciate the disparity that different CVIs can cause, see696
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[Arbelaitz et al., 2013] for an extensive survey of 30 internal CVIs tested on 20 real data697

sets. See [Vega-Pons and Ruiz-Shulcloper, 2011] for a survey of ensemble approaches to698

clustering. Fournier et al. [2016] have applied this method to aggregation of partitions699

obtained by different clustering methods used for sorting spike waveforms. Here we suggest700

using an ensemble approach on the votes cast by different internal cluster validity indices701

- DI and its 18 GDIs are just a few of the ones available in Arbelaitz et al. [2013] - for702

each partition in CP. We think this approach will greatly improve the final interpretation703

of structure in unlabeled data.This will be the objective of our next foray into spike sorting704

clustering algorithms.705

This study again confirms that there is no such thing as the best set of features for clustering706

or the best clustering algorithm for spike sorting, but that sorting is an iterative process that707

always comprises making a compromise between the best feature set and clustering algorithm.708

Armañanzas and Ascoli [2015] list the identification of the number of clusters as the most709

outstanding question in techniques for neuronal classfication. This challenge can be partially710

addressed by subjective visual assessment of cluster tendency. While visual evidence is never711

enough, it has great value, as noted by the eminent statistician Sir Ronald Fisher, who said,712

nearly 100 years ago: “The preliminary examination of most data is facilitated by the use of713

diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they714

are therefore no substitute for critical tests as may be applied to the data, but are valuable715

in suggesting such tests, and in explaining conclusions founded upon them”[Fisher, 1958].716
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Figure 14: The subsets of spikes of the 9 individual neurons used in the study. Each subplot
title displays the label of the experiment in [Henze et al., 2009] dataset and the number of
spikes in each subset: e.g., #745 means there are 745 waveforms in the sample.
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A.2 iVAT algorithm725

Algorithm: VAT

1 In D, n� n matrix of dissimilarities: D � DT; d ij � 0� i, j ; d ii � 0�i

2

3

4

5

Set K �{1, 2,�,n}: I � J �� : 

Select (i, j)� argmax{Dst : s�K, t�K}

P(1) � i : I �{i}: j �K�{i}
% Initialize MST at either end of edge with largest weight in D

6

7

8

For m = 2,…, n do: select (i, j)� argmin{Dst : s�I, t�J}

Select (i, j)�argmin{Dst : s�I, t�J}

P(m) � j : I � I	{j}: J � J �{i}: dm�1 � d ij

9

10
For 1 
 i, j 
 n do: 

[D*]ij � [D]P(i)P( j)

11

12

Out VAT reordered dissimilarities D*: arrays P, d

% Create VAT RDI I(D*) using D*

Algorithm: iVAT

13 In D* =VAT reordered dissimilarity matrix: D'* = [0]

14

15

16

17

18

For k = 2 to n do: 

j� argmin
r�1,�k�1

{Dkr
*

}

jc;DD *

kc

’*

kc ��

jc1;-k1,....,c};D,max{DD ’*

jc

*

kj

’*

kc ���

19

20
:jin;2,....,=j �For 

D ji
'*
� Dij

'*

Out iVAT Reordered dissimilarities D'*

% Create iVAT RDI I(D'*) using D'*
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