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1 Abstract

2 Sorting spikes from extracellular recording into clusters associated with distinct
3 single units (putative neurons) is a fundamental step in analyzing neuronal popula-
4 tions. Such spike sorting is intrinsically unsupervised, as the number of neurons are
5 not known a priori. Therefor, any spike sorting is an unsupervised learning problem
6 that requires either of the two approaches: specification of a fixed value ¢ for the
7 number of clusters to seek, or generation of candidate partitions for several possible
8 values of c, followed by selection of a best candidate based on various post-clustering
9 validation criteria. In this paper, we investigate the first approach and evaluate the
10 utility of several methods for providing lower dimensional visualization of the clus-
11 ter structure and on subsequent spike clustering. We also introduce a visualization
12 technique called improved visual assessment of cluster tendency (iVAT) to estimate
13 possible cluster structures in data without the need for dimensionality reduction. Ex-
14 perimental results are conducted on two datasets with ground truth labels. In data
15 with a relatively small number of clusters, iVAT is beneficial in estimating the number
16 of clusters to inform the initialization of clustering algorithms. With larger numbers
17 of clusters, iVAT gives a useful estimate of the coarse cluster structure but sometimes
18 fails to indicate the presumptive number of clusters. We show that noise associated
19 with recording extracellular neuronal potentials can disrupt computational clustering
20 schemes, highlighting the benefit of probabilistic clustering models. Our results show
21 that t-Distributed Stochastic Neighbor Embedding (t-SNE) provides representations
2 of the data that yield more accurate visualization of potential cluster structure to in-
23 form the clustering stage. Moreover, The clusters obtained using t-SNE features were
2% more reliable than the clusters obtained using the other methods, which indicates that
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25 t-SNE can potentially be used for both visualization and to extract features to be used
2 by any clustering algorithm.

27 Keywords— spike sorting, single units, cluster assessment, unsupervised learning,
28 dimensionality reduction, t-SNE, iVAT, Dunn’s Index word count: 11288

» 1 Introduction

s Recording of extracellular signatures of action potentials, referred to as spikes, is a standard
a tool for revealing the activity of populations of individual neurons (single units). Single
3 unit activity contains fundamental information for understanding brain microcircuit function
1 in vivo and in vitro [Buzsdki, 2004]. Inferences about network activity can be made by
s identifying coincident activity and other temporal relationships among spiking patterns of
s different neurons [Brown et al., 2004]. However, the reliability of these inferences is strongly
s influenced by the quality of spike sorting, i.e., the detection and classification of spike events
sz from the raw extracellular traces with the goal of identifying single-unit spike trains. Poor
;s sorting quality results in biased cross-correlation estimates of the spiking activity of the
» different identified units [Ventura and Gerkin, 2012].

s The typical workflow for spike sorting includes spike detection, feature extraction, and clus-
s tering. While detection is pretty straightforward and can be efficiently done with simple
22 thresholding, the feature extraction and clustering procedures are far from being satisfacto-
s rily settled [Rossant et al., 2016]. It has been estimated that single or tetrode type electrodes
1 (i.e. impedance< 100K €2) can record neuronal activity within a spherical volume of 50 pm
s radius with amplitudes large enough to be detected (> 60uV). This volume of brain tissue
s constitutes about 100 neurons. While noting that many neurons are expected to be silent
w [Buzsdki, 2004, Shoham et al., 2006], commonly, not more than a handful identified neurons
s are reported per electrode. Studies on current sorting algorithms used for individual elec-
s trode recordings have shown that they are limited in distinguishing 8 to 10 out of 20 units
so with less than 50% false positive and false negative rates [Niediek et al., 2016, Pedreira et al.,
st 2012]. Other methods using high density electrode arrays reported simulations with no more
2 than 10 units [Pachitariu et al., 2016, Yger et al., 2016].

53 Since we can’t physiologically verify how many neurons have been recorded, assigning the
s« spikes within a recording to individual neurons remains a fundamental technical issue. The
55 sorting is in essence an unsupervised learning challenge. Therefore, methods require one
ss  of two approaches: specification of a fixed value of the number of clusters to seek (¢); or
s generation of candidate partitions for several possible values of ¢, followed by selection of
ss a best candidate based on various post-clustering validation criteria. Moreover, improving
so spike classification to correctly identify cell types is a topic of interest highlighted by ini-
o tiatives that aim to characterize and reconstruct different cell types in the brain and their
s role in health and disease [Jorgenson et al., 2015, Markram et al., 2015]. For that goal,
2 Armananzas and Ascoli [2015] list the identification of the number of clusters as the first
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&3 outstanding question in techniques for neuronal classification.

e« In summary, identifying the spike trains of individual units within a recording is a three-
s faceted problem: (i) assessing the cluster tendency in the pre-clustering phase (before initial-
e izing any clustering algorithm); (ii) clustering (i.e. finding partitions of the data); and (iii)
v evaluation of the validity of the clusters that have been isolated, post-clustering [Bezdek,
¢ 2017]. Spike sorting algorithms usually start by projecting the data to a lower dimensional
s space. There are several reasons to do this. For example, lower dimensional data usually
70 reduces such as reduction of computation time. In this paper, the fundamental reason for
7 dimensionality reduction (essentially to two or three dimensions) is that 2D and 3D projec-
72 tions allow visualization of high dimensional input data. In turn, this facilitates the choice of
7z a few selected values of the integer c¢. Pre-specification of ¢ is needed by almost all clustering
7+ algorithms as an input parameter (hyper parameter). In algorithms such as density based
7 clustering or mean shift, the choice of ¢ is implicit in the choice of parameters such as ~
76 (cluster density times cluster distance) or h (the bandwidth parameter), respectively. In
77 practice, since reduced dimensionality embedding of the data often does not provide visu-
7 ally well separated clusters, it is common to exclude large number of spikes and only take
7 into account a small core portion of the subsets that seems to have well-isolated clusters
so [Dehghani et al., 2016]. Omitting spikes to obtain well-separated clusters may lead to single
&1 units with recognizable spike waveforms, but it discards spikes that, as mentioned before, are
22 fundamental for analyses of temporal structure of spiking activity [Cohen and Kohn, 2011,
s Pazienti and Griin, 2006]. Therefore, the bottleneck in spike sorting is at the pre-clustering
s stage: viz., inaccuracy of the assumed data structure that is inferred by visualization of it in
&s the lower dimensional space. If clustering is to be done in a lower dimensional data space,
s errors here will affect both the initial estimate of the cluster number and the performance
g7 of the clustering algorithm. Thus, this study concerns itself with visual assessment in the
ss pre-clustering stage.

ss  We compare the visualization of neuronal spike data created using six methods (i) three well-
o known dimensionality reduction techniques: principle component analysis (PCA), t-student
o stochastic neighborhood embedding (t-SNE) and Sammon’s algorithm, (ii) two methods that
e extract features from the waveforms: wavelet decomposition and features such as peak to
o3 valley amplitude and Energy (PV-E), and (iii) a method that operates directly on waveforms
o« in the input space: improved visual assessment of tendency (iVAT). The analysis is performed
s on two different types of ground truth data (labeled data): simulated spike sets and real
o recorded spike sets, called dataset-1 and dataset-2, respectively. Our results indicate that
ov 1VAT often suggests a most reasonable estimate for the primary (or coarse) cluster structure,
¢ while t-SNE is often capable of displaying finer cluster structure. While iVAT is only a
o visualization tool, t-SNE can be used for both visualization and to extract features. We
wo provide an objective measure of comparison between t-SNE and the other methods, we
101 evaluate the quality of partitions obtained by clustering in the upspace (input dimensional
102 space; i.e., the waveforms) and also in the five two-dimensional representations. This test
w3 is performed by running k-means and generating a number of clusters equal to the actual


https://doi.org/10.1101/285064
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/285064; this version posted January 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

e (i.e. known) number of units. The quality of the partitions generated by each method
s is evaluated with Dunn’s index (DI) (an internal index describing the intrinsic quality of
s the generated clusters); the generalized Dunn’s index GDI33; and the Adjusted Rand’s index
w7 (ARI) (an external measure of agreement between computed partitions and the ground truth
108 partition) .

1o The outline of the paper follows: Section 2 describes the datasets that we used (2.1), de-
1o fines the problem (2.2), explains the methods used for data visualization (2.3 and 2.4), and
w lastly describes the measures used for evaluating clustering structure of the data (2.5). The
2 results of the experiments on the datasets are given in section 3. Insights gained from the
u3  experiments are summarized in section 4.

w 2 Materials and methods

s 2.1 Datasets

ue The importance of model data or ground truth data, where the label or membership of
7 each spike to an individual neuron is known, for spike sorting validation is emphasized by
us  Einevoll et al. [2012]. We use two labeled datasets: our first experiment uses simulations of
o extracellular traces as model data or surrogate ground truth data (hereafter called dataset-
10 1), and the second experiment uses data obtained from in-vivo experiments as real ground
1 truth data (hereafter called dataset-2).

122 Dataset-1 Pedreira et al. [2012] simulated exracellular traces that contain the activity of
123 2 to 20 neurons with additive background noise. The single unit spike activity is generated
12« by using average spike waveforms (templates) compiled from Basal Ganglia and Neocortical
15 recordings. The background noise (i.e., LFP noise) is simulated by superimposition of thou-
126 sands of spikes at random times which were then scaled down to a standard deviation of
2z 0.1. Each simulated trace also contains multi-unit activity, which was generated by super-
s imposing 20 waveforms with normalized amplitudes limited to 0.5. Dataset-1 thus provides
120 us with simulated extracellular traces each containing 3 to 21 subsets of spikes. For each
130 cluster number ¢, five simulations using different sets of templates were generated (for a total
1 of 95 datasets). The spikes were detected by voltage thresholding. The length of each spike
12 waveform is 2 ms, with a sampling rate of 24 kHz, comprising 48 sample points. Thus, the
133 upspace dimension for subsets in Dataset-1 is 48.

1« Dataset-2: We used the in vivo simultaneous intracellular and extracellular hippocampal
155 recording datasets that are publicly available from the CRCNS website [Henze et al., 2009].
s These are raw data of simultaneous intracellular and extracellular recordings from neurons in
137 the CA1 region of the hippocampus of anesthetized rats. The experimental procedure con-
133 sisted of inserting extracellular electrodes (either tetrodes, 13-pum polyimide-coated nichrome
130 wires, or a single 60-um wire) into the cell body layer of CA1, confirming the presence of
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1o unit activity in the recordings, and then inserting intracellular sharp-electrodes into the same
w1 region in close proximity to the extracellular electrode to impale a single neuron and record
12 stable action potentials induced by current injections. With this method, it was possible to
w3 capture simultaneous spikes in the intracellular and extracellular recordings. We detected
s the intracellular spikes, and used those spike times to extract the extracellular spike train of
115 that neuron (i.e. a labeled subset of spikes). Each spike waveform is 2 ms long which, with a
us sampling rate of 40 kHz, results in 80 sample points, so the upspace dimension of each spike
1wz and subsequent sets in dataset-2 is 80. Dataset-2 is valuable because each spike waveform in
us  the subset is a recorded signal from a physiological setting; hence, the variability in the prob-
1o ability distribution of each subset comes from either natural (e.g. the effect of other current
150 sources in the extracellular medium) or experimental conditions (e.g. electrode drift). Each
151 recorded trace has one labeled subset of spikes. Hence, to generate each mixture, we used
12 the extracted spike subsets from different traces. In total, we obtained 9 subsets of spikes
153 from the database and then used combinations of 2,3.4,... to 9 of these subsets to create
15a datasets containing spikes of 2 or more neurons (for a total of 502 datasets).

155 In summary, the data for our experiments were mixtures of subets of spikes each with different
155 population size in either 48 or 80 dimensional input space.

s 2.2 Problem definition

Let X = {x1,.....x,} C R denote a set of vector data representing n spikes generated by one
or multiple neurons. The coordinates of x; are voltage samples that describe a spike event
(they are always voltage samples in this article). The non-degenerate crisp c-partitions of
the n objects in a set X can be represented by a ¢ X n matrix U in M},,, written in terms
of the ¢ crisp subsets of it (the clusters X;) as

Mper, ={U € R s uy, € {0,1}V1 <i <, 1 <k <m Zu“’“ = 1Vk; Zulk > (0Vi} (1a)
i=1 i=1

i=1

158 Finding clusters in X comprises three steps: deciding how many clusters (¢) to look for;
150 constructing a set of candidate partitions {U € My, } of X; and selecting a "best” partition
o from CP (cf. equation (2) below) using a cluster validity index (CVI).

w 2.3 Dimensionality reduction and feature extraction

12 Data vectors in R? usually have high dimensionality (p > 3) (e.g., images, videos, and multi-
163 variate data streams). Feature selection and dimensionality reduction algorithms are used
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e to (i) make pre-clustering visual assessment of the structure of the data and (ii) to improve
s the performance of data-driven procedures, such as those for classification and clustering.
166 Typical approaches for these procedures include those discussed in Zhao et al. [2013] and van
167 der Maaten et al. [2009]. Methods for obtaining an “optimal” set of features (the intrinsic
16s  dimension of the input data) for clustering abound. Campadelli et al. [2015] have a good
1o survey of such methods. We point out finding the intrinsic dimension of a data set is not
o directed towards visual assessment, since the intrinsic dimension (there are many competing
i algorithms that find different features) is usually greater than 2 or 3.

12 Here we focus on visualization based on several well-known dimensionality reduction algo-
173 rithms that have been used in a multitude of domains including neurosciences; we refer the
s interested reader to van der Maaten et al. [2009] and references therein for technical details.

s Principal component analysis (PCA) is one of the most important and widely utilized linear
176 dimensionality reduction techniques [Theodoridis, 2009]. In order to find a low-dimensional
177 subspace that accounts for the maximum amount of projected variance, PCA projects the
s data along the directions given by the leading eigenvectors of the data covariance matrix,
9 i.e., the directions associated with the largest eigenvalues of the sample covariance matrix.

180 In neuroscience research, another common approach is to extract features of the waveforms
11 that have a physical meaning such as waveform’s negative or positive amplitudes, known as
12 valley and peak, their ratio or width, or waveform’s energy, among others [Hattori et al.,
183 2015, Truccolo et al., 2011]. For our experiments we selected peak to valley (PV), and en-
e ergy (E), hereby called PV-E. We remark that the PV-E features contain essentially the
155 same information as the min peak-max peak features used by [Takahashi et al., 2003]. An-
185 other method based on wavelet transforms that enables visualizing the data in the wavelet
187 coefficient subspace has also been successfully implemented in clustering packages such as
s Waveclus and Combinato [Niediek et al., 2016, Quiroga et al., 2004].

189 We also consider two nonlinear dimensionality reduction techniques. The first of these is t-
1w SNE (t-student Stochastic Neighbor Embedding), developed by van der Maaten and Hinton
101 [2008]. It works by converting Euclidean distances between high-dimensional input data into
192 conditional probabilities. In doing so, t-SNE converts the geometric notion of similarity into
103 a statistical concept: if x; is a neighbor of x;, then the conditional probability p;; is high.
192 Then, t-SNE finds low-dimensional representations y; and y; of x; and z; by minimizing the
105 discrepancy between the upspace p;; and downspace conditional probabilities g;j;, technically
106 achieved by minimizing the Kullback-Leibler divergence between them. The objective of t-
17 SNE is to minimize the sum of the divergences over all the data points. The downspace
108 dimension is a choice made by the user.

10 T'wo features of t-SNE should be noted. First, it is not a linear projection like PCA but rather
20 has a non-convex cost function, so its output may be different for different initializations.
20 Second, it is a parametric technique. Different settings of hyperparameters such as the
22 learning rate, the perplexity, and the iteration rate in the t-SNE algorithm generate different
203 maps in the scatterplots, and may cause misinterpretation of the data structure [van der
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20 Maaten and Hinton, 2008].

25 The main parameter that affects the results of t-SNE is the perplexity, which is the limiting
26 condition for the entropy of the probability distribution of the similarities of datapoints
207 in the upspace. This means that the variance of the Gaussian that is centered over each
28 datapoint, i.e., the extent of the neighborhood around that point, is limited by the choice of
200 perplexity.

210 This limitation affects each datapoint separately based on the local density of the data. This
o is the feature that enables t-SNE to avoid crowding points in the center of the map so that
212 cluster structure of the data in the upspace data is often seen in the t-SNE downspace pro-
a3 jection. This feature, however, comes at the cost of sacrificing the shape of the distribution
2 8o that the distances between the clusters may not be meaningful. In other words, it is not
215 possible to infer reliable spatial information from the topology of the low-dimensional maps.

26 Fortunately, the topology is not relevant for our application: viz. suggesting clusters in
217 the neuronal waveform data. The optimal choice of perplexity is dependent on the number
28 of points (spikes) in the dataset. We found that for neuronal datasets with thousands of
20 spikes (data points), as long as the extreme values in the parameter ranges are not selected,
20 the t-SNE algorithm is not very sensitive to changes in perplexity. On the other hand, the
21 reliability of t-SNE visualizations seems to decrease as the number of samples decreases. See
22 [Mabhallati et al., 2018a] for an example.

223 We also consider another traditional nonlinear dimensionality reduction technique called the
2¢  Sammon mapping [Sammon, 1969], which is one form of multidimensional scaling. Mul-
»s tidimensional scaling (MDS) seeks a low dimensional embedding of the input data while
26 preserving all pairwise Euclidean distances (In a more general setting, t-SNE can be inter-
27 preted as a form of probabilistic MDS). However, high-dimensional data usually lies on a
»s low-dimensional curved manifold, such as in the case of the Swiss roll [Tenenbaum et al.,
29 2000]. In such cases, preserving pairwise Euclidean distances will not capture the actual
230 neighboring relationships: the actual distance between two points over the manifold might
2 be much larger than the distance measured by the length of a straight line connecting them,
2 1i.e., their Euclidean distance). Sammon mapping improves upon classic multidimensional
213 scaling by directly modifying its original cost function, i.e., the distortion measure to be
2 minimized. In particular, the Sammon mapping cost function weights the contribution of
235 each pair of data points relative to the overall cost by taking into account the inverse of their
236 pairwise distance in the original high-dimensional input space. In this way, Sammon map-
237 ping often preserves the local structure of the data better than classical multidimensional
238 scaling.

230 While these five methods do not all produce lower dimensional data with an analytic pro-
20 jection function, we will call all downspace data sets projections.
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241 2 . 4 iVAT

a2 There are a number of imaging techniques that can be applied directly to the upspace
23 data before clustering it. Here we describe the iVAT method described in [Havens and
2 Bezdek, 2012], which is a generalization of the original VAT algorithm given by [Bezdek and
25 Hathaway, 2002]. Improved Visual Assessment of Tendency (iVAT) is a visualization tool
us  that uses any dissimilarity matrix, D, of the data to display potential cluster structure. The
a7 steps of the iVAT method are the following. The vectors in the dataset are represented as
ug  vertices in a complete graph, with the distances between them the weights of the graph.
a9 The algorithm first finds the longest edge in the graph. Then, starting at either end, it
250 finds the minimal spanning tree (MST) of D based on Prim’s algorithm. Then, it reorders
51 the rows (and columns) of D based on the order of edge insertion in the MST, creating D*
22 (up to this point this is the original VAT algorithm). Then, iVAT transforms D* to D’*
253 by replacing each distance d;; in D* with the maximum edge length in the set of paths in
¢ the MST between vertices i and j. When displayed as a gray-scale image, I[(D’*), possible
5 clusters are seen as dark blocks along the diagonal of the image. Images of this type are
6 often called cluster heat maps in the neuroscience literature.

7 1VAT is not a clustering method or measure of performance for clustering algorithms, but a
s method to visually extract some information about the cluster structure from the input space
250 before application of any clustering algorithm. iVAT does not alter the physical meaning of
20 the input data (even after the shortest path transformation), it just rearranges the objects in
261 a way that emphasizes possible cluster substructure. The recursive computation of D'* given
2 in Havens and Bezdek [2012] is O(n?). Appendix A.2 contains the pseudocode for iVAT. The
263 1VAT algorithm requires no parameters to pick other than the dissimilarity function (d) used
ss  to convert X to D. This input matrix can actually be a bit more general than a true distance
x5 because its only requirements are that D = DT;d;; > 0Vi, j; d;; = 0Vi. The most important
26 points about this display technique are that it is applied directly to (a distance matrix of)
7 the upspace data, so there is no distortion of the structural information introduced by a
xs feature extraction function from the upspace to a chosen downspace, and iVAT preserves the
%0 physical meaning of the measured features. While any vector norm can be used to build an
20 input matrix D(X) from a set X of feature vectors, the only distance used in this article is
on Euclidean distance. It is very important to understand that an iVAT image merely suggests
o2 that the input data has a certain number of clusters. Since iVAT can produce images from
23 data of arbitrary dimensions, we can use it (or its scalable relative siVAT, Kumar et al.
o [2017]) to make a visual estimate of possible cluster structure in any upspace. While the
25 1VAT algorithm is occasionally “wrong” (misleading), iVAT images usually provide some
zs idea about the cluster structure of the input data [Bezdek, 2017].

o7 Thus, iVAT provides clues about potential starting points for finding a useful partition of the
zs input data. Mahallati et al. [2018a] have shown the connection of VAT and iVAT to Dunn’s
20 index and single linkage (SL) clustering. The intensity of the blocks in iVAT images are a
20 (more or less) visual representation of the structure identified by single linkage clustering for
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21 labeled or unlabeled data. This suggests that iVAT might be regarded as a tool for “taking
22 a peek” at a specific type of data structure in the input space.

xs 2.5 Evaluating cluster quality

s Cluster validity comprises computational models and algorithms that identify a “best” mem-
25 ber amongst a set of candidate partitions (CP)

CP={U € Mpen, : e < c <y} (2)

26 where ¢, and ¢); are the minimum and maximum specified values of the numbers of clusters
287 sought.

28 The approach to identify a “best” partition U (and concomitant value of ¢) in C'P can be
280 internal: using only information from the output results of the clustering algorithm, or ex-
200 ternal: using the internal information together with an outside reference matrix, usually the
21 ground truth labels. Here, we use a classic internal scalar measure called Dunn’s index(DI)
2 [Dunn, 1973], and one generalization of it given by Bezdek and Pal [1998] called the gener-
203 alized Dunn’s index (GDI33). Dunn defined the diameter of a subset X} as the maximum
204 distance between any two points in that subset (A(Xy)), and the distance between subsets
25 X; and X; as the minimum distance between any two points of the two subsets (0(X;;)).
26 This index is based on the geometrical premise that “good” sets of clusters are compact
27 (dense about their means) and well separated from each other. Larger values of DI imply
208 better clusters, so we call DI a max-optimal cluster validity index (CVI).

Let X; and X, be non empty subsets of R, and let d : #” x R — RT be any metric on
P x RP. Define the diameter A of X and the set distance ¢ between X; and X; as:

A(Xyld) = maz {d(x.y)}, (3)

win, {d(x,y)} = ds0(Xi, Xjd). (4)

X € X;
yer

0(Xi, Xj|d) =

20 Then for any partition U <+ X = X; U....X; U...X,., Dunn’s separation index of U is:

win { qin, {3(X..X,(0)}}

1<i<c 1<j#i<c

maz {A(Xg|d)}

1<k<c

DI(U|d) = (5)

s0 Since we have labeled mixtures, we can calculate Dunn’s index on ground truth partitions
;1 in the upspace (input dimensional space) to give a measure of the compactness and isolation

9
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sz quality of the subsets in the original space. We have previously shown that this measure
33 usually correlates with the quality of the visual assessment of potential cluster structure
;¢ given by iVAT [Mahallati et al., 2018a]. In the present work, we will also use a generalized
s version of Dunn’s index developed by Bezdek and Pal [1998] that alters the average distance
36 from the mean as A and the average linkage clustering distance as §. The Generalized
w7 Dunn’s index (GDI33) is:

Y oex, d(x, V)
Ag(X,]d) = 2( L ) (6)
1
i J XZ
y €X;
w{ w {53(Xi>X]|d)}}
1<i<ce  1<j#i<c
DI =
1<k<c

0 where Vi, = > ;] is the mean or centroid of the cluster. The notation |d in equations
50 3 to 8 for A and ¢ indicate that these formulas are valid for any metric d on the input space.

s It has been shown that G'DI33 is more robust with regards to sensitivity to outliers and
sn hence produces more meaningful values for real life datasets with abundant aberrant points
a2 [Arbelaitz et al., 2013].

sz 'To evaluate the quality of the different clustering approaches we used the external adjusted
a2 Rand index (ARI) developed by Hubert and Arabie [1985], which is a well-known and
a5 fairly reliable criterion for performance assessment of the clustering results. Let V € My,
a5 be the crisp partition of the n objects possessing r clusters, according to ground truth labels.
sz Let U € My, be any crisp partition of n objects with the c clusters generated by any
s1s  clustering algorithm. Note that r does not necessarily equal c. The ARI is a measure of
s10 similarity between U and V, computed as:

2(ae — be
ARIUIV) = (a+b)(e+(b) T (ai—c)(e+c) ©)
320 Wwhere,
31 e a = Number of pairs of data objects belonging to the same subset in U and V.
32 e b = Number of pairs belonging to the same subset in V but to different subsets in U
323 e ¢ = Number of pairs belonging to the same subset in U but to different subsets in V.
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304 e ¢ = Number of pairs not in the same subset in V nor the same subset in U.

»s Hubert and Arabie [1985] developed this correction to eliminate bias due to chance from
s Rand’s index.The ARI is also a max-optimal index in the sense that larger values imply a
37 better match between the ground truth and the results of the clustering. As evident from
w8 the equation, this formula incorporates simpler measures such as percentage of spikes in the
19 real set present in the sorted set or percentage of spikes in the sorted set that come from the
;0 real set.

= 3 Results and discussion

= 3.1 Visual assessment of cluster tendency

s3It is impossible to make a direct visual assessment of a set of recorded spike waveforms
e X = {x1,....x,} C RP, since each waveform has more than three voltage samples (i.e.,
135 dimensions), p > 3. The upspace dataset X can be mapped to a downspace dataset Y C R? by
16 a feature extraction function ¢ : R? — R? in many different ways. Dimensionality reduction
;37 methods are commonly employed for visualization purposes to gain insights into the data
;8 structure; and to provide clustering algorithms with lower-dimensional data to increase the
130 computational efficiency. Next, we will demonstrate that different dimensionality reduction
s methods provide different scatterplots of the data, and hence, visually suggest different
s numbers of clusters. Towards this end, we used spike subsets of the simulated dataset that
sz includes 5 simulations for each combination of different number of spike subsets for ¢ from
13 3 to 21. Below we show some representative results: two cases of ¢=3 (one with low Dunn’s
s index, DI, and one with higher DI) and then one case each for ¢=>5, ¢c=10, c=15 and ¢=20.

us  Figure 1 shows two cases from the dataset with c=3. The colors in Figure 1 correspond to
us the three data labels. Bear in mind, as you view this and subsequent figures, that in the
a7 real case, the data are always unlabeled, so the projected data will be just one color, and
us  the apparent structure will be much less evident than it seems to be in these figures. Figure
10 1(a) is a 'good’ case in which all the algorithms map the spikes to projections with visually
10 well-separated clusters and iVAT agrees with them (the larger diagonal block contains two
351 less apparent,sub-blocks). In 1(b) however, all 2D projections except t-SNE produce a single
32 cluster (when plotted without colors), while t-SNE seems most successful in separating the
353 three subsets (arguably, t-SNE shows c¢=2 clusters when colors are omitted). The iVAT
3 image suggests c=2, conforming to the apparent (uncolored) pair of t-SNE clusters. The low
35 value of DI is a warning that there is not much separation between these three subsets of
36 waveforms.

7 Figures 2 to 5 show representative mixtures of ¢=5, 10, 15 and 20 component mixtures.
s These examples, and many others not reported here, show that iVAT and t-SNE usually
50 provide useful visual estimates of the number of clusters up to around ¢=15, but the other
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PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT

(b) DI=0.068

Figure 1: Two different simulations at ¢=3

0 methods almost always fail with ¢ = 4 or more subsets. We had 5 cases for each number of
;1 subsets (e.g. b different cases of mixture at ¢=10, etc.) and overall t-SNE provided the most
2 consistent estimate of the presumptive numbers of mixture components. There were some
363 cases for which iVAT failed to display the expected number of dark blocks in mixtures having
sa  fewer than 10 components. The block structure in some of the reproduced iVAT images is
s more apparent at higher resolutions than shown here. Our experiments suggest that iVAT
w6 1S somewhat sensitive to noise in the waveforms, which often manifests itself as a falloff in
7 intensity towards one end of the diagonal. See Figure 2 for an example.

s Overall, from the t-SNE visualizations of the data, we infer that there is a common waveform
w0 shape among many cells suggested by the existence of a large central region populated by
s most of the clusters. However, there are cells that have clearly distinct signatures. The
sn individual clusters exhibit variability: for some neurons the spike waveforms define homoge-
sz neous and compact clusters, while others are elongated clusters in the nonlinear space. This
ws suggests that the relation between waveform samples for different neurons is different (or the
s way the waveform samples interrelate is different in different neurons’ spikes).
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PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT
‘ / /"" ¢ o = e .
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(a) DI=0.158

Figure 2: Simulation at ¢c=5. The iVAT image displays 4 clear blocks and some disconnected
data due to noise in the lower right: the only projection that clearly shows ¢=5 is t-SNE

PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT

=

Figure 3: Simulation at ¢c=10. The iVAT image displays 10 blocks; the projection that
clearly shows ¢=10 is t-SNE

(a) DI=0.121
PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT
. .

W

‘e

Figure 4: Simulation at ¢=15. The iVAT image displays 9 blocks and t-SNE shows 13
(colored), and 9 or 10 in black.

(a) DI=0.084

PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT

(a) DI=0.057

Figure 5: Simulation at ¢=20. The iVAT image displays 13 blocks and t-SNE shows 12
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ws  The next example in this section highlights the ability of iVAT to address two additional
srs - problems encountered in spike sorting, namely, anomaly detection and the need for multistage
w7 clustering (aka "re-iteration” amongst subclusters). Figure 6(a) is a set called Z of n=4665
ss  waveform vectors comprising a mixture of ¢c=10 labeled subsets from simulated dataset-1.
s The 10 waveforms shown in Figure 6(b) are the average waveforms, Zo = {z; : 1 < i < 10},
0 of the ten labeled subsets.

s Visual inspection of Figure 6(b) suggests that z4, the average waveform of the 488 spikes for
32 unit 4, here called Zg4, is an outlier (an anomaly) to the general shape of the other 9 graphs.
33 This (easily seen) visual evidence suggests that Z, may form an anomalous cluster in the
s« input or projection spaces. But this observation does not justify removal of all 488 unit 4
;s spikes from the input data. However, the iVAT image of Z, will corroborate our suspicion
s that Z4 is an anomalous cluster in Z.

% Figure 6(c) is the iVAT image of Zyo, and Figure 6(d) is the dendrogram of the clusters
s produced by extracting the single linkage hierarchy of clusters from the vectors in Z;5. The
% integers along the borders of the iVAT image of Z;o show the identity of each pixel after
30 1VAT reordering. The visualization in 6(c) is quite informative: it not only isolates z; as an
;1 outlier (the single pixel at the lower right corner of the image), but it also depicts the other
32 9 subsets as members of a second large cluster. Moreover, this image suggests a hierarchical
03 substructure within the 9x9 block. The intensities of {5,7} and {6,10} suggest that these
04 pairs of subsets are closely related. The {3,9} block is next in intensity, followed by the 5x5
5 grouping of {8, 5, 7, 9, 3}, which are then coupled to {6,10}, and then this whole structure
w5 1S embedded within the 9x9 block which includes {1,2}. We remark that the SL hierarchy
s07 18 easily extracted by applying a back pass that cuts edges in the iVAT MST that reordered
we  Z1g (cf. Kumar et al. [2016]). Figures 6(c) and 6(d) make the relationship between iVAT
10 and single linkage quite transparent. And Figure 6(c) illustrates how an iVAT image can
w0 suggest multicluster substructure in a data set.

w1 Figures 6(e) and 6(f) are scatterplots of t-SNE projections of Z, corresponding to perplexity
w2 settings of 2 and 3. Both views show the labels of the 10 mean profiles, and both views seem
w3 to indicate that Z, is an outlier in the set Z;y5. We show these two projections to emphasize
s0s  that every run of t-SNE with different settings of its hyperparameters may produce different
ws visualizations of its input data. On the other hand, the iVAT image is uniquely determined
ws up to a choice of the distance measure used to construct D.

wr Figure 7(a) is the iVAT image of the data set Z shown in Figure 6(a). Comparing Figures
w0 6(c) to 6(f) shows that iVAT very clearly suggests the same coarse cluster structure (¢=2) in
w0 all of the upspace data that it sees in Zj, the set of mean profiles. Neither image suggests
a0 that c=10; instead, both suggest that the best interpretation of the input data or its means
s is to first isolate the unit 4 waveform(s), and then regard the remaining spikes as a new
a2 cluster, which becomes a candidate for multistage clustering (reclustering, or re-iteration
a3 per Niediek et al. [2016]). Note that iVAT makes this information available whether the
ss data are labeled or not.
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a5 Finally, Figures 7(b) and 7(c) are labeled and unlabeled t-SNE scatter plots of Z. Both views
ae  suggest that Z contains 5 clusters. Subset Z, is isolated in view 7(b), but not more isolated
a7 than subset Zs, so t-SNE is less assertive about the anomalous nature of Z, than iVAT is.
ss  If the labels are available, reclustering might be applied to 9, 7, 5, 8 and/or 3,6,10 to make
a0 a finer distinction between spike subsets. If the labels are unavailable, it’s hard to see what
a0 can be inferred from the t-SNE projection about Z beyond the suggestion provided by view
2 7(c) that we should seek 5 clusters in Z.

222 We conclude this example with some general observations. First, the iVAT image is unique,
»3 while t-SNE plots are a function of three user-defined parameters. Second, single linkage
24 clusters of the input data are available via clusiVAT [Kumar et al., 2016] once an iVAT image
s is built. Third, while Z has 10 labeled subsets of input spikes, neither iVAT nor t-SNE makes
w6 this prediction. This emphasizes the fact that labeled subsets may not necessarily be clusters
a7 with respect to any computational scheme designed to detect clusters.
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Figure 6: iVAT and t-SNE visualizations of average waveforms of a mixture of 10 subsets
of labeled simulated spikes
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(a) iVAT image of Z

(b) Labeled t-SNE projection of Z (c) unlabeled t-SNE projection of Z

Figure 7: iVAT and t-SNE visualizations of a mixture of 10 subsets of labeled simulated
spikes
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28 Now we turn to dataset-2 to further investigate the limits of discernible spike subsets since as
0 mentioned previously, sets drived from dataset-2 are combinations of real spikes originated
s0 from pyramidal cells in rat hippocampus (ref to [Henze et al., 2000]). We extracted the spike
a1 subsets of nine individual neurons obtained from the different experimental trials. From
.32 these nine subsets, we built 36 mixtures at ¢=2; 84 mixtures at ¢=3; 126 mixtures at c=4;
a3 126 mixtures at ¢=>5H; 84 mixtures at ¢=6; 36 mixtures at ¢c=7; 9 mixtures at ¢=8; and one
x4 mixture of all nine subsets (c=9). This yields a total of 502 mixtures of labeled waveforms.

.5 For the sake of brevity, we showcase four representative units and the various mixtures that
a3 can be built from them at ¢=2, c=3, and c=4. Figure 8 shows the four representative subsets
sz (all nine subsets of the waveforms are shown in Figure 14).

X4

°

Voltage (nV)

Voltage (1V)

Voltage (1V)
5

-40

Time (ms) Time (ms) Time (ms) Time (ms)

Figure 8: The subsets of spikes generated by four representative units: X1, X2, X3, and
X4 containing 1173, 700, 779, and 382 spikes, respectively. Note that the waveforms in X4
are visually different than most of the waveforms in the other three subsets. This fuels an
expectation that mixtures with X4 as one component will be somewhat more separable than
mixtures without it.

s Figure 9 shows all six views of pairs (Xi, Xj) made with 2D transformations of the 80D
20 (upspace, p=80) datasets for the mixtures of two representative single units. We will name
a0 the mixtures (Xk, Xj)=Xkj and will follow this convention for all mixtures. For example,
a1 the mixture of X1 and X2 is X12, and the mixture of X1, X2, and X4 becomes X124. The
a2 waveforms comprising each mixture are also shown, with the average waveform for each
a3 single unit in thick black. The colors of points in the 2D scatterplots correspond to class
wa labels of the mixed data. It is important to remember that in a real application, the data
as are not labeled, so the associated 2D scatterplots will be mono-color dots in the plane. The
ws  mixtures are ordered according to increasing values Dunn’s index. Observe that for each
a7 mixture, different 2D projections may offer different interpretations of the cluster structure
ws in the upspace data. In 9(a), all five projections show one big cluster, far more evident if
uo  the color labeling is missing, which is the case for real experiments in which we do not know
w0 the membership of the waveforms. In cases like this, since the clusters are projected densely
ss1 side by side, human operators or algorithms tend to select only the core of the clusters. This
»s2  usually produces better values for cluster validity indices, but at the expense of unwarranted
3 confidence in subsequent analyses.
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(a) X12, DI=0.090

(b) X23, DI=0.091
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(c) X13, DI=0.097

(e) X34, DI=0.185

(f) X14, DI=0.228

Figure 9: Mixture pairs of X1, X2, X3 and X4, ordered by increasing Dunn’s index

¢ First, some general observations. Figures 9(a), 9(b), and 9(c) all have a DI value of around
5 0.09. This is a relatively low value that indicates a lack of separation between the two

19


https://doi.org/10.1101/285064
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/285064; this version posted January 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

6 components of the mixture. The iVAT images for these three cases are basically uniform (no
7 strongly visible dark blocks), which indicates that the upspace data are not well separated.
ss Separation emerges in Figures 9(d), 9(e), and 9(f), the three cases that have X4 as one
s0 component. Dunn’s index is essentially doubled (0.18 up to 0.23), so upspace separation of
wo the pair of clusters has increased. The most visible separation is seen in the t-SNE downspace
w1 scatterplot, which is mirrored in the upspace iVAT images: the strong dark block corresponds
w2 to subset X4. Now we will discuss the six cases in more detail.

w3 In 9(b), PCA, Wavelet, t-SNE, and Sammon show two clusters, while the PV-E plot shows
se just one. In 9(c), PV-E, wavelet, and Sammon projections show one cluster, it can be
w5 argued that PCA shows two while t-SNE shows two well-seperted clusters. In the other
w6 1mages, which include X4, a less distorted and noisy set of spikes, all the projections do a
w7 good job of mapping the clusters in a separable manner (for the wavelet projection in 9(e),
s it is hard to see two clusters when there are no color labels). The iVAT image also follows
w0 the same trend: the clarity of the two blocks generally becomes higher with a higher Dunn’s
w0 index.

s The Peak to Valley and Energy (PV-E), are the only real (physically meaningful) 2D features.
a2 All the other 2D projections are dimensionless, i.e., they do not have physical meaning. It is
a3 important to emphasize that neither the 2D projections nor iVAT produce clusters, all these
s visual methods just suggest how many to look for.

w5 The projections and the iVAT image of X23 with DI = 0.091 (Figure 9(b)) is a bit more
ws separable and clear than the mixture of X13 with DI = 0.097 (Figure 9(c)). Both values are
a7 relatively small, and the difference between these two values (0.008) is negligible, indicat-
as  ing that these two cases are somewhat indistinguishable. The iVAT image for X14 clearly
aro suggests the c=2 at a Dunn Index of 0.228. This provides a much stronger indication of
w0 reliability than the smaller DI values. Indeed, Dunn characterized a partition as being com-
a1 pact and separated if and only if DI > 1. DI values less than about 0.5 usually characterize
a2 relatively poor cluster structure.

w3 All the cases of mixtures of three subsets are portrayed in Figure 10, again ordered by
s their Dunn’s index, which is quite low and nearly equal in all four views. The numerator
a5 of DI is the minimum distance between any pair of subsets, and the denominator is the
w6 largest distance between points in some clusters, so it is dominated by the smallest between-
w7 subset distance and largest in-subset distance. Consequently, DI fails to recognize competing
s clusters that cannot dominate either of the two factors in Dunn’s formulation. These non-
10 dominant clusters can often be seen in iVAT imagery. For example, in Figure 10(b), the
w0 small yellow cluster seen in the t-SNE scatterplot of X124 appears as the small dark block in
s the lower right corner of the corresponding iVAT image. In Figure 10(a) all the projections
a2 except for t-SNE fail to point to c=3 and the iVAT image is not informative either. In Figure
w3 10(c) for X234, the PV-E and Wavelet projections suggest that c=2, while PCA, t-SNE and
w0 Sammon point to ¢c=3. The t-SNE features provide the widest and most visible separation
ws  between the three clusters. The iVAT image of X234 is weakly suggestive of c=3. Figure
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10(d) for X134 provides a striking contrast in the ability of the visualization methods to
correctly portray the presumed structure in the data. PV-E and Wavelet suggest c=1, PCA
and Sammon imply ¢=2, and t-SNE points clearly to c=3. The iVAT image is pointing to
c=2, at a relatively low value of DI=0.097.

PCA PV-E Wavelet t-SNE Sammon Waveforms iVAT

e

(b) X124, DI=0.090

4

%
&

(d) X134, DI=0.097

Figure 10: Three-subset mixtures of X1, X2, X3 and X4 at ¢=3 ordered by increasing
values of Dunn’s index

Finally, a similar trend continues in the c=4 subset mixture of X1, X2, X3, and X4. The
PV-E and Wavelet features indicate only one big cluster, and PCA, Sammon, and the iVAT
image single out X4 while packing the other three sets of waveforms into a single cluster,
whereas, t-SNE maps the four subsets with arguably enough clarity to declare that X1234
probably has four clusters. It can be argued that while the input has ¢=4 labelled subsets,
the primary visual evidence does not support c=4, nor will there be a “best” set of clusters
in the upspace at this value of c¢. In other words, just because the subsets have 4 labels
does not guarantee that a cluster analysis of the data will agree. When you imagine the
scatterplots in Figure 11 without colors there are not four distinguishable clusters present.
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Figure 11: X1234 mixture at c=4

In summary, we note again that although the subsets of spikes were obtained from indepen-
dent trials, they were all induced by intracellular current injections to hippocampal pyramidal
cells and recorded from their close proximity in extracellular medium. This to some degree
explains the similar average waveforms and high variability between spikes of one subset. We
observed that, for example, from the thirty-six mixtures of two subsets that can be created
from the nine spike sets, not all of them were mapped as two clusters with the same quality
(i.e. the quality of visualization was not consistent). overall, visualizations of mixtures us-
ing any of the other projection methods and iVAT did not suggest discernible clusters.This
points out the challenge in identifying neurons of the same class (e.g., pyramidal) from their
spike waveforms, at least when they are induced by current injections.

3.2 Objective assessment of clustering quality using different pro-
jections of the data

So far, we have shown that the lower-dimensional representations in our study may give
different interpretations of the upspace data. This problem is highly dependent on the
definition of similarity between spike waveforms of different units. Overall, iVAT and t-
SNE were most helpful in assessing the pre-cluster presumptive structure of the waveform
mixtures. In order to provide a more quantitative assessment of the effectiveness of the
different low-dimensional representations in processing spike waveforms, we ran the k-means
clustering algorithm on each of the 95 mixtures from dataset-1 and the 502 mixtures from
dataset-2.

Dunn’s index and its generalizations provide measures of the intrinsic quality of the computed
clusters (based on their distribution with respect to each other). Figure 12 shows the average
Dunn’s index (DI) and generalized Dunn’s index (GDI33) of the mixtures for the two datasets.
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(b) The average(£SD) DI and GDI33 for the 502 mixtures in dataset-2

Figure 12: The average(£SD) Dunn’s and generalized Dunn’s indices of ground truth
partitions for the mixtures in the two datasets

s 'The two indices have the same trend: they decrease almost monotonically as the number of
s33 components (c) increases. However, the generalized version, GDI33, provides a much clearer
s idea of the trend than DI because it has higher values that reflect separation more clearly,
s35 and it avoids the bias of inliers and outliers that may affect Dunn’s index. On the other
s3  hand, Figure 12 also suggests that both indices tend to favor lower numbers of clusters. This
s3 is a different type of empirically observed bias that must be accounted for when relying on
s33 cluster validity indices. See Lei et al. [2017] for a discussion related to this point.

s The DI and GDlI33, as internal measures, were used to give a sense of the structure inherent
s in ground truth partitions of the data in the upspace. Then, to evaluate candidate partitions
sa. produced by k-means in the upspace and downspace data sets, we used the adjusted rand
s22 index (ARI), which compares the cluster structure of each k-means partition to its ground
ss3  truth partner at every value of c.

saa. The k-means clustering algorithm is executed on each pair of features obtained with the
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ses five methods. The number of clusters to be generated (i.e., ¢) is set equal to the number of
se6 labeled subsets in the ground truth partition (i.e., 2, 3, 4,..to 9 for cases in dataset-2 and
sar 3, 4, 5, ....to 21 for cases in dataset-1). For each computed partition, we calculate the ARI
sis measure of agreement between the computed waveform memberships and the memberships
s as given by the ground truth partition (recall that our data is labeled).

ss0 Figures 13(a) and 13(b) report the average ARI for mixtures in dataset-2 and dataset-1,
ss1 respectively. In each figure, the first column is the ARI of the clusters achieved by running
s> k-means on the input dimension space (the 48D waveforms for Dataset-1 and the 80D spike
55 waveforms for Dataset-2). The next columns show the average ARIs calculated for the
ssa  clusters achieved by k-means clustering on the 2D datasets produced by the five techniques.
ss5. The ARI maximizes at 1, so clustering in the 2D t-SNE downspace data provides k-means
ss6  clusters that, on average, slightly better match the ground truth partitions than k-means
ss7 - clusters in the input space.

sss  In order to highlight the importance of dimensionality reduction and feature extraction tech-
ss0 niques (the pre-clustering stage), this subsection presented a comparison between clustering
sso in the different downspaces and also the input space, using the same clustering algorithm in
ss1 all spaces. It is important, however, to recognize that the choice of clustering algorithm also
sz contributes to the accuracy of membership assignments. Also, the techniques and parameter
ss3  choices applied in pre-processing of the signals such as in filtering and spike detection phases
ss« alter the end results. Here, we used the classic k-means clustering algorithm as opposed
ses 10 common spike sorting softwares used by neuroscience community to bypass the different
se6  pre-processing techniques that may have affected the down-space representation of spikes.
ss7 In this way, we provided a controlled set of spikes to be visualized by the 6 methods in our
sss  study. Given the good estimate for ¢ provided by visualization with t-SNE projections, a
se0 logical next step would be be to substitute this t-SNE features with the one used within one
st of the softwares and compare the results. We further note that the choice of 2D as opposed
s to 3D in our manuscript was for publication purposes. Using 3D scatterplots may provide
s» more information that improves the visualization and clustering, but this does not address
s.3 the “best features” or “best algorithm” issues that follow pre-clustering assessment. Those
sz issues will be addressed in a followup paper.
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Figure 13: Average validity index (Adjusted Rand index) of the clusters obtained by k-
means on the two datasets
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« 4 Discussion and conclusions

sts  opike sorting is an unsupervised learning problem since the number of neurons associated
sz with the recorded spikes are unknown. Hence, what we consider to be the spike train of
s.s a single unit may, in fact, be the spike train of multiple units. This does not negate the
s7o - usefulness of the previous findings which apply the results of these sorting algorithms to infer
ss0 neural coding and brain function. Most of this research is based on the rate coding principle
ses [Dayan and Abbott, 2001], which uses the spike rate of the sorted units to model the neuronal
ss2 response. Rate coding models neglect sorting errors assuming that as long as the spike rate
ss3 changes according to the stimulus, the model will capture the response, whether the spike
ss« train consists of spikes of one or multiple neurons. However, the real units’ tuning curves
sss might be different and a contaminated tuning curve may give misleading results.

sss ' Lhis has been shown instudies concerned with issues arising from sorting quality on the
se7 results of rate coding models. For example, Todorova et al. [2014] evaluated the quality of
sss  the off-line reconstruction of arm trajectories from electrode array recordings and showed
ss0  that discarding spikes substantially degrades the decoding of the movement to the extent
so0 that decoding the unsorted recordings reached higher performance results. They also showed
s that adding the tuning model (temporal features) of the spiking to the sorting process does
52 not always improve the sorting based on waveform features. We can use the analogy of a
503 verbal fight or discussion among a few people. An observer can tell if the discussion is going
s« smoothly or if it is heated based on the overall volume of the voices of the group, even if the
s words uttered by individuals is not discernible. This is why rate coding models are popular
so6 and successful in certain respects, but they cannot elucidate how neurons interact to give
sor Tise to brain functions [Akam and Kullmann, 2014, Huxter et al., 2003, Mehta et al., 2002,
ss Rullen and Thorpe, 2001, Zuo et al., 2015]. This emphasizes that reliable spike sorting is
s much more critical if any temporal or multiplex coding schemes are to be used to infer neural
600 Tesponses.

sor Current spike sorting packages use variety of clustering techniques all of which can benefit
o2 from an insight to the cluster structure in the data: k-means, Gaussian mixture decom-
03 position or similar algorithms need explicit specification of the number of neurons to seek;
s+ mean shift needs the threshold on the bandwidth parameter to be defined; [Comaniciu and
s Meer, 2002] and density based clustering relies on a threshold on density parameter ~ for
s0s the number of density centers|Rodriguez and Laio, 2014]. In high-dimensional data, the role
sor of visualization in gaining knowledge of the data structure is critical. There is no doubt, as
ss in Plato’s allegory of the cave, that there is always a loss or distortion of structural infor-
0 mation in any transformation from the upsace (aka: input space or input dimension) to any
s10  downspace. We investigated this issue using iVAT, a tool that enables direct visualization
s11  Of cluster structure in the upspace as well as five dimensionality reduction methods, includ-
sz ing t-SNE. We showed that better sorting can be achieved by securing a visual assessment
a3 prior to clustering which affords an estimate of the cluster structure of the data (i.e., the
sie number of clusters, c), or at least a small interval of integers that presumably bracket the
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a5 true (meaning most distinguishable by some clustering algorithm) but unknown number of
s16 clusters.

sz Our examples show that t-SNE is one of the best methods for projection of high dimensional
s1s  data to the viewing plane. We note that t-SNE for the present analysis was parameterized
s1o  with a perplexity of 30 and learning rate of 500. This was the empirically optimized setting
s20 for our data and we acknowledge that the need for parametrizing based on the data is a
s21  downside to using t-SNE to provide projected data for clustering. The Barnes-Hut variant
62 of t-SNE (publicly available through GitHub) highly accelerates the computations[van der
23 Maaten, 2014]. Since this study focused on investigating the fundamental relevance of pre-
2« clustering methods using standard ground truth datasets the computation time was not
e2s substantial to report. Dimitriadis et al. [2016] have a preprint that reports computation
e speeds of hours for big datasets containing > 10° spikes.

sz In this paper, we demonstrated that the visual assessment of ¢ from the iVAT images is
s2s Often possible, highlighting that if clustering in the upspace is preferred, a visualization tool
20 such as iVAT can be integrated into the package to inform the manual curation process.
s0 However, there were cases, in particular when ¢ was high (> 10), that the iVAT image did
s not clearly indicate the number of clusters. But the visual assessment of a user that makes
22 the estimate of ¢ subjective. We showed that extracellular neuronal waveforms generate
33 noisy datasets that at times do not comprise well-separated clusters. So, iVAT does not
s3a  provide the definitive answer to the problem of spike sorting. Nevertheless, it provides
35 insight into the coarse structure of the dataset. Moreover, we mentioned the relationship
s3 between iVAT and the single linkage clustering algorithm that is illustrated in Figures 6(c)
s and 6(d) (See Havens et al. [2009] and Mahallati et al. [2018a] for further discussion). The
38 majority of the edges in the MST that iVAT builds connect neighbor points and hence have
e30 very small values. The largest values in the MST usually correspond to edges that connect
sa0 clusters (and the outlier points). The threshold between the small and large values reflects
sa1  finer distinctions between clusters in the upspace, which can be used in assigning spikes to
s2 clusters. This feature was integrated into scalable and faster implementations of the iVAT
s43 algorithm which can be used for big datasets [Rathore et al., 2018].

saa - Our experiments on visualization of the two labeled datasets provided further insights into
a5 spike sorting. In the first dataset, simulations were generated using average waveforms ob-
a6 tained from extracellular recordings in behavioral experiments. For the mixtures of spike
sar  Subsets extracted from this dataset it was possible to estimate the presumptive cluster num-
ss ber in the data from the dark blocks in the iVAT images, even in some cases of mixtures
a0 Of twelve subsets. Mixtures of higher subsets were sometimes displayed as compact and
0 isolated clusters in the t-SNE projections. Our experiments confirm that when the data
1 possess compact, well-separated clusters, visualization can be quite useful. Dataset-1 repre-
2 sents mixtures of spike sets that are generated by different cell types, brain regions and brain
es3 states, and these can be distinguished based on their spike waveforms. In contrast, dataset-
ssa 2 represents mixtures of spike sets that are induced from cells of the same class receiving
s intracellular current injections, hence providing spikes with similar waveforms. Therefore,
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s classifying based on extracellular waveforms alone may not be feasible in the latter case
es7  (cells of the same type receiving the same input). It should be noted that in sorting of spikes
s for each electrode, different distances of the units from the electrode improves sorting, since
ss0 the amplitude (energy) of the waveforms is different. However, these results indicate that a
s further subtype classification beyond the two main classes of inhibitory and pyramidal cat-
1 egories (i.e. subtypes of pyramidal cells) may not be feasible by considering only the spike
2 waveforms.

s3 ' The extracellularly recorded potentials are already distorted signatures of intracellular ac-
es tion potentials, which makes the dimensionality reduction stage even more critical. The
s problem of crowding in lower dimensional maps such as PCA is well known. Analysis of
s the simultaneous extracellular and intracellular recordings have shown that the probability
ss7 distributions of spikes from different neurons in the PCA feature space have some degree of
s overlap [Harris et al., 2000]. There is an inherent variability in the extracellular waveforms
0 imposed by the background field potential [Buzséki et al., 2012], variations in the intracellu-
0 lar action potentials due to factors such as bursting [Henze et al., 2000], and slight electrode
en  drift over the course of the experiment [Harris et al., 2016]. Activity of neighboring neurons
o2 1s also a possible source of distortion in the waveform shape. Such activity may sometimes
3 overlap in time and make multi-unit spike waveforms. The problem of overlapping spikes
s has been addressed by methods such as independant component analysis, ICA, (if number
es of electrodes is equal to or more than the number of neurons)[Takahashi et al., 2003] or
e template matching [Yger et al., 2018]. It is worth noting that in pre-clustering visualization
e of the data, overlapping spikes (multi-unit spikes) construct a cluster or block. Visuliza-
es  tion is not to substitue post-clustering use of ICA or template matching. These methods
so can be used after clustering to extract individual sources of multi-unit spikes and reassign
o these spikes to the previously identified clusters. With regards to the inherent variability
se1 in the extracellular waveforms, our results show that the t-SNE projection is the most re-
s2 liable feature extraction scheme (for visualization) that we tested. We believe that t-SNE
3 works well since it is a probabilistic-based approach that is appropriate for neuronal data.
e« In a nutshell, the variability caused by the noisy spikes can often be circumvented by con-
sss verting the deterministic dissimilarity measure between two waveforms into a probability of
ess dissimilarities.

ss7 Another reason why having a reliable dimensionality reduction stage is important is revealed
sss by our results on Dunn’s index, which showed that, DI, in common with many other internal
o cluster validity indices, tends to be monotonic in c¢. This emphasizes the point that the
s0 common practice of running a clustering algorithm for several values of ¢ and then choosing
s1 the best partition based on the optimal value of any cluster validity index may not be very
02 effective. Moreover, by computing both DI and GDI33 for the same data, we demonstrated
03 that there is no agreement about a generic CVI, a fact that has been shown before in previous
s0a experiments on internal CVIs [Vendramin et al., 2010]. Indeed, in the real (unlabeled data)
s5 case, it is wise to compute a number of different internal CVIs, with a view towards ensemble
s aggregation of the results. To appreciate the disparity that different CVIs can cause, see
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sor [Arbelaitz et al., 2013] for an extensive survey of 30 internal CVIs tested on 20 real data
08 sets. See [Vega-Pons and Ruiz-Shulcloper, 2011] for a survey of ensemble approaches to
s00 clustering. Fournier et al. [2016] have applied this method to aggregation of partitions
700 oObtained by different clustering methods used for sorting spike waveforms. Here we suggest
701 using an ensemble approach on the votes cast by different internal cluster validity indices
22 - DI and its 18 GDIs are just a few of the ones available in Arbelaitz et al. [2013] - for
703 each partition in CP. We think this approach will greatly improve the final interpretation
704 of structure in unlabeled data.This will be the objective of our next foray into spike sorting
705 clustering algorithms.

706 'This study again confirms that there is no such thing as the best set of features for clustering
707 or the best clustering algorithm for spike sorting, but that sorting is an iterative process that
70 always comprises making a compromise between the best feature set and clustering algorithm.
20 Armananzas and Ascoli [2015] list the identification of the number of clusters as the most
70 outstanding question in techniques for neuronal classfication. This challenge can be partially
m  addressed by subjective visual assessment of cluster tendency. While visual evidence is never
712 enough, it has great value, as noted by the eminent statistician Sir Ronald Fisher, who said,
73 nearly 100 years ago: “The preliminary examination of most data is facilitated by the use of
s diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they
ns are therefore no substitute for critical tests as may be applied to the data, but are valuable
76 in suggesting such tests, and in explaining conclusions founded upon them” [Fisher, 1958].
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» A.1 Supplementary figures
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Figure 14: The subsets of spikes of the 9 individual neurons used in the study. Each subplot
title displays the label of the experiment in [Henze et al., 2009] dataset and the number of
spikes in each subset: e.g., #745 means there are 745 waveforms in the sample.
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» A.2 iVAT algorithm

Algorithm: VAT

' m D, nx n matrix of dissimilarities: D=D"; d;20Vij; d; =0Vi
2 | Set K={,2,..,n}: I=]=0:
3 Select (i,j) € argmax{D, :s eK,t €K}
4 P()=i: I={i}: j=K-{i}
3 % Initialize MST at either end of edge with largest weight in D
6 | Form=2,...,ndo:select (i,j) € argmin{D :s el,t €J}
; Select (1, j) eargmin{D :s €l,t €]}

Pm)=j: I=Tu{j}: J=J-{i}: d,_, =d;
9 | For1<i,j<ndo:
10 [D*];; = [Dlpiyp(j)
11| Out VAT reordered dissimilarities D*: arrays P, d
12 % Create VAT RDI I(D*) using D*

Algorithm: iVAT

13| In D* =VAT reordered dissimilarity matrix: D"* = [0]
14| For k=2 to n do:
15 j=argmin {Dy;}
16 r=1,..k-1
17 2% _ * _
18 DkC_ch’C_J

D,, =max{D,;,D; };c=1,...,k-1;c#]
199 For j=2,...,ni#j:
20 - -

Dj; =Dj

Out iVAT Reordered dissimilarities D"*
% Create iVAT RDI I(D'*) using D"*
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