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Abstract

Motivated by the dynamics of development, in which cells of recognizable types, or pure cell
types, transition into other types over time, we propose a method of semi-soft clustering that can
classify both pure and intermediate cell types from data on gene expression from individual cells.
Called SOUP, for Semi-sOft clUstering with Pure cells, this novel algorithm reveals the clustering
structure for both pure cells and transitional cells with soft memberships. SOUP involves a
two-step process: identify the set of pure cells and then estimate a membership matrix. To
find pure cells, SOUP uses the special block structure in the expression similarity matrix. Once
pure cells are identified, they provide the key information from which the membership matrix
can be computed. By modeling cells as a continuous mixture of K discrete types we obtain
more parsimonious results than obtained with standard clustering algorithms. Moreover, using
soft membership estimates of cell type cluster centers leads to better estimates of developmental
trajectories. The strong performance of SOUP is documented via simulation studies, which show
its robustness to violations of modeling assumptions. The advantages of SOUP are illustrated
by analyses of two independent data sets of gene expression from a large number of cells from
fetal brain.
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Development often involves pluripotent cells transitioning into other cell types, sometimes in a
series of stages. For example, early in development of the cerebral cortex (Kowalczyk et al., 2009),
one progression begins with neuroepithelial cells differentiating to apical progenitors, which can
develop into basal progenitors, which will transition to neurons. Moreover, there are diverse classes
of neurons, some arising from distinct types of progenitor cells (Jones, 2009; Nadarajah et al.,
2003). By the human mid-fetal period there are myriad cell types and the foundations of typical
and atypical neurodevelopment are already established (Silbereis et al., 2016). While the challenges
for neurobiology in this setting are obvious, some of them could be alleviated by statistical methods
that permit cells to be classified into pure or transitional types. We will develop such a method
here. Similar scenarios arise with the development of bone-marrow derived immune cells, cancer
cells and disease cells (Keren-Shaul et al., 2017), hence we envision broad applicability of the
proposed modeling tools.

Different types of cells will have different transcriptomes or gene expression profiles (Silbereis et al.,
2016). Thus, they can be identified by these profiles (Darmanis et al., 2015), especially by expression
of certain genes that tend to have cell-specific expression (marker genes). Characterization of these
profiles has recently been facilitated by single cell RNA sequencing (scRNA-seq) techniques (Tang
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et al., 2009; Ramskéld et al., 2012), which seek to quantify expression for all genes in the genome.
For single cells, the number of possible sequence reads is limited and therefore the data can be
noisy. Nonetheless, cells of the same and different cell types can be successfully clustered using
these data (Camp et al., 2015; Darmanis et al., 2015; Baron et al., 2016; Zeisel et al., 2015; Tasic
et al., 2016).

What is missing from the clustering toolbox is a method that recognizes development, with both
pure type and transitional cells. In this paper, we develop an efficient algorithm for Semi-sOft
clUstering with Pure cells (SOUP). SOUP intelligently recovers the set of pure cells by exploiting
the block structures in cell-cell similarity matrix, and also estimates the soft memberships for tran-
sitional cells. We also incorporate a gene selection procedure to identify the informative genes for
clustering. This selection procedure is shown to retain fine-scaled clustering structures in the data,
and substantially enhances clustering accuracy. Incorporating soft clustering results into methods
that estimate developmental trajectories yields less biased estimates developmental courses.

We first document the performance of SOUP via extensive simulations. These show that SOUP
performs well in a wide range of contexts, it is superior to natural competitors for soft clustering
and it compares quite well, if not better, than other clustering methods in settings ideal for hard
clustering. Next, we apply it to two single cell data sets from fetal development of the prefrontal
cortex of the human brain. In both settings SOUP produces results congruent with known features
of fetal development.

Results

Model Overview

Suppose we observe the expression levels of n cells measured on p genes, and let X € R"*P
be the cell-by-gene expression matrix. Consider the problem of semi-soft clustering, where we
expect the existence of both (i) pure cells, each belonging to a single cluster and requiring a hard
cluster assignment, as well as (ii) mixed cells (transitional cells) that are transitioning between
two or more cell types, and hence should obtain soft assignments. With K distinct cell types, to
represent the soft membership, let © € R.™*¥ be a nonnegative membership matrix. Each row
of the membership matrix, ©; := (6;1,-- ,0;kx), contains nonnegative numbers that sum to one,
representing the proportions of cell ¢ in K clusters. In particular, a pure cell in type k has 0;; = 1
and zeros elsewhere.

Let C € RP*K denote the cluster centers, which represent the expected gene expression for each
pure cell type. When a cell is developing or transitioning from one category to another, it may
exhibit properties of both subcategories, which is naturally viewed as a combination of the two
cluster centers. Weights in the membership matrix reflect the stage (early or late) of the transition.
Here we formulate a simple probability model that is convenient for analysis and highly robust to
expected violations of the assumptions. Let

X=0Cc"+E, (1)

where £ € R™? is a zero-mean noise matrix with E(EET) = o2I. It follows directly that the
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cell-cell similarity matrix takes a convenient form:
A=E[xX"] =0z0" + 41, (2)
where Z = CTC € RE*K represents the association among different cell types.

In practice, many genes will not follow the developmental trajectory described by eq.(1); however, it
is expected that the expression of many marker genes and other highly informative genes will tran-
sition smoothly between cluster centers during development (see, for example the genes featured in
Trapnell et al. (2014)). In particular, one can empirically check the plausibility of eq.(1) for marker
genes; see the “Case Studies” section below for details. Moreover, because SOUP’s inferences are
based on the empirical cell-cell similarity matrix fl, it is sufficient that A approximately follows the
form specified in eq.(2), a weaker assumption than eq.(1). Indeed similar assumptions are implicit
in many algorithms that estimate developmental trajectories (Bendall et al., 2014; Shin et al., 2015;
Ji & Ji, 2016; Street et al., 2018). Gene expression is also likely to have non-constant variance,
depending on gene and cell type. However, our pure cell search algorithm does not depend on the
diagonal entries of A, and our estimate of © is based on spectral decomposition of A, so the method
remains robust to moderate fluctuation of diagonal entries of A unless the magnitude of noise is
unrealistically large.

As a graphical illustration of the SOUP model, we simulate an example with a developmental
trajectory of typel — type2 — type3. A fraction of the genes were chosen to have differential
expression across cell types, and of these a fraction change nonlinearly between cell types (Fig-
ure la). Regardless of the violations of eq.(1), the cells depict a smooth transition between cell
types (Figure 1b).
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Figure 1: Illustration of the SOUP framework for 3 cell types with simulated developmental tra-
jectory of typel — type2 — type3. (a) Example of 4 differentially expressed genes along the
developmental trajectory, with potentially nonlinear differentiation patterns. (b) Simulated 300
pure cells and 200 mixed cells, visualized in the leading principal component space.

Similar factorization problems as eq.(2) have appeared in previous literature under different settings.
The most popular are the mixed-membership stochastic block model (MMSB) Mao et al. (2017)
and topic modeling (for example, Arora et al. (2012, 2013); Huang et al. (2016)). However, it is
nontrivial to extend these algorithms to our scenario. Similar formulation also appeared in Non-
negative Matrix Factorization (NMF'), where non-negative rank-K matrices © and C' are estimated
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such that X ~ ©CT, for example, by minimizing the Euclidean distance (Lee & Seung, 2001).
However, traditional NMF differs from our setting in two important ways: (i) the NMF problem
is non-identifiable without introducing nontrivial assumptions, and (ii) SOUP does not rely on the
non-negativeness of C, which makes it more broadly applicable to scRNA-seq data after certain
preprocessing steps, such as batch-effect corrections, which can result in negative values. Recent
work in Bing et al. (2017) considered the problem of overlapping variable clustering under latent
factor models. Despite the different setup, the model comes down to a problem similar to eq.(2),
and the authors proposed the LOVE algorithm to recover the variable allocation matrix, which
can be treated as a generalized membership matrix. LOVE consists of two steps: (i) finding pure
variables, and (ii) estimating the allocations of the remaining overlapping variables. Both steps rely
on a critical tuning parameter that corresponds to the noise level, which can be estimated using
a cross validation procedure. When we applied the LOVE algorithm to our single cell datasets,
however, we found it sensitive to noise, leading to poor performance (Supplementary Section S3.5).
Nonetheless, inspired by the LOVE algorithm, SOUP works in a similar two-step manner, while
adopting different approaches in both parts. Most importantly, SOUP parameters are intuitive to
set, and it is illustrated to have robust performance in both simulations and real data.

SOUP Algorithm

The SOUP algorithm involves finding the set of pure cells, and then estimating ©. Pure cells play
a critical role in this problem. Intuitively, they provide valuable information from which to recover
the cluster centers, which further guides the estimation of © for the mixed cells. In fact, it has
been shown in Bing et al. (2017) that the existence of pure cells is essential for model (2) to be
identifiable, and we restate the Theorem below.

Theorem 1 (Identifiability). Model (2) is identifiable up to the permutation of labels, if (a) © is
a membership matriz; (b) there exist at least 2 pure cells per cluster; and (c¢) Z is full rank.

These assumptions are minimal, because in most single cell datasets, it is natural to expect the
existence of at least a few pure cells in each type, and Z usually has larger entries along the
diagonal.

The details of SOUP are presented in Methods and Supplemental Information. As an overview,
to recover the pure cells the key is to notice the special block structure formed by the pure cells
in the similarity matrix A. SOUP exploits this structure to calculate a purity score for each cell.
This calculation requires two tuning parameters: €, the fraction of most similar neighbors to be
examined for each cell, and -, the fraction of cells declared as pure after ranking the purity scores.
After selection, the pure cells are partitioned into K clusters, by standard clustering algorithms
such as K-means. The choice of K is guided by empirical investigations, including a sample splitting
procedure (Supplementary Section S2).

To recover O, consider the top K eigenvectors of the similarity matrix A, denoted as V € R K,
There exists a matrix Q* € RE*K such that © = VQ*. If we have identified the set of pure cells T
and their partitions {Zj }, we essentially know their memberships, ©7.. Then it is straightforward to
recover the desired Q* from the sub-matrix ©7. = V7.Q*, which further recovers the full membership
matrix © = VQ* (Theorem 2). In practlce we plug in the sample similarity matrix A to obtain an
estimate ©, and we can further estimate C' by minimizing || X — GC'TH2
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Theorem 2 (SOUP clustering). In model (2), let V € R"™K be the top K eigenvectors of A, and
T be the set of pure cells. Under the same assumptions as Theorem 1, the optimization problem

: 2
L 102 = Vz.Qll% 3)

has a unique solution Q* such that © = VQ*.

The majority membership probability is max; ;;, and the majority type is the class that achieves
the maximum.

Developmental Trajectories

SOUP provides two outcomes not available from hard clustering procedures such as (Kiselev et al.,
2017; Lin et al., 2017; Satija et al., 2015): soft membership probabilities, @, and soft cluster centers,
C. The next step is to estimate one or more developmental trajectories from the cells. Various
algorithms have been developed that can identify multi-branching developmental trajectories in
single cell data (Bendall et al., 2014; Shin et al., 2015; Ji & Ji, 2016; Setty et al., 2016; Street et al.,
2018), and one successful direction is to estimate the lineages from cell clusters, usually by fitting a
minimum spanning tree (MST) to the cluster centers in a low-dimensional space (Shin et al., 2015;
Ji & Ji, 2016; Street et al., 2018), and then fitting a smooth branching curve to the inferred lineages
(Street et al., 2018). It is straightforward to extend this idea to SOUP, where we identify the MST
using SOUP estimated soft cluster centers, C. Following the common practice, C can be projected
to a low-dimensional space for MST estimation. Notably, soft clusters provide an alternative input
for Slingshot (Street et al., 2018), which yields more refined insights into development by providing
less biased estimates of cluster centers in developing cells.

Performance Evaluation
Simulations
There are no direct competitors of SOUP for semi-soft clustering in the single-cell literature, and

here we use the following three candidates for comparison:

e Non-negative Matrix Factorization (NMF:), where we use the standard algorithm from Lee &
Seung (2001) to solve for non-negative (©,C) by

min || X — ocT||%, st. @ eRE ¢ e RN,

and we further normalize the solution © to be a proper membership matrix with unit row
sums.

e Fuzzy C-Means (FC) (Bezdek, 1981), a generic soft clustering algorithm. Its tuning parameter
m > 1 controls the cluster fuzziness, where m = 1 gives hard clustering. Here we present the
results of the default choice m = 2.
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e DIMMSC (Sun et al., 2017), a probabilistic clustering algorithm for single cell data based
on Dirichlet mixture models. It is designed for hard clustering, but internally estimates the
posterior probability of each cell belonging to different clusters, which can be treated as an
estimator of ©.

Although SOUP is derived from a linear model, it is robust and applicable to general scRNA-seq
data. To illustrate this, we use the splat algorithm in the Splatter R package (Zappia et al., 2017)
to conduct simulations. Splatter is a single-cell simulation framework that generates synthetic
scRNA-seq data with hyper-parameters estimated from a real dataset. The algorithm incorporates
expected violations of the model assumptions (see Methods). We simulate 500 genes and 300
pure cells from 4 clusters. Mixed cells are simulated along a developmental path and the number
varies from 100 to 500. Throughout this section, we use the true K = 4 as input, and the default
parameters for SOUP (e = 0.1, v = 0.5).

Soft membership estimation For comparable evaluation across different scenarios with different cell
numbers, we present the average L; loss per cell, i.e., %||(;) — Ol|1, where || - |[; is the usual vector
L norm after vectorization. SOUP achieves the best performance under all scenarios (Figure 2a).
In particular, with 100, 300, and 500 mixed cells, the true proportions of pure cells in the data are
75%, 50%, and 37.5%, respectively. Note that we always set v = 0.5 for SOUP, which represents a
prior guess of 50% pure cells, and we see that SOUP remains stable even when the given v clearly
overestimates or underestimates the pure proportion.

Robustness to dropouts One of the biggest challenges in single cell data is the existence of dropouts
(Kolodziejezyk et al., 2015), where the mRNA for a gene fails to be amplified prior to sequencing,
producing a “false” zero in the observed data. Here, we also evaluate the performance when the data
is simulated with zero inflations, where the dropout parameters are also estimated from real data
(see Splatter (Zappia et al., 2017) for details). We see that SOUP remains robust and outperforms
all other algorithms (Figure 2b).
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Figure 2: Boxplot of the average Lq losses of estimating © in 10 repetitions. Using the splat
algorithm in the Splatter package, expression levels of 500 genes are simulated for 300 pure cells
from 4 clusters, as well as {100, 300, 500} mixed cells along the trajectory of typel —type2—{type3
or typed}. (a) Without dropout; (b) with dropout.

SOUP as hard clustering

Although SOUP aims at recovering the full membership matrix O, it can also be used as a hard
clustering method by labeling each cell as the majority type. In this final section, we benchmark
SOUP as a hard clustering method on 7 labeled public single-cell datasets (Baron et al. (2016);
Darmanis et al. (2015), details in Table S6). We compare SOUP to three popular single-cell
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clustering algorithms: (i) SC3 (Kiselev et al., 2017), (ii) CIDR (Lin et al., 2017), and (iii) Seurat
(Satija et al., 2015). Because we aim at hard clustering, here we set v = 0.8 for SOUP. We give
the true K as input to SC3, CIDR, and SOUP. For Seurat, we follow the choices in Yang et al.
(2017) and set the resolution parameter to be 0.9, and use the estimated number of principal
components (nPC) from CIDR for Seurat. Even for hard clustering, SOUP is among the highest
(Figure 3, showing Adjusted Rand Index (ARI)). Finally, we point out that when using the default
choice of v = 0.5, SOUP also achieves sensible performance, sometimes with even higher ARI
(Table S6).

B sc3| CIDR!  Seurat[ll SOUP
1.00

0.75

@ 0.50

<
0.25 I I
0.00

Darmanis humanl human2 human3 human4 mousel mouse2
Dataset

Figure 3: Adjusted Rand Index (ARI) on 7 labeled public datasets (Baron et al., 2016; Darmanis
et al., 2015), using (i) SC3, (ii) CIDR, (iii) Seurat, and (iv) SOUP.

Case Studies
Fetal brain cells I

We apply SOUP to a fetal brain scRNA-seq dataset, with 220 developing fetal brain cells between
12-13 gestational weeks (GW) (Camp et al., 2015). Guided with marker genes, these single cells
are labeled with 7 types in the original paper: two subtypes of apical progenitors (AP1, AP2), two
subtypes of basal progenitors (BP1, BP2), and three subtypes of neurons (N1, N2, N3). We refer to
these as Camp labels. At this age many cells are still transitioning between different types, provid-
ing valuable information regarding brain development. Therefore, instead of the traditional hard
clustering methods, SOUP can be used to recover the fine-scaled soft clustering structure.

We run SOUP with K = 2,3,...,7 on the log transformed transcript counts, and examine the
clusters of cells, initially treating this as a hard clustering problem, and focusing on the dominating
type for each cell. For K = 6 and 7, some clusters have no cells assigned to them, which is indicative
of a misspecified K. For K = 5, the algorithm identifies cell types that correspond to Al, A2, B1,
N2 and N3 in Camp’s nomenclature (Figure S6a, Figure 4 bottom right panel). For these data,
when cells are in various developmental stages, hard clustering appears to overfit the data.

Next, we examine the soft assignments. For each cluster k, we label it by an anchor gene, which
is the marker gene defined in Camp et al. (2015) that has the largest anchor score: [Cyp —
max{Cy ) }|/sd(Cy 1)), where C, _) represents the center values of gene g on the (K-1) clus-
ters other than k. The expression levels of the 5 anchor genes along the SOUP trajectory vary
smoothly over developmental time (Figure 4), consistent with eq. (1). In the top 3 principal com-
ponent space, the cells show a smooth developmental trajectory between clusters (Figure 5a), which
is also consistent with egs. (1-2).
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Figure 4: Expression levels of 5 anchor genes, visualized in log scale, where the 220 fetal brain cells
are ordered by a SOUP uni-lineal developmental trajectory. The smooth lines are fitted by natural
cubic splines with 3 degrees of freedom.

To model the developmental trajectories we plot the cluster centers determined directly by SOUP
(softSOUP) and by hard clustering (hardSOUP). Fitting a MST to the cluster centers, softSOUP
identifies two lineages: AP-BP-N and AP-N (Figure 5a), both of which were previously described
in Camp et al. (2015), while hardSOUP identifies less intuitive BP-AP-N and AP-N lineages (Fig-
ure 5b). Using Slingshot to fit smooth branching curves to these lineages via simultaneous principal
curves, hardSOUP, recovers AP-N and BP-N transitions, and the artificial BP1-AP2 transition in
the initial MST fit is dropped (Figure 5d). However, the AP-BP transition is still missing. soft-
SOUP MST successfully reveals AP-N and AP-BP-N transitions (Figure 5a and 5c¢), thus capturing
the true transition of cell types leading to neurons by accounting for the soft membership struc-
tures.

APL
) 3| a2
AP2
PC1 PC1 PC1 PC1
(a) softSOUP (b) hardSOUP
= AP1 N2 . = AP1 N2
AP2 « N3 $ AP2 « N3
BP1 BP1
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(c) softSOUP curves (d) hardSOUP curves

Figure 5: 220 fetal brain cells, cluster centers, lineages, and branching curves in the top 3 prin-
cipal component space. Cells are colored according to their SOUP major types, but annotated
using Camp labels based on the largest overlap (see Figure 4). (a,b) MST of softSOUP and hard-
SOUP cluster centers. (c,d) Smooth branching curves fitted by Slingshot based on MST in (a,b),
respectively.
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Fetal brain cells II

We next applied SOUP to a richer data set with 2,309 single cells from human embryonic prefrontal
cortex (PFC) from 8 to 26 GW (Zhong et al., 2018). Using the Seurat package (Satija et al., 2015)
the authors identified six major clusters: neural progenitor cells (NPC), excitatory neurons (EN),
interneurons (IN), astrocytes (AST), oligodendrocyte progenitor cells (OPC) and microglia (MIC),
which are referred to as Zhong labels. Our objective is to evaluate the developmental trajectories
of the major cell types, after excluding IN and MIC, which are known to originate elsewhere and
migrate to the PFC (Zhong et al., 2018). After several iterations of hard clustering by SOUP to
remove IN and MIC cells (Tables S1-S3) 1503 cells remain, and they cluster into K = 7 types.
These types correspond fairly well with the Zhong labels (Figure 6a); however, many cells have
low majority membership probabilities (Figure S8) and do not strongly favor a particular cluster
(Table S4). To illustrate this feature we display cells assigned to clusters 3 (NPC) and 7 (EN),
color coded by the majority membership probability (Figure 6b). The two clusters divide the PC
space evenly, with the pure cells identifying the cluster centers, while many non-pure cells can be
best described as transitioning between clusters. SOUP captures the transitional nature by soft
clustering.
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Figure 6: (a) Contingency table of Zhong labels and major SOUP labels excluding IN and MIC.
(b) Distribution of cluster 7 (EN) and cluster 3 (NPC) cells and their majority membership prob-
abilities.

The SOUP trajectories reveal two developmental paths (Figure 7): a neuronal lineage showing
NPCs evolving to ENs (clusters: 4 —+3 — 7 — 6 — 5) and a glial lineage showing NPCs evolving
to OPCs and then to ASTs. Projecting the cells onto the lineages can provide pseudotime estimates
of development. The lineages correspond roughly with sampled GWs (Table S4). Our results are
similar to those in (Zhong et al., 2018), however we found that NPCs evolve to OPCs and then to
ASTs (clusters: 4 — 3 — 1 — 2). The latter transitional step, which differs from the published
analysis, is consistent with the literature (Zhu et al., 2008). Finally, cluster 5, which consists of
a mixture of cells Zhong labeled as EN and NPC, is placed at the end of the neuronal lineage,
suggesting that some of the NPC labels are incorrect and that this cluster constitutes a distinct
class of ENs.

Additional strengths of SOUP are highlighted by analyses described in Supplement, which inves-
tigate gene expression as a function of cell membership to cluster and the proximity of cells to
the neuronal trajectory (Figures 7,59). In particular we evaluate the final clusters of the neuronal
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lineage, clusters 5 and 6. In terms of gene expression, cells in cluster 6 shows all the hallmarks of
neuronal development, including low expression of neuronal markers in immature and much higher
expression in maturing neurons. There is also some evidence of heterogeneity of expression of genes
marking neurons in some cells, consistent with differentiation into different neuronal subtypes. For
cells from cluster 5, the evidence is far less clear: the majority of cells manifest neuronal markers
at high levels, consistent with maturing neurons; yet, there is also expression of substantial set of
NPC markers in these neurons, a puzzling feature that could be either a technical artifact or an
unanticipated developmental feature of deep layer projection neurons.

o NPC GW08-10
A EN GW12-16
" NPCEN o GW19-26
+ OPC AT

= AST

Figure 7: Developmental trajectories of 1503 Zhong cells delineate glial and neuronal pathways.
Cluster labels are defined in Figure 6a.

Discussion

We develop SOUP, a novel semi-soft clustering algorithm for single cell data. SOUP fills the gap
of modeling uncertain cell labels, including cells that are transitioning between cell types, which
is ubiquitous in single cell datasets. SOUP outperforms generic soft clustering algorithms and, if
treated as hard clustering, it also achieves comparable performance as state-of-the-art single cell
clustering methods. By using soft clustering input, it can provide an estimate of developmental
trajectories that is less biased and these results reflect valuable information regarding developmental
patterns. We present the results from two case studies based on expression of human fetal brain cells
and find SOUP reveals patterns of development not apparent in prior published analyses.

As is typical for clustering algorithms, selecting the optimal number of clusters, K, is challenging.
We recommend balancing input from several empirical approaches and iterating over a range of
K to determine a good choice. Notably, applying SOUP to a different numbers of clusters reveals
hierarchical structure among the cell types. To determine fine scale structure within major cell
types, SOUP can be applied iteratively to subsets of cells.

Using SOUP to obtain soft membership probabilities and then estimating developmental trajecto-
ries provides two complementary views of the data. Some cells can be reliably assigned to a cluster
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and these cells constitute pure types, which can be highly informative. Other cells are transitioning
and estimated membership will fall within two, or even more cell types. Examining the membership
probabilities, and the placement on a developmental trajectory, provides critical information about
the developmental processes and offers a parsimonious and scientifically meaningful alternative to
estimating a large number of discrete cell types.

Notably, although SOUP is derived under a generic additive noise model and does not explicitly
model the technical noise such as dropouts, we find it to be robust when applied to realistic
simulations and to a variety of single cell datasets. Moreover, it is computationally efficient, which
makes it easily applicable to large single cell datasets. SOUP takes less than 15 minutes for
3,600 cells and 20,000 genes, benchmarked on a linux computer equipped with AMD Opteron(tm)
Processor 6320 @ 2.8 GHz. Therefore, SOUP is a versatile tool for single cell analyses.

Methods

SOUP

Our SOUP algorithm contains two steps: (i) find the set of pure cells, and (ii) estimate ©. Pure
cells play a critical role in this problem. Intuitively, they provide valuable information from which
to recover the cluster centers, which further guides the estimation of © for the mixed cells. Once
the pure cells are identified then the algorithm proceeds as described in Results.

Find pure cells Denote the set of pure cells in cluster k as
Ir={1<i<n:0; =1and 6; =0,V # Lk}, (4)

and the set of all pure cells as 7 = Ulelk. To recover Z, the key is to notice the special block
structure formed by the pure cells in the similarity A. In particular, under eq.(2), the pure cells
form K blocks in A, where the entries in these blocks are also the maxima in their rows and
columns, ignoring the diagonal. Specifically, define

mizr?gfi!/lij!, Si =1{j #i:]Ai| =ms}, (5)

and we call S; the extreme neighbors of cell i. It can be shown that if cell i is pure, then |A;;| =
m; = m; for all j € S;. On the contrary, for a mixed cell i, there exist some cells j € S; where
mj > |A;;|. Inspired by these observations, we define a purity score of each cell,
1 A
- 0
|Sil

M
JES; J

then naturally p; € [0,1]. Furthermore, the pure cells have the highest purity scores, that is,
Z ={i:p; =1} (Theorem S1).
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In practice, we plug in the sample similarity matrix A= XXT, and estimate S; and p; by
S; = {j # i : the top € percent with the largest |A;|},
1 | Ayl

|S’L| ]GSz J

)

, where m; = max |A;;],
JFi

and we estimate Z with the top v percent of cells:
7= {3 : the top 7 percent with the largest p;} . (8)

Finally, these pure cells are partitioned into K clusters, {fk}, by standard clustering algorithms
such as K-means. The complete algorithm is summarized in Supplementary S1.1.

Tuning parameters The two tuning parameters of SOUP are the quantiles, ¢ and =, both
intuitive to set. The quantile v should be an estimate of the proportion of pure cells in the data, of
which we usually have prior knowledge. In practice, we find that SOUP remains stable even when
v is far from the true pure proportion, and it is helpful to use a generous choice. Throughout this
paper, we always set v = 0.5 and obtain sensible results. As for €, it corresponds to the smallest
proportion of per-type pure cells, and it suffices if € < miny |Z|/n, so that S; C S; for pure cells.
This choice does not need to be exact, as long as € is a reasonable lower bound. In practice, we
find it often beneficial to use a smaller € that corresponds to less than 100 pure cells per type. By
default, we use € = 0.1 for datasets with less than 1,000 cells, ¢ = 0.05 for 1,000 - 2,000 cells, and
e = 0.03 for even larger datasets. Simulation results of sensitivity are presented in Supplementary
Section S3.4.

Gene selection It is usually expected that not all genes are informative for clustering. For
example, housekeeping genes are unlikely to differ across cell types, hence provide limited infor-
mation for clustering other than introducing extra noise. Therefore, it is desirable to select a set
of informative genes before applying SOUP clustering. Here, we combine two approaches for gene
selection: (i) the DESCEND algorithm proposed in Wang et al. (2017) based on the Gini index,
and (ii) the Sparse PCA (SPCA) algorithm (Witten et al., 2009) (see Supplementary Section S1.2
for details).

Simulations

We conduct simulations using the splat algorithm in the Splatter R package (Zappia et al., 2017).
Splatter estimates the simulation parameters from a real dataset, and can generate synthetic
scRNA-seq data with cells from multiple populations or along differentiation paths. Here, we
use the Zeisel data (Zeisel et al., 2015) for hyper-parameter estimation, where splat has shown to
be successful (Zappia et al., 2017).

We simulate 500 genes and 300 pure cells from 4 clusters with probability (0.2, 0.2, 0.2, 0.4). By
default, Splatter randomly selects 10% of the genes to have differential expression levels among cell
types, and the separation is controlled by the location factor, deFactor, where larger value leads
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to more distinct cell types. Here, we present the results when deFactor=2, and more scenarios can
be found in the Supplement.

We simulate different numbers of mixed cells using the “path” method in Splatter. In particular,
we consider the trajectory structure where cell type 1 differentiates into an intermediate cell type
2, which then differentiates into two mature cell types, 3 and 4. Each mixed cell is randomly placed
along one of the three paths with probability (0.3, 0.3, 0.4). Each path is a continuous development
from a starting cluster to an ending cluster, and the expression level of each gene changes either
linearly or nonlinearly from the starting expression level to the ending expression level (examples in
Figure 1a). Here, we use the default setting where 10% of the genes have nonlinear differentiation
paths. More scenarios are presented in the Supplement.

All algorithms are applied to the log-transformed data, except for DIMMSC which is developed
under a Multinomial model for count data. NMF can be applied to the raw count data as well,
which usually has slightly worse performance. We also tried other choices of m’s for fuzzy C-Means,
and obtained similar results. The complete comparison can be found in the Supplement.
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S1 Details of SOUP

S1.1  Algorithms

For the ease of readability, we summarize the two steps of SOUP in Algorithm 1 and Algorithm 2.
Note that when solving for ) in Algorithm 2, theoretically one would consider the constrained
problem:

. A y 2
LU 10z = Vz.Qll%,

s.t. VQ is an n x K membership matrix,

where membership matrices are the ones with nonnegative entries and unit row sums. However, in
practice, solving this constrained problem is computationally demanding, sometimes with empty
feasible sets. Therefore, we adopt a heuristic approach that first solves the unconstrained optimiza-
tion problem as in Algorithm 2, and normalizes the obtained VQ afterwards to get a membership
matrix.

Algorithm 1 findPure

Input: similarity matrix A, quantile €, quantile ~y
Output: estimated set of pure cells Z
1: For each cell 7,

TAYLZ‘ <— max ‘A”‘ s
J#i
S; « {j#i:|Ay| > the upper e-quantile of ]AL(,Z-)H.
2: For each cell 7, compute its purity score:

. 1 | Ayl

Di — — E —

LS Ay
JES;

3: 7 < {i:p; > the upper y-quantile of {p;}}.

S1.2 Gene selection

It is usually expected that not all genes are informative for clustering. For example, housekeeping
genes are unlikely to differ across cell types, hence provide limited information for clustering other
than noise. Therefore, it is desirable to select a set of informative (i.e. highly variable) genes
before applying SOUP. Here, we combine two selection approaches. The first is the DESCEND
method proposed in Wang et al. (2017), where the authors developed a semi-parametric approach
to estimate several distribution statistics for each gene, including the Gini index that indicates the
excessive variability of gene expression levels across cells. The authors suggested to threshold the
normalized difference between the observed and expected Gini index, and use the set of highly
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Algorithm 2 SOUP clustering

Input: data X, number of clusters K, quantile €, quantile ~
Output: estimated membership ©
A XXT

1

2 T « ﬁndPure(fl, K, ¢€,7), and apply K-means clustering on X to get the partition @1, o LK),

3V <—Athe top K eigenvectors of A.

4: Let ©; be the membership submatrix for pure cells, obtained by putting 1’s and 0’s in the
corresponding columns according to {Z;}. Solve for

. Ao
@=arg min 10z, = Vz.QlI%,

where || - || is the Frobenius norm.

50« VQ.

variable genes for clustering. Throughout this paper, we use the default threshold of 3. We refer
the readers to the original paper (Wang et al., 2017) for more details.

The second approach is based on Sparse Principal Component Analysis (SPCA). In fact, it is
common to first apply PCA, and select genes with the highest loadings in the top few principal
components (PCs) for clustering (see Camp et al. (2015) for an example). SPCA provides a more
rigorous algorithm to implement this idea, where it directly solves for the leading sparse PCs, and
genes with nonzero entries are selected. In this paper, we use the efficient SPCA algorithm in
Witten et al. (2009). The algorithm requires a tuning parameter, ¢, that controls the sparsity of
the solution, where smaller ¢ leads to sparser results, hence fewer selected genes. Throughout this
paper, we always set ¢ = 0.05, and use the top three sparse PCs.

In our experiments, we find that DESCEND and SPCA usually capture different structures in the
data. SPCA usually picks up genes that differentiate major cell types, while DESCEND usually
identifies genes that distinguish finer scaled clustering structures. Therefore, the best performance
is achieved by combining both lists of genes.

S1.3 Normalization

In practice, cells can have different scaling due to sequencing depths and cell sizes, and proper
normalization is required prior to using SOUP. Formally, we have E [X,q,] = Diag((s;))0CT,
where s; is the scaling factor of cell i. The factor s; can be interpreted as efficiency, while C' is
the expected expression level of each type. Alternatively, s; can represent the library size, with C
being the relative type-specific expression profile. This factor can be estimated in various ways,
sometimes with the help of spike-ins (Wang et al., 2017). Here, for RNA-seq data, we simply treat
s; as the library size, and normalize such that the total sum of counts, > g Xigs 18 106 in each cell i,
which is essentially the Transcript per Million (TPM) normalization. In practice, we find it usually
beneficial to further apply a log-transformation before running SOUP.
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S1.4 SOUP for count data

The SOUP algorithm is derived under a generic additive noise model (eq.(1)). Here, we point out
that SOUP is applicable to more general scenarios as long as we construct a similarity matrix that
has structures similar to eq.(2). In particular, under a Poisson model, we have

Xy ~ Poisson((0CT),,)
for cell ¢ and gene g independently, we can compute the following similarity matrix
Apgisson = XXT — Diag((d;)),
where d; =) ¢ Xig- Then it can be shown that

E [Apoisson] = GCTCC-)T’
which has the same structure as eq.(2) with 02 = 0, hence SOUP still applies.

However, when applied to single cell datasets, we find it usually beneficial to log-transform the RNA-
seq data and use the general algorithm for additive noise model (Algorithm 1 and Algorithm 2).
In addition, centering data with respect to genes when computing A is also helpful for identifying
pure cells, because this usually makes Z more diagonally dominant, leading to a larger separation
in purity scores between pure cells and mixed cells, as indicated in Theorem S1.

S1.5 Theorems and proofs

Theorem S1 (Pure cells). In model (2), under the same assumptions as Theorem 1, if we further
TequiTe

(d) A = mink;ﬁl(Zkk N2y — |Zkl’) > 0,
then we have T = {i : p; = 1}, where p; is the purity score as defined in eq.(6).

Proof of Theorem S1. Note that
Ay = 00512k .
k,l
For any cell ¢, consider the two cases:

e If cell 7 is pure for type k, then for any j # i,

Lk if j is also pure for type k
|Aij| = S | Z if j is pure for type | # k (S1)
152,01 Zki|  if j is mixed
Note that |Zy| < Zki — A, and we can also show that in the last case,
|Aij| < Zejl|Zkl| < ij:Zk;k + Zejl(Zkk — A) = Zpr — (1 _ ij)A < ke s (SQ)
! I#k

hence
m; = Zgk, S; = {j #i:j is also pure for type k.}
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e If cell ¢ is mixed, then for any j # i,

Ay = {\ >k Oin 2| if j is pure for type [ ‘ ($3)

|Zk7l 001 Z1y| if j is also mixed

For the first case, we already shown above that

1> 0ikZil < Zu— (1—02)A < Zy — (1 - O)A.
k

For the second case, we have
| %: 0101 Z11| < Zl: 6,1 Zk: Oir Zry| < max | zk: Ot Z| (54)

Therefore, m; is achieved at (i, j) for the pure cells j in some type [*:

m; = mlax\ ZGMZM], S; 2 {j #1i:jis pure for type [ where [* € arg max ] ZBMZM\}.
k k

Therefore, the conclusions follow because

e if ¢ is pure for type k, then
S; = Ik\{l}, and |A”| =m; = Lk ,V] € S;

hence p; = 1.

e if 7 is mixed, then S; contains pure cells from cluster(s) {* € argmax; | Y, 02|, and

|Aij| < Zpp — (1= O)A < Zper =y,

[Aij] - . .
hence m—; <1- for all pure cells in {*, which further implies p; < 1.

1-9HA
Zl*l*
O
Proof of Theorem 1. See Theorem 2 in Bing et al. (2017). Note that Assumption (b), the existence
of pure cells, is necessary for identifiability. We refer the readers to Bing et al. (2017) for an example
of an unidentifiable model where assumptions (a) and (c) hold, but no pure cells exist. O
Proof of Theorem 2. First, consider the noise free scenario, X = 0C7, then we have
E [XXT} —0z067 = 4. (S5)
Consider the following symmetric decomposition problem,

A=GaT, (S6)
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then ©21/2 is one solution. Although the solution is not unique when Z is not diagonal, it has been
shown in Mao et al. (2017) that under the same assumptions as in Theorem 1, for any solution G,
there exists a K x K matrix O, such that

GO =0z"2. (S7)

In particular, let A = VAVT be the eigen decomposition of A, then G = VA2 is one solution to
problem (S6), which implies o
0=Va, (S8)

where Q = AY20Z712 is a K x K matrix. In order to find Q, recall that we are given the set
of pure cells Z and their partitions {Z;}. Equivalently, we already know the corresponding rows of
the membership matrix, ©7.. Therefore, the desired ) can be solved from

0r. = V7.0. (59)

In general, under model (2), we have .
A=A+,

where A = ©Z07 is the above noise-free similarity matrix. Let V be the top K eigenvectors for
A, then V = V, hence the above arguments also hold for V. Finally, the solution to problem
(3) is unique because its Hessian matrix, (Vz.)T V7., is positive definite due to assumption (b) in
Theorem 1. Furthermore, the minimum is 0, achieved at Q* = Q, and © = VQ*. O

S2 Selecting K

S2.1 Selecting K from pure cells

One of the main challenges of SOUP is how to select the number of clusters, K. A simple solution
is to focus only on the pure cells, treat it as a hard clustering problem, and apply standard selection
techniques. For example, one can apply K-Means to the pure cells with a sequence of different K’s,
and choose the optimal K according to certain metrics. Here, we examine the performance of two
widely used metrics: (i) Calinski-Harabasz (CH) index (Caliniski & Harabasz, 1974), which is used
to identify the number of clusters in CIDR (Lin et al., 2017), and (ii) Silhoutte score (Rousseeuw,
1987), another popular metric. Both metrics select K that achieves the highest score, where CH
index measures the normalized ratio between between-cluster and within-cluster variations, and
Silhouette score measures how points are similar to its own cluster compared to other clusters.
However, when applied to the single cell datasets, both metrics reveal only the major clusters,
leading to K = 2 in the Camp dataset (Figure Sla and S1b). We will show that this is true in
other public single-cell datasets as well (Table S7).

S2.2 Selecting K with sample splitting

Sample splitting has been used to select the optimal rank for matrix completion (Kanagal & Sind-
hwani, 2010; Owen & Perry, 2009), and recently, similar idea has been extended to hard clustering
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Figure S1: (a) Calinski-Harabasz (CH) index, (b) Silhoutte score, and (c) sample splitting predic-
tion error for selecting the number of clusters in the Camp fetal brain data. CH index and Silhoutte
score are computed using K-means hard-clustering results, applied on the pure cells identified by
SOUP, and K = 2 is selected. Sample splitting prediction errors are averaged across 10 repetitions.
For visualization purpose, the values are plotted in the log scale and capped at 2.6.

for selecting the number of clusters (Fu & Perry, 2017). Here, we follow the bi-cross-validation pro-
cedure in Owen & Perry (2009); Fu & Perry (2017), and extend it to our soft clustering problem.
Specifically, we permute the rows and columns of the expression matrix X, and partition them as
n =mn1 + n9 and p = p; + p2. For the ease of presentation, assume X has been permuted, with

partition

X111 X2

Xo1 X2
We treat (X1, Xo22) € R™*P as the training samples, and X1, € R™*P! as the held out block. For
each k, we compute the prediction error of X7; as below:

1. Apply SOUP to the training samples, (X1, Xo2), with k clusters, to get the estimated mem-
bership @s. € R™** and center matrix C € RP*¥. We partition C accordingly to get
Cy. € RP>k and Oy, € RP2Xk,

2. Estimate the membership of the held out samples using X2 and Cs.. Specifically, we first
solve for

min || X2 — 61.C7 1%,
0,.cRn1 %k

and then normalize to get the proper membership matrix O..

3. Finally, the prediction of the held out block, X1, is obtained by Xu = élélT , and the

prediction error is computed as %MHXH — X1l%.

In practice, we always split the rows and columns into equally sized partitions. This procedure is
repeated a few times, and the K that achieves the smallest average prediction error is selected.
We apply this procedure to the Camp data to search over K € {2,...,20}, where the prediction
error is averaged over 10 repetitions, and obtain K,, = 4 (Figure Slc). Note that K = 4 suc-
cessfully distinguishes two subtypes of neuronal progenitors as well as early and matured neurons
(Figure S6a).
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As a final check on our choice of K, we examine the membership matrix 8. We require that at least
2 cells have majority probability > .5, for every cell type.

S2.3 Benchmarking on public datasets

Finally, we benchmark different selection procedures in the 7 public datasets with known labels
that were used in Section , and we focus on the set of selected informative genes via DESCEND
and SPCA (Table S6). As in the main text, we use v = 0.8 for SOUP to pick 80% of the cells
as pure. We compare the selected K among {2, 3, ...,20} using (i) optimal CH index or Silhouette
score computed with K-means hard-clustering results of the pure cells, and (ii) minimal prediction
error in sample splitting. We then apply SOUP clustering using the selected K, and compute the
Adjusted Rand Index (ARI), using the reference labels as gold standard (Table S7). Again, we
see that standard selection metrics substantially underestimates the number of clusters, revealing
only major split of cell types with poor ARI. On the contrary, the sample splitting procedure gives
more sensible estimates that are close to the reference, and lead to similar ARI as if the true K is
given. In fact, in the six pancreatic datasets from Baron et al. (2016), using K, sometimes leads
to even higher ARI than using the reference K (Table S6, Table S7). This is probably because in
some datasets, certain reference cell types contain less than 5 cells, which are difficult to separate
as distinct clusters.

S3 Supplementary Simulations

S3.1 Simulation settings

First, we describe the detailed simulation settings. We compare SOUP with (i) Non-negative
Matrix Factorization (NMF) (Lee & Seung, 2001), applied on either count-scale (NMF-ct) or log-
scale (NMF-log), where the solution is normalized to have unit row sum; (ii) Fuzzy C-means (FC)
(Bezdek, 1981) with three choices of m, m € {1.5,2,5}; (iii) DIMMSC (Sun et al., 2017), which is
based on a Multinomial count model. We use the true K = 4 as input for all algorithms, and the
default parameters for SOUP (e = 0.1, = 0.5). Throughout this section, we do not perform gene
selection. We apply normalization and log-transformation for NMF-log, SOUP and FC, and give
the raw counts to NMF-ct and DIMMSC.

We conduct simulations using the splat algorithm in the Splatter R package (Zappia et al., 2017),
where the Zeisel data (Zeisel et al., 2015) is used for hyper-parameter estimation. We simulate 500
genes and 300 pure cells from 4 clusters with probability (0.2, 0.2, 0.2, 0.4). By default, Splatter
randomly selects 10% of the genes to have differential expression levels among cell types, and the
separation is controlled by the location factor, deFactor, where larger value leads to more distinct
cell types. Here, we present the results of deFactor € {1,2,5}.

To evaluate the performance under various proportions of mixed cells, we simulate {100, 300,500}
mixed cells using the “path” method in Splatter. In particular, we consider the trajectory structure
where cell type 1 differentiates into an intermediate cell type 2, which then differentiates into two
mature cell types, 3 and 4. Each mixed cell is randomly placed along one of the three paths with
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probability (0.3, 0.3, 0.4). Each path is a continuous development from a starting cluster to an
ending cluster, and the expression level of each gene can change either linearly or nonlinearly from
the starting expression level to the ending level. By default, 10% of the genes have nonlinear
differentiation patterns.

S3.2 Soft membership estimation

We conduct 10 repetitions in each setting, and compare the L losses of estimating ©. To achieve
comparable evaluation across different scenarios with different cell numbers, we present the average
loss per cell, i.e., %H@ — O||1, where || - ||1 is the usual vector L; norm after vectorization. In
Figure S2, we see that SOUP achieves the best performance regardless of the number of mixed
cells and the cluster separation deFactor. In addition, note that we always set v = 0.5 for
SOUP, which represents a prior guess of 50% pure cells, but with n,;, € {100, 300,500}, the true
pure proportions are {0.75,0.5,0.375}, respectively. We see that SOUP is stable even when
underestimates or overestimates the pure proportion.

We also evaluate the robustness of different algorithms to dropouts using the zero-inflated simulator
of Splatter. The dropout parameters are also estimated from the Zeisel data. Again, we evaluate
the average L loss of estimating O, and for simplicity, we present only the results with 500 mixed
cells (Figure S2). We see that SOUP achieves robust performance with the existence of dropouts,
and always outperforms other algorithms.

S3.3 Robustness to nonlinear trajectories

Although SOUP is derived from a linear model, it is still applicable to general scenarios where
genes exhibit nonlinear differentiation patterns along developmental trajectories. To illustrate this
point, we use the Splatter package to simulate development paths where {10%, 30%, 50%, 70%} of
the genes follow nonlinear development patterns from the starting cluster to the ending cluster.
We refer the readers to the original paper (Zappia et al., 2017) of the detailed procedure of path
simulation. The remaining settings are the same as before. Again, we evaluate the average L
loss of SOUP when {100, 300,500} mixed cells are simulated, with deFactor=2, with and without
dropout. We see that SOUP is robust to such nonlinearity (Figure S3).

S3.4 Sensitivity to tuning parameters

Here, we examine the sensitivity of SOUP to its two tuning parameters, € and +. Recall that €
represents the smallest proportion of per-type pure cells, ming |Zx|/n, and ~y represents the propor-
tion of pure cells, |Z|/n. Following the previous simulation settings, we examine the performance of
SOUP with the existence of dropouts and deFactor=5. Note that there are 300 pure cells, there-
fore, with {100, 300,500} mixed cells, the optimal tuning parameters are ¢* € {0.25,0.167,0.125}
and v* € {0.75,0.5,0.375}, respectively. We present the average L; losses of estimating © when
using € € {0.05,0.1,0.15,0.2} and v € {0.3,0.5,0.7} (Figure S4). We see that SOUP is robust as
long as € < € and v &= ~*. In particular, it is more important to choose a smaller € so that the
estimated extreme neighbors, S’i, has a high precision in recovering .S;. Therefore, by default, we
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Figure S2: Boxplots of average L; losses of SOUP estimated memberships in simulations with
10 repetitions, using three differential expression factors deFactor € {1,2,5}, with and without
dropouts. 300 pure cells are simulated from 4 clusters with probability (0.2, 0.2, 0.2, 0.4), and
{100, 300,500} mixed cells simulated along the developmental trajectory of typel — type2 —

{type3 or type 4}.
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Figure S3: Boxplots of average L; losses of SOUP estimated memberships in simulations with
10 repetitions. 300 pure cells are simulated from 4 clusters, and {100, 300,500} mixed cells are
simulated along the developmental trajectory of typel — type2 — {type3 or type 4}, where
{0.1,0.3,0.5,0.7} of the genes follow nonlinear differentiation patterns between cell types.
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use € = 0.1 for datasets with less than 1,000 cells, e = 0.05 for 1,000 - 2,000 cells, and ¢ = 0.03 for
even larger datasets. On the other hand, the performance is more robust to the choice of v, where
the default choice v = 0.5 is usually sensible . In fact, it is usually beneficial to use a slightly more
generous 7, and under this case, the performance is robust even when € > €*.

y=03 y=05 y=0.7 y=0.3 y=05 y=0.7 y=0.3 y=05 y=07
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gos- 8 o7- w08
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(0.25,0.75) (0.167,0.5) (0.125,0.375)

Figure S4: Boxplots of average L losses of SOUP in simulations using different tuning parameters,
each repeated 10 times, where deFactor=>5 and dropouts are included. In addition to 300 pure
cells, there are {100,300,500} mixed cells. SOUP is applied with different tuning parameters,
e € {0.05,0.1,0.15} and v € {0.3,0.5,0.7}. The optimal parameters (¢*,7*) under each scenario
are also listed.

S3.5 Comparison to LOVE

One can potentially apply the LOVE algorithm (Bing et al., 2017) for wariable clustering to X7,
by treating cells as “variables”, and use the estimated allocation matrix as 0. Here, we use the
general routine for non-diagonal covariance matrix (corresponding to a non-diagonal Z matrix in
our setting), and examine its performance in both simulations and real data.

We illustrate the performance of LOVE when deFactor=>5 with 300 mixed cells. The LOVE
algorithm estimates K, the number of clusters, as part of the procedure of finding pure cells, and
requires a tuning parameter 0 to offset the noise level in the data. In Bing et al. (2017), the authors
suggest to select the optimal 6 = ¢y/logn/p using sample splitting over a grid of ¢ (note that we
are treating n cells as variables). To gain some intuition of the effect of §, we run the first step
of LOVE over a grid of ¢ € {0.1,0.15,...,2.5}, and we see that the estimated number of clusters
K rovEe in general decreases with larger ¢, and when ¢ = 2.5, LOVE underestimates the true K
(Figure Sha). We also examine the quality of the estimated pure cells by evaluating the precision
and recall rate. We repeat the simulation for 10 times, and the performance of LOVE is unstable
across different runs. In addition, both the precision and recall rates of LOVE are usually lower
than 0.5 (Figure S5b). On the contrary, when we vary the tuning parameter v € {0.1,0.2,...,1},
SOUP always achieves high precision in estimating the pure cells, and as soon as + is larger than
0.5, the recall rate is close to 1. In addition, the variation of SOUP across different runs is also
much smaller than LOVE (Figure S5c).

Next, we follow the instructions in Bing et al. (2017) to search for the optimal § = ¢y/logn/p using
sample splitting over ¢ € {0.1,0.15,...,2.45,2.5}. We examine the performance with {100, 300, 500}
mixed cells, with and without dropouts, each repeated 10 times. The estimated KLOVE usually
overestimates the true number of clusters K = 4 (Figure S5d). Among the three cases where
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KLOVE = 3, the average L losses of 6 rov e are over 40% higher than the average losses of SOUP
under the same scenarios.
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Figure S5: Comparison of LOVE and SOUP in 10 repetitions. We examine the scenario with
and without artificial dropouts. (a) With 300 mixed cells, the estimated Krove of LOVE using
different tuning parameter c. (b) With 300 mixed cells, the precision and recall of LOVE estimated
pure cells, using different parameter c¢. (¢) With 300 mixed cells, the precision and recall of SOUP
estimated pure cells, using different parameter . (d) The estimated Kiovg from LOVE.

Finally, we apply LOVE to the 7 public single cell datasets as in the main text. The optimal tuning
parameter is selected over grid ¢ € {0.5,2.1,...,10}, where K can be as small as 3 and as large
as over 50. Using the selected tuning parameter, the resulting Krove and the corresponding ARI
of LOVE major types are shown in Table S7. We see that the performance of LOVE is unstable
across different datasets, sometimes with substantially overestimated K. It achieves lower ARI
when compared to SOUP, except for the Baron mouse2 dataset.

S4 Supplementary Results

S4.1 Discussion of fetal brain data I

The published data (Camp et al., 2015) have been normalized by Fragments Per Kilobase of tran-
script per Million (FPKM) and log-transformed. To apply SOUP, we first transform the data back
to count scale, round to the closest integer, and then apply normalization and log transformation
as usual. We start with 12,694 genes that are non-zero in at least 2 cells. After gene selection,
430 genes are retained for SOUP clustering, including 300 selected by DESCEND and 158 selected
by SPCA. The original cell types are labeled according to 18 marker genes in Camp et al. (2015),
of which 12 are selected by our procedure. We run SOUP with K = 2,3,...,7, and compare our
hard clustering results with the published results (Figure S6a). With K = 5, SOUP labels are
largely consistent with Camp, with two AP clusters, one BP cluster, and two neuron clusters. The
sequence of different K'’s also reveals the hierarchical structure in the data. For example, K = 2
separates progenitors versus neurons, and K = 3 gives three major groups: (i) early neural pro-
genitors (mainly AP1), (ii) more matured progenitors and early neurons, and (iii) the matured
neurons. As soon as K = 4, the AP2 and BP2 cells are revealed. Because BP2 cells are always
clustered with early neurons, and there are always only two subtypes of neurons, we use K =5 in
the analysis. Notice that with K = 6 and K = 7, the effective number of major clusters is 5 and
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6, respectively, meaning that there is one column of © that is never the largest proportion for any
cell, and this situation is usually an indication of a misspecified K. We further visualize the soft
membership of cells in the leading principal component space, and observe smooth transition from
the early AP cluster to the mature neuron cluster (Figure S6b).
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Figure S6: (a) SOUP major cluster for 220 fetal brain cells when K = 2,3, ...,7, compared to
Camp labels (Camp et al., 2015) on the top. Each entry is colored by the cluster assignment of
each cell. (b) SOUP estimated soft memberships. 220 fetal brain cells are visualized in the leading
2-dimensional principal space, and each cluster is labeled by an anchor gene. In each cluster,
cells with proportion > 0.01 are highlighted, and the sizes and color transparency represent their
estimated proportions.

We see in the main text the SOUP identified two instead of three neuron subtypes. To validate this
finding, we again examine the expression levels of the 12 marker genes in the 220 fetal brain cells,
where the differentiation among the three Camp neuron subtypes is ambiguous (Figure S7a).
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Figure S7: Expression levels of the 220 fetal brain cells in Camp data, visualized in log scale. (a)
Expression levels of 12 marker genes, where cells on the columns are ordered according to Camp
labels, from left to right: AP1, AP2, BP1, BP2, N1, N2, and N3. (b) Expression levels of the
315 PC genes identified in Camp et al. (2015), where 220 fetal brain cells on the rows are ordered
according to single lineage SOUP developmental trajectory, indicated by the color bar on the left.

Next, we examine the SOUP estimated developmental trajectory. We evaluate the change of
expression profiles of the 315 PC genes identified in Camp et al. (2015), along the SOUP trajectory
(Figure S7b). We observe a smooth transition along different periods that is consistent with the
developmental order, suggesting the SOUP estimation is sensible.
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S4.2 Discussion of fetal brain data II

We applied SOUP to the entire sample of 2,309 cells with an aim to identify the IN and MIC cells
and remove them so that we can perform trajectory analysis on the cells that develop in the PFC.
We rely on the Zhong labels to identify the type of cells in a cluster, but we did not want to rely
on these labels exclusively, so we attempted to identify clusters largely populated by IN or MIC
cells and remove them prior to our trajectory analysis. In total we run SOUP 3 times, the first two
steps are required to identify and remove the IN and MIC clusters.

Step 1. The number of genes selected using Descend score > 8 was 627, the number of genes
chosen using sparse PCA was 198 for a total of 744 distinct genes. The maximum cross validation
score suggests 11 cell types; however, the best classification with at least 2 pure cells per cluster has
6 distinct cell types. Based on the results we remove cluster 3 (MIC) and cluster 4 (IN). Cluster 6
is ambiguous so we proceed with these cells included (Table S1).

Table S1: Contingency table of Zhong labels and major SOUP labels of all cells over the 6 clusters.

Zhong SOUP Clusters Total
Labels 1 2 3 4 5 6 | Total
EN | 932 17 98 | 1057
NPC 80 185 25 0 290
OPC 7T 24 73 12 117
AST 0 64 12 76
MIC 0 2 64 0 2 68
IN 40 1 0 430 4 226 701
Total | 1095 229 64 439 168 350 | 2309

o O o O
O O = O

Step 2. With 1806 cells remaining, we select 616 unique genes. Cross-validation and the require-
ment of at least 2 pure cells per cell type led to fitting 8 distinct cell types. Based on the results
we removed cluster 3 which has a large number of IN cells (Table S2).

Table S2: Contingency table of Zhong labels and major SOUP labels of all cells over the 8 clusters
after first stage of MIC and IN clusters.

Zhong Clusters Total
Label 1 2 3 4 5 6 7 8 | Total
NPC | 125 13 0 0 11 3 36 102 290
EN| 3 216 50 1 0 606 139 1| 1049
OPC 1 0 8 77 8 5 0 17 116
AST 0 68 1 0 0 76
IN 3 3 236 1 1 20 6 1 271
MIC 0 0 2 0 0 0 0 2 4
Total | 165 232 303 79 88 635 181 123 | 1806

=)
N
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Step 3. A total of 1503 cells remain. We used 527 genes for clustering in the final step. Cross-
validation and the requirement of having at least two pure cells in each cell type point towards
7 distinct cell types. The resulting clusters have very few cells that were classified as MIC or IN
by Zhong and these cells are distributed across many clusters, so we proceed with our analysis
assuming these cells may have been mislabeled by Zhong. The 7 clusters are labeled as OPC, AST,
NPC, NPC, NPC/EN, EN and EN cells, respectively, based on the Zhong labels (Table S3).

Table S3: Contingency table of Zhong labels and major SOUP labels of all cells over the 7 clusters
after final removal of MIC and IN clusters. Distribution of cell types over the 7 clusters assigned
by hard SOUP.

Zhong Clusters Total
Label | 1 2 3 4 5 6 7 | Total
NPC| 0 10 127 92 46 6 9 209
EN| 0 1 16 2 204 586 190 999
OPC | 74 11 0 16 1 6 0 108
AST | 0 68 0 0 0 1 0 69
MIC| 0 0 0 2 0 0 0 2
IN| 1 3 1 1 7T 21 1 35
Total | 75 93 144 113 258 620 200 | 1503

Table S4: Statistics associated with final clustering of cells, post removal of IN and MIC clusters
(Table S3). Average gestational age of each of cell type cluster and average maximum theta for the
primary type.

Cluster Type Age maxP
OPC 23.1 a7
AST 24.1 .75
NPC 11.7 .51
NPC 16.0 .73

EN/NPC 15.8 .52

EN 18.8 .60
EN 10.3 71

N O Ot s W N

The majority membership probabilities suggest that many cells are in the transitional phase (Fig-
ure S8). Trajectory analysis will facilitate our investigation of these transitional cells.

Cluster 4 was chosen to represent the earliest cell type in the lineage analysis because it contains
the fewest cells classified by Zhong as EN. Based on 3 dimensions in Slingshot (nPC = 3), starting
with cluster 4, we identified two lineages (Figure 7). One neuronal lineage, L1: 4 -3 -7 —6 — 5
moves from NPC cells to various stages of EN cells; another glia cell lineage, L2: 4 -3 — 1 — 2
moves from NPCs to AST cells.

Next, we examined how sensitive SOUP is to the number of genes used. We chose genes using
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Figure S8: SOUP estimated majority membership probabilities of all cells in Zhong dataset, ex-
cluding IN and MIC.

the DESCEND algorithm with a less stringent cutoff so that the total number of genes selected is
1917 rather than 527 for the analysis of the 1503 cells selected above. Using more genes we chose
K = 6 clusters (1',...,6") and the clusters are surprisingly similar to the 7 discovered with fewer
genes (1,...,7), with the exceprtion of cluster 6’ (Table S5). Using more genes we fail to differentiate
clusters 6 and 7 that contain EN cells. Moreover, half of cluster 5 cells migrate to cluster 6’.
Clusters 5, 6 and 7 are the most similar of all the clusters and 15-20% of the elements clustered to
these cell types have a substantial probability of being in transition between these clusters (based
on the estimated parameters). We conclude that SOUP is not highly sensitive to the number of
informative genes chosen. Nevertheless, it appears that a stricter list of genes can separate clusters
slightly better.

Table S5: Contingency table of SOUP labels calculated using 527 genes versus 1917 genes.

527 1917 Gene Clusters Total
Genes | 1’ 2’ 3’ 4’ 5’ 6’ | Total

1162 2 0 0 3 1 67
2|1 0 88 0 2 0 0 90
31 0 5 4 103 13 15 140
41 1 0 4 3 102 1 111
5| 0 3 108 1 5 114 231
6| 0 3 0 3 0 553 959
710 0 5 1 1 191 198

Total | 63 100 121 113 124 875 | 1396

A key advantage of SOUP is its soft membership. For example, we can use the probability of
membership SOUP yields to explore the molecular features inherent in the development of cell
types. Here we explore the development of neurons in clusters 5 and 6, the last two clusters in
the neuronal lineage in Figure 7. We select these two clusters for their features. Cluster 6 falls
tightly along the neuronal trajectory and is composed, predominantly, of cells labeled neurons (EN)
by Zhong. Alternatively, cluster 5, which falls at the end of the trajectory, shows greater spread,
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curls back toward NPC cells, and 17.8% of its cells are labeled NPC by Zhong. To elicit features of
neuronal development, we contrast cells in a cluster that either fall near the trajectory, but far from
the soft cluster center (Group 1), or cells in the cluster that fall far from the trajectory and the soft
cluster center (Group 2). Typically, membership to the cluster is less certain for cells away from
the cluster center and we enforce this feature by only analyzing cells with membership probability
< 0.5. Label Group 1’s less mature cells — determined by the trajectory— as set A and more mature
cells as set B; for Group 2, less mature cells fall in set C and more mature cells fall in set D
(Figure 7a). The idea is that the contrast of gene expression patterns of A versus B informs about
which proteins are changing as neurons of this trajectory develop, while the contrast of C versus D
and B versus D could yield information about development of alternative types of neurons. This
latter analysis is motivated by the fact that there is a wide diversity of types of excitatory neurons
in the human brain.

For cluster 6, 10, 43, 26 and 10 cells fall into the A through D sets, respectively (Figure S9a). When
the mean expression of 527 genes in cells from A versus B is contrasted (Table S8), 135 genes show
significant changes in expression (p j 0.05, uncorrected, t-test): 38.5% of the genes marking ENs
(5/13), according to Zhong, and 14.3% of their NPC markers (24/168). Mean expression for all five
neuronal markers increases from A to B, consistent with maturing neurons, and the enrichment for
neuronal markers among differentially expressed genes is 3.7 (p = 0.038). Tellingly, one of the NPC
markers is MYT1L, which, while first expressed in NPCs, is also expressed in neurons, where it locks
in and is essential for the maintenance of neuronal state Mall et al. (2017). MY T1L also increases in
expression from A to B cells. Many of the 24 differential NPC markers do too (Table S8), although
some of these genes are also critical for neurons (e.g., NRXNI, encoding a synaptic protein). The
contrast of mean gene expression for C versus D cells reveals remarkably similar patterns to those
seen in A versus B, again consistent with developing neurons (Table S8, Figure S9b). Given that
B and D show the hallmarks of neurons, we next evaluated these cell clusters in detail for all
13 neuronal markers identified by Zhong and including MYT1L. Of these, one show significant
differential mean expression for B versus D, IGFBPL1, p = 0.0023. Notably, most of the 13
neuronal markers are elevated in B versus A (13/13) and D versus C (9/13) (Table S8). Together
these data reveal several features of the cells in cluster 6: the cells show expression patterns
consistent with immature neurons early in the trajectory of this lineage and maturing neurons
later in the lineage; the level of expression of MYT1L is consistent with commitment to neuronal
fate in maturing neurons; and the differences in gene expression between cells in cluster B versus
D is suggestive the cells could differentiate into different neuronal cell types.

For cluster 5, 10, 8, 7 and 15 cells fall into the A through D sets, respectively (Figure S9a).
When the mean expression of genes in cells from A versus B are contrasted (Table S8), 164 genes
show significant changes in expression: 15.4% of the genes marking ENs (2/13) and 44.6% NPC
markers (75/168). Curiously, the expression of the differential neuronal markers diminishes slightly
from B to A (2/2), whereas most of the NPC markers increase (70/74), and the enrichment of
markers favors NPCs, not neurons (Odds ratio = 0.23, p = 0.045). Again, the patterns seen for A
versus B are similar to those for C versus D (Table S8). Because the average expression of NPC
markers increases in cells found later in the trajectory, it is reasonable to ask if B and D cells of
cluster 5 are truly immature neurons? Assessing neuronal markers and MYTI1L, it is clear that
the sets of cells (A-D) exhibit the hallmarks of maturing neurons (Figure S9c), which can also be
seen by comparing the patterns of gene expression for cluster 6 versus cluster 5 (Figure S9a vs.
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b). Moreover, when we sub-cluster the cells in cluster 5 separately, we obtain four clusters, two of
which we will examine more closely. One corresponds almost perfectly to Zhong’s NPC cells and the
other to a large group to Zhong’s neurons, and these groups of cells are indistinguishable for mean
expression of neuronal markers and MYT1L (data not shown). At least two possibilities spring
from these observations: either the developmental patterning of gene expression in the neurons of
cluster 5, which are likely deep-layer projection neurons according to their GW age, are not as well
understood as the literature suggests; or there is some contamination of cluster 5 neurons with
NPC cells, for instance, some pairs of different cell types sequenced together. The former is hard
to evaluate. If the latter were true, we would expect a greater diversity of genes to be expressed in
cluster 5 cells. This pattern is observed in the data (Figure S9d) and indeed cluster 5 cells express
significantly more genes than any other cluster: the most similar cluster is 4, which are NPC cells
(two-sided p = .043); for neurons, cluster 7 is most similar, but it is highly significantly different
(p < 10716). Thus, the cells from cluster 5 show strong and consistent expression of neuronal
markers regardless of location in the trajectory and cluster space (Figure S9a,c), suggesting that
many or most of these cells are maturing neurons; however, there is also some contradictory evidence
because mean expression of a substantial fraction of NPC markers increases in mean expression
from early to late in the developmental trajectory.
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Figure S9: Selection and gene expression patterns in neuronal lineage cells from cells in clusters 5
and 6 (Figure 7, main). (a) Identifying four sets of cells: A & B, cells far from the cluster center
but near the neuronal developmental trajectory (curve), where A is earlier in the projected lineage
and B is later; C & D, cells far from the cluster center and far from the trajectory, where C is
earlier in the projected lineage and D is later. Far is defined on the distribution of distances in
three dimensions in the principal component space, and specifically > 20% from the center of the
cluster and membership 6 < 0.5; near is defined likewise, as < 20% from the curve. (b) For sets A
to D of cluster 6, expression of the 13 genes cited as neuronal markers by Zhong et al. (2018) and
one cited as NPC, MYT1L, which is critical for determination and maintenance of neuronal state.
Expression in log of transcripts per million (TPM). (c¢) For sets A to D of cluster 5, expression of
neuronal markers and MYTI1L. Expression is scaled in log of transcripts per million (TPM). (d)
Number of genes with expression greater than zero for each cell in the neuronal lineage, by cluster.
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S5 Supporting Tables

Table S6: Major characteristics of 7 public datasets, including human brain cells from Darmanis
et al. (2015), and pancreatic cells from four human donors and two mouse strains from Baron et al.
(2016). For SOUP, we list the number of selected genes by SPCA and DESCEND, the ARI using
two different v € {0.5,0.8}, as well as the total runtime in seconds, including gene selection and
clustering, where DESCEND is paralleled with 5 cores, and the computation is conducted on a
linux computer equipped with AMD Opteron(tm) Processor 6320 @ 2.8 GHz.

Dataset characteristics SOUP
K # cells # genes | # sel. genes runtime ARI (v =0.5) ARI (y=0.8)
Darmanis | 8 420 22,085 1,106 40 0.8890 0.9071
Baron humanl | 14 1,937 20,125 1,632 227 0.7513 0.7519
Baron human2 | 14 1,724 20,125 1,571 188 0.7946 0.7502
Baron human3 | 14 3,605 20,125 1,923 848 0.4071 0.5030
Baron human4 | 14 1,303 20,125 1,516 112 0.7756 0.5092
Baron mousel | 13 822 14,878 895 50 0.5782 0.4541
Baron mouse2 | 13 1,064 14,878 1,324 78 0.6280 0.4093
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Table S7: Selected K and corresponding SOUP ARI on 7 public datasets (Baron et al., 2016;
Darmanis et al., 2015). We select the optimal K among {2, ...,20}, using (i) optimal Calinski-
Harabasz (CH) index or Silhouette score, computed from K-means hard-clustering results of the
pure cells, where pure cells are identified by SOUP with v = 0.8; and (ii) minimal sample splitting
(SS) prediction error of SOUP, averaged over 10 repetitions. We further compare the ARI of SOUP
hard assignments using different selected K’s. Finally, we present the estimated K from LOVE,
where the tuning parameter is selected by cross validation over grid ¢ € {0.5,0.6,...,9.9,10}, and
the number of cross validation is set to the default choice of 50. All algorithms are applied to the
selected genes by DESCEND and SPCA.

Dataset Selected K SOUP ARI with selected K LOVE

Reference | CH Silhouette SS CH Silhouette SS | K ARI

Darmanis 8 3 2 610.5073 0.1844 0.8957 | 27 0.4606
Baron humanl 14 2 4 13| 0.3433 0.3908 0.7512 | 18 0.6796
Baron human2 14 2 3 10 0.3329 0.3652 0.8986 | 13 0.6322
Baron human3 14 2 2 11 | 0.3944 0.3944 0.6034 | 51 0.2068
Baron human4 14 2 2 5 | 0.3439 0.3439 0.7509 | 11 0.6846
Baron mousel 13 2 2 0.5411 0.5411 0.8533 | 14 0.5158
Baron mouse2 13 2 2 71 0.2823 0.2823 0.6392 | 16 0.8602

Table S8: Attached as supplementary material.
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