

**Characterisation of carried and invasive *Neisseria meningitidis* isolates in  
Shanghai, China from 1950 to 2016:  
implications for serogroup B vaccine implementation**

Running title: Invasive meningococcal disease in China

Mingliang Chen<sup>1,2,3</sup>, Charlene M.C. Rodrigues<sup>2</sup>, Odile B Harrison<sup>2</sup>, Chi Zhang<sup>1</sup>, Tian Tan<sup>1</sup>, Jian Chen<sup>1</sup>, Xi Zhang<sup>1</sup>, Min Chen<sup>1\*</sup>, Martin C.J. Maiden<sup>2\*</sup>

**1** Department of Microbiology and Division of Infectious Diseases, Shanghai

Municipal Center for Disease Control and Prevention, Shanghai, China;

**2** Department of Zoology, University of Oxford, Oxford, United Kingdom;

**3** Department of Microbiology, Shanghai Institutes of Preventive Medicine, Shanghai,  
China

Corresponding Author: Min Chen, Department of Microbiology, Shanghai Municipal  
Center for Disease Control and Prevention, 1380 West ZhongShan Road, Shanghai  
200336, China, E-mail: chenmin@scdc.sh.cn;

\* Martin C.J. Maiden and Min Chen contributed equally to this manuscript.

**Summary:** Meningococcal disease in Shanghai, China is described and current

vaccine approaches evaluated. Since 1950, MenA:cc5 shifted to MenC:cc4821 then MenB:cc4821, with MenB dominating since 2009. Distinct antigens potentially beyond coverage with licensed OMV- and protein-based MenB vaccines were found.

## Abstract

**Background** Serogroup B invasive meningococcal disease (IMD) is increasing in China, little is known however, about these meningococci. This study characterises a collection of isolates associated with IMD and carriage in Shanghai and assesses current vaccine strategies.

**Methods** IMD epidemiological data in Shanghai from 1950–2016 were obtained from the National Notifiable Diseases Registry System, with 460 isolates collected for analysis including, 169 from IMD and 291 from carriage. Serogroup B meningococcal (MenB) vaccine coverage was evaluated using Bexsero® Antigen Sequence Type (BAST).

**Results** Seven IMD epidemic periods have been observed in Shanghai since 1950, with incidence peaking from February to April. Analyses were divided according to the period of meningococcal polysaccharide vaccine (MPV) introduction: (i) pre-MPV-A, 1965-1980; (ii) post-MPV-A, 1981-2008; and (iii) post-MPV-A+C, 2009-2016. IMD incidence decreased from 55.4/100,000 to 0.71 then to 0.02, and corresponded with shifts from serogroup A ST-5 complex (MenA:cc5) to MenC:cc4821 then MenB:cc4821. MenB IMD became predominant (63.2%) in the post-MPV-A+C period, of which 50% were caused by cc4821, with the highest incidence in infants (0.45/100,000) and a case-fatality rate of 9.5%. IMD was positively correlated with carriage rates. Data indicate that fewer

than 25% of MenB isolates in the post-MPV-A+C period may be covered by the vaccines Bexsero®, Trumenba®, or a PorA-based vaccine, NonaMen.

**Conclusions** A unique IMD epidemiology is found in China, changing periodically from hyperepidemic to low-level endemic disease. MenB IMD now dominates in Shanghai, with isolates harbouring diverse antigenic variants potentially beyond coverage with licenced OMV- and protein-based MenB vaccines.

**Keywords:** invasive meningococcal disease; meningococcal carriage; serogroup B; ST-4821 complex; vaccine

1    **Introduction**

2    *Neisseria meningitidis* is a leading cause of bacterial meningitis and septicaemia globally,  
3    with over 1.2 million invasive meningococcal disease (IMD) cases annually [1]. Over 90% of  
4    IMD cases are caused by serogroups A, B, C, W, and Y [2], all of which are potentially  
5    vaccine-preventable following the licensure of protein-based meningococcal vaccines in 2013  
6    [3].

7        In China, during the 1950s to 1980s, serogroup A (MenA) isolates were responsible for  
8    over 95% of cases [4], with incidence peaking in 1967 (403/100,000) [5]. These were  
9    predominantly due to ST-5 clonal complex (cc5) and cc1 [6], and in response, a MenA  
10   meningococcal polysaccharide vaccine (MPV) was routinely administered from 1980  
11   onwards [5, 6]. This was followed by a decrease in MenA incidence. From 2003-2005,  
12   serogroup C hypervirulent lineage ST-4821 complex (MenC:cc4821) caused outbreaks in  
13   Anhui [4], leading to the predominance of MenC IMD and MenC:cc4821 [5, 7]. As a result,  
14   in 2008, a serogroup A and C bivalent MPV was introduced into the vaccination program [5],  
15   followed by an overall IMD incidence decrease to 0.047/100,000, although this may have  
16   been underestimated [6]. From 2011 onwards, the proportion of MenC IMD began to  
17   decrease while MenB increased from 7.2% in 2006 to 26.5% in 2014 nationwide [6, 8], with  
18   a few regional MenW:cc11 cases [9].

19        Prevention of MenB IMD is challenging due to the poorly immunogenic polysaccharide  
20   capsule and concerns about autoimmunity due to its structural similarity to human tissue. To  
21   address this deficit, two protein-based vaccines, Bexsero® (4CMenB) and Trumenba®  
22   (bivalent rLP2086), were developed and licensed in Europe and the USA [10, 11]. Bexsero®  
23   is composed of factor H binding protein (fHbp), Neisserial heparin-binding antigen (NHBA),  
24   *Neisseria* adhesin A (NadA), and PorA, while Trumenba® contains two fHbp-subfamily  
25   variants [12]. Both Bexsero® and Trumenba® may elicit protective responses across

26 serogroups [13]. Two methods were established to predict Bexsero® coverage. The  
27 Meningococcal Antigen Typing System (MATS) combines phenotypic and functional assays  
28 [11]; however, it is time and labour intensive, requires toddler serum, and is only performed  
29 by specialist laboratories. Bexsero® Antigen Sequence Typing (BAST) is a rapid, scalable,  
30 and portable genotypic approach, which catalogues deduced peptide sequences and matches  
31 to vaccine variants (BAST-1) or cross-reactive variants [14].

32 Limited information is available documenting *N. meningitidis* isolates associated with  
33 IMD and carriage in China over the past 60 years. In this study, fluctuations of IMD and  
34 meningococcal carriage are described in association with the introduction of MPV vaccines  
35 in Shanghai, China since 1950. In addition, and in response to increasing MenB IMD [6], we  
36 assessed the potential impact of protein-based vaccines to local prevalent serogroups and  
37 clonal complexes.

38

## 39 **Methods**

### 40 **IMD surveillance**

41 IMD surveillance in Shanghai, implemented in the National Notifiable Diseases Registry  
42 System (NNDRS), began in 1950 and was based on monthly paper reports. Since 2004, it has  
43 become a web-based, real-time system [5]. All clinical specimens and meningococcal isolates  
44 from suspected IMD cases in Shanghai are sent to Shanghai CDC when they are reported in  
45 the NNDRS [5]. In China, a child is defined as aged <15 years and an infant <1 year [5].

### 46 ***N. meningitidis* carriage surveys**

47 Twenty carriage studies were conducted during 1965-2016. In each study, three districts were  
48 chosen, including urban, suburban, and rural districts. Posterior oropharyngeal swabs were  
49 collected from preschool children (toddlers aged 3-6 years in childcare centres), students  
50 (aged 6-14 years in schools), and adults (staff in department stores, railway stations, army,

51 and residents in communities), and cultured as previously described [15].

52 **Isolate collection**

53 From 1965-2016, 460 isolates were collected in Shanghai, excluding the period 1986-2004  
54 when isolates were not stored. As a result, 169 IMD and 291 carriage isolates dating from  
55 1965-1985 (n=306) and 2005-2016 (n=154) were available for study. Serogroup was  
56 determined by slide agglutination using monoclonal antiserum (BD, USA) and PCR [16].  
57 Isolate serogroup distribution was: A, 123 isolates; B, 221; C, 62; E, 13; W, 5; X, 3; Y, 9; and  
58 Z, 3; and 21 nongroupable (NG, negative by PCR and sera agglutination). Sequence type  
59 (ST), cc, *porA* and *fetA* variants were determined using PubMLST.org/neisseria [17].  
60 Relationships between STs were analysed using BioNumerics software package (version  
61 7.6.2; Applied Maths, Belgium).

62 **BAST identification and vaccine coverage estimates**

63 BAST was determined as reported previously [14]. Exact matches and potential  
64 cross-reactive matches were combined to evaluate coverage of Bexsero®, Trumenba®, and  
65 NonaMen, a 9-valent OMV-based vaccine (Table S1) [18-23].

66 **Statistical analysis**

67 Statistical analysis was performed using SPSS (version 20.0; IBM, USA). Fisher's exact test  
68 was used to compare proportions of IMD occurring in children with causative serogroup.  
69 Statistical significance was assessed at  $p < 0.05$ . The correlation coefficient between carriage  
70 rate and IMD incidence was calculated using Microsoft Excel 2010.

71

72 **Results**

73 **Epidemiology and characterisation of *N. meningitidis* isolates associated with IMD and  
74 carriage in Shanghai**

75 From 1950 to 2016, seven IMD epidemic periods were observed, each lasting 8-10 years

76 (Figure 1A). Average incidence per 100,000 population was: 21 (case-fatality rate, 8.5%) in  
77 1953-1961; 87 (3.3%) in 1962-1972; 2.9 (5.7%) in 1973-1981; 1.6 (6.3%) in 1982-1990; 0.23  
78 (3.7%) in 1991-2000; 0.17 (9.8%) in 2001-2008; and 0.02 (15%) in 2009-2016. Highest  
79 incidence occurred in children aged <5 years, decreasing with age, except in those aged 15-19  
80 years from 2005 (Figure 1B). Seasonality of IMD rates was apparent; 50-70% of cases  
81 occurred between February and April, with fewer cases (8-23%) between June and October  
82 (Figure 1C). A positive correlation was observed between carriage rate and IMD incidence  
83 (Figure 2).

84 Based on the time of introduction of MPVs in China (1980 and 2008), three periods  
85 were defined: (i) pre-MPV-A, 1965-1980; (ii) post-MPV-A, 1981-2008; and (iii)  
86 post-MPV-A+C, 2009-2016 (Table 1 and Figure 3).

87 (i) In the pre-MPV-A period, the average incidence was 55.4/100,000. MenA isolates  
88 were predominant (71.8%, 84/117; Table 1), belonging to cc5 (57.1%, 48/84) and cc1 (42.9%,  
89 36/84). Among MenA:cc5 isolates, ST-5 prevailed (77.1%, 37/48), with no ST-7, and all  
90 contained PorA VR P1.20,9, while of the MenA:cc1 isolates, 34/36 (94.4%) were ST-3, with  
91 32/34 (94.1%) P1.7-1,10. MenB isolates were assigned to cc41/44 (30%, 6/20), cc32 (15%,  
92 3/20), cc8 (5%, 1/20), cc35 (5%, 1/20), and cc198 (5%, 1/20), with 8 singletons. MenC  
93 isolates were assigned to ST-9514 cluster (44.4%, 4/9), cc4821 (33.3%, 3/9), and cc231  
94 (11.1%, 1/9). MenC:cc4821 isolates were all ST-3436 with P1.20-3,23-x, such as  
95 P1.20-3,23-1 and P1.20-3,23-3.

96 The carriage rate ranged from 2.4% in 1972 to 24.1% in 1967 (Table S2), with overall  
97 carriage rates of 4.4% (368/8,319) in children and 9.9% (888/8,956) in adults ( $\geq 15$  years). In  
98 1966-1967, high IMD incidence (>200/100,000) coincided with high carriage rates (>15%),  
99 of which a high proportion (>70%) was MenA. This decreased from 50% in 1970 to 1.1% in  
100 1979. Among the 178 carriage isolates analysed, MenB (52.2%) was predominant (Table 1),

101 with cc32 (18.3%, 17/93) the most prevalent.

102 (ii) In the post-MPV-A period, the average incidence was 0.71/100,000. Based on 61  
103 IMD cases with available serogroup data, MenC (45.9%, 28/61) was the most frequent, in  
104 which isolates belonging to cc4821 (89.5%, 17/19) dominated with the majority of these  
105 ST-4821 (88.2%, 15/17) and P1.7-2,14. MenA:cc5 (62.5%, 10/16) dominated in MenA  
106 isolates, with 8 were collected during 2005-2008 with 6/8 (75%) ST-7 and P1.20,9, and 2  
107 from 1985 ST-5, P1.20,9. MenB isolates were assigned to cc4821 (14.3%, 1/7; ST-5798 with  
108 P1.10,13-1), cc41/44 (14.3%, 1/7), and cc32 (14.3%, 1/7), with 4 singletons.

109 The carriage rate from the 2007 survey was 2.0% (11/553), with 2.4% (9/369) of this in  
110 children and 1.1% (2/184) in adults (15-46 years). MenB (66.7%, 16/24) was predominant in  
111 carriage (Table 1), 31.3% of which belonged to cc4821, with 5 different STs each possessing  
112 a different PorA VR type.

113 (iii) In the post-MPV-A+C period, the average incidence was 0.02/100,000. MenB  
114 (63.2%) isolates predominated, 50% of which were cc4821 and assigned to 5 STs each with a  
115 different PorA VR type (Figure 3). All 7 MenC isolates were assigned to cc4821. Except one  
116 DNA sample with incomplete ST, other 6 MenC:cc4821 isolates were ST-4821, with 5  
117 containing P1.7-2,14.

118 The carriage rate ranged from 0.5% in 2011 to 1.6% in 2014, with 1.5% (25/1,660) in  
119 children and 1.6% (73/4,624) in adults (15-78 years). MenB (84.3%, 75/89) was the most  
120 frequent serogroup in carriage (Table 1), with 20/75 (26.7%) cc4821.

## 121 **Features and seasonality of MenB IMD**

122 From 1965 to 2016, 72.3% (34/47) of all MenB IMD occurred in children, while only 40%  
123 (60/150) of non-B IMD cases occurred in this age group (p=0.01). Since 2005, all MenB  
124 IMD cases were in children (19 days to 12 years), among which 65% (13/20) were infants.  
125 During 2005-2008, MenB IMD incidence was 0.01/100,000, highest among infants

126 (1.1/100,000) compared to 0.009/100,000 in children aged 1-15 years, with no reported  
127 deaths. During the post-MPV-A+C period, MenB IMD incidence was 0.007/100,000, the  
128 highest of which in infants (0.45/100,000) compared to 0.03/100,000 in children aged 1-15  
129 years, with a case-fatality rate of 9.5% (2/21). During the post-MPV-A+C period, MenB  
130 cases were observed from February to September, and in December while all MenB cases  
131 from 2005-2008 occurred from January to June.

132 **BAST identification, prevalence of vaccine antigens and potentially cross-reactive  
133 variants**

134 A total of 243 BASTs were identified with high diversity in each of the vaccine antigens:  
135 fHbp, 64 variants; NHBA, 95; NadA, 9, the *nadA* gene was absent or had gene-silencing  
136 frameshift mutations in 82.0% (367/460) of isolates; PorA VR1, 38; and PorA VR2, 64.

137 A total of 56 BASTs were identified in the 169 IMD isolates (0.33 BASTs/isolates). The  
138 four most prevalent BASTs were BAST-13 (cc5), BAST-794 (cc1), BAST-802 (cc4821) and  
139 BAST-22 (cc5), represented by 60.4% (102/169) isolates. In the 291 carriage isolates, 201  
140 BASTs were identified (0.69 BASTs/isolates). The four most prevalent BASTs, including  
141 BAST-2300 (ST-9514 cluster), BAST-13 (cc5), BAST-794 (cc1), and BAST-2262 (ST-5620  
142 cluster), were represented by 15.0% (40/267) isolates. BASTs fluctuated with ccs found in the  
143 pre- and post-MPV periods (Table 1).

144 Combined exact matches and putative cross-reactive antigens, revealed that 6.8%  
145 (15/221) of MenB isolates were potentially covered by Bexsero®, and among IMD MenB  
146 isolates, these constituted: 15% (3/20) in pre-MPV-A; 0% in post-MPV-A; and 0% in  
147 post-MPV-A+C periods. For Trumenba®, no exact antigen match was found and putative  
148 cross-reactive variants were 90/221 (40.7%) among MenB isolates. In IMD MenB isolates  
149 this constituted: 50% (10/20), 12.5% (1/8), and 22.2% (2/9) in each respective period. For  
150 NonaMen, the covered antigen in MenB isolates was 34/221 (15.4%), and in IMD MenB

151 isolates, the prevalence was 15% (3/20), 25% (2/8), and 0% respectively (Figure 5).

152

153 **Discussion**

154 This study provides a comprehensive analysis of IMD in Shanghai, China, comparing  
155 invasive meningococci with those obtained from carriage. From 1965 to 1980, IMD was  
156 dominated by MenA isolates belonging to cc5 (ST-5) and cc1 (ST-3), resulting in several  
157 epidemics (Figure 1A and 3). This was consistent with that seen elsewhere with MenA:cc5  
158 meningococci responsible for the first and second pandemic waves between the 1960s and  
159 1990s [24, 25]. Introduction of serogroup A MPV vaccine in China in 1980 was followed by  
160 a decrease in IMD; however, this in turn may have contributed to expansion of MenC IMD  
161 caused by MenC:cc4821 [4]. The pattern of clonal expansion following vaccine  
162 implementation was further observed with the subsequent implementation of serogroup A and  
163 C MPV in 2008 which was followed by an increase in MenB IMD, largely due to  
164 MenB:cc4821 isolates (Figure 1A and 3) [26]. These data indicate that vaccine intervention  
165 may have facilitated the emergence of new strains not targeted by the vaccines, consistent  
166 with the secular fluctuation of hyperinvasive lineages. Indeed, similar changes subsequent to  
167 vaccine implementation with MPV A+C were observed in Egypt and Morocco during  
168 1992-1995 [27]. This epidemiology appears to be unique to China [6], with a dramatic shift  
169 from hyperepidemic disease (55.4/100,000 in 1965-1980), similar to that of low-income  
170 regions, to low incidence endemic disease (0.02/100,000 in 2009-2016), more similar to  
171 epidemiology of industrialised regions.

172 Since the 1950s, the seasonal peak of IMD cases in Shanghai has been from February to  
173 April (Figure 1C), identical to that seen nationwide [5]. China is, however, a large country,  
174 with notable differences seen for example in the peak influenza season between northern  
175 (January) and southern China (from June to July), with the latter warmer and more humid

176 [28]. This suggests that, besides climate and influenza incidence, social factors including  
177 mass gathering events should be considered when deploying preventative strategies. IMD  
178 outbreaks, such as the MenA:cc5 global pandemic and MenW:cc11 transmission, are often  
179 associated with the movement of large numbers of people [24, 29]. Similarly, the 1967 MenA  
180 epidemics across China (403/100,000) occurred following the National Great Networking  
181 event during 1966-1967 [5, 30], where millions of students from all over the country gathered  
182 [30]. Correspondingly, the seasonal IMD peaks observed (Figure 1C) may be associated with  
183 the Spring Festival, the Chinese New Year. Annually, from January to March, over 200  
184 million people embrace the “Spring Festive travel rush” traveling across the country by train  
185 [31], to gather with family and friends. Poor sanitary conditions and overcrowded  
186 environments on public transport will facilitate transmission of meningococci. Such  
187 information should be considered for optimal future vaccination strategies, to prevent  
188 transmission resulting from travel and social gatherings. In addition, these data indicate that  
189 more research into meningococcal carriage before, during, and after the Chinese New Year is  
190 required.

191 Indeed, few carriage surveys in China have been undertaken; however, two studies in the  
192 Shandong and Guangxi provinces identified high carriage rates of meningococci from  
193 hyperinvasive cc5 in association with IMD outbreaks [9, 32]. This is consistent with results  
194 from our study where carriage rates positively correlated with incidence (Figure 2), with  
195 MenB predominant in carriage both pre- and post- introduction of MPVs (Table 1), and  
196 cc4821 increasing from 8.4% in pre-MPV-A to 29.2% in post-MPV-A subsequently  
197 stabilizing at 25.8% in post-MPV-A+C periods (Table 1). In addition, MenB cases were not  
198 linked to a distinct seasonal pattern. Since the 1950s, IMD cases in Shanghai predominantly  
199 occurred from February to April (Figure 1C), while during the post-MPV-A+C period, MenB  
200 IMD cases occurred more consistently throughout the year. Since the IMD diagnostic criteria

201 require the onset of disease during the epidemic season [5], results from this study indicate  
202 that diagnostic criteria should be redefined so that future IMD cases can be accurately  
203 diagnosed and reported.

204 To our knowledge, this study was the first to assess coverage with licensed  
205 meningococcal vaccines. Since the 1980s, three monovalent OMV-based MenB vaccines  
206 have been licensed for IMD epidemics but they demonstrated clinical efficacy only against  
207 homologous meningococci [12]. Although a nonavalent OMV-based MenB vaccine has been  
208 evaluated [18], we found low prevalence of its homologous variants among Chinese MenB  
209 meningococci based on PorA data in this study (<5%) and from 27 provinces of China (<11%)  
210 [26]. Two protein-based MenB substitute vaccines were licensed and implemented in  
211 vaccination interventions in Europe and the USA [10, 11]. The coverage of MenB isolates by  
212 Bexsero® in the UK during 2014/15 was predicted to be 60.8% using BAST [14], and 66%  
213 by MATS [33]. For Trumenba®, coverage rates of 78-100% to collections of diverse strains  
214 in Europe and the USA was estimated using serum bactericidal assay [20-23]. In this study,  
215 the presence of potentially covered variants was low in Shanghai for both Bexsero® ( $\leq 15\%$ )  
216 and Trumenba® ( $\leq 50\%$ ) and, based on fHbp data from 30 provinces across China [34],  
217 Trumenba® was predicted to potentially cover 32.5% of IMD and 40% of MenB carriage  
218 isolates. The low prevalence is attributed to the predominant cc, cc4821 [26], which has a low  
219 prevalence of homologous antigens to Bexsero® (0%) and Trumenba® (40.3%) (Figure 5).  
220 In Europe and the USA, MenB cases are mainly due to cc32, cc41/44, and cc269  
221 meningococci [35], which exhibited different antigenic profiles in China. Chinese cc32  
222 isolates contained fHbp peptide 101 (56.5%), which was not present in Bexsero®, while cc32  
223 in Europe predominantly expressed fHbp peptide 1 [35], the Bexsero® variant. Chinese  
224 cc41/44 isolates mainly harboured fHbp peptide 19 (71.4%) and PorA-VR2 variant 25  
225 (33.3%), while European cc41/44 meningococci mostly include fHbp peptide 1 and

226 PorA-VR2 variant 4 [35], part of the Bexsero® vaccine. Therefore, the likely impact of  
227 Bexsero® on Chinese cc32 (4.3%) and cc41/44 (42.9%) was lower than in Europe (93-100%)  
228 [33]. Alternative approaches include an OMV-based vaccine specific for MenB cc4821, and  
229 the characterisation of ST and antigen data, especially PorA variants, reported here will be  
230 invaluable in assessing vaccine coverage and future serogroup B-substitute vaccine  
231 development in China.

232 Although data in this study are limited by incomplete records of MenB IMD cases  
233 during 1950-2004 and the small number of isolates collected during 1965-1980 and  
234 1981-2008; data from children's hospitals in Shanghai and Beijing provide some insight into  
235 MenB IMD during 1976-2002 [36-38], where the two features of MenB IMD, the occurrence  
236 in young children and lack of seasonal variation, have persisted since the 1970s. Our findings  
237 show that MenB has dominated IMD in Shanghai since 2009. At the time of writing, cc4821  
238 isolates were the predominant cause of MenC and MenB IMD across 27 provinces in China  
239 [26]. Besides Shanghai, MenB:cc4821 were also found in 18 other provinces, with two  
240 IMD-associated MenB:ST-4821 isolates discovered clustering with MenC:ST-4821 outbreak  
241 isolates by genomic analysis [39]. These MenC:cc4821 outbreak strains accounted for the  
242 increase from <5% before 2003 to 58% during 2003-2008, resulting in an increase in IMD  
243 incidence due to MenC from 0.11 in 2000 to >5.5 during 2004-2007 per 100,000 in Hefei,  
244 China [7, 40]. Enhanced surveillance of IMD is therefore essential to monitor changes in cc  
245 and antigenic variants of MenB IMD, through vaccine selective pressure or secular change.

246 Our data suggest that vaccine coverage of MenB:cc4821 meningococci by licensed  
247 OMV- and protein-based MenB vaccines may be limited.. Therefore a cautious,  
248 region-specific approach to implementation of new protein-based meningococcal vaccines  
249 should be considered. Further, the temporal analysis suggests that vaccine implementation  
250 coinciding with the start of the calendar year, so as to disrupt transmission events during

251 Spring Festival could have a higher impact. In conclusion, our data indicate that IMD  
252 surveillance should be enhanced, combined with comprehensive carriage studies to assess the  
253 impact of vaccines in inducing herd immunity.

254

## 255 **Funding**

256 This study was supported by grants from National Natural Science Foundation of China  
257 [81601801], Shanghai Rising-Star Program and Natural Science Foundation of Shanghai from  
258 Shanghai Municipal Science and Technology Commission [17QA1403100 and 16ZR1433300], a  
259 Municipal Human Resources Development Program for Outstanding Young Talents in Medical  
260 and Health Sciences in Shanghai from Shanghai Municipal Commission of Health and Family  
261 Planning [2017YQ039]. The funders had no role in study design, data collection and  
262 interpretation, or the decision to submit the work for publication.

263

## 264 **Conflicts of Interest**

265 The authors report that they have no conflicts of interest.

266

## 267 **References**

- 268 1. Jafri RZ, Ali A, Messonnier NE, et al. Global epidemiology of invasive meningococcal  
269 disease. *Popul Health Metr* **2013**; 11(1): 17.
- 270 2. Caugant DA, Maiden MC. Meningococcal carriage and disease--population biology and  
271 evolution. *Vaccine* **2009**; 27 Suppl 2: B64-70.
- 272 3. Rollier CS, Dold C, Marsay L, Sadarangani M, Pollard AJ. The capsular group B  
273 meningococcal vaccine, 4CMenB : clinical experience and potential efficacy. *Expert Opin  
274 Biol Ther* **2015**; 15(1): 131-42.
- 275 4. Shao Z, Li W, Ren J, et al. Identification of a new *Neisseria meningitidis* serogroup C  
276 clone from Anhui province, China. *Lancet* **2006**; 367(9508): 419-23.

277 5. Li J, Li Y, Shao Z, et al. Prevalence of meningococcal meningitis in China from 2005 to  
278 2010. *Vaccine* **2015**; 33(8): 1092-7.

279 6. Li J, Shao Z, Liu G, et al. Meningococcal disease and control in China: Findings and  
280 updates from the Global Meningococcal Initiative (GMI). *J Infect* **2018**.

281 7. Zhou H, Gao Y, Xu L, et al. Distribution of serogroups and sequence types in  
282 disease-associated and carrier strains of *Neisseria meningitidis* isolated in China between  
283 2003 and 2008. *Epidemiol Infect* **2012**; 140(7): 1296-303.

284 8. Li J, Li Y, Wu D, Ning G, Shao Z, Yin Z. [Epidemiological characteristics of  
285 meningococcal meningitis and switching trend of serogroups of *Neisseria meningitidis* in  
286 China, 2006-2014]. *Chin J Vacc Immun* **2015**; 21(5): 481-5.

287 9. Zhou H, Liu W, Xu L, et al. Spread of *Neisseria meningitidis* serogroup W clone, China.  
288 *Emerg Infect Dis* **2013**; 19(9): 1496-9.

289 10. Shirley M, Dhillon S. Bivalent rLP2086 Vaccine (Trumenba(R)): a review in active  
290 immunization against invasive meningococcal group B disease in individuals aged 10-25  
291 years. *BioDrugs* **2015**; 29(5): 353-61.

292 11. Medini D, Stella M, Wassil J. MATS: global coverage estimates for 4CMenB, a novel  
293 multicomponent meningococcal B vaccine. *Vaccine* **2015**; 33(23): 2629-36.

294 12. Poolman JT, Richmond P. Multivalent meningococcal serogroup B vaccines: challenges  
295 in predicting protection and measuring effectiveness. *Expert Rev Vaccines* **2015**; 14(9):  
296 1277-87.

297 13. Ladhani SN, Giuliani MM, Biolchi A, et al. Effectiveness of meningococcal B vaccine  
298 against endemic hypervirulent *Neisseria meningitidis* W strain, England. *Emerg Infect  
299 Dis* **2016**; 22(2): 309-11.

300 14. Brehony C, Rodrigues CM, Borrow R, et al. Distribution of Bexsero(R) Antigen  
301 Sequence Types (BASTs) in invasive meningococcal disease isolates: implications for  
302 immunisation. *Vaccine* **2016**; 34: 4690-7.

303 15. Chen M, Guo Q, Wang Y, et al. Shifts in the antibiotic susceptibility, serogroups, and  
304 clonal complexes of *Neisseria meningitidis* in Shanghai, China: a time trend analysis of  
305 the pre-quinolone and quinolone eras. PLoS medicine **2015**; 12(6): e1001838.

306 16. Zhu H, Wang Q, Wen L, et al. Development of a multiplex PCR assay for detection and  
307 genogrouping of *Neisseria meningitidis*. J Clin Microbiol **2012**; 50(1): 46-51.

308 17. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the  
309 population level. BMC bioinformatics **2010**; 11: 595.

310 18. Kaaijk P, van Straaten I, van de Waterbeemd B, et al. Preclinical safety and  
311 immunogenicity evaluation of a nonavalent PorA native outer membrane vesicle vaccine  
312 against serogroup B meningococcal disease. Vaccine **2013**; 31(7): 1065-71.

313 19. Charlene MCR, Jay L, Ray B, et al. Genomic surveillance of 4CMenB vaccine antigenic  
314 variants among disease-causing *Neisseria meningitidis* isolates, United Kingdom, 2010–  
315 2016. Emerg Infect Dis **2018**; 24(4).

316 20. Taha MK, Hawkins JC, Liberator P, et al. Bactericidal activity of sera from adolescents  
317 vaccinated with bivalent rLP2086 against meningococcal serogroup B outbreak strains  
318 from France. Vaccine **2017**; 35(11): 1530-7.

319 21. Ostergaard L, Vesikari T, Absalon J, et al. A bivalent meningococcal B vaccine in  
320 adolescents and young adults. N Engl J Med **2017**; 377(24): 2349-62.

321 22. Lujan E, Partridge E, Giuntini S, Ram S, Granoff DM. Breadth and duration of  
322 meningococcal serum bactericidal activity in healthcare workers and microbiologists  
323 immunized with the MenB-FHbp vaccine. Clin Vaccine Immunol **2017**; 24(8):  
324 e00121-17.

325 23. Harris SL, Donald RG, Hawkins JC, et al. *Neisseria meningitidis* Serogroup B vaccine,  
326 bivalent rLP2086, induces broad serum bactericidal activity against diverse invasive  
327 disease strains including outbreak strains. Pediatr Infect Dis J **2017**; 36(2): 216-23.

328 24. Zhu P, van der Ende A, Falush D, et al. Fit genotypes and escape variants of subgroup III

329 *Neisseria meningitidis* during three pandemics of epidemic meningitis. Proc Natl Acad  
330 Sci U S A **2001**; 98(9): 5234-9.

331 25. Nicolas P, Decousset L, Riglet V, Castelli P, Stor R, Blanchet G. Clonal expansion of  
332 sequence type (ST-)5 and emergence of ST-7 in serogroup A meningococci, Africa. Emerg  
333 Infect Dis **2001**; 7(5): 849-54.

334 26. Zhou H, Shan X, Sun X, et al. Clonal characteristics of invasive *Neisseria meningitidis*  
335 following initiation of an A + C vaccination program in China, 2005-2012. J Infect **2015**;  
336 70(1): 37-43.

337 27. Sridhar S, Greenwood B, Head C, et al. Global incidence of serogroup B invasive  
338 meningococcal disease: a systematic review. Lancet Infect Dis **2015**; 15(10): 1334-46.

339 28. Shu YL, Fang LQ, de Vlas SJ, Gao Y, Richardus JH, Cao WC. Dual seasonal patterns for  
340 influenza, China. Emerg Infect Dis **2010**; 16(4): 725-6.

341 29. Taha MK, Achtman M, Alonso JM, et al. Serogroup W135 meningococcal disease in Hajj  
342 pilgrims. Lancet **2000**; 356(9248): 2159.

343 30. Fan Ka W. Epidemic Cerebrospinal meningitis during the cultural revolution.  
344 Extrême-Orient Extrême-Occident **2014**; 37(1): 197-232.

345 31. Wang L, Zhang Q, Cai Y, Zhang J, Ma Q. Simulation study of pedestrian flow in a station  
346 hall during the Spring Festival travel rush. Physica A **2013**; 392(10): 2470-8.

347 32. Zhang J, Zhou HJ, Xu L, et al. Molecular characteristics of *Neisseria meningitidis*  
348 isolated during an outbreak in a jail: association with the spread and distribution of  
349 ST-4821 complex serogroup C clone in China. Biomed Environ Sci **2013**; 26(5): 331-7.

350 33. Parikh SR, Newbold L, Slater S, et al. Meningococcal serogroup B strain coverage of the  
351 multicomponent 4CMenB vaccine with corresponding regional distribution and clinical  
352 characteristics in England, Wales, and Northern Ireland, 2007-08 and 2014-15: a  
353 qualitative and quantitative assessment. Lancet Infect Dis **2017**; 17(7): 754-62.

354 34. Shi F, Zhang A, Zhu B, et al. Prevalence of factor H binding protein sub-variants among

355 *Neisseria meningitidis* in China. *Vaccine* **2017**; 35(18): 2343-50.

356 35. Vogel U, Taha MK, Vazquez JA, et al. Predicted strain coverage of a meningococcal  
357 multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.  
358 *Lancet Infect Dis* **2013**; 13(5): 416-25.

359 36. Li Y, Zeng M, Wang X, Wang D. [Clinical epidemiology of epidemic cerebrospinal  
360 meningitis in children in Shanghai area from 1984 to 2003]. *Chin J Infect Chemother*  
361 **2004**; 4(6): 321-3.

362 37. Feng L, Chengshu D, Daiming W. [Clinical epidemiology and clinical characterization of  
363 serogroup B meningococcal infection cases]. *J Practical Pediatrics* **1987**; 2(1): 22-3.

364 38. Ma Y, Shen X, Yang Y, Luo Z. [Clinical analysis on children with group B epidemic  
365 meningitis]. *J Clin Pediatrics* **2003**; 21.

366 39. Zhu B, Xu Z, Du P, et al. Sequence Type 4821 clonal complex serogroup B *Neisseria*  
367 *meningitidis* in China, 1978-2013. *Emerg Infect Dis* **2015**; 21(6): 925-32.

368 40. Xu XH, Ye Y, Hu LF, Jin YH, Jiang QQ, Li JB. Emergence of serogroup C  
369 meningococcal disease associated with a high mortality rate in Hefei, China. *BMC Infect*  
370 *Dis* **2012**; 12: 205.

371 Table 1. Epidemiological information and molecular characterisation of meningococcal isolates before and after introduction of vaccines in Shanghai,  
 372 China

| Period                   | Disease isolates           |                      |                      | Carriage isolates                     |                     |                     |
|--------------------------|----------------------------|----------------------|----------------------|---------------------------------------|---------------------|---------------------|
|                          | i) pre-MPV-A §:            | ii) post-MPV-A:      | iii) post-MPV-A+C:   | i) pre-MPV-A:                         | ii) post-MPV-A:     | iii) post-MPV-A+C:  |
|                          | 1965-1980<br>(n=117)       | 1981-2008<br>(n=61)* | 2009-2016<br>(n=19)† | 1965-1980<br>(n=178)                  | 1981-2008<br>(n=24) | 2009-2016<br>(n=89) |
| Incidence,<br>/100,000   | 55.4 (range,<br>1.9-433.8) | 0.71 (0.06-4.3)      | 0.02 (0.008-0.03)    | 9.3% (carriage rate,<br>2,832/30,766) | 2.0%<br>(11/553)    | 1.2%<br>(83/6,284)  |
| Case fatality<br>rate, % | 3.0<br>(2,918/97,280)      | 6.5<br>(168/2,580)   | 15<br>(6/40)         | NA ¶                                  | NA                  | NA                  |
|                          | A (71.8%, 84)‡,            | A (29.5%, 18/61),    | A (0%),              | A (10.7%, 19),                        | A (16.7%, 4),       | A (0%)              |
| Serogroup                | B (17.1%, 20),             | B (24.6%, 15/61),    | B (63.2%, 12/19),    | B (52.2%, 93),                        | B (66.7%, 16),      | B (84.3%, 75),      |
|                          | C (7.7%, 9)                | C (45.9%, 28/61)     | C (36.8%, 7/19),     | C (16.9%, 30),                        | C (4.2%, 1)         | C (3.4%, 3),        |

|                 |                                        |                                              |                                              |                                                                                |                                                                                                    |
|-----------------|----------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                 |                                        |                                              | cc32 (9.6%, 17),                             |                                                                                |                                                                                                    |
| Clonal complex♀ | cc5 (41.0%, 48),<br>cc1 (30.8%, 36)    | cc4821 (37.5%, 18/48),<br>cc5 (20.8%, 10/48) | cc4821 (75%, 12/16)                          | cc4821 (8.4%, 15),<br>cc5 (7.3%, 13)                                           | cc4821 (29.2%, 7) cc4821 (25.8%, 23)                                                               |
|                 |                                        |                                              |                                              |                                                                                | P1.21-2,28 (13.5%,<br>12), P1.22,23-3                                                              |
|                 |                                        | P1.7-2,14                                    |                                              | P1.7-2,14                                                                      |                                                                                                    |
| PorA VR         | P1.20,9 (41.0%,<br>48), P1.7-1,10      | (29.2%, 14/48),<br>P1.20,9<br>(29.1%, 34)    | P1.7-2,14<br>(43.8%, 7/16)<br>(20.8%, 10/48) | P1.7-4,13-20 (11.2%,<br>20), P1.7,16 (9.0%,<br>16), P1.20,9 (7.9%, 14)         | P1.7-2,14<br>(12.5%, 3), P1.20,9<br>(12.5%, , 3)<br>P1.18-25,9-18 (5.6%,<br>5), P1.22,23 (5.6%, 5) |
|                 |                                        |                                              |                                              |                                                                                |                                                                                                    |
| FetA VR         | F3-1 (32.5%, 38),<br>F5-5 (31.6%, 37), | F3-3 (34.2%, 13/38),<br>F3-1 (23.7%, 9/38)   | F3-3 (42.9%, 6/14)                           | F5-8 (11.8%, 21),<br>F1-7 (10.1%, 18),<br>F1-15 (9.0%, 16),<br>F3-1 (6.7%, 12) | F1-5 (12.5%, 3) ,<br>F3-1 (12.5%, 3),<br>F3-3 (12.5%, 3)<br>F1-20 (13.5%, 12),<br>F1-91 (10.1%, 9) |

|      |                                    |                                        |                   |                                          |                  |                                   |
|------|------------------------------------|----------------------------------------|-------------------|------------------------------------------|------------------|-----------------------------------|
| BAST | 13 (38.5%, 45),<br>794 (29.1%, 34) | 22 (21.1%, 8/38),<br>802 (15.8%, 6/38) | 802 (21.4%, 3/14) | 2300 (9.6%, 17/162)<br>13 (6.2%, 11/178) | 22 (12.5%, 3/24) | 2262 (5.6%, 5),<br>2433 (4.5%, 4) |
|------|------------------------------------|----------------------------------------|-------------------|------------------------------------------|------------------|-----------------------------------|

373 § MPV-A, serogroup A meningococcal polysaccharide vaccine.

374 \* 13 isolates or positive DNA not available for multi-locus sequence typing and PorA VR, and another 10 isolates not available for typing of FetA  
375 and BAST.

376 † 3 isolates or positive DNA not available for multi-locus sequence typing and PorA VR, and another 2 isolates not available for typing of FetA and  
377 BAST.

378 ¶ NA, not applicable.

379 ‡ The denominator is indicated when it is different from the total number of isolates in this period.

380 ♀ cc1, ST-1 complex; cc5, ST-5 complex; cc32, ST-32 complex; cc4821, ST-4821 complex.

381 Table 2. Comparison of molecular characterisation of ST-4821 complex by serogroup\*

| clonal<br>complex     | Sequence type                               | fHbp VR                             | NHBA VR              | PorA VR                           | PorB VR                                      | FetA VR                           |
|-----------------------|---------------------------------------------|-------------------------------------|----------------------|-----------------------------------|----------------------------------------------|-----------------------------------|
| MenB:cc4821<br>(n=40) | ST-5664 (9),<br>ST-5798 (6),<br>ST-3200 (6) | 16 (23)                             | 669 (13),<br>910 (8) | P1.20,23-x (26)¶                  | 3-229 (12), 3-81 (8),<br>3-460 (5), 3-48 (4) | F1-91 (12), F3-9<br>(6), F5-2 (5) |
| MenC:cc4821<br>(n=32) | ST-4821 (23)                                | 80 (9), 22 (6),<br>404 (5), 419 (5) | 503 (23)             | P1.7-2,14 (15),<br>P1.20,23-x (8) | 3-48 (22)                                    | F3-3 (23)                         |

382 \* all cc4821 isolates without *nadA* gene.

383 ¶P1.20,23-x, such as P1.20,23-1 and P1.20,23-3

384

385 **Figure legends**

386 **Figure 1. Invasive meningococcal disease incidence in Shanghai, China during**  
387 **1950-2016, as reported in National Notifiable Diseases Registry System.** A) Incidence  
388 with case-fatality rates before and after the time of introduction of serogroup A (1980)  
389 and serogroups A and C polysaccharide vaccines (2008) in Shanghai, China. Inset figure  
390 shows the incidence after 1970. The highest incidences in different epidemic period were  
391 labelled. B) Analysis of incidence by age group. C) Seasonality of invasive  
392 meningococcal disease in Shanghai, China. MenA, serogroup A meningococcus; MPV,  
393 meningococcal polysaccharide vaccine.

394

395 **Figure 2. Positive correlation between carriage rate and invasive meningococcal**  
396 **disease incidence in Shanghai, China.**

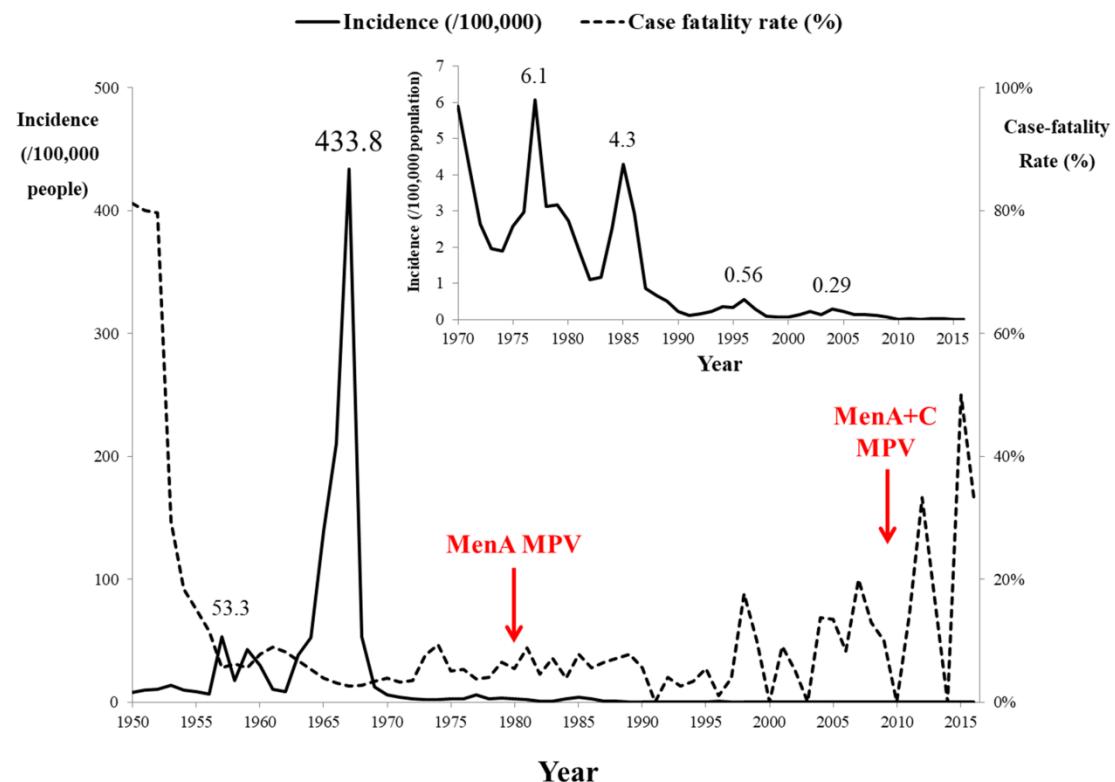
397

398 **Figure 3. Minimum-spanning tree analysis of multiple-locus sequence types of**  
399 **invasive and carriage *N. meningitidis* before and after introduction of meningococcal**  
400 **vaccines in China.** Isolates were obtained during the pre-MPV-A (1965-1980),  
401 post-MPV-A (1981-2008), and post-MPV-A+C (2009-2016) periods. Sequence types (STs)  
402 are displayed as circles. The size of each circle indicates the number of isolates with this  
403 particular type. Serogroup is distinguished by different colours. The shaded halo  
404 surrounding the STs encompasses related sequence types that belong to the same clonal  
405 complex. Heavy solid lines represent single-locus variants, and light solid lines represent  
406 double-locus variants. Sequence types sharing no less than 4 loci, but not assigned to any

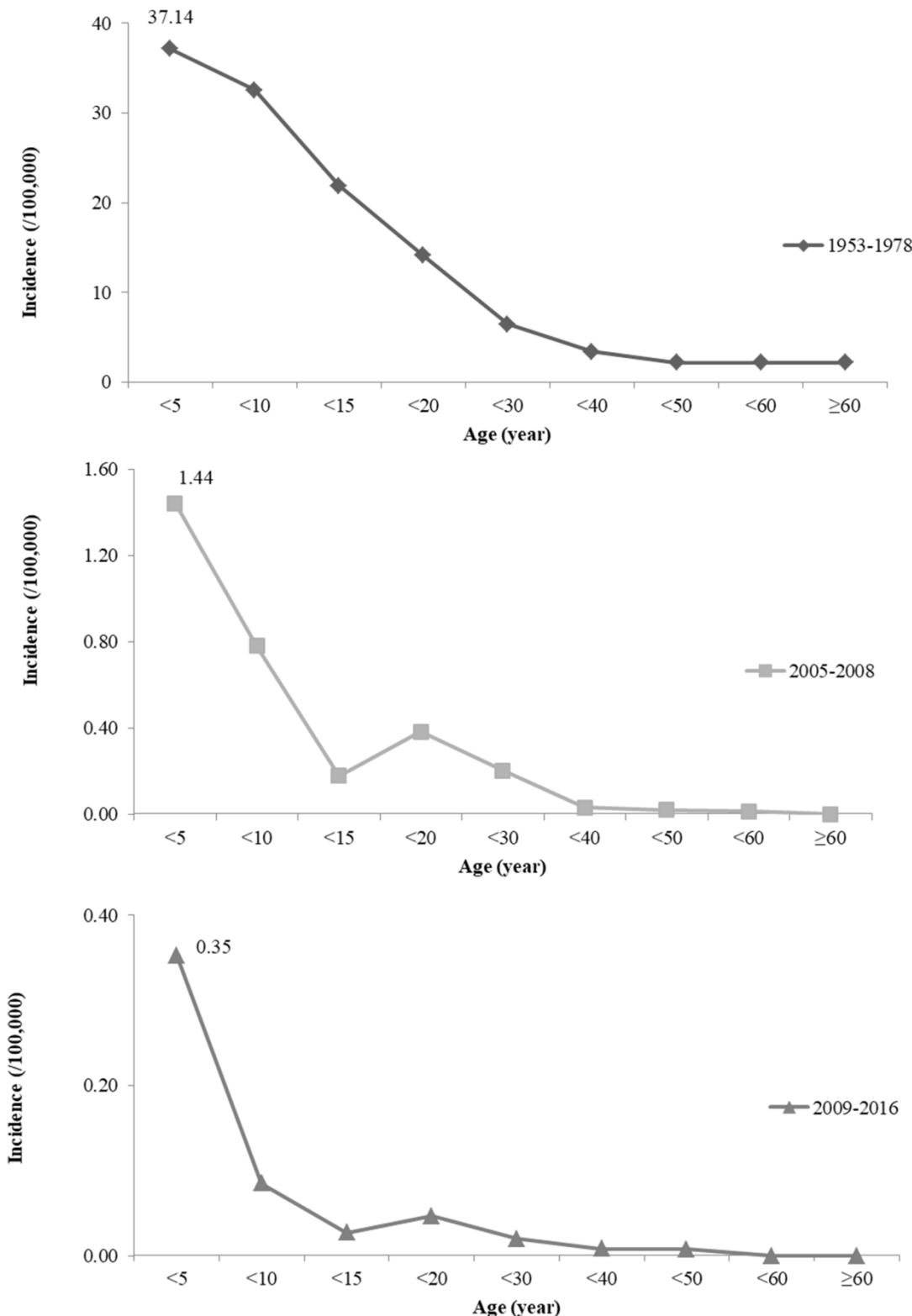
407 clonal complexes in the PubMLST database were assigned to ST-clusters. NG,  
408 nongroupable.

409

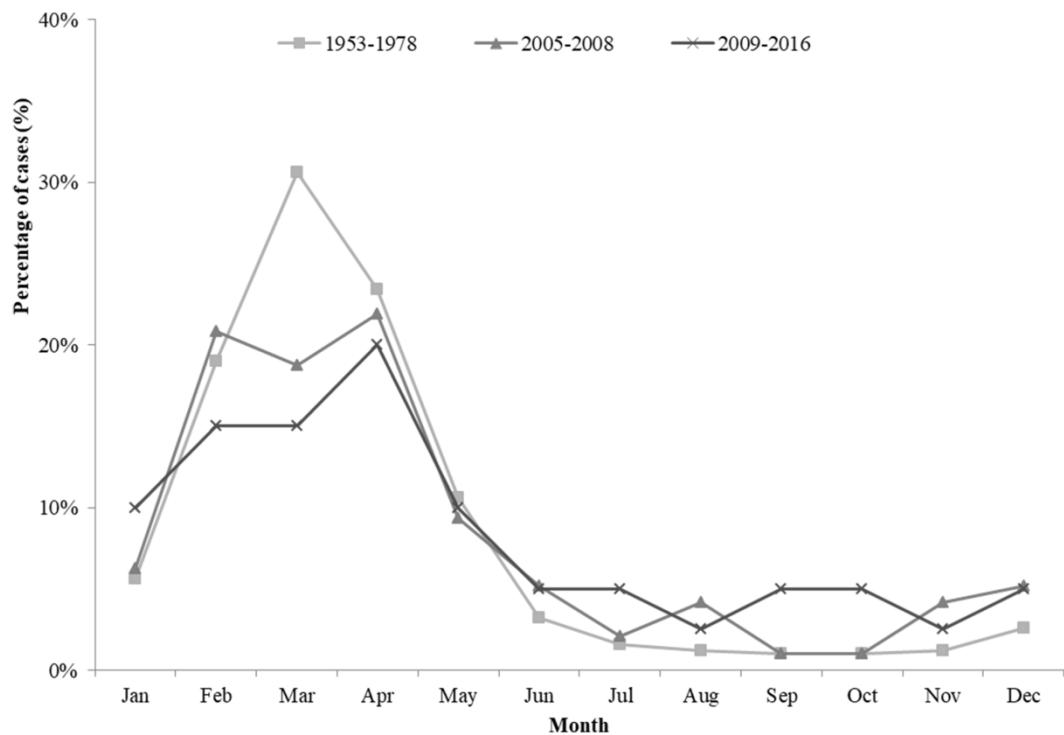
410 **Figure 4. Prevalence of peptide variants, and potentially immunologically**  
411 **cross-reactive variants, for three serogroup B-substitute vaccines, Bexsero®,**  
412 **Trumenba®, and NonaMen, among 460 invasive and carriage meningococci from**  
413 **Shanghai, China in the pre-MPV-A, post-MPV-A, and post-MPV-A+C periods.**


414 Bexsero® and Trumenba® are two protein-based serogroup B substitute meningococcal  
415 vaccines, which have been licensed in Europe and the USA, while NonaMen is a 9-valent  
416 investigational outer membrane vesicle vaccine, which has undergone pre-clinical testing.

417 Three periods were defined, pre-MPV-A (1965-1980), post-MPV-A (1981-2008), and  
418 post-MPV-A+C (2009-2016), according to the time of two meningococcal polysaccharide  
419 vaccines introduced in China (1980 serogroup A, 2008 A and C).


420

421 **Figure 5. Potential coverage of three serogroup B vaccines, Bexsero®, Trumenba®,**  
422 **and NonaMen to the 5 most prevalent clonal complexes (cc) in Shanghai.** For  
423 Bexsero®, the prevalence of potentially covered variants was low: cc1, 0%; cc4821, 0%;  
424 cc32, 4.3% (1/23); and cc41/44, 42.9% (9/21), except cc5 (98.6%, 73/74). For  
425 Trumenba®, the potentially covered antigens were: cc32, 21.7% (5/23); cc4821, 40.3%  
426 (29/72); cc41/44, 71.4% (15/21); cc1 and cc5 < 2%. For NonaMen, no antigens were  
427 observed in isolates from cc1, cc5, cc41/44 or cc4821, while 69.6% (16/23) of cc32  
428 isolates contained homologous PorA sequences.


**Figure 1A**



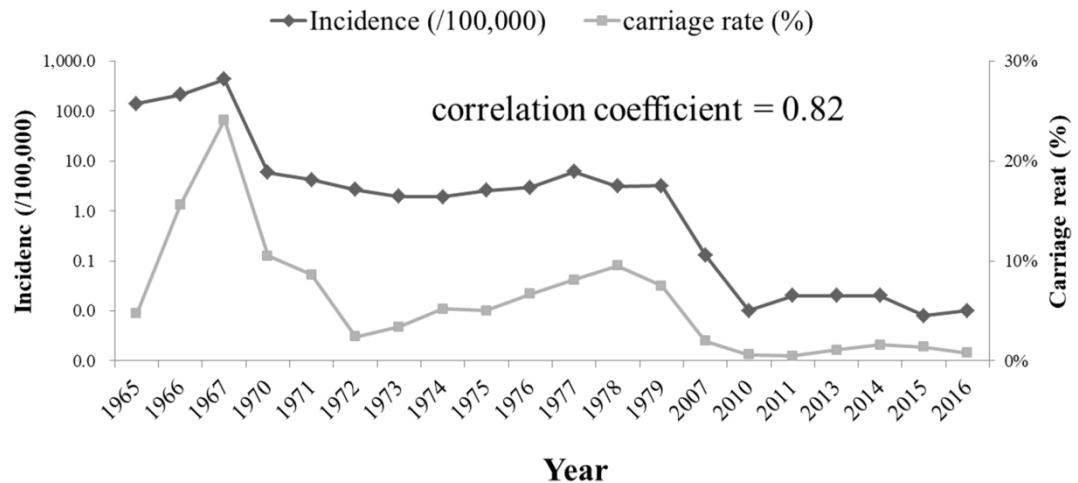
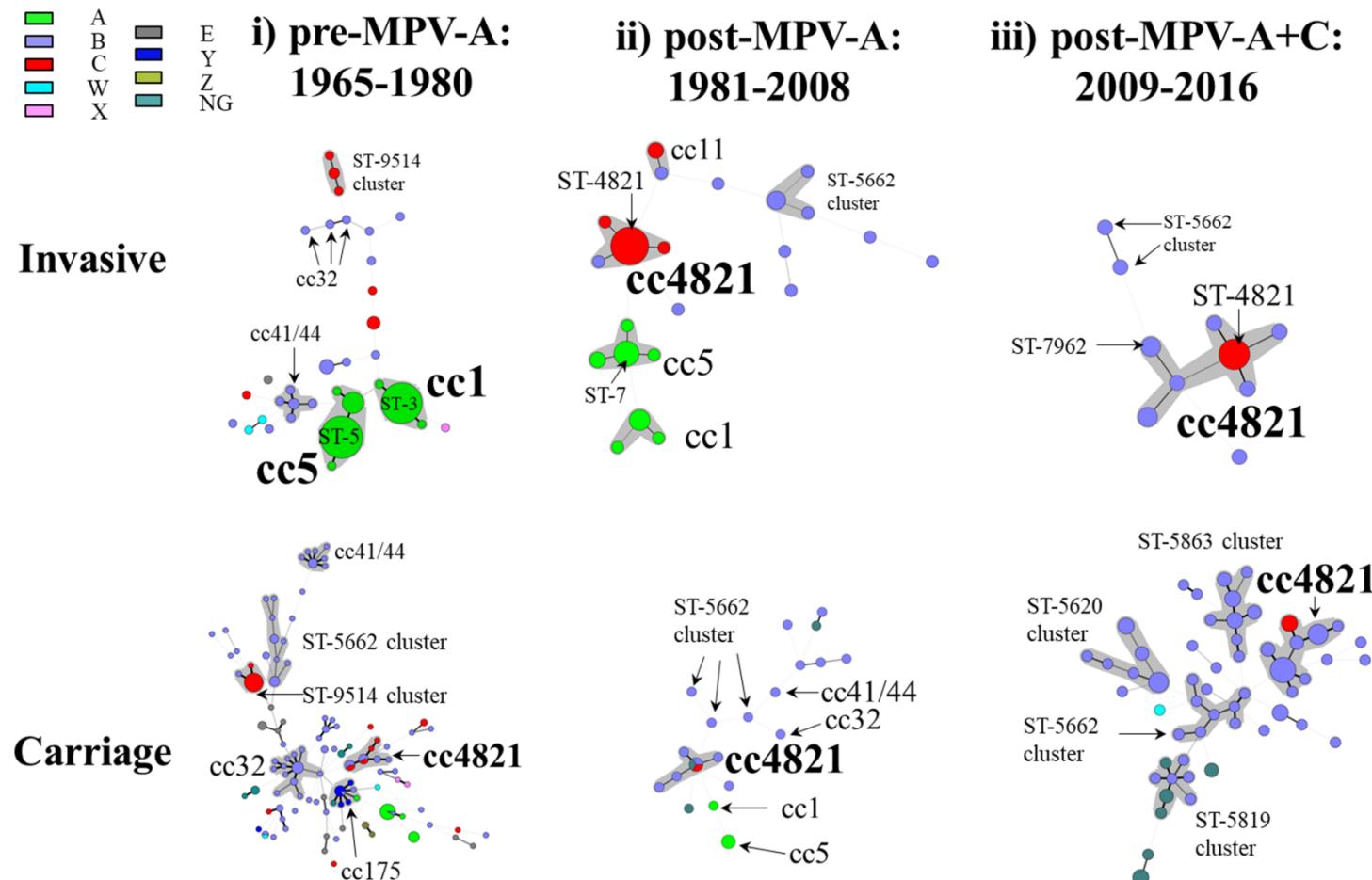
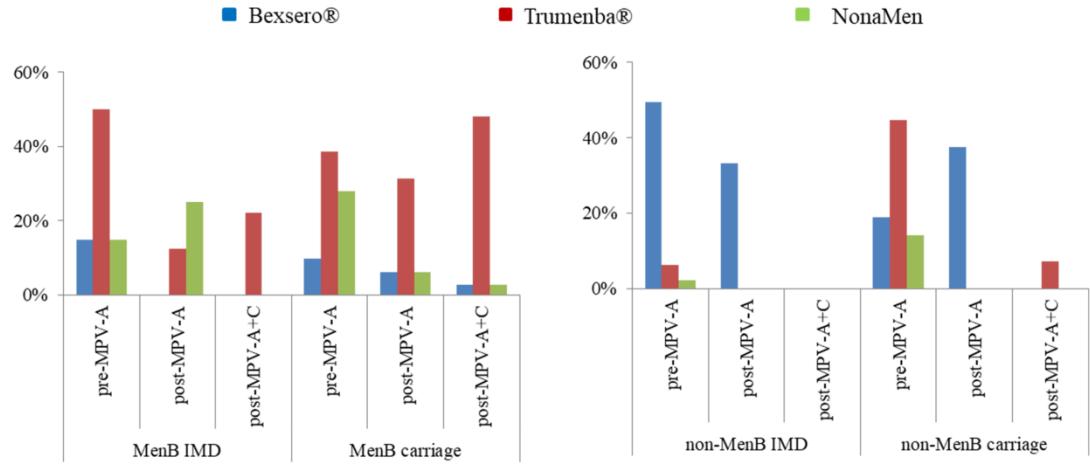
**Figure 1B**

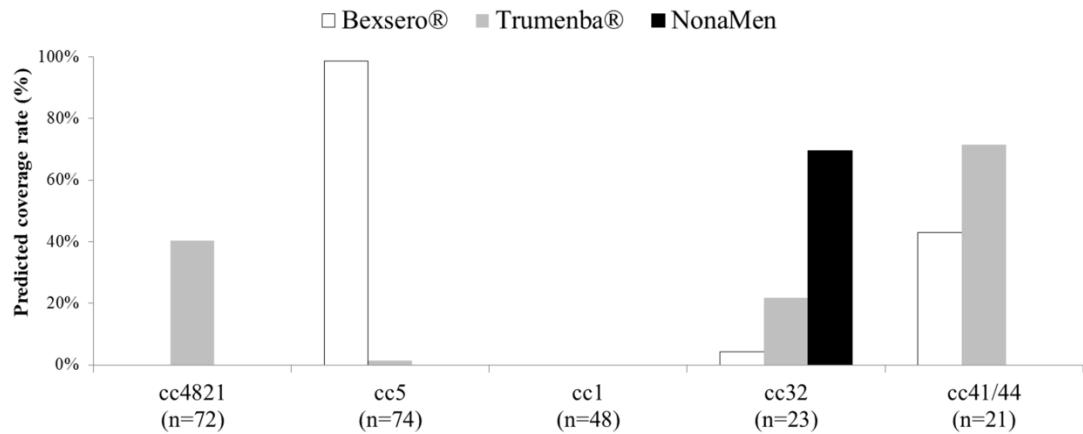


**Figure 1C**



**Figure 2**



Figure 3



**Figure 4**



**Figure 5**

