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Abstract 

Working memory is our ability to select and temporarily hold information as needed for complex 

cognitive operations. The temporal dynamics of sustained and transient neural activity 

supporting the selection and holding of memory content is not known. To address this problem, 

we recorded magnetoencephalography (MEG) in healthy participants performing a retro-cue 

working memory task in which the selection rule and the memory content varied independently. 

Multivariate decoding and source analyses showed that selecting the memory content relies on 

prefrontal and parieto-occipital persistent oscillatory neural activity. By contrast, the memory 

content was reactivated in a distributed occipito-temporal posterior network, preceding the 

working memory decision and in a different format that during the visual encoding. These results 

identify a neural signature of content selection and characterize 

differentiated spatiotemporal constraints for subprocesses of working memory. 
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Introduction 

Working memory enables brief holding of information (Baddeley and Hitch 1974; Baddeley 

2010) crucial for a wide range of cognitive tasks in everyday life (Klingberg 2010). For example, 

while driving a car, prior visual inputs providing important contextual information must be 

maintained for several seconds in order to act appropriately, as is the case when conversing with 

a friend, watching a movie or learning a motor skill. Previous work contributed to characterize 

neural substrates underlying working memory. Lesion studies pointed to the prefrontal cortex as 

a crucial brain region mediating this function (Jacobsen 1935; Bauer and Fuster 1976; Petrides 

2005). Intracranial recordings in monkeys and neuroimaging studies in humans showed that 

sustained neural activity within prefrontal regions supports working memory (Fuster and 

Alexander 1971; Funahashi et al. 1989; Goldman-Rakic 1995; Courtney et al. 1998). It has been 

proposed that this sustained activity stores memory content (Fuster and Alexander 1971; 

Funahashi and Kubota 1994).  On the other hand, recent electrophysiological and decoding work 

pointed to a prominent contribution of dynamic neural activity in the form of dynamic coding 

(Stokes 2015), neural oscillatory activity (Fuentemilla et al. 2010), brief bursts of activity 

(Lundqvist et al. 2016), or activity-silent period (stored as patterns of synaptic weights) 

(Mongillo et al. 2008; Stokes 2015) to content maintenance.  

While early work proposed that neurons in the lateral prefrontal cortex store working memory 

information (Fuster and Alexander 1971; Funahashi and Kubota 1994), recent studies show that 

maintenance of information during working memory engage different brain regions depending 

on the type or modality (Harrison and Tong 2009; Christophel et al. 2012; Han et al. 2013; 

D’Esposito and Postle 2015; Ester et al. 2015; Lee and Baker 2016). For example, maintenance 

of visual orientation information engage early visual areas (Riggall and Postle 2012), 
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maintenance of single auditory tones engages the auditory cortex (Kumar et al. 2016), and 

maintenance of spatial information (Jerde et al. 2012) or more abstract concepts (Lee et al. 2013) 

engage the frontal cortex. These results led to the hypothesis that the brain regions encoding the 

memory content show a gradient of abstraction from sensory areas reflecting low-level sensory 

features to prefrontal regions encoding more abstract and response-related content (Christophel 

et al. 2017). Nevertheless, content-specific activity of low-level features has also been observed 

in frontal regions (Ester et al. 2015). 

In addition to maintenance of a content, working memory requires encoding and subsequent 

selection of appropriate content among distractors (Myers et al. 2017). The neural substrates of 

these working memory subprocesses: i.e., (i) the encoding, (ii) the selection rule that identify the 

relevant information to be held in mind and (iii) the maintenance of this information for future 

processing (Vogel et al. 2005) are incompletely understood (Myers et al. 2014). Prefrontal cortex 

activity, which exerts top-down influences on sensory regions, may contribute to the selection of 

information for goal-directed behavior (Curtis and D’Esposito 2003; Gazzaley and Nobre 2012).  

Less is known on the neural dynamics that select and manipulate information during working 

memory.  

To address this question, we investigated the contribution of sustained, transient and oscillatory 

neural activity to the encoding, selection and maintenance of working memory content. Time-

resolved multivariate pattern analysis (MVPA) of magnetoencephalographic activity (MEG) 

revealed that the selection rule relies on sustained oscillatory neural activity below 20Hz within a 

distributed frontoparietal network. Additionally, memory content was decoded from a new 

pattern of transient activity in sensory areas. These results indicate that persistent frontoparietal 

oscillatory activity may drive reformatting and reactivation of a previously encoded content in 
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order to generate the appropriate working memory decision.  

Materials and Methods 

Participants and experimental sessions 

Thirty-five healthy volunteers participated in the study after providing informed consent.  They 

all had normal physical and neurological examinations and normal or corrected-to-normal vision. 

Participants who reached 75% correct responses during the working memory task in a screening 

session returned for one structural MRI and two magnetoencephalography (MEG) sessions (23 

participants: 17 women, 6 men, mean age = 26.6 ± 6.7). One participant moved out from the area 

and did only one MEG session. 

Visual Working Memory Task 

Visual stimuli were displayed using MATLAB (Mathworks, Natick, MA, USA) and the 

Psychophysics Toolbox (Psychtoolbox-3) (Brainard 1997) running on a MacBook Pro laptop 

computer. During the MEG session, visual stimuli were back projected on a translucent screen in 

front of the participants. Each trial started with the fixation dot in the middle of the screen. 

Participants were instructed to fixate on the fixation dot during the entire trial. After 400ms (± 

50ms jitter), two visual gratings, one in each half of the visual field, were simultaneously 

presented for 100ms (Fig 1). Each grating had one out of five possible spatial frequencies (1, 1.5, 

2.25, 3.375 or 5.06 cycles/degree) and one out of five possible orientations (-72, -36, 0, 36, 73 in 

degree, 0 being the vertical). A visual cue, lasting 100ms, was presented 900 ms (± 50ms jitter) 

after the stimulus onset, indicating the side (spatial rule indicating left or right) and the feature 

(feature rule indicating orientation or spatial frequency) to be remembered. A probe was 

provided 1600ms (± 50ms jitter) after the cue onset, and participants had to match the cued item 

with the probe (same or different) by responding with their right index and middle finger on a 
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button box. The probe displayed only one orientation and one spatial frequency. In half of the 

trials, the correct response was “different” (i.e. the probe had randomly one of the four others 

possible attributes compared to the cued attribute). The term uncued item in the manuscript 

refers to the feature on the opposite side of the cue (i.e., the left line orientation when the cue 

indicated the right line orientation). The probe disappeared when the participants gave their 

response. The fixation dot turned green for a correct answer or red for an incorrect one during 

100ms at the end of each trial. Eye movements were monitored across the trial with an eye-

tracker (Eyelink 1000, SR Research, Mississauga, ON, Canada) to ensure correct central 

fixation. Fixation was considered broken when participants’ gaze was recorded outside a circular 

spot with a 2.5 visual degree radius around the center of the fixation dot or if they blinked during 

the period from the stimulus onset to the probe onset. In that eventuality, participants received an 

alert message on the screen and the trial was shuffled with the rest of the remaining trials and 

repeated. Each session was composed of 400 trials with correct fixation interspersed with rest 

periods every block of 50 trials. A total of 800 trials with correct fixation were obtained from 

each participant during 2 MEG sessions (except one who came for only one MEG session, 400 

trials). Group average behavioral performance during this task was 83 ± 3.6 %. Participants were 

better at recalling the orientation than the spatial frequency trials (85 ± 4.5 vs. 81 ± 3.5 %, 

p<0.001). No difference was found between performance in left and right cue trials (82 ± 4.8 vs. 

83 ± 3.2  %) (Fig 1B). 

One-back task 

In 17 participants (22 MEG sessions), a one-back task (160 trials with correct fixation) was 

performed prior to the working memory task to control for the visual processing of the cue. 

During this task, one of the four cues used in the working memory task appeared every 1500ms 
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and the participant had simply to press a button if two consecutive cues were similar. Eye 

movement monitoring was performed. If participants broke visual fixation, the trial was shuffled 

with the remaining trials and repeated. Group average behavioral performance during this task 

reached 89% of correct response. 

MRI acquisition and preprocessing 

Magnetic Resonance Imaging (MRI) data were acquired with a Siemens Skyra 3T scanner using 

a 32-channel coil. High-resolution (0.93 × 0.93 × 0.9 mm3) 3D magnetization prepared rapid 

gradient echo (MPRAGE) T1-weighted images were acquired (repetition time = 1900 ms; echo 

time = 2.13 ms; matrix size = 256 × 256 × 192). A stereotactic neuronavigation system 

(Brainsight, Rogue Research, Montreal, QC, Canada) was used before the MEG recordings to 

record MRI coordinates of the three head position coils placed on the nasion and pre-auricular 

points. These coil position coordinates were used to co-register the head with the MEG sensors 

for source reconstruction. Brain surfaces were reconstructed using the FreeSurfer software 

package (Dale et al. 1999; Fischl et al. 1999). A forward model was generated from the 

segmented and meshed MRI using Freesurfer (Fischl 2012) and MNE-python (Gramfort et al. 

2013) and co-registered to the MRI coordinates with the head position coils. 

MEG recordings 

Neuromagnetic activity was recorded with a sampling rate of 1,200 Hz on the NIH 275-channel 

CTF magnetoencephalography (MEG International Services, Ltd., Coquitlam, BC, Canada). The 

MEG apparatus was housed in a magnetically shielded room. During recording, participants 

were seated alone in the shielded MEG room and their head was centrally positioned within the 

sensor array. The head position was recorded before and after each block. If the difference 

between the two recordings exceeded 3mm, participants were asked to reposition their head to its 
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original position while their real-time head position was displayed. A Digital-to-Analog 

converter was used to record the eye tracker signal with the MEG acquisition system. 

MEG preprocessing 

Brain MEG activity was band-passed filtered in the range of 0.05 to 25 Hz and decimate by 10, 

resulting in a sampling frequency of 120Hz. MEG signal was epoched based on the onset of the 

stimulus (-0.2s, 0.9s), the onset of the cue (-0.2s, 1.5s) and the onset of the probe (-0.2, 0.4s). 

The two MEG sessions per participant were concatenated. The epoch data for the three events 

were all baselined between -0.2 and 0s according to the stimulus onset for all sensors analyses. 

For the source reconstruction, in order to compute an accurate noise covariance matrix, the 

stimulus and cue epoch were baselined on the pre-stimulus and pre-cue period, respectively. 

Despite different baselines, similar decoding performances were obtained in sensors and source 

space. MVPA was used from sensor space, time-frequency and source space data. Twenty-nine 

Morlet wavelets between 2 and 60 Hz were used to extract the time-frequency power from 

epochs with no band-pass filtering. To estimate the time series in source space, the Linearly 

Constrained Minimum Variance (LCMV) beamformer was computed on single trial data using 

MNE-python. The regularized noise covariance matrix was computed on a pre-stimulus period (-

0.3, 0s according to stimulus onset). The regularized data covariance was computed during a 

period starting 40ms after the event of interest (either stimulus, cue or probe onset) until the end 

of each epoch (respectively 900ms, 1500ms and 400ms). 

MEG Multivariate Pattern Analysis (MVPA) 

Data was analyzed with multivariate linear modeling implemented in MNE-python (Gramfort et 

al. 2013; King et al. 2016). MVPA decoding aimed at predicting the value of a specific variable 

𝑦 (for example the cued spatial frequency or line orientation) from the brain signal. The analysis 
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consists of 1) fitting a linear estimator 𝑤 to a training subset of 𝑋 𝑋!"#$% , 2) from this 

estimator, predicting an estimate 𝑦!"#!  of the variable (𝑦!"#!) on a separate test subset 

𝑋!"#!  and finally 3) assessing the decoding score of this prediction as compared to the ground 

truth 𝑠𝑐𝑜𝑟𝑒 𝑦!"#! ,𝑦!"#! . Estimators were trained at each time sample (sampling rate = 120Hz) 

and tested at the same time-sample (for the time-frequency and source analyses) and at all time-

sample of the epoch in case of temporal generalization (for the sensors analyses). The variable 𝑦 

was either categorical for the rules (right vs. left for the spatial rule and line orientation vs. spatial 

frequency for the feature rule), ordinal for the spatial frequency (1, 1.5, 2.25, 3.375 or 5.06 

cycles/degree) and circular for the line orientation (!!
!

, !!
!

, !!
!

, !!
!

, 2𝜋 rad). The data (𝑋) was 

either the filtered raw sensors MEG data (273 dimensions corresponding to the 273 channels), 

the frequency power in one frequency band (273 dimensions) repeated over frequency bands 

from 2 to 60Hz, the source data (8196 dimensions corresponding to 8196 virtual channels) or the 

frequency power in one frequency band in source data (8196 dimensions) repeated over the two 

frequency bands of interests. The data (𝑋) was whitened by using a standard scaler that z scored 

each channel at each time point across trials. An l2 linear model was then fitted to find the 

hyperplane (𝑤) that maximally predicts the variable of interest (𝑦). All parameters were set to 

their default values as provided by the scikit-learn package (Pedregosa et al. 2011). A logistic 

regression classifier was used to decode categorical data (cue side or cue type) and a ridge 

regression to decode the spatial frequency. A combination of two ridge regressions was used to 

perform circular correlations to decode the orientation, fitted to predict sin 𝑦  and cos (𝑦). The 

predicted angle (𝑦) was estimated from the arctangent of the resulting sine and cosine: 

𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛2 𝑦!"#,𝑦!"# . Each estimator was fitted on each participant separately, across all 

MEG sensors (or sources) and at a unique time sample (sampling frequency = 120Hz).  
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Training and testing set were independent and the folds were made by preserving the percentage 

of sample for each class. The cross-validation was performed using a 12-fold stratified folding, 

such that each estimator was trained on 11/12th of the trials (training set) and then generated a 

prediction on the remaining 1/12th trials (testing set). With 800 trials, it means that, at each 

cross-validation, the estimator was trained on 734 trials and tested on the remaining 66 trials. 

Ordinal effects (decoding of spatial frequency) were summarized with a Spearman Correlation R 

coefficient (range between -1 and 1 with chance = 0). Categorical effects (decoding of cue side 

and cue type) were summarized with the area under the curve (AUC) (range between 0 and 1 

with chance = 0.5). Circular decoding was summarized by computing the mean absolute 

difference between the predicted angle (𝑦) and the true angle (𝑦) (range between 0 and π, 

chance = π/2). To facilitate visualizations, this “error” metric was transformed into an 

“accuracy” metric (range between –π/2 and π/2, chance = 0) (King et al. 2016).  

In addition, within each analysis, the temporal generalization was computed. Each estimator 

trained on time t was tested on its ability to predict a given trial at time t’, in order to estimate the 

similarity of the coding pattern at t and t’ and thus the stability of the neural representation. 

Results of this temporal generalization are presented in a 2D matrix with training time on the 

vertical axis and testing time on the horizontal axis. The degree to which the trained estimators 

generalize across time sheds light on the stability of the neural representation. A thin diagonal, 

where each estimator generalize only during a brief period, will indicate a chain of process (for 

an example, see Fig 7B, first part of the visual processing), while a squared-shaped decoding 

performance, where each estimator generalize during several time samples, will indicate that the 

same pattern of activity code for the information of interest during an extended period of time 

(for an example, see Fig 4, temporal generalization of both spatial and feature rule).  
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MVPA was also applied on the frequency power and in the source space. The interpretation of 

the weight of multivariate decoders (i.e. the source spatial filters) can lead to wrong conclusions 

regarding the spatial origin of the neural signals of interests (Haufe et al. 2014). To investigate 

the spatial distribution of brain regions contributing to decoding performance, we thus 

transformed these spatial filters into spatial patterns using Haufe’s method (Haufe et al. 2014). 

For each analysis, these individual spatial patterns were then morphed on the surface-based 

“fsaverage” template of Freesurfer (Fischl 2012) and averaged across subjects. Subjects’ spatial 

patterns lead to 20484 (virtual channels morphed on the template) by 133 (time samples during 

the target epoch) or 205 (time samples during the cue epoch) activations matrix. To summarize 

these activations, we used a principal component analysis and illustrate the two first components 

(90% variance explained on average) in Fig 3 and 6. All decoding analyses were performed with 

the MNE-python (Gramfort et al. 2013) and scikit-learn packages (Pedregosa et al. 2011).  

To test the similarity between the neural representation during visual perception and working 

memory, estimators were either trained on stimulus decoding and tested on the memory content 

or the inverse, on the same epochs used during others sensor analyses. Because a reactivation of 

sensory encoding during memory maintenance would be hemispheric specific, i.e. the 

reactivation of the sensory code for the left spatial frequency should involve specifically the right 

hemisphere, estimators were trained separately for trials with left and right cue. An estimator 

trained/tested on the left (resp. right) spatial frequency of the stimulus was trained/tested on the 

memorized cued spatial frequency only when the cue indicated the left (resp. right) side of the 

stimulus. The same 12-fold stratified folding than in other analyses was used. Results of this 

generalization across condition were then averaged between left and right for statistical testing 
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and visualization. This work utilized the computational resources of the NIH HPC Biowulf 

cluster (http://hpc.nih.gov). 

Experimental Design and Statistical Analysis. 

Each analysis was first performed within each subject separately using all meaningful trials, i.e., 

all trials (n=800) were used to decode visual attributes of the stimulus or the probe, cue side and 

cue type, and trials with a cue indicating either the spatial frequency or the orientation (n=400) 

were used to decode the specific memory content. In the cross-condition generalization, 

estimators were trained separately for the left and right cue, resulting in 200 trials for the 

memory content, and then averaged. Statistical analyses were based on second-level tests across 

participants and were performed on the temporal generalization or time frequency matrix of 

decoding performance with a non-parametric one sample t-test corrected for multiple 

comparisons with cluster-based permutations (Maris and Oostenveld 2007), using the default 

parameters of the MNE-python spatio_temporal_cluster_1samp_test function. Color-filled areas 

on decoding performance curves or dashed contour on temporal generalization and time 

frequency matrices correspond to p-value < 0.05 resulting from this permutation test. To test the 

decoding performance on a large window, decoding performances were averaged across all time 

samples in each participant and epoch period starting from the event onset (either stimulus, cue 

or probe) and then tested at the group level with a one sample t-test against chance level (***, 

**, * indicate respectively p < 0.001, p < 0.01 and p < 0.05). 

Results 

We recorded MEG in 23 participants while they performed a retro-cue working memory task. 

Each trial started with the visual presentation of a four-dimensional stimulus with two distinct 

visual gratings (left and right) that varied in line orientation and spatial frequency. A small 
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retrospective visual cue presented ~900ms after the stimulus onset indicated the visual attribute 

to be retained for a subsequent probe. Specifically, a small line indicated the side (left or right) 

and the feature (orientation or spatial frequency) of the stimulus to be remembered, 

corresponding to the cued attribute. Participants then indicated whether the cued attribute 

matched the corresponding attribute of a visual probe presented ~1500ms after the cue onset (Fig 

1). To isolate the neural representation of the encoding, the selection rule and the memory 

content, we applied MVPA to decode the four visual attributes of the stimulus (orientation and 

spatial frequency of each visual grating), the selection rules (spatial and feature rule) and the 

memory content (cued attribute) during the stimulus epoch (-0.2 s to 0.9 s around stimulus 

onset), the cue epoch (-0.2 s to 1.5 s around the cue onset) and the probe epoch (-0.2 s to 0.4 s 

around the probe onset; Fig 2). 

Parallel and transient encoding of four visual attributes  

Left and right spatial frequencies could be decoded from 33 ms and 25 ms after stimulus onset 

respectively (cluster level, p<0.05 corrected). The decoding performance peaked around 50ms 

and rapidly decreased afterwards but remained above chance throughout most of the stimulus 

epoch (Fig 2A). Mean spatial frequency decoding performance over the stimulus epoch was 

significantly above chance (both p<0.001). By contrast, these visual attributes could not be 

decoded during the cue or the probe epochs. Similar results were observed for the decoding of 

the left and right orientation. Specifically, orientation decoding started approximately 46 ms after 

stimulus onset, peaked around 100 ms and remained above chance throughout most of the 

stimulus epoch. Mean orientation decoding performance was significantly above chance during 

the stimulus epoch (both p < 0.001). Very weak but still significant decoding was also observed 

during the cue (right orientation: p < 0.001, left orientation: p < 0.01) and the probe epochs (both 
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p < 0.01) (Fig 2A). Similar decoding results were observed in the time-frequency domain with 

significant decoding clusters during the first 400 ms after the stimulus onset (Fig 2B). 

To estimate the brain sources underlying these decoders, the MEG signal was reconstructed in 

the source space at a single trial level and the same decoding analyses were performed on the 

source signal. The weights of the estimators were transformed into interpretable patterns of 

activity (Haufe et al. 2014). The source pattern of activity indicated that the calcarine, the cuneus 

and lateral occipital regions encoded this information (Fig 3A).  

Overall, our decoding results during visual perception confirmed that multiple visual attributes 

are simultaneously encoded in the early neural response for several hundred milliseconds, but 

rapidly become undetectable after about one second (Fig 2A).  

Selection rules are encoded in stable oscillatory activity involving the prefrontal cortex. 

The cue side (spatial selection rule) and the cue type (feature selection rule) could be decoded 

shortly after the cue presentation and during the entire cue and probe epochs (Fig 2A and Fig 4). 

The cue side and cue type were decoded 58ms and 75ms, respectively, after cue onset (cluster 

level, p<0.05 corrected), and the decoding performance remained above chance throughout both 

the cue and probe epochs (Fig 2A). To ensure that these decoded patterns of brain activity 

corresponded to the selection rule and not to the sensory features of the cue, we decoded the 

same visual cue in a one-back control task. In the initial 200 ms following cue onset, decoding 

performance of cue side and type were comparable in both tasks (with and without the associated 

selection rule). Subsequently, decoding was significantly higher in the working memory 

condition than in the one-back control task (Fig4).  Our one-back control task contains fewer 

trials than the visual working memory task. To ensure that our differences between the selection 

rule and the visual signal of the cue itself are not a consequence of less signal, estimators trained 
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on cue side and cue type during the working memory task were tested on all trials during the 

control task. This analysis also showed higher decoding performance when tested during the 

working memory task than when tested during the control task, confirming that the stable and 

frequency specific neural representation of the selection rule is not present during the control 

task, when no selection rule is associated to the cue (Fig 5). 

Overall, these decoding results demonstrate that the sustained activity encoding the cue is related 

to the selection rule. To test the dynamics of the neural representation of the rule, each estimator 

trained on time t was tested on its ability to predict the variable of interest at time t’ (King and 

Dehaene 2014). This temporal generalization analysis showed very stable neural representations 

for both spatial and feature selection rules (Fig 4, middle panel).  

To investigate the oscillatory representation of these selection rules, we computed the time-

frequency decomposition at the single trial level using Morlet wavelets and applied MVPA to 

power estimate time-series for each frequency band. The cue side and type were decoded both 

from the alpha (~10hz) and theta (~3Hz) bands during the working memory task, with decoding 

performance peaking during the period immediately following the cue onset through the end of 

the cue epoch (p<0.05 corrected). In the one-back control task, the cue side was decoded within 

the frequency domain only for a brief period (< 400 ms) following the cue onset, while the cue 

type could not be decoded at all (Fig 4, right panel). 

The same decoding analyses were also performed on the source space MEG signal and produced 

similar decoding performances (Fig 3D). Both spatial and feature selection rules were encoded in 

a network involving the ventral prefrontal, parietal and occipital cortices (Fig 3B). Specifically, 

the activity pattern encoding the spatial selection rule involved bilateral orbitofrontal regions, 

bilateral insula, bilateral inferior parietal lobules, right superior parietal and temporo-parietal 
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junction and bilateral occipital regions and fusiform areas. The activity pattern for the feature 

selection rule on the other hand involved the right orbitofrontal region, inferior frontal gyrus and 

insula, bilateral peri-central regions, the right superior parietal lobule, bilateral middle temporal 

regions and bilateral occipital regions including the fusiform area. Overall, our source space 

decoding results showed that both the spatial and feature selection rules are associated with 

sustained oscillatory neural activity involving the prefrontal cortex. 

Finally, to investigate the topography of the decoding in the time-frequency domain, the time-

frequency analysis was also computed in the source space for the two frequencies with higher 

decoding performance (3 and 10Hz). Interestingly, the involvement of the prefrontal cortex is 

restricted to the theta band and is not visible in the alpha band (Fig 6). 

The memory content is transformed and encoded in a distributed posterior network. 

Significant decoding performance for the memory content (the cued orientation or spatial 

frequency on a given trial) started around 500 ms after the cue onset (p<0.05 corrected) and 

remained above chance throughout the cue epoch. The mean decoding performance was 

significantly higher for the cued than the non-cued orientation or spatial frequency (Fig 2A). 

More specifically, the mean decoding performance was above chance during the cue epoch both 

for the cued orientation (p<0.001) and cued spatial frequency (p<0.01; Fig 7A). By contrast, 

neither the uncued orientation nor spatial frequency could be decoded (Fig 7B). The working 

memory content could not be decoded in the time-frequency domain (Fig 2B). Temporal 

generalization analyses showed a stable representation over time for both items (Fig 7A). As for 

the selection rules, decoding analyses were performed on the source space MEG signal and 

produced the same decoding performances (Fig 3D). Estimated source space patterns of activity 

representing memory content (cued stimulus orientation and spatial frequency) showed a 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2019. ; https://doi.org/10.1101/283234doi: bioRxiv preprint 

https://doi.org/10.1101/283234
http://creativecommons.org/licenses/by/4.0/


 16 

distributed and posterior network involving bilateral occipital regions, bilateral inferior temporal 

and temporo-parietal junctions, bilateral posterior temporal regions and left premotor areas (Fig 

3C).  

To test if the neural representation of the memory content was similar to that of visual encoding, 

we tested the generalization across conditions. Specifically, we trained the decoders on the visual 

attributes during perception of the stimulus and tested their ability to decode the memory 

content, and, conversely, trained the estimators on the memory content and tested their ability to 

decode visual attributes during visual encoding. These cross-condition decoding analyses 

revealed no decoding levels above chance (Fig 7), demonstrating that the neural representation 

of the memory content differs from the representation of the same attribute during sensory 

encoding. 

Discussion 

To investigate the neural dynamics of working memory subprocesses, we used a series of time-

resolved MVPA of MEG signals recorded during a retro-cue working memory task to isolate 

temporal, oscillatory and anatomical signatures of each of these mechanisms. We report three 

main findings. First, working memory selection engages a distributed network characterized by 

sustained oscillatory neural activity that includes the lateral prefrontal cortex. Second, working 

memory selection but not memory content was decoded from alpha and theta oscillatory brain 

activity. Third, working memory content and sensory encoding have different neural 

representations, with the memory content transiently decodable in posterior brain regions 400-

500 ms after the cue preceding the subject response. 
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Working memory selection 

The experimental paradigm allowed us to identify the representation of two different selection 

rules, a spatial one indicated by the cue side and a feature one indicated by the cue type. Both 

rules share similar spatiotemporal neural properties: a very stable neural representation (Fig 4), a 

low-frequency oscillatory mechanism in the theta and alpha band (Fig 2 and 4) and the 

involvement of the prefrontal and occipito-parietal regions (Fig 3B). Time-frequency source 

analyses show that both theta and alpha frequency band encode the rule selection. Specifically, 

the alpha-band activity encoding the rule is restricted to posterior regions while the theta-band 

activity encoding the rule is present in both posterior and prefrontal cortices (Fig 6). In line with 

previous findings (Riggall and Postle 2012), these results show that the sustained brain responses 

in frontal regions previously reported during working memory tasks relate to selection 

mechanisms rather than encoding of memory content. The neural dynamics characterized by 

time generalization analysis is consistent with previous reports using MVPA on intracranial 

recordings in primates during the period where monkeys needed to maintain a rule (Stokes et al. 

2013). A neural representation that is stable over time is likely to be more easily readable by 

interconnected brain regions than a constantly changing representation that would require 

continuous shifting of readout algorithms (Murray et al. 2017). The sustained activity observed 

during more than a second suggests that it is not only necessary for the initial selection of the 

information, but also drive the successful reactivation of this information in sensory areas. 

Further, working memory selection neural resources identified here shared similarities with those 

underlying spatial attention, i.e. a fronto-parietal activity which engage alpha (Worden et al. 

2000; Sauseng et al. 2005) and beta or low-gamma (Buschman and Miller 2007; Phillips and 

Takeda 2009) brain oscillatory activity (Wallis et al. 2015), in line with reported oscillatory 
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synchronization of local field potentials representing these selection rules in monkeys 

(Buschman et al. 2012). Such similarities might be related to the fact that participants orient their 

attention to specific parts of an internal representation. In this context, the involvement of the 

ventrolateral frontal cortex is not surprising given its recognized role mediating top-down 

influences (Sreenivasan et al. 2014) and its contribution to rule representation (Woolgar et al. 

2011; Reverberi et al. 2012) and active selection (Petrides 1996). Similarly, parietal regions have 

been related to the control of memory representations (Gosseries et al. 2018). 

While the spatial rule is independent from the specific content to remember, the feature rule 

indicates one of the two types of content (orientation or spatial frequency). It is not possible to 

conceptually dissociate this feature rule from the maintenance of a type of content. However, the 

different temporal, spatial and oscillatory signatures of these two components suggest that they 

reflect different processes.  

It is possible that magnetic artefacts due to eye movements contributed to the decoding of the 

spatial rule. However, several controls suggest that this potential confound cannot account for 

the decoding performance. First, online eye-movement detection allowed us to abort trials where 

blinks or saccades occurred in real time. Second, the time-frequency decoding of the spatial rule 

in the alpha and theta frequency band cannot be attributed to micro-saccades appearing 

approximately every second (Martinez-Conde et al. 2013). Third, decoding analyses to the eye-

tracker time series revealed a significant peak much later (500 ms, Fig 8) than the one observed 

with MEG signals (150 ms, Fig 4). As expected, the decoding performance of the feature rule 

from the eye movements recordings was at chance level. Overall, the spatial and temporal 

similarities of the neural representation of the spatial and feature rules suggest that the low-
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frequency neural responses and the prefrontal activity represent a general mechanism of selection 

in working memory. 

Working memory maintenance 

Spatial frequency and line orientation of the memory content were decoded a few hundred 

milliseconds after the cue onset (Fig 6). Decoding of the stimulus visual attributes fell back to 

chance level about 900 ms after the stimulus onset. Decoding of the cued visual attribute only 

became significant about 500ms after the cue. Our paradigm thus revealed a period of time after 

the cue onset, for which visual attributes are not decodable anymore and the memory content is 

not decodable yet. It has been proposed that short-term changes in synaptic weights in the 

absence of persistent neural activity may be enough to maintain information in working memory 

(Lewis-Peacock et al. 2012; Stokes et al. 2013). Such silent states can theoretically be reactivated 

by probing the brain with a light flash (Wolff et al. 2017) or TMS pulse (Rose et al. 2016), as a 

result of a matched filter mechanism (Sugase-Miyamoto et al. 2008). However, our task was not 

designed to assess the existence of such a silent period and we cannot rule out the possibility that 

it may simply reflect a limitation of MEG to record decodable information during low-level 

activity. The content-specific activity following this silent period was more stable in the time 

generalization analysis than the initial dynamic visual encoding, suggesting that this content-

specific activity operates as an attractor state (Wills et al. 2005; Kamiński et al. 2017).  

Source analysis showed that the memory content is maintained in a distributed network 

involving posterior brain regions that include sensory visual areas (Fig 3). Functional MRI 

studies using MVPA have shown that the memory content can be decoded from a wide range of 

brain regions, including occipital (Harrison and Tong 2009; Serences et al. 2009), parietal 

(Christophel et al. 2012), temporal (Han et al. 2013) and frontal (Ester et al. 2015) areas. The 
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brain regions maintaining the memory content are likely feature-specific, e.g., orientation in 

early visual areas, motion in extrastriate cortex including area MT+, or single tones in auditory 

cortex (Riggall and Postle 2012; Emrich et al. 2013; Kumar et al. 2016). It has also been shown 

that the level of abstractness influence the spatial localization of the memory content, with low-

level sensory features being encoded in sensory areas and more abstract representations in 

anterior frontal regions (Lee et al. 2013; Christophel et al. 2017). Thus, it has been proposed that 

the neural networks maintaining the information in working memory may be the same as the 

ones involved in the encoding of this information (D’Esposito and Postle 2015). However, our 

results show that the neural representations of the same content during perception and memory 

differ, as demonstrated by the lack of generalization across conditions (Fig 7). This result 

extends similar observations made in the context of exogenous re-activation of memory content 

by a high-contrast or task-irrelevant stimulus (Wolff et al. 2015) and suggests that working 

memory content can be read-out and transformed by executive areas as part of a transient 

recalling mechanism. Differentiated representations of memory and visual perception may result 

in more stable and resistant-to-interference memory content than if they were sharing the same 

neural substrate (Makovski et al. 2008).  

It has recently been shown that small eye movements could contain information about the 

memory content, especially line orientation (Mostert et al. 2017). To test this possibility, we tried 

to decode the memory content from the horizontal and vertical coordinates of the recorded eye. 

This analysis showed that the eye position contained no information about the memory content, 

either spatial frequency or orientation (Fig 8). 
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Altogether, our results indicate that, after a “silent-period”, and following sustained top-down 

influences, a transformed version of the working memory content is re-activated in higher-level 

sensory brain areas to guide a working memory decision. 

Persistent and dynamic nature of working memory 

Our results suggest that previously described persistent and dynamic patterns of neural activity 

may reflect two different working memory subprocesses. First, a stable persistent activity 

involving the ventrolateral prefrontal cortex associated with the selection rule that selects and 

drives the reactivation of a specific sensory content (Fig 4). Second, the sensory content is 

transiently reactivated approximately 500 ms after presentation of the cue (Fig 6) in a more 

stable representation than visual encoding (King et al. 2016), consistent with the dynamic 

population coding identified in primate studies (Meyers et al. 2008; Stokes 2015) and activity-

dependent network attractors (Kamiński et al. 2017). 

To summarize, our study identified spatiotemporal neural dynamics of the selection and 

maintenance of a working memory content as it gets manipulated. Evidence is presented in favor 

of a role for the ventrolateral prefrontal cortex in the selection rather than the maintenance of 

working memory content, through a stable and frequency-specific neural representation. The 

working memory content was transformed from the initial visual encoding into a different and 

transiently reactivated memory representation in a posterior brain network. These findings 

suggest that our brain transiently probes memory content, possibly stored in activity-silent 

mechanisms, to manipulate this representation for future action. Additionally, they may help 

reconcile different views on the persistent and dynamic features of spatiotemporal neural 

representations of working memory. 
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Code and Data availability 

All preprocessing and MEG analysis pipelines are available at 

https://github.com/romquentin/decod_WM_Selection_and_maintenance and raw MEG data are 

publicly accessible on the Openneuro neuroimaging platform  

(https://doi.org/10.18112/openneuro.ds001750.v1.3.0). Further information and requests for 

resources should be directed to and will be fulfilled by the lead contact, Romain Quentin 

(romain.quentin@nih.gov). 
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 Figure 1: Behavioral task and performance. 
A. Visual working memory task. The stimulus appears for 100 ms and is composed of four 
different visual attributes: left and right spatial frequency (each chosen among five possible: 1, 
1.5, 2.25, 3.375 or 5.06 cycles/degree) and left and right orientation (each chosen among five 
possible: -72, -36, 0, 36, 72 degree, 0 being the vertical). After a delay of 800 ± 50ms, the cue 
appears for 100ms and indicates which visual attribute of the stimulus the participant has to 
compare with the upcoming probe. A left or right solid line cue indicates respectively the left or 
right orientation and a left or right dotted line indicates respectively the left or right spatial 
frequency of the stimulus. After a 1500 ± 50ms delay, the probe appears and the participant is 
required to answer whether the cued stimulus attribute is the same or different than the 
corresponding probe attribute. In the trial depicted in the figure, the solid line cue pointing to the 
left instructs the participant to compare the orientation on the left side of the stimulus with the 
orientation in the probe (the correct answer in this case is “different”). We refer to the time 
between the stimulus and the cue as the stimulus epoch, the time between the cue and the probe 
as the cue epoch and the time after the probe as the probe epoch. B. Behavioral performance. 
Mean percentage and standard deviation of correct responses across participants. The mean 
performance across all trials was 83 ± 3.6 %. Participants were better when they had to 
remember an orientation compare to a spatial frequency (85% vs. 81%, p<0.001, paired t-test). 
Performances were similar for trials with left and right cue. 
  

400 ± 50 ms

Stimulus 
100 ms

800 ± 50 ms

Cue
100 ms

1500 ± 50 ms

Probe
Until response (same or different)

Stim
ulus Epoch

Cue Epoch

Probe Epoch

… Left Orientation

… Right Orientation

… Left Spatial Frequency

… Right Spatial Frequency

Cue Rule: Maintain … Content to be
compared (in this trial)

A B

Co
rr

ec
t R

es
po

ns
es

 

All Trials

Cue Orientation
Cue Spatial Frequency
Cue Left
Cue Right

***



 28 

 
Figure 2: Neural dynamics of visual perception, selection rule and memory content in 
evoked and time-frequency domains. 
A. Time course of MEG decoding performance. The x-axis corresponds to the time relative to 
each event (stimulus, cue and probe, see top) and the y-axis corresponds to the decoding 
performance for the stimulus attributes, the selection rule, the memory content and the probe 
attributes. Vertical gray bars indicate the visual presentation of each image (stimulus, cue and 
probe). Color filled areas depict significant temporal clusters of decoding performance (cluster-
level, p<0.05 corrected). Variance (thickness of the line) is shown as standard error of the mean 
(SEM) across participants. Note the successful decoding of the four visual attributes of the 
stimulus, the spatial and feature rule, the memory content (cued - uncued) for both spatial 
frequency and orientation and for the two attributes of the probe. The asterisks indicate the 

A 

Right Spatial 
Frequency 

Left Spatial 
Frequency 

Left 
Orientation 

Right 
Orientation 

Spatial Rule 

Memory Content 
Spatial Frequency 

Feature Rule 

Memory Content 
Orientation 

Probe 
Spatial Frequency 

Probe 
Orientation 

B 
S

tim
ul

us
 a

ttr
ib

ut
es

 

Times (s) 

S
el

ec
tio

n 
R

ul
e 

M
em

or
y 

C
on

te
nt

 
P

ro
be

 a
ttr

ib
ut

es
 

Stimulus Cue Probe 

Times (s) 

Stimulus Cue Probe 



 29 

significance of the mean decoding performance over the entire corresponding epoch (***, **, * 
indicate respectively p < 0.001, p < 0.01 and p < 0.05). B. Decoding performance in the time-
frequency domain. The x-axis corresponds to the time relative to each event (stimulus, cue and 
probe, see top) and the y-axis depicts the frequency of MEG activity (between 2-60Hz). 
Significant clusters of decoding performance are contoured with a dotted line. Note the 
successful decoding in the time-frequency domain of the four visual attributes of the stimulus, 
both the spatial and the feature rule and the two attributes of the probe but not the memory 
content.  
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Figure 3: Spatial source representation of stimuli, selection rule and memory content. 
A. Encoding of visual attributes during the stimulus epoch. The calcarine cortex, the cuneus and 
lateral occipital regions encoded the visual attributes of the stimulus during the stimulus epoch. 
B. Selection rule during the cue epoch. A large cortical network including the ventrolateral 
prefrontal regions and the insula encoded the selection rule. C. Memory content during the cue 
epoch. The neural representation of memory content involves an occipitotemporal brain network. 
D. Decoding performances from the source signal. Time course of decoding performance during 
the stimulus epoch for the visual encoding of the spatial frequency (average of left and right 
spatial frequency) and the line orientation (average of left and right orientation) and during the 
cue epoch for the rules (cue side and the cue type) and the memory content (the cued orientation 
and the cued spatial frequency) in the source space. Note that these decoding performances in 
source space are similar to the decoding performance in sensor space shown in Figure 4 and 5.  
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Figure 4: The selection rule is encoded in a persistent and stable pattern of low-frequency 
brain activity. On the left, time course (x-axis) of decoding performance (y-axis) during the cue 
epoch for the cue side (top) and the cue type (bottom) during the working memory task when the 
cue is associated with the selection rule (blue) and the control one-back task when it is not 
(gray). Note that decoding performance was significantly higher in the working memory task 
than in the control one-back task. The time generalization matrices (middle panels), in which 
each estimator trained on time t was tested on its ability to predict the variable at time t’, identified 
stable neural representations for both spatial and feature rules. The right panel shows the decoding 
in the time frequency domain. Note that both rules are maintained within low frequency bands 
alpha (~10Hz) and theta (~3Hz) activity.  
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Figure 5: The sustained and frequency specific neural representation of the rule is not 
present in the control one-back task. Estimators trained on cue side and cue type during the 
working memory task are tested during the same task (blue) or tested during the control task 
(gray). On the left, time course (x-axis) of decoding performance (y-axis) during the cue epoch 
for the cue side (top) and the cue type (bottom). The right panel shows the decoding in the time 
frequency domain. These analyses served as a control for analyses in Figure 4. 
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Figure 6: Spatial source representation of the selection rule in theta (3Hz) and alpha 
(10Hz) band. A.  Selection rule during the cue epoch decoding from theta power (3Hz). A large 
cortical network including the ventrolateral prefrontal regions and the insula encoded the 
selection rule in the theta band (left) with the corresponding decoding performance in time-
frequency source space (right). B. Selection rule during the cue epoch decoding from alpha 
power (10Hz). A posterior network encode the selection rule in the alpha band (left) with the 
corresponding decoding performance in time-frequency source space (right).  
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Figure 7: The memory content is transiently reactivated 500 ms after the cue. 
A. Time course of decoding performance (y-axis) during the cue epoch for the cued orientation 
(5 possible orientations) and the cued spatial frequency (5 possible spatial frequencies) during 
the working memory task and their corresponding time generalization analysis. B. Same analysis 
for the uncued orientation and spatial frequency. Note that decoding performance was 
significantly above chance for the cued but not uncued orientation and spatial frequency. 
Additionally, decoding was significantly higher for the cued than the uncued item (see Fig 2 for 
this difference).  
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Figure 8: Different neural representations of memory and perceptual content. 
A. Left. Average decoding performance for each participant when estimators are trained on the 
stimulus attributes (average of orientation and spatial frequency) during the stimulus epoch and 
either tested during the same epoch or tested on the corresponding memory content during the 
cue epoch. Right. Average decoding performance for each participant when estimators are 
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trained on the memory content (average of orientation and spatial frequency) during the cue 
epoch and either tested during the same epoch or tested on the corresponding stimulus attribute 
during the stimulus epoch. B. Time generalization matrix trained on the stimulus attribute (left: 
line orientation, right: spatial frequency) during the stimulus epoch (y axes) and tested on the 
memory content during stimulus (orange matrix) and cue (red matrix) epochs (x axis). C. Time 
generalization matrix trained on the memory content during the cue epoch (y axes) and tested on 
the stimulus attribute during stimulus (left orange matrix) and cue (right red matrix) epochs (x 
axis). Note that an estimator trained to decode a visual feature during perception cannot decode 
the corresponding memory content during the cue epoch and an estimator trained to decode a 
memory content during the cue epoch cannot decode the corresponding stimulus feature during 
perception.  
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Figure 9: Small saccades are informative about the side of the cue but not the memory 
content. Time course of decoding performance during the cue epoch for the cue side, the cue 
type, the cued orientation and the cued spatial frequency from eye position data only.  
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