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Abstract 
 

Data-independent acquisition (DIA-MS) boosts reproducibility, depth of coverage and         

quantification precision in label-free proteomic experiments. We present DIA-NN, a software           

that employs deep neural networks to distinguish real signals from noise in complex DIA              

datasets and a new quantification algorithm, that is able to subtract signal interferences.             

DIA-NN vastly outperforms the existing cutting-edge DIA-MS analysis workflows,         

particularly in combination with fast chromatographic methods, enabling deep and precise           

proteome coverage in high-throughput experiments. 
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Introduction 
 

Mass-spectrometry-based proteomics approaches involving artificial intelligence to dissect        
complex relationships between genotype and phenotype are rapidly gaining importance          
within both personalised medicine and the emerging field of data-driven biology​1–3​. These            
applications depend on large sample series and require reproducible and precise protein            
quantification. This is however hampered by the inherent complexity of the proteome, which             
leads to stochasticity in peptide detection via conventional data-dependent acquisition (DDA)           
strategies, resulting in missing values between successive runs ​4,5​. Data-independent         
acquisition (DIA) approaches, such as SWATH-MS ​6,7​, have been developed to reduce           
stochastic elements in proteomic data acquisition via sequential windowed fragmentation of           
all precursor ions (i.e. peptides with a specific charge) within a specified mass range. DIA               
workflows show high reproducibility and achieve superior proteomic depth, becoming the           
method of choice for protein identification and quantification in large sample series​8–10​. The             
computational processing of DIA datasets, however, is extremely challenging due to their            
inherent complexity. First, each precursor ion gives rise to a series of consecutive spectra in               
the data (instead of a single spectrum in a typical DDA workflow). Each of its fragment ions                 
thus corresponds to an elution profile (i.e. a chromatogram). Second, mass-windowed           
acquisition leads to co-fragmentation of multiple interfering precursors (i.e. precursors that           
share some fragments with similar m/z values), leading to highly multiplexed spectra. Despite             
the numerous software improvements introduced recently ​11​, only a fraction of the recorded            
information is currently efficiently extracted from the DIA data, hindering the identification            
performance. In addition, although quantification in DIA is performed at the MS² level unlike              
most DDA methods, it is still affected by interferences that scale with increasing sample              
complexity or shorter chromatographic gradients, requiring more sophisticated algorithms to          
identify, or correct, for them​11​. In parallel, analysis of larger-scale DIA experiments is further              
limited by huge hardware demands or slow processing times of currently available software.             
Recently, new types of spectral deconvolution strategies aimed at better handling of signal             
interferences have been implemented in software tools such as Specter or microDIA​12,13​, but             
these still leave the requirements for the processing of large sample series, especially those              
acquired using fast chromatographic gradients, largely unaddressed. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/282699doi: bioRxiv preprint 

https://paperpile.com/c/jNFtjm/0Q8x+SxJm+2LDu
https://paperpile.com/c/jNFtjm/eCjo+Gdot
https://paperpile.com/c/jNFtjm/GELN+Fv2U
https://paperpile.com/c/jNFtjm/z063+DyWr+xK6i
https://paperpile.com/c/jNFtjm/rfpw
https://paperpile.com/c/jNFtjm/rfpw
https://paperpile.com/c/jNFtjm/PN3l+ODo3
https://doi.org/10.1101/282699
http://creativecommons.org/licenses/by/4.0/


 

Results 
 

We have developed and benchmarked DIA-NN, a software based on the novel application of              
deep neural networks to DIA data, which ​vastly outperforms the existing cutting-edge            
pipelines in both the identification numbers and quantification precision, ​as required for the             
next generation of high-throughput proteomics. The fully-automatic DIA-NN workflow         
(Figure 1A; all procedures are described in detail in Supplementary Methods), starts with a              
peptide-centric approach​14​, based on a spectral library, which can be provided separately or             
automatically generated by DIA-NN ​in silico from a protein sequence database           
(Supplementary Notes 2 and 3). First, a library of negative controls (i.e. decoy precursors ​14,15​)              
is generated, to complement the library of real (i.e. target) precursors. For each target or               
decoy precursor, chromatograms are extracted from the raw DIA data and putative elution             
peaks (comprising the precursor and fragment ion elution profiles in the vicinity of the              
putative retention time of the precursor) are identified. A set of scores is then calculated to                
describe each of the elution peaks (in total, DIA-NN calculates 69 different peak scores in the                
various steps of the workflow). The scores reflect peak characteristics such as co-elution of              
fragment ions, mass accuracy or similarity between observed and reference (library) spectra            
(Supplementary Table 1 for details of the scoring system). The best candidate peak is then               
selected per precursor using iterative training of a linear classifier, which allows to calculate a               
single discriminant score for each peak.  

While being highly sensitive​16​, the peptide-centric search alone leads to false identifications            
and unreliable quantification, as a single putative elution peak in the data can be used as the                 
detection evidence for several precursors that share one or more fragments with close m/z              
values. DIA-NN tackles this by drawing upon the advantages of spectrum-centric approaches.            
It looks for all such situations when potentially interfering precursors have been matched to              
the same retention time (by the peptide-centric search module), and, if the degree of              
interference is deemed significant enough, only reports the ones best supported by the data as               
identified.  

To calculate the precursor q-values, all target and decoy precursors need to be assigned a               
single discriminant score each, based on the characteristics of the respective candidate elution             
peaks. In DIA-NN, this crucial step in the workflow, which determines the number of              
precursors reported at a given false discovery rate (FDR) threshold, relies on deep neural              
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networks (DNNs). ​DNNs encompass a group of artificial intelligence methods, that have            
been developed extensively in recent years, making them the preferred machine learning            
approach for many applications involving the analysis of complex data of heterogeneous            
nature​17​. Linear classifiers, conventionally used to score precursors, are unable to effectively            
deal with the highly complex DIA data. In DIA-NN, an ensemble of DNNs is trained to                
distinguish between the target and decoy precursors. For each precursor, the set of scores              
corresponding to the respective elution peak is used as neural network input. Subsequently,             
each trained network, when provided with a set of scores as input, yields a quantity that                
reflects the likelihood that this set originated from a target precursor. These quantities,             
calculated for all the precursors and averaged across the networks, are then used to obtain the                
q-values.  

Furthermore, DIA-NN introduces an effective algorithm for detection and removal of           
interferences from tandem-MS spectra. For each putative elution peak, DIA-NN selects the            
fragment least affected by interferences (as the one with the elution profile best correlated              
with the elution profiles of the other fragments). Its elution profile is then considered              
representative of the true elution profile of the peptide. Comparison of this profile with the               
elution profiles of other fragments allows to subtract interferences from the latter.  

In combination with the enhanced precursor scoring by DNNs, this new quantification            
strategy leads to a vast improvement of DIA data extraction, specifically in the analysis of               
complex proteomes with short chromatographic methods that suffer the most from the            
problem of signal interferences. To illustrate the performance of DIA-NN, we benchmarked it             
on the basis of public datasets that have been specifically created for testing DIA software. Its                
identification performance was evaluated using a HeLa whole-proteome tryptic digest          
recorded on a nanoLC-coupled QExactive HF mass spectrometer (Thermo Fisher), with           
different chromatographic gradient lengths, ranging from 0.5h to 4h​10​. The same data were             
processed with state-of-the-art DIA processing workflows currently used: OpenSWATH ​18​,         
Skyline​19 and Spectronaut ​4 (Biognosys). The number of precursor IDs produced by each tool             
is plotted as a function of the estimated effective FDR. This analysis demonstrated vastly              
better identification performance of DIA-NN, particularly evident at strict FDR thresholds           
and short chromatographic gradient lengths (Figure 1B; please see Supplementary materials           
for all peptide identification tables, which have been deposited online). At 1% estimated             
FDR, DIA-NN identifies more precursors from the 0.5h chromatographic gradient than           
Skyline or OpenSWATH from the same sample when analysed using a 2h chromatographic             
gradient. Thus, if a similar number of precursor identifications at 1% FDR is attempted, a               
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change of software from either open-source tool to DIA-NN would allow sample throughput             
to be increased by a factor of ~four.  

As misidentified peptides result in unreliable quantification, we next reasoned that the            
superior identification capabilities of DIA-NN would in itself lead to more precise            
quantification. To provide a minimally biased comparison, we only benchmarked DIA-NN           
against Spectronaut, which demonstrated the most similar identification performance on data           
collected using longer chromatographic gradients (Figure 1B). We used the LFQbench           
dataset created as part of a multi-center study and specifically designed to compare the              
quantification performance of DIA software tools​20​. In LFQbench, two peptide preparations           
(yeast and ​E.coli​) were spiked in two different ratios (A and B) into a third a peptide                 
preparation (human). The LFQbench reveals quantification precision on the basis of how well             
the ratios between the yeast, ​E. coli and human peptides (and proteins) are recovered. Of               
note, LFQbench data have been recorded on a TripleTOF 6600 mass spectrometer (Sciex),             
and serves hence also as a test of how well DIA-NN performs on different mass spectrometry                
platforms. DIA-NN demonstrated significantly better precision in the quantification of both           
yeast and ​E.coli peptides and proteins, while also generating more valid A:B peptide and              
protein ratios for each species (Figure 1C, Supplementary Figure 1). In addition, DIA-NN             
produced substantially better median CV values for human peptides and proteins: 5.4% and             
2.9%, respectively, compared to 7.0% and 3.8% for Spectronaut, as calculated by the             
LFQbench R package. 

In order to make DIA-NN accessible for the broad application in small-scale and large-scale              
proteomic experiments, we have included several additional features and programmed a           
comprehensive software tool that allows the conducting of all steps of a DIA-processing             
pipeline automatically. DIA-NN includes an intuitive graphical interface (screenshot in          
Supplementary Figure 4), as well as a command line tool for efficient integration into              
automated workflows. DIA-NN can analyse data generated on different mass spectrometry           
platforms, and does not require retention time standards to be present in the sample. DIA-NN               
also performs automatic mass correction and automatically determines such search          
parameters as the retention time window and the extraction mass accuracy. This eliminates             
the lengthy and laborious process of optimising the processing workflow for each particular             
data set. Moreover, written in C++, DIA-NN achieves ultrafast processing times with            
moderate hardware requirements, enabling fast and precise extraction of peptide and protein            
quantities from large-scale DIA proteomics datasets (100s – 1000s of samples)           
(Supplementary Note 4).  
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Finally, DIA-NN includes a software module that enables it to operate without a spectral              
library and generate high-quality spectral libraries directly from DIA data (Supplementary           
Note 2 an 3). The library-free mode is efficient for applications in which proteomic depth               
does not need to be exhausted and enables applications in which limited sample amount or               
instrument access restrictions prevent the creation of an extensive DDA-based spectral           
library​16​. 
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Figure 1. DIA-NN workflow and its performance​​. (A) DIA-NN workflow. (B)           

Identification performance of DIA-NN compared to OpenSWATH ​18 (part of OpenMS ​21 2.3.0,           

released on January 3, 2018), Skyline​19 (4.1.0.11796, released on January 11, 2018) and             

Spectronaut​4 (Pulsar 11.0.15038.17.27438 (Asimov) (Biognosys), released on June 2, 2017).          
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The benchmark illustrates the results of processing the raw data files generated from the              

analysis of a HeLa cell-line whole-proteome tryptic digest recorded on a nanoLC-coupled            

QExactive HF mass spectrometer with chromatographic gradient lengths ranging from 0.5h           

to 4h​10​. OpenSWATH was not used to analyse the 0.5h run, as it was unable to correctly                 

recognise the iRT retention time standards in the short gradient (Biognosys). The effective             

false discovery rate (FDR) was estimated using a two-species compound spectral library            

method​10​, i.e. a concatenated spectral library containing precursor ions mapped to either            

human or maize proteomes was used, the maize precursors serving as externally supplied             

decoys (as in a target-decoy method​15​) (see Methods). Each point on the graph corresponds to               

a decoy (maize) precursor, its x-axis value reflecting the estimated FDR at the respective              

score threshold and its y-axis value being the number of identified target (human) precursors              

at this threshold. DIA-NN consistently outperforms the other software tools in terms of the              

identification performance, in particular on short chromatographic gradients and with          

conservative FDR-thresholds. (C) Quantification precision, benchmarked using the        

LFQbench test performance of DIA-NN in comparison to Spectronaut, in the analysis of             

peptide preparations (yeast and ​E.coli​) that were spiked in two different proportions (A and              

B) into a human peptide preparation ​20​. The data were processed at 1% q-value, and peptide               

ratios between the mixtures were visualised using the LFQbench R package (with the dotted              

lines indicating the expected ratios). Right panel: peptide and protein quantification           

performance given as box-plots. DIA-NN demonstrates significantly better quantification         

precision for both yeast and ​E.coli​ peptides.  

 

Acknowledgements 

We thank Roland Bruderer (Biognosys) for providing the spectral libraries. This work was             
supported by the Francis Crick Institute which receives its core funding from Cancer             
Research UK (FC001134), the UK Medical Research Council (FC001134), and the           
Wellcome Trust (FC001134), and received specific funding from the BBSRC          
(BB/N015215/1 and BB/N015282/1), as well as a Crick Idea to Innovation (i2i) initiative             
(Grant Ref 10658). 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/282699doi: bioRxiv preprint 

https://paperpile.com/c/jNFtjm/xK6i
https://paperpile.com/c/jNFtjm/xK6i
https://paperpile.com/c/jNFtjm/3cqP
https://paperpile.com/c/jNFtjm/PVYWn
https://doi.org/10.1101/282699
http://creativecommons.org/licenses/by/4.0/


References 

1. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. 

Nature​ ​537,​​ 347–355 (9/2016). 

2. Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, 

advances, and applications. ​Annu. Rev. Biomed. Eng. ​ ​11,​​ 49–79 (2009). 

3. Zelezniak, A. ​et al. ​ The prediction of metabolome from proteome in kinase knock-outs explains 

the role of enzyme abundance in the regulation of metabolism. ​Cell Systems ​ ​7,​​ 1–15 (2018). 

4. Bruderer, R. ​et al. ​ Extending the Limits of Quantitative Proteome Profiling with 

Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional 

Liver Microtissues. ​Mol. Cell. Proteomics ​ ​14,​​ 1400–1410 (05/2015). 

5. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method 

enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. ​Nat. Methods ​ ​15, 

440–448 (2018). 

6. Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for 

quantitative analysis of complex peptide mixtures from tandem mass spectra. ​Nat. Methods ​ ​1, 

39–45 (2004). 

7. Gillet, L. C. ​et al. ​ Targeted Data Extraction of the MS/MS Spectra Generated by 

Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. 

Mol. Cell. Proteomics ​ ​11,​​ O111.016717 (06/2012). 

8. Collins, B. C. ​et al. ​ Multi-laboratory assessment of reproducibility, qualitative and quantitative 

performance of SWATH-mass spectrometry. ​Nat. Commun. ​ ​8,​​ (12/2017). 

9. Vowinckel, J. ​et al. ​ Cost-effective generation of precise label-free quantitative proteomes in 

high-throughput by microLC and data-independent acquisition. ​Sci. Rep. ​ ​8,​​ 4346 (2018). 

10. Bruderer, R. ​et al. ​ Optimization of Experimental Parameters in Data-Independent Mass 

Spectrometry Significantly Increases Depth and Reproducibility of Results. ​Mol. Cell. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/282699doi: bioRxiv preprint 

http://paperpile.com/b/jNFtjm/0Q8x
http://paperpile.com/b/jNFtjm/0Q8x
http://paperpile.com/b/jNFtjm/0Q8x
http://paperpile.com/b/jNFtjm/0Q8x
http://paperpile.com/b/jNFtjm/0Q8x
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/SxJm
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/2LDu
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/eCjo
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/Gdot
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/GELN
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/Fv2U
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/z063
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/DyWr
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
https://doi.org/10.1101/282699
http://creativecommons.org/licenses/by/4.0/


Proteomics ​ ​16,​​ 2296–2309 (12/2017). 

11. Ludwig, C. ​et al. ​ Data-independent acquisition-based SWATH-MS for quantitative proteomics: a 

tutorial. ​Mol. Syst. Biol. ​ ​14,​​ e8126 (2018). 

12. Peckner, R. ​et al. ​ Specter: linear deconvolution for targeted analysis of data-independent 

acquisition mass spectrometry proteomics. ​Nat. Methods ​ ​15,​​ 371–378 (2018). 

13. Heaven, M. R. ​et al. ​ microDIA (μDIA): data-independent acquisition for high-throughput 

proteomics and sensitive peptide mass spectrum identification. ​Anal. Chem. ​ ​90,​​ 8905–8911 

(2018). 

14. Reiter, L. ​et al. ​ mProphet: automated data processing and statistical validation for large-scale 

SRM experiments. ​Nat. Methods ​ ​8,​​ 430–435 (5/2011). 

15. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale 

protein identifications by mass spectrometry. ​Nat. Methods ​ ​4,​​ 207–214 (3/2007). 

16. Ting, Y. S. ​et al. ​ PECAN: library-free peptide detection for data-independent acquisition tandem 

mass spectrometry data. ​Nat. Methods ​ ​14,​​ 903–908 (2017). 

17. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. ​Nature ​ ​521,​​ 436–444 (2015). 

18. Röst, H. L. ​et al. ​ OpenSWATH enables automated, targeted analysis of data-independent 

acquisition MS data. ​Nat. Biotechnol. ​ ​32,​​ 219–223 (2014). 

19. MacLean, B. ​et al. ​ Skyline: an open source document editor for creating and analyzing targeted 

proteomics experiments. ​Bioinformatics ​ ​26,​​ 966–968 (2010). 

20. Navarro, P. ​et al. ​ A multicenter study benchmarks software tools for label-free proteome 

quantification. ​Nat. Biotechnol. ​ ​34,​​ 1130–1136 (2016). 

21. Röst, H. L. ​et al. ​ OpenMS: a flexible open-source software platform for mass spectrometry data 

analysis. ​Nat. Methods ​ ​13,​​ 741–748 (2016). 

22. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale 

protein identifications by mass spectrometry. ​Nat. Methods ​ ​4,​​ 207–214 (3/2007). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/282699doi: bioRxiv preprint 

http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/xK6i
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/rfpw
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/PN3l
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/ODo3
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/yldI
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/BzkL
http://paperpile.com/b/jNFtjm/hqKp
http://paperpile.com/b/jNFtjm/hqKp
http://paperpile.com/b/jNFtjm/hqKp
http://paperpile.com/b/jNFtjm/hqKp
http://paperpile.com/b/jNFtjm/hqKp
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/st0f
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/qevs
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/PVYWn
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/cmGH
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
http://paperpile.com/b/jNFtjm/3cqP
https://doi.org/10.1101/282699
http://creativecommons.org/licenses/by/4.0/


Methods 

 
Raw mass spectrometry data 

Raw analyses of the HeLa cell lysate have been described previously​1 and were obtained              

from ProteomeXchange (data set PXD005573). DIA-NN and Spectronaut accessed these          

directly; for processing with Skyline and OpenSWATH, .raw files were converted to the             

.mzML format using MSConvertGUI (part of ProteoWizard ​2 3.0.11537) with MS1 and MS2            

vendor peak picking enabled, 32-bit binary precision and all other options unchecked. Raw             

data files for the LFQbench test were generated by Navarro and colleagues ​3 and were              

obtained from ProteomeXchange (data set PXD002952; HYE110 runs on TripleTOF 6600           

with 64-variable windows acquisition). For the analysis with DIA-NN, these were converted            

to the .mzML format using MSConvertGUI. 

 

Spectral library 

The human and maize spectral libraries used to generate the two-species compound library             

have been described previously​1​. The maize library was filtered to exclude peptides matched             

to either the NCBI human redundant database (April 25​th​, 2018) or the UniProt​4 human              

canonical proteome (3AUP000005640). The human library was filtered to include only           

peptides matched to the latter. In both cases, filtering was performed with leucine and              

isoleucine treated as the same amino acid. The libraries were merged, resulting in a library               

containing only precursor ions matched to either human or maize proteomes, but not both. To               

enable the use of the library by all of the software tools under consideration, the library was                 

converted to the OpenMS-compatible format with the use of DIA-NN. Following the            

protocol of Navarro and co-workers ​3​, only precursor ions associated with at least six fragment              

ions were retained in the library, and all fragments but the top six (ordered by their reference                 

intensities) were discarded. This was done to ensure that there is no bias in terms of the                 

distribution of the number of annotated fragments between human and maize precursors. In             

addition, although DIA-NN can take advantage of large numbers of fragment ions described             

in the spectral library, many software tools tend to perform poorly if the number of fragment                

ions is not restricted, e.g. Spectronaut and Skyline only use the top six fragments by default.                

Reference retention times (Biognosys iRT scale) below -60.0 were adjusted to -60.0, to             
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enable efficient linear retention time prediction by Skyline and OpenSWATH, as the            

respective precursors were observed to elute concomitantly. A low number of precursor ions             

had to be removed from the spectral library, so that the library could be imported error-free                

into Skyline (Supplementary Table 2). The resulting compound spectral library contained           

202310 human precursor ions and 9781 maize precursor ions. 

 

FDR estimation using the compound spectral library 

The HeLa cell lysate proteomic datasets (Figure 1B) were analysed with each software tool              

using the human-maize compound spectral library described above. For each identified maize            

precursor, its score (that was ultimately used to calculate the q-value) was considered. The              

numbers of human and maize precursors identified with the same or better score were then               

calculated ([human IDs] and [maize IDs], respectively). A conservative FDR estimate was            

then obtained: 

DRF = [maize IDs]
[human IDs] [maize total]

[human total]  

Here [human total] and [maize total] are the respective numbers of human and maize              

precursors in the spectral library.  

 

Configuring DIA-NN and Spectronaut 

The default settings were used for DIA-NN (v1.5.7) and Spectronaut, except that protein             

inference and FDR filtering of the output were turned off to obtain complete reports. 

 

Configuring Skyline and OpenSWATH 

For Skyline and OpenSWATH, we used the default settings and settings described            

previously​3 whenever possible. The spectral library was directly imported into Skyline using            

the 0.05 m/z ion match tolerance. Shuffle decoy generation was used. For the use with               

OpenSWATH, the spectral library was converted (using OpenMS 2.3.0) to the .TraML            

format, decoys were generated using the following options: “-append -exclude_similar          

-remove_unannotated -enable_detection_specific_losses -enable_detection_unspecific_losses   

-force​”. The spectral library was then converted back to the .tsv format. Several mass              

accuracy settings were attempted (separately for each run); in each case the setting yielding              

the highest number of reported precursor ion identifications at 1% q-value was chosen: 7ppm              
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for 0.5h, 1h and 2h, 5ppm for 4h – Skyline, 15ppm for 1h and 2h, 10ppm for 4h –                   

OpenSWATH. For all runs but the 4h run, the retention time window was set to 20 minutes                 

(Skyline) and 10 minutes (OpenSWATH). For the 4h run, the retention time window was set               

to 40 minutes (Skyline) and 20 minutes (OpenSWATH). Skyline was run with the acquisition              

method set to DIA, product mass analyzer set to centroided and isolation scheme set to               

“Results (0.5 margin)”. (We also attempted running Skyline with product mass analyzer set             

to Orbitrap on the 2h and 4h gradient .raw files without converting to centroided .mzML, but                

this resulted in a significantly lower number of identified precursors.) The retention time             

calculator was created using the “Biognosys-11” built-in set of retention time standards. The             

calculation of q-values was performed using the built-in mProphet algorithm. OpenSWATH           

was run using the following options in addition to setting the mass accuracy and the retention                

time window:  

“​-readOptions cacheWorkingInMemory -batchSize 1000 

-Scoring:TransitionGroupPicker:background_subtraction original 

-Scoring:stop_report_after_feature -1 -Scoring:Scores:use_dia_scores true -ppm -threads 12 

-min_upper_edge_dist 1.0 -min_rsq 0.95 -tr_irt iRTassays.TraML 

-extra_rt_extraction_window 100 -use_ms1_traces​”.  

The “​-min_coverage” option was set to 0.5 for 1h and 0.6 for 2h and 4h runs. Retention time                  

standards for OpenSWATH were provided in the iRTassays.TraML file downloaded from the            

PeptideAtlas​5 repository with the identifier ​PASS00779. OpenSWATH output was further          

processed using PyProphet​6 2.0.0 with the “--level=ms2” option. PyProphet output was           

further processed in R to remove decoy precursors and suboptimal peaks. 
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Supplementary Notes 
 

1. Performance of DIA-NN in the LFQbench test 

While the identification performance is important, so far the key application of DIA is              
accurate, precise and consistent peptide and protein quantification in large sample series. We             
illustrated the quantification performance of DIA-NN by comparing it to Spectronaut Pulsar            
using the LFQbench test​1 (HYE110 dataset, 64 variable window acquisition scheme on            
TripleTOF 6600) (Supplementary Figure 1). In this benchmark, human, yeast, and ​E.coli            
lysates were mixed in different proportions and analysed via SWATH-MS. For each mixture,             
three injection replicates were measured. The performance of the software tools was            
compared using the LFQbench R package (https://github.com/IFIproteomics/LFQbench),       
which takes as input the intensities of the precursor ions and uses these to quantify peptides                
and proteins. Q-value threshold was set to 1%. The default settings were used for DIA-NN               
and Spectronaut, except that protein inference and FDR filtering of the output were turned off               
to obtain complete reports. 

 

Supplementary Figure 1. ​Performance of DIA-NN in the LFQbench test (Complete           
Figure, of which an extract is shown in Figure 1C) ​​. LFQbench performance of DIA-NN in               
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comparison to Spectronaut. In the LFQbench test, two peptide preparations (yeast and ​E.coli​)             
are mixed in two different proportions (A and B), pooled with a human peptide preparation               
and analysed in triplicates on TripleTOF 6600​1​. The data were processed at 1% precursor              
q-value; peptide (panel A) and protein (panel B) ratios between the mixtures were visualised              
using the LFQbench R package (with the dotted lines indicating the expected ratios).             
DIA-NN demonstrates significantly better quantification precision for both yeast and ​E.coli           
peptides and proteins, as evidenced by the box plots for the ratios. DIA-NN also produced               
better median CV values for human peptides and proteins: 5.4% and 2.9%, respectively,             
compared to 7.0% and 3.8% for Spectronaut, as calculated by the LFQbench R package. 

 

2. Library-free processing 

DIA-NN can process raw data using either a spectral library or a protein sequence database.               
In the latter case, proteins are ​in silico digested and prediction of the fragmentation spectra of                
the resulting peptides as well as the respective retention times is performed (Supplementary             
Methods). While the library-based approach achieves higher proteomic depth, the library-free           
approach saves sample material, as well as the instrument time. We benchmarked the             
library-free performance of DIA-NN using the HeLa proteome raw data with different            
chromatographic gradient lengths​2 (Supplementary Figure 2). Library-free analysis was         
carried out against the human UniProt canonical proteome (3AUP000005640) with the           
maximum peptide length set to 50 and a single missed cleavage allowed. To demonstrate the               
benefit of restricting the search space, the data were also processed with the same sequence               
database but filtered to include only peptides known to be present in human samples,              
according to the PeptideAtlas ​3 build of January 2018; for this, the maximum peptide length              
was set to 100 and up to five missed cleavages were allowed. An ​E.coli ​spectral library​2 was                 
used to train the peptide fragmentation and retention time predictors. A project-specific            
spectral library ​2​ was used for library-based processing.  
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Supplementary Figure 2. Library-free performance of DIA-NN ​​. The numbers of precursors           
identified at 1% q-value threshold, as reported by DIA-NN, as a function of chromatographic              
gradient length ​2​ (h). 

 

3. Generating spectral libraries with DIA-NN 

DIA-NN can generate spectral libraries directly from DIA data. Here, we demonstrate its             

capabilities using a workflow optimised for high-throughput proteome quantification based          

on 23-minute gradient microflow SWATH ​4 applied on yeast and human plasma proteomes            

(Supplementary Figure 3). Briefly, Sciex TripleTOF 6600 was used to rapidly analyse yeast             

and human plasma tryptic digests (three injections each; see the detailed workflow            

description in the Supplementary Methods section). Furthermore, a set of SWATH gas-phase            

fractionation runs with narrow precursor isolation windows was acquired for each of the             

digests. DIA-NN was used to create DIA-based spectral libraries directly from these            

gas-phase fractionation runs. For the yeast library, a search against the yeast UniProt             

canonical proteome was used (3AUP000002311). For the plasma library, the runs were            

searched against the human UniProt canonical proteome (3AUP000005640) filtered for the           

peptides known to be present in human plasma, according to the PeptideAtlas ​3 build of              

August 2013; for this, the maximum peptide length was set to 100 and up to five missed                 

cleavages were allowed. The numbers of proteins uniquely identified at 1% q-value (i.e.             
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using peptides specific to the respective genes) were then calculated, as well as the numbers               

of these with coefficients of variation (CV) less than the specified thresholds (measured for              

ubiquitously identified proteins). Yeast runs were also analysed by DIA-NN directly, without            

the DIA-based spectral library. For the initial analysis of yeast gas-phase fractionation runs,             

an ​E.coli spectral library​2 was used to train the peptide fragmentation and retention time              

predictors. Subsequently, all library-free processing was performed using this library, specific           

to our LC-MS setup, to train the predictors. The 1% precursor q-value threshold was used for                

all the analyses. 

 

 

Supplementary Figure 3. ​Using DIA-NN to analyse yeast and human plasma SWATH            

runs without a DDA-based spectral library​​. DIA-NN was used to analyse yeast and human              

plasma triplicate 23-minute gradient runs using spectral libraries generated by DIA-NN from            

gas-phase fractionation runs. A library-free analysis of the same yeast runs was added for              

comparison. Only uniquely identified proteins (i.e. using proteotypic peptides only) were           

considered (filtered at 1% precursor-level and 1% protein-level q-value). 

 

4. Hardware requirements, speed and GUI 

The rising interest in high-throughput proteomics in research, medicine and industry calls for             

the development of software tools that are able to rapidly and reliably analyse thousands of               
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mass spectrometry runs. DIA-NN performs the computationally-demanding processing steps         

separately for each run in the experiment, saving all the relevant information to compact files               

on the hard drive. This allows quick and flexible analysis and subsequent reanalysis of any               

part of the experiment separately. In addition, DIA-NN is very fast. For example, on an               

average workstation (2x 6-core Xeon E5645 @2.4Ghz), it required less than 12 minutes to              

analyse the four HeLa runs (used to generate Figure 1B) and less than 17 minutes to analyse                 

the three yeast runs (used to generate Supplementary Figure 3) in library-free mode. Finally,              

it has very low hardware requirements, e.g. during the processing of the HeLa and yeast               

proteomes its memory usage peaked at less than 3.3Gb and 1.8Gb, respectively.  

For the large scale applications, we provide a command line tool for the creation of automatic                

processing workflows. For smaller or more routine applications, we have further programmed            

a graphical user interface (GUI) wrapper, that enables the control of all steps of the workflow                

from a simple and intuitive workspace (Supplementary Figure 4). Although DIA-NN is            

designed to do as much as possible automatically, it is fully configurable, allowing to              

fine-tune the processing workflow for a specific experiment. The GUI allows to easily set up               

the analysis in few clicks without losing the powerful tuning capabilities of the command line               

tool. 
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Supplementary Figure 4. ​DIA-NN graphical user interface​​.  

 

5. Supplementary Methods 

DIA-NN algorithms 

DIA-NN is a fully open-source software tool and is freely available at            

https://github.com/vdemichev/diann. Here we describe the algorithms used by DIA-NN.  

DIA-NN requires either a spectral library or a sequence database to be provided as input. In                

the latter case, DIA-NN generates a spectral library ​in silico ​. For this, DIA-NN can optionally               

use a fragmentation predictor (based on the approach introduced in MS Simulator ​5​) and a              

linear retention time predictor. The predictors are trained using any spectral library supplied             

by the user.  

For each target precursor in the spectral library, a decoy precursor is generated, if not               

provided in the library. By default this is done by replacing the fragment ion m/z values of                 

the target precursor assuming the amino acids adjacent to the peptide termini were mutated              
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(GAVLIFMPWSCTYHKRQEND to LLLVVLLLLTSSSSLLNDQE mutation pattern is      

used). Optional pseudo-reverse approach to decoy precursor generation is also supported.  

Chromatograms are then extracted for each target and decoy precursor and the respective             

fragment ions. Potential elution peaks are identified, and for each of these the fragment with               

the most optimal properties for quantification is selected. This fragment (chosen among the             

top six based on the reference intensities in the library) maximises the sum of the Pearson                

correlations between its elution profile (in the vicinity of the putative peak) and the elution               

profiles of the remaining fragments from the top six list. It is assumed, that this “best”                

fragment is likely to be the one least affected by interferences, its elution profile thus being                

representative of the true elution profile of the peptide. A set of 69 scores is calculated for                 

each potential elution peak (Supplementary Table 1). These are used differentially in different             

processing stages based on algorithmic decision making. The “best” candidate peak is            

selected per precursor using one of the scores, and a linear classifier is trained to distinguish                

between target and decoy precursors based on the sets of scores corresponding to the              

respective best peaks, allowing to calculate a single discriminant score for each peak. The              

discriminant scores are used to refine the selection of best peaks, and the procedure is               

repeated iteratively several times.  

During the next step, DIA-NN looks for precursors matched to the same retention time which               

also have interfering fragments. If the degree of interference is deemed significant enough,             

DIA-NN only reports the precursor with the highest discriminant score as identified. This             

method effectively allows to combine the advantages of peptide-centric and spectrum-centric           

approaches to mass-spectrometry data analysis.  

An ensemble of deep feed-forward fully connected neural networks (12 by default) is trained              

(as implemented in the Cranium library (https://github.com/100/Cranium) supplied with the          

DIA-NN distribution) via Adam​6 to distinguish between target and decoy precursors. For            

each precursor, the set of scores corresponding to the respective best elution peak is provided               

as input for the networks. Each network comprises a series of ​tanh hidden layers (5 by                

default) and a softmax output layer. Cross-entropy is used as the loss function. The peak               

scores (69 total) are standardised before training. By default, training is performed for one              

epoch only, minimising the effects of overfitting. The predictions of the neural networks are              
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then averaged for each precursor, resulting in the final set of scores used for q-value               

calculation. Optionally, DIA-NN can train each network on a part of the dataset, only using it                

to score precursors it has not been trained on, or use a higher number of training epochs. The                  

use of neural networks allows to effectively utilise all the 69 scores calculated for each               

elution peak, thus increasing the amount of information extracted from the data in             

comparison to the use of a linear classifier. 

For a particular score threshold, DIA-NN calculates a conservative FDR estimate (used to             

generate the respective q-values​7 for precursor identifications), dividing the number of decoys            

with scores exceeding the threshold by the number of targets with scores exceeding the              

threshold. Correction based on estimating the prior probability of incorrect identification (π​0​)            

is not performed.  

DIA-NN uses a conservative protein q-value calculation method, which is applied to            
individual proteins and not protein groups. To estimate protein-level FDR, only target and             
decoy precursors specific to the protein of interest are considered. Thus, proteins without any              
proteotypic precursors identified are automatically assigned a q-value equal to one. The            
maxima of target and decoy scores are calculated for each protein and the distributions of               
these are examined. For a given score threshold, FDR is estimated by dividing the number of                
decoy scores exceeding it by the number of target scores exceeding it. 

For each run, DIA-NN quantifies the intensities of all fragment ions associated with each              

precursor. For this we have conceived an efficient interference removal algorithm. The            

elution profile ​x​(⋅) of each fragment is compared to the reference profile ​ref​(⋅), the smoothed               

elution profile of the best fragment (the one defined previously for the potential elution peak               

being considered). The "weighted" fragment intensity is calculated as the sum of the fragment              

elution profile values weighted by the respective squared values of the reference profile. This              

emphasises the contribution of the data points close to the apex of the reference elution               

profile, thus making the impact of potential interferences manifesting far from the apex             

negligible. The ratio ​r of weighted intensities of the fragment under consideration and the              

best fragment is calculated. All values of ​x ​(⋅) exceeding 1.5⋅​r ​⋅​ref​(⋅) are replaced with             

1.5⋅​r ​⋅​ref​(⋅). The area under the resulting profile is then considered to be the intensity of the                

fragment. Preliminary precursor quantities are obtained by summing the quantities of the top             

six fragments (ranked by their library intensities). 
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DIA-NN enables cross-run precursor ion quantification. In each run, each fragment is            
assigned a score which is the correlation score of its elution profile with the respective               
reference profile, i.e. the smoothed elution profile of the best fragment. For each precursor,              
three fragments with highest average correlations are selected in a cross-run manner. Only             
runs where the precursor was identified with a q-value below a given threshold are              
considered. The intensities of these fragments are then summed in each run to obtain the               
precursor ion intensity. This approach allows to deal with the situation when in certain runs               
interferences were not efficiently removed from elution profiles of some fragments, e.g. if             
interferences manifested close to the apexes.  

Protein grouping can be performed either for individual runs or in a cross-run fashion              

(default). For each precursor, DIA-NN aims to reduce the number of proteins associated with              

it using the maximum parsimony principle, which is implemented via a greedy set cover              

algorithm. 

After precursor ion quantification, cross-run normalisation and protein quantification are          
performed. All the precursor intensities corresponding to identifications with q-values above           
a given threshold are replaced with zeros and preliminary cross-run normalisation based on             
the total signal (i.e. the sum of the intensities of all precursors) is performed. Precursors are                
then ordered by their coefficients of variation. Top ​pN precursors are selected, where ​N ​is the                
average number of identifications passing the q-value threshold and ​p is between 0 and 1.               
Sums of the intensities of these precursors are calculated and are used for normalisation, i.e.               
the levels of all precursors are scaled to make these quantities equal in different runs. A "Top                 
3" method is eventually used for protein quantification: intensities of protein groups are             
calculated as sums of the intensities of top 3 most abundant precursors identified with a               
q-value lower than a given threshold in a particular run. 

Sample preparation and mass spectrometry   

The yeast protein extracts were prepared from ​Saccharomyces cerevisiae (BY4743-pHLU ​8​)          
grown to exponential phase in minimal synthetic nutrient media and processed in a bead              
beater for 5min at 1500rpm (Spex Geno/Grinder). Plasma samples were prepared from            
commercial plasma (Human Cord Blood Plasma, Stemcell Technologies).  

Proteins were denatured in 8M urea/0.1M ammonium bicarbonate pH 8.0 before they were             
reduced and alkylated in 5mM dithiothreitol and 10mM iodoacetamide, respectively. The           
sample was diluted to <1.5M urea/0.1M ammonium bicarbonate pH 8.0 before the proteins             
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were digested overnight with trypsin (37 ​o​C). Peptides were cleaned-up with 96-well           
MacroSpin plates (Nest Group) and iRT peptides (Biognosys) were spiked in.  

The digested peptides were analysed on a nanoAcquity (Waters) coupled to a TripleTOF             
6600 (Sciex). Peptides were separated with a 23-minute non-linear gradient (4%           
acetonitrile/0.1 % formic acid to 36% acetonitrile/0.1% formic acid) on a Waters HSS T3              
column (150mm x 300µm, 1.8µm particles) with a 5µl/min flow rate. The DIA method              
consisted of an MS1 scan from m/z 400 to m/z 1250 (50ms accumulation time) and 40 MS2                 
scans (35ms accumulation time) with variable precursor isolation width covering the mass            
range from m/z 400 to m/z 1250. 

The library generation with “gas-phase fractionation” was performed using the same           
LC-MS/MS setup as mentioned above. The peptides were separated with a 120 minute             
(plasma samples) and 45 minute (yeast samples) linear gradient (3% acetonitrile/0.1% formic            
acid to 60% acetonitrile/0.1 formic acid). Repetitive injections were performed to cover the             
following scan ranges: m/z 400 – 500, m/z 495 – 600, m/z 595 – 700, m/z 695 – 800, m/z 795                     
– 900, m/z 895 – 1000, m/z 995 – 1100, m/z 1095 – 1250 (yeast) and m/z 400 – 500, m/z 500                      
– 600, m/z 600 – 700, m/z 700 – 800, m/z 800– 900, m/z 900 – 1000, m/z 1000 – 1250                     
(plasma). The precursor selection windows were m/z 4 (m/z 1 overlap) for all runs except the                
yeast m/z 1095 – 1250, for which m/z 5 (m/z 1 overlap) windows were used. For the plasma                  
runs, each acquisition cycle was split into two subcycles with the second subcycle having the               
isolation windows shifted by m/z 1.5.  
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Supplementary Table 1. Scoring of putative elution peaks by DIA-NN​​. Groups of scores             

(69 in total) calculated by DIA-NN for all putative elution peaks (matched to the respective               

target or decoy precursor ions). 

Score group Number of scores 

Ions co-elution (MS2 level) 18 

Ions co-elution (MS1 level)  3 

Isotopologue ions co-elution 11 

Total signal 1 

Measured relative fragment intensities 7 

Mass accuracy (MS2) 6 

Retention time (RT) 2 

Elution profile shape 5 

Presence of other putative elution peaks 2 

Library characteristics of the precursor 14 
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Supplementary Table 2. Precursor ions removed from the human-maize concatenated          

spectral library ​​. Peptide modifications are encoded in the UniMod format, precursor charges            

are indicated with a number following the amino acid sequence. 

UniMod:1)M(UniMod:35)M(UniMod:35)GHRPVLVLSQN(UniMod:7)TK3 

(UniMod:1)SADGAEADGSTQVTVEEPVQQ(UniMod:7)PSVVDR3 

(UniMod:1)SAPLDAALHALQEEQ(UniMod:7)AR2 

(UniMod:1)SELDQLRQEAEQ(UniMod:7)LK2 

(UniMod:1)SELEQ(UniMod:7)LRQEAEQ(UniMod:7)LR2 

(UniMod:1)SELEQLRQEAEQ(UniMod:7)LR2 

(UniMod:1)SGEENPASKPTPVQDVQ(UniMod:7)GDGR2 

(UniMod:1)SHVAVENALGLDQ(UniMod:7)QFAGLDLNSSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQ(UniMod:7)FAGLDLNSSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLN(UniMod:7)SSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLNSSDN(UniMod:7)QSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLNSSDNQ(UniMod:7)SGGSTASK3 

(UniMod:1)SKPHSEAGTAFIQTQQ(UniMod:7)LHAAMADTFLEHM(UniMod:35)C(UniMod:4)R5 

(UniMod:1)SLIC(UniMod:4)SISNEVPEHPC(UniMod:4)VSPVSN(UniMod:7)HVYER3 

(UniMod:1)SQ(UniMod:7)DGASQFQ(UniMod:7)EVIR2 

(UniMod:1)SQDGASQFQ(UniMod:7)EVIR2 

(UniMod:1)STGTFVVSQPLN(UniMod:7)YR2 

(UniMod:1)STLLINQPQ(UniMod:7)YAWLK2 

(UniMod:1)STNEN(UniMod:7)ANTPAAR2 

(UniMod:1)STNENAN(UniMod:7)TPAAR2 

(UniMod:1)STSVPQGHTWTQ(UniMod:7)R2 

(UniMod:1)TSALENYIN(UniMod:7)R2 

(UniMod:1)TTQQ(UniMod:7)IDLQGPGPWGFR2 

(UniMod:1)TTYLEFIQQ(UniMod:7)NEER2 
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