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Abstract

Data-independent acquisition (DIA-MS) boosts reproducibility, depth of coverage and
quantification precision in label-free proteomic experiments. We present DIA-NN, a software
that employs deep neural networks to distinguish real signals from noise in complex DIA
datasets and a new quantification algorithm, that is able to subtract signal interferences.
DIA-NN vastly outperforms the existing cutting-edge DIA-MS analysis workflows,
particularly in combination with fast chromatographic methods, enabling deep and precise

proteome coverage in high-throughput experiments.
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Introduction

Mass-spectrometry-based proteomics approaches involving artificial intelligence to dissect
complex relationships between genotype and phenotype are rapidly gaining importance
within both personalised medicine and the emerging field of data-driven biology'~. These
applications depend on large sample series and require reproducible and precise protein
quantification. This is however hampered by the inherent complexity of the proteome, which
leads to stochasticity in peptide detection via conventional data-dependent acquisition (DDA)
strategies, resulting in missing values between successive runs*’. Data-independent
acquisition (DIA) approaches, such as SWATH-MS®’, have been developed to reduce
stochastic elements in proteomic data acquisition via sequential windowed fragmentation of
all precursor ions (i.e. peptides with a specific charge) within a specified mass range. DIA
workflows show high reproducibility and achieve superior proteomic depth, becoming the
method of choice for protein identification and quantification in large sample series®'°. The
computational processing of DIA datasets, however, is extremely challenging due to their
inherent complexity. First, each precursor ion gives rise to a series of consecutive spectra in
the data (instead of a single spectrum in a typical DDA workflow). Each of its fragment ions
thus corresponds to an elution profile (i.e. a chromatogram). Second, mass-windowed
acquisition leads to co-fragmentation of multiple interfering precursors (i.e. precursors that
share some fragments with similar m/z values), leading to highly multiplexed spectra. Despite
the numerous software improvements introduced recently'', only a fraction of the recorded
information is currently efficiently extracted from the DIA data, hindering the identification
performance. In addition, although quantification in DIA is performed at the MS? level unlike
most DDA methods, it is still affected by interferences that scale with increasing sample
complexity or shorter chromatographic gradients, requiring more sophisticated algorithms to
identify, or correct, for them''. In parallel, analysis of larger-scale DIA experiments is further
limited by huge hardware demands or slow processing times of currently available software.
Recently, new types of spectral deconvolution strategies aimed at better handling of signal
interferences have been implemented in software tools such as Specter or microDIA'*", but
these still leave the requirements for the processing of large sample series, especially those

acquired using fast chromatographic gradients, largely unaddressed.
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Results

We have developed and benchmarked DIA-NN, a software based on the novel application of
deep neural networks to DIA data, which vastly outperforms the existing cutting-edge
pipelines in both the identification numbers and quantification precision, as required for the
next generation of high-throughput proteomics. The fully-automatic DIA-NN workflow
(Figure 1A; all procedures are described in detail in Supplementary Methods), starts with a
peptide-centric approach'®, based on a spectral library, which can be provided separately or
automatically generated by DIA-NN in silico from a protein sequence database
(Supplementary Notes 2 and 3). First, a library of negative controls (i.e. decoy precursors'*'?)
is generated, to complement the library of real (i.e. target) precursors. For each target or
decoy precursor, chromatograms are extracted from the raw DIA data and putative elution
peaks (comprising the precursor and fragment ion elution profiles in the vicinity of the
putative retention time of the precursor) are identified. A set of scores is then calculated to
describe each of the elution peaks (in total, DIA-NN calculates 69 different peak scores in the
various steps of the workflow). The scores reflect peak characteristics such as co-elution of
fragment ions, mass accuracy or similarity between observed and reference (library) spectra
(Supplementary Table 1 for details of the scoring system). The best candidate peak is then
selected per precursor using iterative training of a linear classifier, which allows to calculate a

single discriminant score for each peak.

While being highly sensitive'¢, the peptide-centric search alone leads to false identifications
and unreliable quantification, as a single putative elution peak in the data can be used as the
detection evidence for several precursors that share one or more fragments with close m/z
values. DIA-NN tackles this by drawing upon the advantages of spectrum-centric approaches.
It looks for all such situations when potentially interfering precursors have been matched to
the same retention time (by the peptide-centric search module), and, if the degree of
interference is deemed significant enough, only reports the ones best supported by the data as
identified.

To calculate the precursor g-values, all target and decoy precursors need to be assigned a
single discriminant score each, based on the characteristics of the respective candidate elution
peaks. In DIA-NN, this crucial step in the workflow, which determines the number of

precursors reported at a given false discovery rate (FDR) threshold, relies on deep neural
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networks (DNNs). DNNs encompass a group of artificial intelligence methods, that have
been developed extensively in recent years, making them the preferred machine learning
approach for many applications involving the analysis of complex data of heterogeneous
nature'’. Linear classifiers, conventionally used to score precursors, are unable to effectively
deal with the highly complex DIA data. In DIA-NN, an ensemble of DNNs is trained to
distinguish between the target and decoy precursors. For each precursor, the set of scores
corresponding to the respective elution peak is used as neural network input. Subsequently,
each trained network, when provided with a set of scores as input, yields a quantity that
reflects the likelihood that this set originated from a target precursor. These quantities,
calculated for all the precursors and averaged across the networks, are then used to obtain the

g-values.

Furthermore, DIA-NN introduces an effective algorithm for detection and removal of
interferences from tandem-MS spectra. For each putative elution peak, DIA-NN selects the
fragment least affected by interferences (as the one with the elution profile best correlated
with the elution profiles of the other fragments). Its elution profile is then considered
representative of the true elution profile of the peptide. Comparison of this profile with the

elution profiles of other fragments allows to subtract interferences from the latter.

In combination with the enhanced precursor scoring by DNNs, this new quantification
strategy leads to a vast improvement of DIA data extraction, specifically in the analysis of
complex proteomes with short chromatographic methods that suffer the most from the
problem of signal interferences. To illustrate the performance of DIA-NN, we benchmarked it
on the basis of public datasets that have been specifically created for testing DIA software. Its
identification performance was evaluated using a HeLa whole-proteome tryptic digest
recorded on a nanoLC-coupled QExactive HF mass spectrometer (Thermo Fisher), with
different chromatographic gradient lengths, ranging from 0.5h to 4h'°. The same data were
processed with state-of-the-art DIA processing workflows currently used: OpenSWATH',
Skyline' and Spectronaut* (Biognosys). The number of precursor IDs produced by each tool
is plotted as a function of the estimated effective FDR. This analysis demonstrated vastly
better identification performance of DIA-NN, particularly evident at strict FDR thresholds
and short chromatographic gradient lengths (Figure 1B; please see Supplementary materials
for all peptide identification tables, which have been deposited online). At 1% estimated
FDR, DIA-NN identifies more precursors from the 0.5h chromatographic gradient than
Skyline or OpenSWATH from the same sample when analysed using a 2h chromatographic

gradient. Thus, if a similar number of precursor identifications at 1% FDR is attempted, a
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change of software from either open-source tool to DIA-NN would allow sample throughput

to be increased by a factor of ~four.

As misidentified peptides result in unreliable quantification, we next reasoned that the
superior identification capabilities of DIA-NN would in itself lead to more precise
quantification. To provide a minimally biased comparison, we only benchmarked DIA-NN
against Spectronaut, which demonstrated the most similar identification performance on data
collected using longer chromatographic gradients (Figure 1B). We used the LFQbench
dataset created as part of a multi-center study and specifically designed to compare the
quantification performance of DIA software tools®. In LFQbench, two peptide preparations
(yeast and E.coli) were spiked in two different ratios (A and B) into a third a peptide
preparation (human). The LFQbench reveals quantification precision on the basis of how well
the ratios between the yeast, E. coli and human peptides (and proteins) are recovered. Of
note, LFQbench data have been recorded on a TripleTOF 6600 mass spectrometer (Sciex),
and serves hence also as a test of how well DIA-NN performs on different mass spectrometry
platforms. DIA-NN demonstrated significantly better precision in the quantification of both
yeast and E.coli peptides and proteins, while also generating more valid A:B peptide and
protein ratios for each species (Figure 1C, Supplementary Figure 1). In addition, DIA-NN
produced substantially better median CV values for human peptides and proteins: 5.4% and
2.9%, respectively, compared to 7.0% and 3.8% for Spectronaut, as calculated by the
LFQbench R package.

In order to make DIA-NN accessible for the broad application in small-scale and large-scale
proteomic experiments, we have included several additional features and programmed a
comprehensive software tool that allows the conducting of all steps of a DIA-processing
pipeline automatically. DIA-NN includes an intuitive graphical interface (screenshot in
Supplementary Figure 4), as well as a command line tool for efficient integration into
automated workflows. DIA-NN can analyse data generated on different mass spectrometry
platforms, and does not require retention time standards to be present in the sample. DIA-NN
also performs automatic mass correction and automatically determines such search
parameters as the retention time window and the extraction mass accuracy. This eliminates
the lengthy and laborious process of optimising the processing workflow for each particular
data set. Moreover, written in C++, DIA-NN achieves ultrafast processing times with
moderate hardware requirements, enabling fast and precise extraction of peptide and protein
quantities from large-scale DIA proteomics datasets (100s — 1000s of samples)

(Supplementary Note 4).
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Finally, DIA-NN includes a software module that enables it to operate without a spectral
library and generate high-quality spectral libraries directly from DIA data (Supplementary
Note 2 an 3). The library-free mode is efficient for applications in which proteomic depth
does not need to be exhausted and enables applications in which limited sample amount or
instrument access restrictions prevent the creation of an extensive DDA-based spectral

library'.
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Figure 1. DIA-NN workflow and its performance. (A) DIA-NN workflow. (B)
Identification performance of DIA-NN compared to OpenSWATH" (part of OpenMS?*' 2.3.0,
released on January 3, 2018), Skyline" (4.1.0.11796, released on January 11, 2018) and
Spectronaut* (Pulsar 11.0.15038.17.27438 (Asimov) (Biognosys), released on June 2, 2017).
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The benchmark illustrates the results of processing the raw data files generated from the
analysis of a HeLa cell-line whole-proteome tryptic digest recorded on a nanoLC-coupled
QExactive HF mass spectrometer with chromatographic gradient lengths ranging from 0.5h
to 4h'. OpenSWATH was not used to analyse the 0.5h run, as it was unable to correctly
recognise the iRT retention time standards in the short gradient (Biognosys). The effective
false discovery rate (FDR) was estimated using a two-species compound spectral library
method'’, i.e. a concatenated spectral library containing precursor ions mapped to either
human or maize proteomes was used, the maize precursors serving as externally supplied
decoys (as in a target-decoy method") (see Methods). Each point on the graph corresponds to
a decoy (maize) precursor, its x-axis value reflecting the estimated FDR at the respective
score threshold and its y-axis value being the number of identified target (human) precursors
at this threshold. DIA-NN consistently outperforms the other software tools in terms of the
identification performance, in particular on short chromatographic gradients and with
conservative FDR-thresholds. (C) Quantification precision, benchmarked using the
LFQbench test performance of DIA-NN in comparison to Spectronaut, in the analysis of
peptide preparations (yeast and E.coli) that were spiked in two different proportions (A and
B) into a human peptide preparation®’. The data were processed at 1% g-value, and peptide
ratios between the mixtures were visualised using the LFQbench R package (with the dotted
lines indicating the expected ratios). Right panel: peptide and protein quantification
performance given as box-plots. DIA-NN demonstrates significantly better quantification

precision for both yeast and E.coli peptides.
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Methods

Raw mass spectrometry data

Raw analyses of the HeLa cell lysate have been described previously' and were obtained
from ProteomeXchange (data set PXD005573). DIA-NN and Spectronaut accessed these
directly; for processing with Skyline and OpenSWATH, .raw files were converted to the
.mzML format using MSConvertGUI (part of ProteoWizard* 3.0.11537) with MS1 and MS2
vendor peak picking enabled, 32-bit binary precision and all other options unchecked. Raw
data files for the LFQbench test were generated by Navarro and colleagues® and were
obtained from ProteomeXchange (data set PXD002952; HYE110 runs on TripleTOF 6600
with 64-variable windows acquisition). For the analysis with DIA-NN, these were converted

to the .mzML format using MSConvertGUI.

Spectral library

The human and maize spectral libraries used to generate the two-species compound library
have been described previously'. The maize library was filtered to exclude peptides matched
to either the NCBI human redundant database (April 25, 2018) or the UniProt* human
canonical proteome (3AUP000005640). The human library was filtered to include only
peptides matched to the latter. In both cases, filtering was performed with leucine and
isoleucine treated as the same amino acid. The libraries were merged, resulting in a library
containing only precursor ions matched to either human or maize proteomes, but not both. To
enable the use of the library by all of the software tools under consideration, the library was
converted to the OpenMS-compatible format with the use of DIA-NN. Following the
protocol of Navarro and co-workers®, only precursor ions associated with at least six fragment
ions were retained in the library, and all fragments but the top six (ordered by their reference
intensities) were discarded. This was done to ensure that there is no bias in terms of the
distribution of the number of annotated fragments between human and maize precursors. In
addition, although DIA-NN can take advantage of large numbers of fragment ions described
in the spectral library, many software tools tend to perform poorly if the number of fragment
ions is not restricted, e.g. Spectronaut and Skyline only use the top six fragments by default.

Reference retention times (Biognosys iRT scale) below -60.0 were adjusted to -60.0, to
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enable efficient linear retention time prediction by Skyline and OpenSWATH, as the
respective precursors were observed to elute concomitantly. A low number of precursor ions
had to be removed from the spectral library, so that the library could be imported error-free
into Skyline (Supplementary Table 2). The resulting compound spectral library contained

202310 human precursor ions and 9781 maize precursor ions.

FDR estimation using the compound spectral library

The HeLa cell lysate proteomic datasets (Figure 1B) were analysed with each software tool
using the human-maize compound spectral library described above. For each identified maize
precursor, its score (that was ultimately used to calculate the g-value) was considered. The
numbers of human and maize precursors identified with the same or better score were then
calculated ([human IDs] and [maize IDs], respectively). A conservative FDR estimate was

then obtained:

_ Imaize IDs] [human total]
FDR [human IDs] [maize total]

Here [human total] and [maize total] are the respective numbers of human and maize

precursors in the spectral library.

Configuring DIA-NN and Spectronaut
The default settings were used for DIA-NN (v1.5.7) and Spectronaut, except that protein

inference and FDR filtering of the output were turned off to obtain complete reports.

Configuring Skyline and OpenSWATH

For Skyline and OpenSWATH, we used the default settings and settings described
previously® whenever possible. The spectral library was directly imported into Skyline using
the 0.05 m/z ion match tolerance. Shuffle decoy generation was used. For the use with
OpenSWATH, the spectral library was converted (using OpenMS 2.3.0) to the .TraML
format, decoys were generated using the following options: “-append -exclude similar
-remove_unannotated -enable detection specific_losses -enable detection unspecific_losses
-force”. The spectral library was then converted back to the .tsv format. Several mass
accuracy settings were attempted (separately for each run); in each case the setting yielding

the highest number of reported precursor ion identifications at 1% g-value was chosen: 7ppm
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for 0.5h, 1h and 2h, 5ppm for 4h — Skyline, 15ppm for 1h and 2h, 10ppm for 4h —
OpenSWATH. For all runs but the 4h run, the retention time window was set to 20 minutes
(Skyline) and 10 minutes (OpenSWATH). For the 4h run, the retention time window was set
to 40 minutes (Skyline) and 20 minutes (OpenSWATH). Skyline was run with the acquisition
method set to DIA, product mass analyzer set to centroided and isolation scheme set to
“Results (0.5 margin)”. (We also attempted running Skyline with product mass analyzer set
to Orbitrap on the 2h and 4h gradient .raw files without converting to centroided .mzML, but
this resulted in a significantly lower number of identified precursors.) The retention time
calculator was created using the “Biognosys-11" built-in set of retention time standards. The
calculation of g-values was performed using the built-in mProphet algorithm. OpenSWATH
was run using the following options in addition to setting the mass accuracy and the retention
time window:

“-readOptions cacheWorkingInMemory -batchSize 1000

-Scoring: TransitionGroupPicker:background subtraction original
-Scoring:stop_report_after feature -1 -Scoring:Scores:use dia scores true -ppm -threads 12
-min_upper_edge dist 1.0 -min_rsq 0.95 -tr_irt iRTassays. TraML

-extra_rt_extraction window 100 -use ms]1 traces”.

The “-min_coverage” option was set to 0.5 for 1h and 0.6 for 2h and 4h runs. Retention time
standards for OpenSWATH were provided in the iRTassays.TraML file downloaded from the
PeptideAtlas® repository with the identifier PASS00779. OpenSWATH output was further

13

processed using PyProphet® 2.0.0 with the “--level=ms2” option. PyProphet output was

further processed in R to remove decoy precursors and suboptimal peaks.
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Supplementary Notes

1. Performance of DIA-NN in the LFQbench test

While the identification performance is important, so far the key application of DIA is
accurate, precise and consistent peptide and protein quantification in large sample series. We
illustrated the quantification performance of DIA-NN by comparing it to Spectronaut Pulsar
using the LFQbench test' (HYE110 dataset, 64 variable window acquisition scheme on
TripleTOF 6600) (Supplementary Figure 1). In this benchmark, human, yeast, and E.coli
lysates were mixed in different proportions and analysed via SWATH-MS. For each mixture,
three injection replicates were measured. The performance of the software tools was
compared using the LFQbench R package (https://github.com/IFIproteomics/LFQbench),
which takes as input the intensities of the precursor ions and uses these to quantify peptides
and proteins. Q-value threshold was set to 1%. The default settings were used for DIA-NN
and Spectronaut, except that protein inference and FDR filtering of the output were turned off

to obtain complete reports.
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Supplementary Figure 1. Performance of DIA-NN in the LFQbench test (Complete

Figure, of which an extract is shown in Figure 1C). LFQbench performance of DIA-NN in
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comparison to Spectronaut. In the LFQbench test, two peptide preparations (yeast and E.coli)
are mixed in two different proportions (A and B), pooled with a human peptide preparation
and analysed in triplicates on TripleTOF 6600'. The data were processed at 1% precursor
g-value; peptide (panel A) and protein (panel B) ratios between the mixtures were visualised
using the LFQbench R package (with the dotted lines indicating the expected ratios).
DIA-NN demonstrates significantly better quantification precision for both yeast and E.coli
peptides and proteins, as evidenced by the box plots for the ratios. DIA-NN also produced
better median CV values for human peptides and proteins: 5.4% and 2.9%, respectively,

compared to 7.0% and 3.8% for Spectronaut, as calculated by the LFQbench R package.

2. Library-free processing

DIA-NN can process raw data using either a spectral library or a protein sequence database.
In the latter case, proteins are in silico digested and prediction of the fragmentation spectra of
the resulting peptides as well as the respective retention times is performed (Supplementary
Methods). While the library-based approach achieves higher proteomic depth, the library-free
approach saves sample material, as well as the instrument time. We benchmarked the
library-free performance of DIA-NN using the HelLa proteome raw data with different
chromatographic gradient lengths® (Supplementary Figure 2). Library-free analysis was
carried out against the human UniProt canonical proteome (3AUP000005640) with the
maximum peptide length set to 50 and a single missed cleavage allowed. To demonstrate the
benefit of restricting the search space, the data were also processed with the same sequence
database but filtered to include only peptides known to be present in human samples,
according to the PeptideAtlas® build of January 2018; for this, the maximum peptide length
was set to 100 and up to five missed cleavages were allowed. An E.coli spectral library® was
used to train the peptide fragmentation and retention time predictors. A project-specific

spectral library® was used for library-based processing.
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Supplementary Figure 2. Library-free performance of DIA-NN. The numbers of precursors
identified at 1% g-value threshold, as reported by DIA-NN, as a function of chromatographic
gradient length? (h).

3. Generating spectral libraries with DIA-NN

DIA-NN can generate spectral libraries directly from DIA data. Here, we demonstrate its
capabilities using a workflow optimised for high-throughput proteome quantification based
on 23-minute gradient microflow SWATH* applied on yeast and human plasma proteomes
(Supplementary Figure 3). Briefly, Sciex TripleTOF 6600 was used to rapidly analyse yeast
and human plasma tryptic digests (three injections each; see the detailed workflow
description in the Supplementary Methods section). Furthermore, a set of SWATH gas-phase
fractionation runs with narrow precursor isolation windows was acquired for each of the
digests. DIA-NN was used to create DIA-based spectral libraries directly from these
gas-phase fractionation runs. For the yeast library, a search against the yeast UniProt
canonical proteome was used (3AUP000002311). For the plasma library, the runs were
searched against the human UniProt canonical proteome (3AUP000005640) filtered for the
peptides known to be present in human plasma, according to the PeptideAtlas® build of
August 2013; for this, the maximum peptide length was set to 100 and up to five missed

cleavages were allowed. The numbers of proteins uniquely identified at 1% g-value (i.e.
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using peptides specific to the respective genes) were then calculated, as well as the numbers
of these with coefficients of variation (CV) less than the specified thresholds (measured for
ubiquitously identified proteins). Yeast runs were also analysed by DIA-NN directly, without
the DIA-based spectral library. For the initial analysis of yeast gas-phase fractionation runs,
an E.coli spectral library? was used to train the peptide fragmentation and retention time
predictors. Subsequently, all library-free processing was performed using this library, specific
to our LC-MS setup, to train the predictors. The 1% precursor g-value threshold was used for

all the analyses.

Proteins
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Supplementary Figure 3. Using DIA-NN to analyse yeast and human plasma SWATH
runs without a DDA-based spectral library. DIA-NN was used to analyse yeast and human
plasma triplicate 23-minute gradient runs using spectral libraries generated by DIA-NN from
gas-phase fractionation runs. A library-free analysis of the same yeast runs was added for
comparison. Only uniquely identified proteins (i.e. using proteotypic peptides only) were

considered (filtered at 1% precursor-level and 1% protein-level g-value).

4. Hardware requirements, speed and GUI

The rising interest in high-throughput proteomics in research, medicine and industry calls for

the development of software tools that are able to rapidly and reliably analyse thousands of
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mass spectrometry runs. DIA-NN performs the computationally-demanding processing steps
separately for each run in the experiment, saving all the relevant information to compact files
on the hard drive. This allows quick and flexible analysis and subsequent reanalysis of any
part of the experiment separately. In addition, DIA-NN is very fast. For example, on an
average workstation (2x 6-core Xeon E5645 @2.4Ghz), it required less than 12 minutes to
analyse the four HeLa runs (used to generate Figure 1B) and less than 17 minutes to analyse
the three yeast runs (used to generate Supplementary Figure 3) in library-free mode. Finally,
it has very low hardware requirements, e.g. during the processing of the HelLa and yeast

proteomes its memory usage peaked at less than 3.3Gb and 1.8Gb, respectively.

For the large scale applications, we provide a command line tool for the creation of automatic
processing workflows. For smaller or more routine applications, we have further programmed
a graphical user interface (GUI) wrapper, that enables the control of all steps of the workflow
from a simple and intuitive workspace (Supplementary Figure 4). Although DIA-NN is
designed to do as much as possible automatically, it is fully configurable, allowing to
fine-tune the processing workflow for a specific experiment. The GUI allows to easily set up
the analysis in few clicks without losing the powerful tuning capabilities of the command line

tool.
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Supplementary Figure 4. DIA-NN graphical user interface.

5. Supplementary Methods
DIA-NN algorithms

DIA-NN is a fully open-source software tool and 1is freely available at

https://github.com/vdemichev/diann. Here we describe the algorithms used by DIA-NN.

DIA-NN requires either a spectral library or a sequence database to be provided as input. In
the latter case, DIA-NN generates a spectral library in silico. For this, DIA-NN can optionally
use a fragmentation predictor (based on the approach introduced in MS Simulator’) and a
linear retention time predictor. The predictors are trained using any spectral library supplied

by the user.

For each target precursor in the spectral library, a decoy precursor is generated, if not
provided in the library. By default this is done by replacing the fragment ion m/z values of

the target precursor assuming the amino acids adjacent to the peptide termini were mutated
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(GAVLIFMPWSCTYHKRQEND to LLLVVLLLLTSSSSLLNDQE mutation pattern is

used). Optional pseudo-reverse approach to decoy precursor generation is also supported.

Chromatograms are then extracted for each target and decoy precursor and the respective
fragment ions. Potential elution peaks are identified, and for each of these the fragment with
the most optimal properties for quantification is selected. This fragment (chosen among the
top six based on the reference intensities in the library) maximises the sum of the Pearson
correlations between its elution profile (in the vicinity of the putative peak) and the elution
profiles of the remaining fragments from the top six list. It is assumed, that this “best”
fragment is likely to be the one least affected by interferences, its elution profile thus being
representative of the true elution profile of the peptide. A set of 69 scores is calculated for
each potential elution peak (Supplementary Table 1). These are used differentially in different
processing stages based on algorithmic decision making. The “best” candidate peak is
selected per precursor using one of the scores, and a linear classifier is trained to distinguish
between target and decoy precursors based on the sets of scores corresponding to the
respective best peaks, allowing to calculate a single discriminant score for each peak. The
discriminant scores are used to refine the selection of best peaks, and the procedure is

repeated iteratively several times.

During the next step, DIA-NN looks for precursors matched to the same retention time which
also have interfering fragments. If the degree of interference is deemed significant enough,
DIA-NN only reports the precursor with the highest discriminant score as identified. This
method effectively allows to combine the advantages of peptide-centric and spectrum-centric

approaches to mass-spectrometry data analysis.

An ensemble of deep feed-forward fully connected neural networks (12 by default) is trained
(as implemented in the Cranium library (https://github.com/100/Cranium) supplied with the
DIA-NN distribution) via Adam® to distinguish between target and decoy precursors. For
each precursor, the set of scores corresponding to the respective best elution peak is provided
as input for the networks. Each network comprises a series of tanh hidden layers (5 by
default) and a softmax output layer. Cross-entropy is used as the loss function. The peak
scores (69 total) are standardised before training. By default, training is performed for one

epoch only, minimising the effects of overfitting. The predictions of the neural networks are
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then averaged for each precursor, resulting in the final set of scores used for g-value
calculation. Optionally, DIA-NN can train each network on a part of the dataset, only using it
to score precursors it has not been trained on, or use a higher number of training epochs. The
use of neural networks allows to effectively utilise all the 69 scores calculated for each
elution peak, thus increasing the amount of information extracted from the data in

comparison to the use of a linear classifier.

For a particular score threshold, DIA-NN calculates a conservative FDR estimate (used to
generate the respective g-values’ for precursor identifications), dividing the number of decoys
with scores exceeding the threshold by the number of targets with scores exceeding the
threshold. Correction based on estimating the prior probability of incorrect identification ()

is not performed.

DIA-NN uses a conservative protein g-value calculation method, which is applied to
individual proteins and not protein groups. To estimate protein-level FDR, only target and
decoy precursors specific to the protein of interest are considered. Thus, proteins without any
proteotypic precursors identified are automatically assigned a g-value equal to one. The
maxima of target and decoy scores are calculated for each protein and the distributions of
these are examined. For a given score threshold, FDR is estimated by dividing the number of

decoy scores exceeding it by the number of target scores exceeding it.

For each run, DIA-NN quantifies the intensities of all fragment ions associated with each
precursor. For this we have conceived an efficient interference removal algorithm. The
elution profile x(-) of each fragment is compared to the reference profile ref( - ), the smoothed
elution profile of the best fragment (the one defined previously for the potential elution peak
being considered). The "weighted" fragment intensity is calculated as the sum of the fragment
elution profile values weighted by the respective squared values of the reference profile. This
emphasises the contribution of the data points close to the apex of the reference elution
profile, thus making the impact of potential interferences manifesting far from the apex
negligible. The ratio » of weighted intensities of the fragment under consideration and the
best fragment is calculated. All values of x(-) exceeding 1.5 r ref(-) are replaced with
1.5 -7 ref(-). The area under the resulting profile is then considered to be the intensity of the
fragment. Preliminary precursor quantities are obtained by summing the quantities of the top

six fragments (ranked by their library intensities).
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DIA-NN enables cross-run precursor ion quantification. In each run, each fragment is
assigned a score which is the correlation score of its elution profile with the respective
reference profile, i.e. the smoothed elution profile of the best fragment. For each precursor,
three fragments with highest average correlations are selected in a cross-run manner. Only
runs where the precursor was identified with a g-value below a given threshold are
considered. The intensities of these fragments are then summed in each run to obtain the
precursor ion intensity. This approach allows to deal with the situation when in certain runs
interferences were not efficiently removed from elution profiles of some fragments, e.g. if

interferences manifested close to the apexes.

Protein grouping can be performed either for individual runs or in a cross-run fashion
(default). For each precursor, DIA-NN aims to reduce the number of proteins associated with
it using the maximum parsimony principle, which is implemented via a greedy set cover

algorithm.

After precursor ion quantification, cross-run normalisation and protein quantification are
performed. All the precursor intensities corresponding to identifications with g-values above
a given threshold are replaced with zeros and preliminary cross-run normalisation based on
the total signal (i.e. the sum of the intensities of all precursors) is performed. Precursors are
then ordered by their coefficients of variation. Top pN precursors are selected, where N is the
average number of identifications passing the g-value threshold and p is between 0 and 1.
Sums of the intensities of these precursors are calculated and are used for normalisation, i.e.
the levels of all precursors are scaled to make these quantities equal in different runs. A "Top
3" method is eventually used for protein quantification: intensities of protein groups are
calculated as sums of the intensities of top 3 most abundant precursors identified with a

g-value lower than a given threshold in a particular run.
Sample preparation and mass spectrometry

The yeast protein extracts were prepared from Saccharomyces cerevisiae (BY4743-pHLU®)
grown to exponential phase in minimal synthetic nutrient media and processed in a bead
beater for Smin at 1500rpm (Spex Geno/Grinder). Plasma samples were prepared from

commercial plasma (Human Cord Blood Plasma, Stemcell Technologies).

Proteins were denatured in 8M urea/0.1M ammonium bicarbonate pH 8.0 before they were
reduced and alkylated in 5SmM dithiothreitol and 10mM iodoacetamide, respectively. The

sample was diluted to <1.5M urea/0.1M ammonium bicarbonate pH 8.0 before the proteins
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were digested overnight with trypsin (37°C). Peptides were cleaned-up with 96-well
MacroSpin plates (Nest Group) and iRT peptides (Biognosys) were spiked in.

The digested peptides were analysed on a nanoAcquity (Waters) coupled to a TripleTOF
6600 (Sciex). Peptides were separated with a 23-minute non-linear gradient (4%
acetonitrile/0.1 % formic acid to 36% acetonitrile/0.1% formic acid) on a Waters HSS T3
column (150mm x 300um, 1.8um particles) with a Sul/min flow rate. The DIA method
consisted of an MS1 scan from m/z 400 to m/z 1250 (50ms accumulation time) and 40 MS2
scans (35ms accumulation time) with variable precursor isolation width covering the mass

range from m/z 400 to m/z 1250.

The library generation with “gas-phase fractionation” was performed using the same
LC-MS/MS setup as mentioned above. The peptides were separated with a 120 minute
(plasma samples) and 45 minute (yeast samples) linear gradient (3% acetonitrile/0.1% formic
acid to 60% acetonitrile/0.1 formic acid). Repetitive injections were performed to cover the
following scan ranges: m/z 400 — 500, m/z 495 — 600, m/z 595 — 700, m/z 695 — 800, m/z 795
— 900, m/z 895 — 1000, m/z 995 — 1100, m/z 1095 — 1250 (yeast) and m/z 400 — 500, m/z 500
— 600, m/z 600 — 700, m/z 700 — 800, m/z 800— 900, m/z 900 — 1000, m/z 1000 — 1250
(plasma). The precursor selection windows were m/z 4 (m/z 1 overlap) for all runs except the
yeast m/z 1095 — 1250, for which m/z 5 (m/z 1 overlap) windows were used. For the plasma
runs, each acquisition cycle was split into two subcycles with the second subcycle having the

isolation windows shifted by m/z 1.5.
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Supplementary Table 1. Scoring of putative elution peaks by DIA-NN. Groups of scores
(69 in total) calculated by DIA-NN for all putative elution peaks (matched to the respective

target or decoy precursor ions).

Score group Number of scores
Ions co-elution (MS2 level) 18
Ions co-elution (MS1 level) 3
Isotopologue ions co-elution 11
Total signal 1
Measured relative fragment intensities 7
Mass accuracy (MS2) 6
Retention time (RT) 2
Elution profile shape 5
Presence of other putative elution peaks 2
Library characteristics of the precursor 14
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Supplementary Table 2. Precursor ions removed from the human-maize concatenated
spectral library. Peptide modifications are encoded in the UniMod format, precursor charges

are indicated with a number following the amino acid sequence.

UniMod:1)M(UniMod:35)M(UniMod:35)GHRPVLVLSQN(UniMod:7)TK3
(UniMod:1)SADGAEADGSTQVTVEEPVQQ(UniMod:7)PSVVDR3
(UniMod:1)SAPLDAALHALQEEQ(UniMod:7)AR2
(UniMod:1)SELDQLRQEAEQ(UniMod:7)LK2
(UniMod:1)SELEQ(UniMod:7)LRQEAEQ(UniMod:7)LR2
(UniMod:1)SELEQLRQEAEQ(UniMod:7)LR2
(UniMod:1)SGEENPASKPTPVQDVQ(UniMod:7)GDGR2
(UniMod:1)SHVAVENALGLDQ(UniMod:7)QFAGLDLNSSDNQSGGSTASK3
(UniMod:1)SHVAVENALGLDQQ(UniMod:7)FAGLDLNSSDNQSGGSTASK3
(UniMod:1)SHVAVENALGLDQQFAGLDLN(UniMod:7)SSDNQSGGSTASK3
(UniMod: 1)SHVAVENALGLDQQFAGLDLNSSDN(UniMod:7)QSGGSTASK3
(UniMod:1)SHVAVENALGLDQQFAGLDLNSSDNQ(UniMod:7)SGGSTASK3
(UniMod:1)SKPHSEAGTAFIQTQQ(UniMod:7)LHAAMADTFLEHM(UniMod:35)C(UniMod:4)R5
(UniMod: 1)SLIC(UniMod:4)SISNEVPEHPC(UniMod:4)VSPVSN(UniMod:7)HVYER3
(UniMod:1)SQ(UniMod:7)DGASQFQ(UniMod:7)EVIR2
(UniMod:1)SQDGASQFQ(UniMod:7)EVIR2
(UniMod:1)STGTFVVSQPLN(UniMod:7)YR2

(UniMod: )STLLINQPQ(UniMod:7)Y AWLK?2
(UniMod:1)STNEN(UniMod:7)ANTPAAR2
(UniMod:1)STNENAN(UniMod:7)TPAAR2
(UniMod:1)STSVPQGHTWTQ(UniMod:7)R2

(UniMod: 1) TSALENYIN(UniMod:7)R2

(UniMod:1)TTQQ(UniMod: 7)IDLQGPGPWGFR2
(UniMod:1)TTYLEFIQQ(UniMod:7)NEER2
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