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Abstract 

The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled 16 

molecular biologists. Analyzing our single cell transcriptomic maps of human and mouse 

spermatogenesis, we provide evidence that this widespread transcription serves to maintain DNA 18 

sequence integrity in the male germline by correcting DNA damage through “transcriptional scanning”. 

Supporting this model, we find that genes expressed during spermatogenesis display lower mutation rates 20 

on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by 

the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not 22 

benefit from transcriptional scanning, diverge faster over evolutionary time-scales and are enriched for 

sensory and immune-defense functions. Collectively, we propose that transcriptional scanning modulates 24 

germline mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of 

genes but allowing for fast evolution in a specific subset.  26 

  

 28 
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Main texts 

The testis has been known for many years as the organ with the most complex transcriptome1–4. 2 

Widespread transcription in the testis has been reported to cover over 80% of all protein-coding genes in 

human as well as in other species3–6. Several hypotheses have been put forth to explain this observation7,8. 4 

Widespread expression may represent a functional requirement for the gene-products in question2,7. 

However, more complex organs – such as the brain – do not exhibit a corresponding number of expressed 6 

genes, despite their significantly greater number of cell types3–5,9. Moreover, recent studies have shown 

that many testis-enriched and evolutionarily-conserved genes are not required for male fertility in mice10. 8 

The notable discordance between the transcriptome and the proteome in the testis11,12 further supports the 

notion that the widespread transcription does not exclusively lead to protein production via the central 10 

dogma.  

A second hypothesis implicates leaky transcription during the massive chromatin remodeling that 12 

occurs throughout spermatogenesis7,13,14. However, this model predicts more expression during later 

stages of spermatogenesis – when the genome is undergoing the most chromatin changes – in 14 

contradiction with previous observations5,13,15. Additionally, one would expect leaky transcription to be 

under tighter control given the high energetic requirements of widespread transcription16–18.  16 

Here we propose the ‘transcriptional scanning’ model, whereby widespread testis transcription 

modulates gene evolution rates. Using scRNA-Seq of human and mouse testes, we confirmed that 18 

widespread transcription indeed originates from the germ cells as opposed to a mixture of somatic and 

germline expression. We next found that spermatogenesis-expressed genes have fewer germline variants 20 

in the population compared to the unexpressed genes, and that the signature of transcription-coupled 

repair (TCR) on these genes could explain the observed pattern of biased germline mutations. Our model 22 

of transcriptional scanning suggests that widespread transcription during spermatogenesis acts as a DNA 

scanning mechanism that systematically detects and repairs bulky DNA damage through TCR19–21, thus 24 

reducing germline mutations rates and, ultimately, the rates of gene evolution. Genes unexpressed in the 
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male germline do not constitute a random set. Rather, they are enriched in sensory and immune/defense 

system genes, consistent with previous observations that these genes evolve faster22–24. However, 2 

transcription-coupled damage (TCD) overwhelms the effects of TCR in the small subset of very highly 

expressed genes, which are enriched in spermatogenesis-related functions, implicating also a role for 4 

TCD in the modulation of germline mutation rates25. Collectively, our ‘transcriptional scanning’ model 

exposes a hitherto unappreciated aspect of DNA repair in biasing gene evolution rates throughout the 6 

genome.  

 8 

Single-cell RNA-Seq reveals the developmental trajectory of spermatogenesis. 

 10 

Fig. 1: scRNA-Seq reveals a detailed molecular map of human spermatogenesis. a, Schematic of 

developmental stages of human spermatogenesis. b, Dimension reduction analysis (PCA and tSNE) of 12 

human testes scRNA-Seq results. Colors indicate the main spermatogenic stages and somatic cell types, 

as defined by unsupervised clustering and marker genes (Supplementary Fig. 1 and Methods). c, PCA on 14 

the spermatogenic-complement of the single-cell data. Arrows and large arrowheads indicate the RNA 

velocity algorithm26 predicted developmental trajectory and transcriptionally inactive stages during 16 

spermatogenesis, respectively (Methods). d, Heatmap (left) and plots (right) of the expression patterns of 
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all human protein-coding genes throughout spermatogenesis according to k-means method-defined gene 

clusters, including the unexpressed gene cluster. The genes numbers and enriched spermatogenesis stage 2 

of each cluster are also indicated. 

 4 

To identify the precise gene expression patterns across spermatogenesis we applied single-cell 

RNA-Seq to the human and mouse testes (Supplementary Fig. 1a)27. The resulting data allowed us to 6 

distinguish between the genes expressed in the somatic and germline cells, as well as to reveal the 

dynamic genes expressed throughout the developmental process of spermatogenesis which includes 8 

mitotic amplification, meiotic specification to generate haploid germ cells, and finally, differentiation and 

morphological transition to mature sperm cells (Fig. 1a-b)28–30.  10 

A principal component analysis (PCA) and unsupervised clustering method on the scRNA-Seq 

data of human testicular cells revealed 19 cells clusters composed of cells from different biological and 12 

technical replicates (Fig. 1b and Supplementary Fig. 1b, Methods). We first annotated the 5 cell clusters 

composed of  somatic cells – including Leydig cells, Sertoli cells, peritubular myoid cells, testicular 14 

endothelia cells and testis-resident macrophages 30 – using previously determined cell type markers (Fig. 

1b and Supplementary Fig. 1c-d, Methods). Excluding the somatic cells, PCA on the 14 clusters of germ 16 

cells revealed a continuous spectrum suggesting that the order of the cells corresponds to the 

developmental trajectory of spermatogenesis (Fig. 1c). Three independent lines of evidence support this 18 

inference. First, the order of expression of known marker genes across the continuous cluster matches 

their developmental order (Supplementary Fig. 1d). Second, pseudotime analysis using Monocle2 20 

revealed the same cell trajectory (Supplementary Fig. 1d-e)31. Finally, RNA Velocity analysis26 – 

examining the relationship between the spliced and unspliced transcriptomes – further supported the 22 

developmental progression during spermatogenesis and also identified the previously reported slowdown 

of expression during meiosis and late spermiogenesis (Fig. 1c)13,30. We thus concluded that germ cell 24 

transcriptomes could be ordered as successive stages throughout spermatogenesis.  
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Our scRNA-seq results on testicular cells allowed us to test whether the long-observed 

widespread gene expression in the testis has contributions from both germ and somatic cells, or the 2 

expression is mainly from the germ cells. Examining only germ cells, we found that 90.5% of all protein-

coding genes are expressed (Methods). In contrast, all the detected somatic cell types collectively express 4 

62.3% of the genes. The detailed delineation of spermatogenic trajectory provides stage-specific gene 

expression with unprecedented resolution (Fig. 1d). To further ask whether specific developmental stages 6 

are enriched for expression, we clustered all human protein-coding genes into 6 categories including the 

unexpressed genes (Fig. 1d, left). The expressed gene sets reflected their enriched expression patterns 8 

across all spermatogenesis stages (Fig. 1d, right). While no single stage accounts for the widespread 

transcription, we can infer that each cell will gradually express the observed ~90.5% of the genes 10 

throughout its overall maturation to a sperm.  

To test the generality of these results, we repeated the experiments on mouse testis samples and 12 

found that the pattern of transcription during mouse spermatogenesis was broadly comparable to that of 

human (Supplementary Fig. 2a-d). In terms of genes expressed across the stages, we found an overall 14 

highly conserved spermatogenesis gene expression program (Supplementary Fig. 2b-d). A combined 

principal component analysis of human and mouse germ cells further highlighted this conserved 16 

transcriptional program of spermatogenesis (Supplementary Fig. 2e-g). Interestingly, PC2 clearly 

separates the human and mouse cells (Supplementary Fig. 2h), indicating a species-specific gene 18 

expression signature between the two species. These genes include metabolic genes like GAPDH 

(Gapdh)32 and FABP9 (Fabp9)33, chemokine gene CXCL16 (Cxcl16), and sperm motility-related gene 20 

SORD (Sord)34 (Supplementary Fig. 2i). Collectively, these results highlight the overall gene expression 

conservation of human and mouse spermatogenesis, but also identified the divergence between the two 22 

species. 

 24 
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Reduction of germline mutation rates in spermatogenesis expressed genes 

We hypothesized that widespread transcription during spermatogenesis could lead to two 2 

scenarios (Fig. 2a): 1) transcription events unwind the double-strand DNA, leading to an increased 

likelihood of mutations by transcription-coupled damage (TCD)25, and consequently to higher germline 4 

mutation rates and diversity within the population; and/or 2) the transcribed regions are subject to 

transcription-coupled repair (TCR) of DNA damages19–21, thus reducing germline mutation rates and 6 

safeguarding the germline genome, leading to lower population diversity. In both scenarios, differences in 

expression states may contribute to the pattern of population diversity, and ultimately lead to differential 8 

gene evolution rates.  

 10 

Fig. 2: Widespread transcription in spermatogenic cells is associated with reduced germline 

mutation rates. a, Two possible consequences of widespread transcription in spermatogenic cells. b, 12 

Total germline variant levels across the gene clusters, as determined in Figure 1d. c, Total germline 
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variant levels of expressed and unexpressed genes across large gene families (Methods). d, Total germline 

variant levels across gene sets as determined by binarized expression (expressed versus unexpressed) in 2 

testicular germ cells and the somatic cells. e, Ratios of germline variants in unexpressed and expressed 

genes in diverse human organs and cell types. Dot represents individual tissues/organs from the GTEx-4 

project35. Significance in (b-d) is computed by the Mann-Whitney test between expressed and 

unexpressed gene sets with Bonferroni correction for multiple tests. Error bars indicate 99% confidence 6 

intervals calculated by bootstrap methods with n=10,000 (Methods).  

 8 

The public databases have amassed over 200 million germline variants detected in the human 

population, providing a rich resource for studying germline mutation rates36. Since ~80% of these 10 

germline variants are thought to have originated in males37,38, we used this dataset to query for the 

predicted effects caused by widespread transcription, according to the two scenarios39–41. Interestingly, we 12 

found that spermatogenesis-expressed genes, regardless of the timing of their expression (throughout and 

following meiosis), generally have a lower level of germline mutations, relative to the unexpressed genes 14 

(Fig. 2b), consistent with the previous notion of transcription-coupled repair in spermatogenic cells 42,43. 

This difference is robust across variations in gene clustering and individuals (Supplementary Fig. 3a-e) 16 

and is not observed in the gene flanking sequences (5kb upstream and downstream), indicating a genic 

region-specific effect (Supplementary Fig. 3f-h).  18 

To further control for differences in DNA variation specific to particular sequence domains of 

genes expressed in the germ cells, we examined gene families individually according to germline 20 

expressed (in any stage) and unexpressed groups (Methods)44. For all large gene families (>100 genes) 

with at least 10 genes in either category we found lower germline variants level in the spermatogenesis-22 

expressed gene subgroup (Fig. 2c). For example, of the 110 genes with a basic helix-loop-helix domain, 

94 are expressed in the germ cells, and the expressed subgroup has a 22% reduction in germline variant 24 

level in the population as compared to the unexpressed complement.  
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We further controlled for the uniqueness of this effect to male germline gene expression, relative 

to that of other cell types. By distinguishing the binarized expression status in both germ cells and 2 

testicular somatic cell types (Fig. 1b), we found that genes expressed exclusively in somatic cells do not 

exhibit a reduced germline mutations (Fig. 2d, Methods). To study somatic tissues more broadly we 4 

turned to the Genotype-Tissue Expression (GTEx) dataset which has characterized transcriptional profiles 

across all major human tissues/organs, including testis35. While not at the single-cell level and thus 6 

effectively averaging across cell types, testis expression in this dataset showed a significant difference 

relative to all other tissues in its reduction between the expressed and unexpressed gene complement (Z-8 

score = 3.5; Fig. 2e). Interestingly, we found that the ovary transcriptome does not predict such an effect, 

consistent with the notion that point mutations mainly originate in male germ cells37,38. Altogether, these 10 

results support the second scenario of transcription-coupled repair in the male germ cells (Fig. 2a), with 

male germ cell-expressed genes showing reduced levels of germline mutations rates.  12 

 

The signature of TCR of the germline mutations of spermatogenesis-expressed genes  14 

If the reduction of mutations follows from a TCR-induced process, we would expect an 

asymmetry between the germline mutation levels of the coding and the template strands in the 16 

spermatogenesis expressed genes43,45–48, but not in the unexpressed genes (Fig. 3a). The asymmetry would 

be such that the template strand accumulates fewer mutations since, in TCR, DNA damage is detected by 18 

the RNA polymerase on the template strand19. To distinguish between mutations occurring on the coding 

and template strands, we adapted previous approaches to identify strand-asymmetries in the mutation rate 20 

(Fig. 3b)43,45. By studying mutation categories with reference to the coding and template strand, 

Haradhvala et al. inferred a bias in somatic mutation rates45 and such a strategy was also utilized by Chen 22 

et al 43. We applied this approach to germline mutations and found that a lower mutation rate was inferred 

to occur on the template strands of expressed genes during spermatogenesis, regardless of its expression 24 

pattern along the spermatogenesis stages, while such an effect was not apparent in the unexpressed genes, 
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as represented by A-to-T (A>T) transversion mutations in Figure 3c and in the other mutation types 

(Supplementary Fig. 4b). Interestingly, we found that the coding strand of the expressed genes also has a 2 

lower mutation rate than the coding strand of the unexpressed genes (Fig. 3c and Supplementary Fig. 4b), 

suggesting that antisense transcription in spermatogenesis might further reduce mutation levels49. 4 

We next computed an ‘asymmetry score’ to study the ratio between mutation levels inferred to 

occur in the coding and template strands (Fig. 3c-d)45. As expected, the unexpressed group of genes has 6 

minimal asymmetry score levels (Fig. 3d and 3g), indicating an absence of transcription-induced removal 

of DNA damage. As negative controls, we found that mutational asymmetry was not observed when 8 

comparing Watson and Crick strands (instead of gene-specific coding and template strands, 

Supplementary Fig. 6), nor did we detect difference between the gene clusters when shuffling the 10 

spermatogenic gene clustering assignments (while maintaining the group sizes, Supplementary Fig. 7). 

 12 

Bidirectional transcription signatures of mutation asymmetries 

While our analysis thus far examined transcription in the gene body (i.e. genic region of 14 

transcription start site to the end site, also referred as the transcription unit), transcription in the human 

genome contains additional levels of complexity. In particular, though transcription is usually considered 16 

in the gene body, initiation can occur on the opposite strand, leading to upstream transcription in the 

opposite direction50,51 (Fig. 3e). If lower mutation rates are indeed transcription-induced, we predicted that 18 

mutation asymmetry scores would display an inverse pattern between the opposite sides of the initiation 

of bidirectional transcription (Fig. 3e). Consistently, we detected an inverse pattern of asymmetry scores 20 

between the gene body and the upstream sequences (Figs. 3f-g, Supplementary Fig. 4a-b). Furthermore, 

since transcription may extend beyond the annotated end or alternative polyadenylation sites (Fig. 3e)52, 22 

we also predicted that the asymmetry scores in the downstream sequences would display a similar, though 

expectedly weaker pattern compared to that of the gene body (Fig. 3e). Again, we found the expected 24 
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pattern in which the gene body and the downstream sequences have the same pattern of asymmetry scores 

(Figs. 3g-h, Supplementary Fig. 4b-c).  2 

Finally, we predicted that the same TCR influences would be manifested in the mouse data, and 

indeed found such evidence (Supplementary Fig. 8). For example, G-to-T (G>T) transversion mutations 4 

show strong conserved asymmetric mutation patterns in both the human and mouse data. Since G-to-T 

mutations come predominantly from endogenous oxidative DNA damage of guanine40,53, such conserved 6 

asymmetric germline mutation patterns between gene coding and template strands further support the 

notion of TCR effects on germline mutations. Collectively, these analyses provide support for 8 

transcription-induced germline mutation reduction in spermatogenesis expressed genes.  

 10 
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Fig. 3: TCR-associated mutation asymmetry scores show bidirectional transcription and extended 

transcription signatures. a, Schematic of a transcribed gene with the template strand containing lower 2 

DNA damage and, consequently, a lower mutation rate. b, Germline mutations associated with genes 

were retrieved from Ensembl36, classified into the six mutation classes, and further distinguished in terms 4 

of coding and template strands, as previously introduced45. c, A-to-T transversion mutation rates for the 

coding and the template strands for the spermatogenic gene categories. Dashed lines indicate the average 6 

level of mutations in the unexpressed genes. d, Asymmetry scores throughout spermatogenic gene 

categories, computed as the log2 ratio of the coding to the template mutation rates (shown in c). e, 8 

Schematic of gene architecture indicating bidirectional and extended transcription. The schematic shows 

that relative to the promoter, upstream and gene body transcription occur on opposite strands, while 10 

downstream transcription occurs on the same strand as the gene body. f-h, Asymmetry scores in the 

upstream 5kb region (f), gene body (g) and downstream 5kb region (h) across all six mutation types. 12 

Significance between the unexpressed gene category and the expressed gene categories (d, f-h) and 

between coding and template strands (c) was computed by the Mann-Whitney test with Bonferroni 14 

correction. *, P<0.01; **, P<0.000001; n.s., not significant. Error bars indicate 99% confidence intervals 

calculated by bootstrap methods with n=10,000.  16 

 

Transcriptional scanning is tuned by gene-expression level.  18 

Our results led us to propose ‘transcriptional scanning’ as a mechanism to systematically reduce 

DNA damage-induced mutagenesis in the bulk of genes by widespread spermatogenic transcription to 20 

safeguard the germline genome sequence integrity (Fig. 4a). Such a mechanism suggests that mutation 

rates of scanned genes might be tuned by their expression levels in the testis. To test this, we binned all 22 

genes into nine groups according to their expression levels (Fig. 4b, Methods). Consistently, we found 

that even the most lowly-expressed genes have lower levels of germline mutations than the unexpressed 24 

genes (Fig. 4c-d).  
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 2 

 

Fig. 4: ‘Transcriptional scanning’-induced mutation reduction is tuned by gene-expression levels. a, 4 

Schematic of transcriptional scanning of DNA damage in male germ cells. b, Genes were binned to nine 

expression level groups, from unexpressed (Unexp) to highly expressed (High-exp) (Methods). c, 6 

Germline mutation rates across gene expression level categories. Spermatogenesis unexpressed- or highly 

expressed- genes have higher level of germline mutations. d, Distributions of the indicated germline 8 

mutation types across gene expression level categories, and distinguished by coding and template strands. 

Dashed lines indicate the average level of mutations in the unexpressed genes. e, Distribution of 10 

asymmetry scores between coding and template strand for the mutation types indicated in (d). f, 

Expression level tuning of germline mutation rates following additive contributions by transcription-12 
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coupled repair (TCR-reduced) and transcription-coupled damage-induced (TCD-induced) effects. The 

observed germline mutation level represents average mutation rates across 100 evenly-binned expression 2 

levels, with background shadows indicating 99% confidence intervals of expression level-associated 

germline mutation rates.  Significance between the unexpressed gene category and the expressed gene 4 

categories (c and e) or between germline variants on coding strand and template strand (d) is computed by 

the Mann-Whitney test with Bonferroni correction. *, P<0.01; **, P<0.000001; n.s., not significant. Error 6 

bars indicate 99% confidence intervals calculated by bootstrap method with n=10,000.  

 8 

‘Transcriptional scanning’ predicts that higher expression levels would lead to additional 

scanning, and, consequently, to further reduced mutation rates on the template strand. Indeed, examining 10 

our asymmetry score according to different expression levels, we observed that as expression level 

increases, the overall mutation level drops (Fig. 4c-d). Surprisingly, however, the very highly expressed 12 

genes showed the opposite effect: asymmetry between the strands is reduced and a higher level of 

germline mutations relative to the moderately expressed genes is observed (Figs. 4c-e). This pattern is 14 

consistent, however, with observations that very high expression levels can lead to transcription-coupled 

DNA damage (Fig. 2a), as previously reported for transcription-associated mutagenesis in highly 16 

expressed genes in other systems25,54. The mutation type in which TCD is most evident is A-to-G 

transitions (Fig. 4c), and similarly, such strong TCD-induced effect was readily observed in somatic A-to-18 

G mutations in liver cancer samples45. Together, the TCD-induced effect in the very highly expressed 

genes during spermatogenesis persists across all mutation types (Fig. 4d-e).  20 

Overall, our analyses suggest that spermatogenesis gene expression levels tune germline mutation 

levels by ‘transcriptional scanning’ which reduces mutation rates in genes with low-expression (Fig. 4f). 22 

Increasing expression levels are correlated with further reductions in mutation rates, but only to a point. In 

the very highly expressed genes, TCD overwhelms the TCR-induced reductions, and produces an overall 24 

higher germline mutation rate than genes expressed at low and moderate levels (Fig. 4f).  
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The role of transcriptional scanning in genome evolution  2 

 Since the ‘transcriptional scanning’ mechanism is proposed to reduce germline mutations, we 

asked why any gene would be unexpressed during spermatogenesis, instead of benefiting from this 4 

process. Studying the set of 1,890 unexpressed genes at the functional level, we observed enrichment for 

environmental sensing, immune systems, defense responses, and signaling functions (Fig. 5a and 6 

Supplementary Table 1). These functions coincide with those known to be fast-evolving in the human 

genome22–24, suggesting that their lack of expression in the testis is related to their evolution. Consistently, 8 

we detected the highest rates of sequence divergence across ape genomes in the unexpressed genes (Fig. 

5b, Supplementary Fig. 9a). While selection is typically invoked to account for the fast evolution of genes 10 

(Supplementary Fig. 9b-c), biased germline mutation rates may also contribute according to the neutral 

theory of gene evolution22,23,41,55–57. To test this, we studied the synonymous substitution rates (dS, 12 

generally assumed to be neutral) as a proxy for the germline mutation rates and used this measure to 

compare between the spermatogenesis expressed and unexpressed genes. Interestingly, we found that the 14 

spermatogenesis-expressed genes have lower dS values, supporting the notion that biased germline 

mutation rates also contribute to the biased gene evolution rates. We further found that the very highly 16 

expressed genes in spermatogenesis have increased rates of divergence (Supplementary Fig. 9f-i). As 

expected from their high expression, we found that this set of genes is mainly enriched for roles in male 18 

reproduction (Supplementary Fig. 9j and Table 2). 

To disentangle the effects of DNA repair and selection on the different gene evolution rates 20 

between spermatogenesis expressed and unexpressed genes, we compared the frequency of variants 

across introns and coding sequences (CDS), where we expect most variants to be neutral and a mix of 22 

neutral and under selection, respectively. Consistent with the dS results, we found an average reduction of 

5.49% when comparing the intron variant levels between the expressed and the unexpressed genes. In 24 

contrast, for the CDS region variants, we observed a reduction of 9.56%, likely reflecting the mixed 
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effects of transcriptional scanning and natural selection (Supplementary Fig. 9d-e). These data suggest 

that the unexpressed genes are under a unique selection regime whereby occurring mutations are less 2 

likely to be purged by purifying selection. Together, our results suggest that, beyond selection, 

transcriptional scanning in spermatogenesis imposes an additional bias in modulating gene evolution 4 

rates.  

 6 

Fig. 5: Evolutionary consequences of transcriptional scanning in male germ cells. a, Gene ontology 

terms enriched in the set of genes unexpressed during spermatogenesis. ‘FDR q-value’ indicates the GO 8 

term enrichment significance test p-values after multiple-test correction by the Benjamini-Hochberg 

method58. b-c, DNA divergence levels (b) and dS scores (c) and of human genes with their orthologous in 10 

the indicated apes, according to gene expression-pattern clusters. Gray dashed box highlights the male 

germ cell-unexpressed gene cluster. 12 

 

Discussion 14 

Our findings led us to propose the ‘transcriptional scanning’ model, whereby widespread 

transcription in spermatogenesis leads to a rugged landscape of biased germline mutations (Fig. 6a). In 16 

this model, widespread transcription in the testis acts to systematically reduce germline mutations by 
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transcription-coupled repair (TCR), thereby safeguarding the germ cell genome sequence integrity. Given 

that this process is carried out in the germline, the variable mutation rates have important implications. 2 

Over evolutionary time-scales, combined with natural selection, the spermatogenesis-expressed genes 

evolve more slowly (Fig. 6a, middle). The small group of genes that are unexpressed in spermatogenesis 4 

are enriched for sensory and immune/defense system genes (Fig. 5c) and exhibit higher mutation rates, 

which is explained in our model by their lack of TCR-mediated germline mutation reduction (Fig. 6a, 6 

left). Immune and defense system genes are known to evolve faster22–24 and our biased transcriptional 

scanning model provides insight into how variation is preferentially provided to this class of genes. Such 8 

biased germline mutation rates provide increased population-wide genetic diversity which may be under 

strong selective biases for adaptation at the population-level in rapidly changing environments. A third 10 

class of genes with very high germline expression exhibit higher germline mutation rates since their 

transcription-coupled DNA damage obscures the effect of TCR (Fig. 4f and Fig. 6a right). This model 12 

provides a more comprehensive view of the combined effects of TCR and TCD in spermatogenic cells 

(Fig. 4f), and refines previous observations that germline mutation rates increase with expression levels 14 

while highly expressed genes evolve slower43,54,59,60. While the observed mutational bias does not alone 

direct evolution according to our model – since fixation in the population is also influenced by genetic 16 

drift and natural selection – it is expected to contribute to global gene evolution rates. 
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Fig. 6: A model for widespread transcriptional scanning in male germ cells and its contribution to 2 

gene evolution. a, The transcriptional scanning model predicts reduced germline mutation rates across 

most expressed genes. Genes unexpressed in spermatogenesis have relatively higher mutation rates and 4 

consequently experience more evolutionary divergence. In the very highly-expressed genes, transcription-

coupled DNA damage overwhelms the effects of TCR, resulting in higher mutation rates in these genes, 6 

highly enriched for male reproductive function genes. b, A revised model for generating DNA sequence 

variation and gene evolution. DNA repair, represented by transcriptional scanning, acts as a biased 8 

mechanism for the generation of novel DNA variants and, ultimately, to gene evolution rates.  

 10 
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Gene sequence evolution requires (1) the generation of novel DNA variants, stemming from 

DNA damage-induced mutagenesis, replication errors and/or recombination, and (2) natural selection 2 

and/or drift on the novel variants41,57. Since our results implicate a DNA-repair mechanism in biasing the 

production of variants throughout the genome, we propose that this represents a hitherto unappreciated 4 

aspect in the establishment of differential gene evolution rates. Thus, DNA repair pathways act to 

constrain mutagenic DNA damage in a biased manner, analogous to the effects of selection and drift in 6 

the population (Fig. 6b). By understanding these patterns of uneven germline mutations and the intrinsic 

removal mechanism of germline DNA damage, our model provides insight into mutation-driven genome 8 

evolution61. 

While transcriptional scanning is proposed to systematically detect and remove bulky germline 10 

DNA damage, male germ cells are still expected to retain mutations that cannot be repaired by the TCR 

machinery20,62,63. These male germline mutations likely originate from DNA replication errors, 12 

accumulating with paternal age64, or less bulky DNA damages like base deamination65. Thus, it will be of 

interest to analyze germline mutation pattern with a focus on other signature mutation types beyond 14 

TCR45,65,66.  

Our model leads to important testable predictions and may provide deeper insights into human 16 

genetics and diseases. First, our model predicts that male-derived de novo mutations should occur more 

frequently in genes that are unexpressed during spermatogenesis. Second, the same process should also 18 

hold in other species which have readily observed similar widespread transcription in male germ cells5, as 

we also provide evidence for conserved transcriptional scanning in mouse (Supplementary Fig. 8). 20 

Finally, we expect TCR-deficient animals to produce offspring with an increase in the number of de novo 

mutations and that they should not show that characteristic lower mutation rates in the template – versus 22 

the coding – strand. For patients with TCR gene-associated mutations, such as Cockayne syndrome and 

xeroderma pigmentosum67, our model predicts overall higher germline mutation rates. Lastly, embryonic 24 

stem cells (ESCs) share similar patterns of widespread transcription68, leading us to speculate that 
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systematic scanning and removal of DNA damage also functions in ESCs. If so, beyond spermatogenesis, 

transcriptional scanning may be deployed to achieve lower mutation rates in ESCs and in the early 2 

developing embryos68–70.  
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Methods 
 2 
Human testicular tissue 

Human testicular tissue was obtained from New York University Langone Health (NYULH) 4 
Fertility Center; this was approved by the NYULH Institutional Review Board (IRB). Fresh seminiferous 
tubules were collected separately from testicular sperm extraction (TESE) surgery of two healthy patients 6 
with an obstructive etiology for infertility; there were no drug or hormonal treatments prior to TESE 
surgery. The research donors were fully informed before signing consent to donating excess tissue for 8 
research use; this was again done in fashion consistent with the IRB (including tissue sample de-
identification). 10 

 
Human testicular single cell suspension preparation 12 

After TESE surgery, samples were kept in cell culture PBS and transported to the research lab on ice 
within 1h of surgery for single-cell preparation. Testicular single-cell suspension was prepared by 14 
adapting existing protocol71. Specifically, samples from TESE surgery was washed once with PBS and 
resuspended in 5mL PBS. Seminiferous tubules were minced quickly in a cell culture dish and spun down 16 
at 100g for 0.5min to remove supernatants. The minced tissue was resuspended in 8mL of 37°C pre-
warmed tissue dissociation enzyme mix (See below). Tissue dissociation was done by incubating at 37°C 18 
for 20min with mechanical dissociation with pipetter every 5min. After digestion, the reaction was 
quenched by adding 2mL of 100% FBS (Gibco, Cat. 16000044) to a final concentration of 10%. 20 
Dissociation mix was filtered through a 100um strainer to remove remaining seminiferous tubule chunks. 
Cells were washed once with DMEM medium (Gibco, Cat. 11965092) with 10% of FBS and twice with 22 
PBS to remove residual EDTA. Cell viability was checked with Trypan-blue staining (with expectation of 
over 85% viable cells) before moving to the inDrop microfluidics platform. The tissue dissociation 24 
enzyme mix (8mL) was composed of 7.56mL of 0.25% Trypsin-EDTA (Gibco, Cat. 25200056), 400uL of 
20mg/mL type IV Collagenase (Gibco, Cat. 17104019) and 40uL of 2U/uL TURBO DNase (Invitrogen, 26 
Cat. AM2238). 

 28 
Mouse testicular single cell preparation 

C57BL/6J mice (4-month old) were bought from the Jackson Laboratory through the New York 30 
University Langone Health (NYULH) Rodent Genetic Engineering Laboratory. Mice were anesthetized 
before sacrificing for testicular tissue collection following the NYULH IRB requirements for 32 
experimental animal operation. The dissociated testicular tissue was kept in the PBS buffer and then 
transported to the research lab on ice immediately for single-cell dissociation. The tissue dissociation 34 
protocol is slightly different from the human testicular tissue dissociation. The whole testis was 
decapsulated in PBS buffer to collect the seminiferous tubules. The seminiferous tubules were quickly 36 
minced into small pieces of ~2-5mm and then washed once with PBS buffer. The minced tissue was 
resuspended in 8mL of 37°C pre-warmed tissue dissociation buffer 1 (1mg/mL type IV Collagenase in 38 
DMEM medium) and incubate at 37°C for 5min. This pre-dissociation step removes majority of the 
interstitial cells. The tissue was then spun down at 100g for 1min to remove supernatants. The tissue was 40 
resuspended by 8mL tissue dissociation buffer 2 (7.96mL of 0.25% Trypsin-EDTA and 40uL of 2U/uL 
TURBO DNase). The second tissue dissociation was done by incubating at 37°C for 15min with 42 
mechanical dissociation with pipetter every 5min. The dissociation was quenched by adding 2mL of 
100% FBS to a final concentration of 10%. Dissociation mix was filtered through a 100um strainer to 44 
remove any remaining tissue chunks. Cells were washed once with DMEM medium and twice with PBS 
to remove residual EDTA. Cell viability was checked with Trypan-blue staining (both replicates have 46 
over 95% viable cells) before moving to the inDrop microfluidics platform.  

 48 
Single-cell RNA-Seq 
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       Single-cell barcoding was carried out with the inDrop microfluidics platform27 as instructed by the 
manufacturer (1CellBio). Briefly, the microfluidic chip and barcoded hydrogel beads were primed ahead 2 
of single cell preparation. The ready-to-use single-cell suspension in PBS (after two times wash with PBS 
buffer) was adjusted to 0.1 million/mL by counting with hemocytometer. Next, the prepared cells, reverse 4 
transcription reagents (SuperScript III Reverse Transcriptase, Invitrogen, Cat. 18080085), barcoded 
hydrogel beads and droplet-making oil were loaded onto the microfluidic chip sequentially. Encapsulation 6 
was done by adjusting microfluidic flow rates as instructed. Single-cell barcoding and reverse 
transcription in the droplets were done by incubating at 50°C for 2h followed by heat inactivation at 70°C 8 
for 15min. Then the droplets containing barcoded single-cells were aliquoted aiming for 1000-2000 cells 
per aliquot and then decapsulated by adding demulsifying agent.  10 
 
Sequencing library preparation 12 
       Single-cell RNA-Seq library preparation after inDrop was carried out as instructed by the 
manufacturer (1CellBio) and similar to the CEL-Seq2 method72. Basically, barcoded single-cell cDNA 14 
was purified with Agencourt RNAClean XP magnetic beads (Beckman Coulter, Cat. A63987) followed 
by second-strand synthesis reaction with NEBNext mRNA Second Strand Synthesis KIT (New England 16 
Biolabs, Cat. E6111S). Then linear amplification of cDNA was carried out through in vitro transcription 
(IVT) using HiScribe T7 High Yield RNA Synthesis kit (New England Biolabs, Cat. E2040S). IVT-18 
amplified RNA was fragmented and purified again with Agencourt RNAClean XP magnetic beads. The 
second reverse transcription was done with PrimeScriptTM Reverse Transcriptase (Takara Clonetech, 20 
Cat. 2680A) followed with cDNA purification with Agencourt AMPure XP magnetic beads (Beckman 
Coulter, Cat.A63881). cDNA quantity was determined by qPCR on a fraction (5%) of purified cDNA. 22 
Final PCR amplification was done according to qPCR results and purified with Agencourt AMPure XP 
magnetic beads. Library concentration was determined by Qubit dsDNA HS Assay Kit (Invitrogen, Cat. 24 
Q32851). Library size was determined by Bioanalyzer High Sensitivity DNA Kit (Agilent, Cat. 5067-
4626). 26 
 
High-throughput sequencing 28 
       Single-cell RNA-Seq library sequencing was carried out with Illumina NextSeq 500/550 75 cycles 
High Output v2 kit (Cat. FC-404-2005). Custom sequencing primers were used as instructed by 30 
manufacturer27. In addition, 5% of PhiX Control v3 (Illumina, Cat. FC-110-3001) library was added to 
give more complexity to scRNA-Seq libraries. Pair-end sequencing was carried out with read1 (barcodes) 32 
for 35bp, index read for 6bp and read2 (transcripts) for 50bp. 
 34 
Sequencing data processing 

Raw sequencing data obtained from the inDrop method were processed using a custom-built 36 
pipeline, available at (https://github.com/flo-compbio/singlecell). Briefly, the “W1” adapter sequence of 
the inDrop RT primer was located in the barcode read (the second read of each fragment), by comparing 38 
the 22-mer sequences starting at positions 9-12 of the read with the known W1 sequence 
(“GAGTGATTGCTTGTGACGCCTT”), allowing at most two mismatches. Reads for which the W1 40 
sequence could not be located in this way were discarded. The start position of the W1 sequence was then 
used to infer the length of the first part of the inDrop cell barcode in each read, which can range from 8-42 
11 bp, as well as the start position of the second part of the inDrop cell barcode, which always consists of 
8 bp. Cell barcode sequences were mapped to the known list of 384 barcode sequences for each read, 44 
allowing at most one mismatch. The resulting barcode combination was used to identify the cell from 
which the fragment originated. Finally, the UMI sequence was extracted, and reads with low-confidence 46 
base calls for the sex bases comprising the UMI sequence (minimum PHRED score less than 20) were 
discarded. The reads containing the mRNA sequence (the first read of each fragment) were mapped to the 48 
references genomes (here human GRCh38 and mouse GRCm38) by STAR 2.5.3a with parameter ‘—
outSAMmultNmax 1’ and default settings otherwise73. Mapped reads were split according to their cell 50 
barcode and assigned to genes by testing for overlap with exons of protein-coding genes and long non-
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coding RNA genes, based on genome annotations from Ensembl release 90. For each gene, the number of 
unique UMIs across all reads assigned to that gene was determined (UMI filtering), corresponding to the 2 
number of transcripts expressed and captured.  

 4 
Quality filtering of the scRNA-seq data 

Single cells with a total transcript count of less than 1,000 or more than 20% of transcripts 6 
originating from either mitochondrial genes (i.e., genes that are part of the mitochondrial genome) or 
ribosomal protein genes were removed for downstream analysis. After filtering, the single cells from 8 
different biological or technical replicate were merged together for downstream analysis. In total, we have 
2554 cell from human, with 6499 UMI counts and 2495 detected genes on average. From mouse testis, 10 
we obtained 1593 cells in total, with 8998 UMI counts and 2601 detected genes on average.     
 12 
Testicular cell clustering and cell type identification 

Following quality cell filtering, clustering was done by k-means on the principal component analysis 14 
scores, with k determined by ‘elbow-method’74. To increase the resolution of cell clustering, the raw UMI 
counts of testicular single cells were pre-processed through the kNN-smoothing method, with k=3 which 16 
indicates a smoothing with the nearest 3 single cell transcriptomes which greatly reduce the noise in 
scRNA-seq data while retaining the variance between single cells75. The principal component analysis 18 
used for cell clustering was performed on the smoothed UMI expression matrix of all testicular cells. The 
pre-processed expression matrices were first normalized to 100,000 transcripts per cell to calculate Fano 20 
factor (or variance-to-mean ratio, VMR)76. Genes with a Fano factor larger than 1.5 folds of the mean 
values were defined as dynamically expressed genes. In total, 3615 dynamically expressed genes were 22 
selected from the human datasets for downstream PCA visualization and cell clustering. PCA was then 
performed on the normalized and log2 transformed expression matrix using the dynamically expressed 24 
genes. Cell clustering was done by k-means clustering with elbow-methods determined k. Following first 
rounds of cell clustering (k=24), several marker genes were used to determine spermatogenic cell 26 
types/states versus somatic cells. DDX4 (also called VASA) was used as a pan-germ cell marker to 
distinguish the spermatogenic cell lineage. FGFR3 and DMRT128,77 were used to determine 28 
spermatogonia. SYCP3 and TEX1016,78 were used to determine spermatocytes. ACRV1 and 
ACTL7B6,78were used to determine round spermatids. TNP1, PRM1, PRM2, YBX1, YBX2 and 30 
HILS16,13,79,80 were used collectively to determine elongating spermatids states. Together, we identified 14 
human spermatogenic cell clusters with at least 50 cells in each cluster (min value as 69 cells, 32 
corresponding to spermatocyte-1). Seven cell clusters which overlapped with each other were identified 
as somatic cells (as shown in Fig. 1b). These cells were isolated for visualization through the t-distributed 34 
stochastic neighbor embedding (tSNE) algorithm and re-clustered with an additional k-means clustering 
algorithm (k=5), as shown in Fig. 1b and Supplementary Fig. 1c. In summary, CYP11A1, CSF1, and 36 
IGF1 78,81,82 genes were used to identify Leydig cells; WT1 and SOX978,83 were used to identify Sertoli 
cells; MYH11 and ACTA2 were used to identify peritubular myoid cells84; CD68 and CD163 were used to 38 
identify macrophages85; PECAM1 and VWF were used to identify endothelia cells86. Three small clusters 
with mixed expression profiles and/or bad quality were labeled as “other” and discarded as potential 40 
contaminants. Mouse testicular cells were analyzed in the same process. In brief, 1915 dynamically 
expressed genes were selected from the mouse datasets for PCA and cell clustering. Cell clustering with 42 
k-means algorithm generated 16 clusters (optimum k defined by elbow-method), out of which 13 clusters 
were kept as mouse spermatogenic cell clusters, and 3 clusters with few cells were discarded for 44 
downstream analysis. 
 46 
Pseudotime analysis with Monocle2 
       We used the R package ‘Monocle2’ (version 2.6.1)31 to infer pseudotime tracks for both human and 48 
mouse spermatogenic cells. The raw UMI counts of the isolated spermatogenic cells were pre-processed 
through the kNN-smoothing method (k=3) before performing pseudotime inference. We found that 50 
smoothing process greatly increased the resolution of pseudotime tracks as compared to the ones directly 
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inferred from the raw UMI counts (data not shown). Pseudotime inference was performed with default 
parameters according to the user manual (http://cole-trapnell-lab.github.io/monocle-release/docs/): 1) Set 2 
“negbinomial.size()” for expression distribution, and estimated size factors and dispersions. 2) Select 
genes detected among at least 5% of input cells to project cells to 2D space using “DDRTree” method. 3) 4 
Order cells and visualize pseudotime tracks as shown in Supplementary Fig. 1e and 2e. The ascending 
order of pseudotime values was consistent to the pattern of marker genes during spermatogenesis for both 6 
human and mouse (data not shown).  

 8 
Cell fate prediction with ‘RNA velocity’ 

We used the R package ‘velocyto.R’ (version 0.6) to estimate RNA velocity according to the 10 
standard procedures26. The RNA velocity estimation involves three separate counts matrices: intronic 
UMIs (nmat), exonic UMIs (emat), and the optional intron-exon spanning matrix (spmat). These matrices 12 
were generated by the ‘dropEst’ pipeline (version 0.7.1, https://github.com/hms-dbmi/dropEst). Briefly, 
1) The raw sequencing reads were tagged by droptag with the default ‘inDrop v1&v2’ configuration file 14 
except here that the ‘r1_rc_length’ was set as 3. 2) The tagged reads were mapped to the reference 
genomes (here human GRCh38 and mouse GRCm38) using STAR (version 2.5.3a) with default settings. 16 
3) The alignments were processed by ‘dropEst’ with gene annotation GTF file (Ensembl release 90) and 
the default settings except here the ‘--merge-barcodes’ option was additionally called as suggested in the 18 
standard procedure. We followed the velocyto.R manual (https://github.com/velocyto-team/velocyto.R)  
which used emat and nmat to estimate and visualize RNA velocity. With predefined cell stage, we 20 
performed gene filtering with the parameter “min.max.cluster.average” set to 0.1 and 0.03 for emat and 
nmat, respectively. RNA velocity was estimated with the default settings except the parameters ‘kCells’ 22 
and ‘fit.quantile’ which were set as 3 and 0.05, respectively. RNA velocity field was visualized on a 
separate PCA embedding as shown in Fig. 1c for human germ cells, and in Supplementary Fig. 2a for 24 
mouse germ cells, respectively. 
 26 
Conservation and divergence analysis of human-mouse spermatogenesis 
        Following identifying the human and mouse spermatogenic cells separately, human-mouse 28 
spermatogenesis comparison was performed on genes which have one-to-one orthologues between human 
and mouse. Human-mouse one-to-one orthologous gene pair list was downloaded from Mouse Genome 30 
Informatics (MGI)-Vertebrate Homology (http://www.informatics.jax.org/homology.shtml ). After 
filtering, 17,012 one-to-one orthologues genes were selected for integrating the human and mouse 32 
spermatogenic cells. Joint PCA was performed by selecting dynamically expressed genes using integrated 
gene expression matrix. In total, 1,124 genes were selected to perform joint PCA, as the results shown in 34 
Supplementary Fig. 2f-h. Top 20 genes contributing most to PC2 from both ends, which separated human 
and mouse species-specific signatures, were selected and plotted as shown in Supplementary Fig. 2i.  36 
 
Gene clustering 38 
        Gene clustering was performed on a collapsed expression matrix of genes-by-spermatogenic clusters. 
First, we defined the set of unexpressed genes by having expression (minimum of 1 UMI count per cell) 40 
in at least 5 single cells from the scRNA-seq data, or additionally, according to the specified parameter in 
Supplementary Fig. 3c by having a minimum expression level (mean UMI count for a stage as at least 42 
0.1) in any give spermatogenic stage. The genes pass such criteria were defined as expressed genes. 
Expressed genes were then clustered by k-means algorithm, with k spread from 2 to 10, as shown in 44 
Supplementary Fig. 3c. Through interpreting the results, k=5 was chosen to display the gene clusters as it 
reflects the overall gene expression dynamics during spermatogenesis. Throughout the project we used 46 
gene clusters defined from germ cells from both biological and technical replicates, except for 
Supplementary Fig. 3a-b where we defined gene clusters from the two donors independently for 48 
sensitivity analysis.  
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The expressed genes were additionally clustered by their expression level, as used in the Fig. 4. The 
average expression level (UMI counts) across the spermatogenic cell clusters were used as input. To 2 
assign groups based on expression levels, we binned the genes by expression level into 9 groups: 

Group 1: unexpressed; 4 
Group 2: −inf < log2(UMImean) ≤ −8; 
Group 3:   −8 < log2(UMImean) ≤ −6; 6 
Group 4:   −6 < log2(UMImean) ≤ −4; 
Group 5:   −4 < log2(UMImean) ≤ −2; 8 
Group 6:   −2 < log2(UMImean) ≤ 0; 
Group 7:     0 < log2(UMImean) ≤ 2; 10 
Group 8:     2 < log2(UMImean) ≤ 4; 
Group 9:     4 < log2(UMImean), highly expressed.  12 

In addition, for modeling the germline variant levels versus expression level, the expression level 
was further binned into smaller groups. Specifically, log2(UMImean) expression level between −8 and 4 14 
were evenly binned into 100 expression level stages, and the genes within each expression level stage 
were isolated for calculating the germline variants levels and confidence intervals. 16 
 
Human and mouse germline variants  18 

Human and mouse germline variations were downloaded from the Ensembl release 91 FTP site 
(ftp://ftp.ensembl.org/pub/release-91/variation/vcf/homo_sapiens/homo_sapiens.vcf.gz and 20 
ftp://ftp.ensembl.org/pub/release-91/variation/vcf/mus_musculus/mus_musculus.vcf.gz, respectively). We 
selected variants from dbSNP_150 and used BEDOPS together with custom Bash scripts to associate 22 
them with gene body, upstream 5kb, downstream 5kb genomic regions, and in addition, with the coding 
sequences and intron regions within the gene body. The gene body region was defined as the genomic 24 
interval between the gene start site and gene end site annotated in GTF file (Ensembl release 91). Because 
genes may have multiple different isoforms of transcripts with slightly different coding sequences, we 26 
broadly defined the genomic coding sequence regions as covered by coding sequences of any isoform 
mRNA. Introns was defined as regions where no coverage by coding sequences of any isoform mRNA. 28 
Moreover, we removed splicing consensus sequences – 6 bases on the 5’ end (splicing donor region) and 
3 bases on the 3’ end (splicing acceptor region) – according to the gene orientation. With this strategy, we 30 
selected the intron regions with the least selection pressure. Upstream and downstream 5kb region was 
defined according to gene body region and with reference to gene orientation information. We classified 32 
the variants into the six mutation classes: (A>T/T>A; A>G/T>C; T>G/A>C; C>T/G>A; G>T/C>A; 
C>G/G>C). Each variant was then further distinguished in terms of the coding and the template strands, 34 
as previously introduced45. Then asymmetry score between the germline variants on the coding strand and 
template strand of each gene was calculated by log2(Varcoding/Vartemplate). The same procedures were also 36 
performed on upstream and downstream genomic regions, with the strand specificity (coding strand 
versus template strand) being assigned in consistent with the associated genes. 38 

The germline mutation rates of the coding and the template stands were calculated by normalizing to 
a length of 1kb. Specifically, for germline mutations in total, the mutation rates were calculated as the 40 
sum of all germline short variants normalized to a length of 1kb. For specific base substitution mutation 
type, the mutation rates were calculated as the number of specific mutation type normalized to 1kb of the 42 
reference base type.  

 44 
Analyzing germline variants by gene family  
        Human gene family annotations were downloaded from the HUGO Gene Nomenclature Committee 46 
(https://www.genenames.org/data/genegroup/#!/ ). In total, 27 families contain more than 100 gene 
members. These families include: 'Ankyrin repeat domain containing (ANKRD)', 'Armadillo-like helical 48 
domain containing (ARMH)', 'Basic helix-loop-helix proteins (BHLH)', 'BTB domain containing 
(BTBD)', 'Cadherins', 'CD molecules (CD)', 'EF-hand domain containing', 'Fibronectin type III domain 50 
containing', 'GPCR, Class A rhodopsin-like(excluding ORs)', 'GPCR, Class A rhodopsin-like(Olfactory 
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receptors)', 'Heat shock proteins', 'Helicases', 'Histones', 'Homeoboxes', 'Immunoglobulin superfamily 
domain containing', channels', 'PDZ domain containing (PDZ)', 'PHD finger proteins', 'Pleckstrin 2 
homology domain containing (PLEKH)', 'Ras small GTPases superfamily', 'Ring finger proteins', 'RNA 
binding motif containing (RBM)', 'Solute carriers (SLC)', 'WD repeat domain containing (WDR)', 'Zinc 4 
fingers C2H2-type', 'Zinc fingers - other', 'T cell receptor gene'. We further selected the gene families by 
having at least 10 gene members in both expressed and unexpressed categories, as defined above. This led 6 
to the selection of 10 gene families as shown in Fig. 2c. Levels of germline variant were calculated for 
each gene category of each family.  8 
 
Analyzing germline variants by GTEx expression profiles  10 
        The Genotype-Tissue Expression (GTEx) gene expression profiles used in Fig. 1e (release V7) 
across all the 53 tissue/organ/cell samples were downloaded from the GTEx Portal with release V7 12 
(https://gtexportal.org/home/datasets/).  We used the expression profiles containing the median TPM by 
tissue (GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz ). To distinguish the 14 
expressed genes out of the unexpressed protein-coding genes for each tissue, we set the cutoff as 0.1 
median TPM value as given from the GTEx Portal. For each tissue, a gene was defined as expressed if the 16 
expression level was ≥ 0.1, otherwise it was defined as unexpressed. Average germline variants 
associating with each gene category for each tissue was then calculated and the ratio was further 18 
calculated between the unexpressed gene category versus the expressed category. These ratios were 
plotted as shown in Fig. 2e. Z-scores were calculated on these ratios and indicated in the plot.  20 

 
Gene divergence datasets 22 

The sequence divergence datasets of human to apes were downloaded from Ensembl release 91. 
Percent divergences in Fig. 5b and Supplementary Fig. 9f were calculated as: Divergence = 100% − 24 
Identity (human to other apes). dN and dS values were also retrieved from Ensembl and we excluded 
genes zero dN or dS. The mean values shown in Fig.5 and S9 were computed on non-outlier values, 26 
where an outlier value is defined as more than three scaled median absolute deviations (MAD) away from 
the median. For a set of divergence or dN/dS values made up N genes, MAD is defined as: MAD = 28 
median ( |Ai − median(A)| ), for i = 1,2,...,N.  
 30 
Statistical Analysis 

Statistical significance was computed by the Mann-Whitney U test (or rank-sum test) to test whether 32 
two groups of genes have distinct value distributions. Error bars of represents 99% percent confidence 
intervals, calculated by bootstrap methods sampling for 10,000 times.  34 

 
Data and code  36 

The single cell RNA-seq sequencing results were deposited to NCBI GEO database with the 
accession code GSE125372.  38 
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Supplementary Fig. 1. Single-cell transcriptomic analysis of human spermatogenesis. a, Schematic 2 
of single-cell RNA-seq of human testis samples with the inDrop microfluidics platform (Methods). b, 
Same PCA as in Figure 1B for the testicular cells across different specimen donors and technical 4 
replicates. c-d, Determining the identities of testicular somatic cells (c) and the developmental program of 
spermatogenic cells (d) (Methods). e, Human spermatogenic cell pseudotime defined by Monocle2 6 
algorithm.  
 8 
 
  10 
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Supplementary Fig. 2. Single-cell transcriptomic analysis of mouse spermatogenesis comparison 2 
with human spermatogenesis. a, Principal components analysis on the spermatogenic-complement of 
the single-cell data. Arrows indicate the RNA velocity algorithm predicted developmental trajectory of 4 
mouse spermatogenesis.  b, Correlation coefficients between human and mouse spermatogenic stages. c, 
Heatmap of all mouse proteins-coding genes clustered expression patterns. d, Expression profiles of 6 
mouse gene sets clustered by k-means clustering. e, Monocle2-ordering of human spermatogenic cells. f-
h, Principal components analysis of all human and mouse spermatogenic cells mixed together. i, 8 
Expression heatmap of genes with highly divergent expression pattern between human and mouse 
spermatogenesis. 10 
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Supplementary Fig. 3. Control and sensitivity tests for the reduced germline mutation rates in the 2 
germ cell-expressed genes. a, Comparison of gene clusters determined by donor 1 germ cells and by 
donor 2 germ cells, respectively (Methods). The colors/numbers indicate the size of the cluster 4 
intersections. b, Same as in Figure 2b but using the gene clusters determined only by donor #1 germ cells 
(left), by donor #2 germ cells (middle) or by the intersection of genes of each cluster across donors 6 
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(right). c, Ratios of germline mutation levels in the expressed genes versus the unexpressed genes. Each 
dot represents a specific ratio of germline mutation levels according to the corresponding expressed genes 2 
versus the unexpressed genes. The plot shows the ratios for k-means clustering of expressed genes with a 
range of k values. The four plots, show the results for a range of cutoffs used to determine the 4 
unexpressed gene cluster, generating different numbers (N) of unexpressed genes for sensitivity analysis. 
‘cutoff n’ indicates the minimum number of cells expressing a given gene, and ‘ratio’ indicates the 6 
minimum expression level (average UMI) of a given gene in any one of the spermatogenesis cell clusters. 
d, Heatmap of human sex chromosome genes grouped into unexpressed genes, pre-meiotic sex 8 
chromosome inactivation (pre-MSCI) genes and post-MSCI genes. e, Human germline mutation rates 
across the sex chromosome gene clusters defined in (d). f-g, Germline mutation rates in both upstream 10 
5kb (f) and downstream 5kb (g) of genes across clusters. h, Distributions of the germline mutation rates 
for each gene cluster defined in Fig. 1d, shown for the gene body region (top), upstream 5kb region 12 
(middle) and downstream 5kb region (bottom). Significance between mutation rates of expressed genes 
versus unexpressed genes is computed by the Mann-Whitney test with Bonferroni correction. Error bars 14 
indicate 99% confidence intervals calculated by bootstrap method with n=10,000.  
  16 
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Supplementary Fig. 4. Germline mutation rates of gene body and flanking regions of all base-2 
substitution mutation types. a-c, Germline mutation rates in the gene body region (a), upstream 5kb (b) 
and downstream 5kb (c). Dashed lines indicate the average level of mutations in unexpressed genes. 4 
Significance between mutation rates of coding strand versus that of template strand is computed by the 
Mann-Whitney test with Bonferroni correction. *, P<0.01; **, P<0.000001; n.s., not significant. Error 6 
bars indicate 99% confidence intervals calculated by bootstrap method with n=10,000. 
 8 
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Supplementary Fig. 5. Gene expression profiles of genes involved in transcription-coupled repair 2 
(TCR). Gene expression levels of each TCR gene (a) and their sum (b) across all spermatogenic single 
cells are displayed, respectively.  4 
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Supplementary Fig. 6. Mutation rate asymmetry is not detected between the Watson and Crick 2 
strands in expressed genes. a, Schematic of two neighboring genes, each on a different strand. Across 
the genome, genes are randomly disposed with respect to strand. b-c, Germline mutation rates (b) and 4 
asymmetry scores (c) of all base substitution mutation types across spermatogenesis expressed and 
unexpressed genes. Mutation rates and asymmetry scores were computed by distinguishing between the 6 
Watson and Crick strands, instead of coding and template strands (as shown in Fig. 3c and Supplementary 
Fig. 4). Dashed lines indicate the average level of mutations in unexpressed genes. 8 
 
  10 
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Supplementary Fig. 7. Shuffling gene assignments loses the mutation-level difference between 2 
expressed- and unexpressed genes. a, Shuffling gene group assignments. Genes assigned to all stages 
were shuffled, while maintaining the size of each group. b, Shuffling gene clustering loses the mutation-4 
level differences between gene clusters. c-d, Germline mutation rates (c) and asymmetry scores (d) of all 
base substitution mutation types according to shuffled gene-grouping in (a). Mutation rates and 6 
asymmetry scores were computed by distinguishing between the coding and template strands (same as in 
Fig. 3c and Supplementary Fig. 4). Dashed lines indicate the average level of mutations in unexpressed 8 
genes. 

10 
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Supplementary Fig. 8. Mouse germline mutation rates and asymmetry scores of gene body and 2 
flanking regions of all base-substitution mutation types. a-c, Mouse germline mutation rates in the 
gene body region (a), upstream 5kb (b) and downstream 5kb (c). Dashed lines indicate the average level 4 
of mutations in unexpressed genes. d-f, Germline mutation asymmetry scores between coding and 
template strands in the upstream 5kb (d), gene body region (e) and downstream 5kb (f). Significance 6 
between germline variants on coding strand and template strand (a-c) or between the unexpressed 
category and the expressed gene categories (d-f) or is computed by the Mann-Whitney test with 8 
Bonferroni correction. *, P<0.01; **, P<0.000001; n.s., not significant. Error bars indicate 99% 
confidence intervals calculated by bootstrap method with n=10,000. 10 
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Supplementary Fig. 9. Evolutionary consequences of ‘transcriptional scanning’ across apes. a, 2 
Phylogenic tree of apes with sequenced genome data in Ensembl. b-c, dN (b) and dN/dS (c) values of 
human genes with their orthologues across apes, according to gene clusters defined from spermatogenesis 4 
expression. Grey dashed box highlights the unexpressed gene cluster. d-e, Relative germline mutations 
rates of intron regions and coding sequences according to gene expression-pattern clusters (d) and gene 6 
expression-level clusters (e). f-i, DNA divergence levels (f), dS scores (g), dN (h) and dN/dS (i) scores of 
human genes with their orthologues in the indicated apes, according to gene expression level categories. 8 
Red dashed box highlights the very highly expressed gene cluster. j, Gene ontology categories enriched in 
the set of genes that are very highly expressed during spermatogenesis. 10 
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Supplementary Table 1. Gene Ontology (GO) terms showing enrichment in the set of genes 
unexpressed in spermatogenesis. The GO term analysis was done by GOrilla87. ‘FDR q-value’ is the 2 
correction of p-values for multiple testing using the Benjamini and Hochberg method58. Enrichment (N, 
B, n, b) is defined as ‘Enrichment = (b/n) / (B/N)’. N, total number of genes; B, total number of genes 4 
associated with a specific GO term; n, number of genes in the input list; b, number of genes in the 
intersection. The highlighted GO terms are displayed in Fig. 5c. 6 
 

GO Term Description P-value FDR q-
value 

Enrich
ment N B n b 

GO:0050907 detection of chemical stimulus 
involved in sensory perception 3.28E-171 5.07E-167 8.02 17883 406 1335 243 

GO:0009593 detection of chemical stimulus 1.07E-163 8.29E-160 7.51 17883 439 1335 246 

GO:0050911 
detection of chemical stimulus 
involved in sensory perception 
of smell 

2.31E-159 1.19E-155 8.27 17883 358 1335 221 

GO:0050906 detection of stimulus involved 
in sensory perception 3.18E-159 1.23E-155 7.24 17883 457 1335 247 

GO:0007186 G protein-coupled receptor 
signaling pathway 1.58E-144 4.87E-141 4.23 17883 1169 1335 369 

GO:0051606 detection of stimulus 4.21E-139 1.08E-135 5.84 17883 601 1335 262 
GO:0031424 keratinization 2.83E-51 6.25E-48 6.59 17883 179 1335 88 
GO:0007608 sensory perception of smell 3.95E-48 7.64E-45 7.65 17883 126 1335 72 

GO:0007606 sensory perception of chemical 
stimulus 1.90E-45 3.27E-42 6.57 17883 159 1335 78 

GO:0050896 response to stimulus 7.85E-41 1.21E-37 1.58 17883 5109 1335 602 
GO:0007165 signal transduction 4.67E-39 6.56E-36 1.62 17883 4480 1335 543 
GO:0006955 immune response 1.16E-25 1.50E-22 2.37 17883 905 1335 160 
GO:0007600 sensory perception 8.52E-25 1.01E-21 2.85 17883 526 1335 112 
GO:0006952 defense response 7.32E-22 8.08E-19 2.14 17883 1045 1335 167 

GO:0032501 multicellular organismal 
process 1.70E-21 1.75E-18 1.55 17883 3315 1335 384 

GO:0098542 defense response to other 
organism 6.13E-19 5.92E-16 2.8 17883 416 1335 87 

GO:0050877 nervous system process 4.34E-18 3.94E-15 2.12 17883 892 1335 141 

GO:0033141 
positive regulation of peptidyl-
serine phosphorylation of 
STAT protein 

4.99E-18 4.28E-15 11.48 17883 21 1335 18 

GO:0033139 
regulation of peptidyl-serine 
phosphorylation of STAT 
protein 

1.09E-16 8.88E-14 10.48 17883 23 1335 18 

GO:0003008 system process 2.87E-16 2.22E-13 1.81 17883 1366 1335 185 

GO:0002323 natural killer cell activation 
involved in immune response 4.06E-16 2.99E-13 10.05 17883 24 1335 18 

GO:0042742 defense response to bacterium 5.65E-16 3.97E-13 3.32 17883 226 1335 56 
GO:0006959 humoral immune response 5.33E-15 3.59E-12 3.29 17883 216 1335 53 
GO:0051707 response to other organism 2.27E-14 1.46E-11 2.21 17883 613 1335 101 

GO:0001580 
detection of chemical stimulus 
involved in sensory perception 
of bitter taste 

3.14E-14 1.94E-11 7.21 17883 39 1335 21 

GO:0050912 
detection of chemical stimulus 
involved in sensory perception 
of taste 

1.06E-13 6.28E-11 6.55 17883 45 1335 22 

GO:0045087 innate immune response 6.95E-13 3.98E-10 2.38 17883 434 1335 77 
GO:0009617 response to bacterium 8.29E-13 4.58E-10 2.66 17883 312 1335 62 
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GO:0043207 response to external biotic 
stimulus 1.55E-12 8.25E-10 1.93 17883 825 1335 119 

GO:0030101 natural killer cell activation 6.92E-12 3.56E-09 5.31 17883 58 1335 23 
GO:0002250 adaptive immune response 7.82E-12 3.90E-09 2.98 17883 211 1335 47 
GO:0009607 response to biotic stimulus 1.07E-11 5.16E-09 1.88 17883 849 1335 119 

GO:0007210 serotonin receptor signaling 
pathway 2.38E-10 1.11E-07 6.15 17883 37 1335 17 

GO:0002376 immune system process 6.19E-10 2.81E-07 1.48 17883 2014 1335 222 
GO:0042100 B cell proliferation 1.07E-09 4.72E-07 5.69 17883 40 1335 17 

GO:0010469 regulation of signaling receptor 
activity 1.78E-09 7.63E-07 1.99 17883 546 1335 81 

GO:0007187 

G protein-coupled receptor 
signaling pathway, coupled to 
cyclic nucleotide second 
messenger 

1.06E-08 4.42E-06 2.58 17883 218 1335 42 

GO:0043330 response to exogenous dsRNA 1.37E-08 5.57E-06 4.95 17883 46 1335 17 

GO:0050830 defense response to Gram-
positive bacterium 1.45E-08 5.75E-06 3.56 17883 94 1335 25 

GO:0043331 response to dsRNA 1.71E-08 6.60E-06 4.64 17883 52 1335 18 

GO:0002286 T cell activation involved in 
immune response 1.71E-08 6.44E-06 4.64 17883 52 1335 18 

GO:0098664 G protein-coupled serotonin 
receptor signaling pathway 2.05E-08 7.53E-06 5.86 17883 32 1335 14 

GO:0009605 response to external stimulus 2.93E-08 1.05E-05 1.52 17883 1440 1335 163 
GO:0018149 peptide cross-linking 3.62E-08 1.27E-05 4.24 17883 60 1335 19 

GO:0050829 defense response to Gram-
negative bacterium 5.48E-08 1.88E-05 3.68 17883 80 1335 22 

GO:0007218 neuropeptide signaling pathway 8.45E-08 2.84E-05 3.28 17883 102 1335 25 
GO:1904892 regulation of STAT cascade 1.37E-07 4.50E-05 2.98 17883 126 1335 28 

GO:0046425 regulation of JAK-STAT 
cascade 2.49E-07 8.01E-05 2.96 17883 122 1335 27 
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Supplementary Table 2. Gene Ontology terms showing enrichment in the set of genes that are 
highly-expressed throughout spermatogenesis. The GO term analysis was done in the same way as 2 
described in Supplementary Table 1. 

GO Term Description P-value FDR  
q-value Enrichment N B n b 

GO:0006614 SRP-dependent cotranslational 
protein targeting to membrane 2.52E-14 3.89E-10 18.47 17883 88 154 14 

GO:0006613 cotranslational protein targeting to 
membrane 5.60E-14 4.33E-10 17.48 17883 93 154 14 

GO:0006413 translational initiation 6.33E-14 3.26E-10 13.37 17883 139 154 16 

GO:0000184 
nuclear-transcribed mRNA 
catabolic process, nonsense-
mediated decay 

7.90E-14 3.05E-10 14.89 17883 117 154 15 

GO:0045047 protein targeting to ER 2.10E-13 6.49E-10 15.94 17883 102 154 14 

GO:0072599 
establishment of protein 
localization to endoplasmic 
reticulum 

3.63E-13 9.34E-10 15.34 17883 106 154 14 

GO:0022414 reproductive process 3.98E-13 8.79E-10 3.56 17883 1339 154 41 

GO:0072594 establishment of protein 
localization to organelle 1.49E-12 2.87E-09 6.76 17883 378 154 22 

GO:0048609 multicellular organismal 
reproductive process 1.49E-12 2.56E-09 5.47 17883 552 154 26 

GO:0070972 protein localization to 
endoplasmic reticulum 1.64E-12 2.53E-09 13.78 17883 118 154 14 

GO:0007276 gamete generation 3.05E-12 4.29E-09 6.15 17883 434 154 23 

GO:0000956 nuclear-transcribed mRNA 
catabolic process 6.50E-12 8.37E-09 9.94 17883 187 154 16 

GO:0006402 mRNA catabolic process 2.27E-11 2.70E-08 9.15 17883 203 154 16 
GO:0006612 protein targeting to membrane 4.86E-11 5.37E-08 10.77 17883 151 154 14 
GO:0033365 protein localization to organelle 8.96E-11 9.24E-08 4.74 17883 612 154 25 
GO:0006401 RNA catabolic process 1.68E-10 1.62E-07 8.01 17883 232 154 16 
GO:0007283 spermatogenesis 1.93E-10 1.75E-07 5.89 17883 394 154 20 
GO:0048232 male gamete generation 2.11E-10 1.81E-07 5.86 17883 396 154 20 

GO:0090150 establishment of protein 
localization to membrane 2.61E-10 2.12E-07 7.77 17883 239 154 16 

GO:0006605 protein targeting 1.44E-09 1.12E-06 6.39 17883 309 154 17 
GO:0006412 translation 1.56E-09 1.15E-06 8.29 17883 196 154 14 

GO:0022412 
cellular process involved in 
reproduction in multicellular 
organism 

1.84E-09 1.29E-06 6.29 17883 314 154 17 

GO:0006518 peptide metabolic process 4.46E-09 3.00E-06 5.93 17883 333 154 17 
GO:0043043 peptide biosynthetic process 5.82E-09 3.75E-06 7.49 17883 217 154 14 

GO:0034655 nucleobase-containing compound 
catabolic process 8.35E-09 5.16E-06 5.32 17883 393 154 18 

GO:0044772 mitotic cell cycle phase transition 1.29E-08 7.69E-06 7.04 17883 231 154 14 
GO:0044770 cell cycle phase transition 1.99E-08 1.14E-05 6.8 17883 239 154 14 

GO:0003006 developmental process involved in 
reproduction 3.88E-08 2.14E-05 4.12 17883 592 154 21 

GO:0046700 heterocycle catabolic process 4.56E-08 2.43E-05 4.76 17883 439 154 18 

GO:0044270 cellular nitrogen compound 
catabolic process 4.72E-08 2.43E-05 4.75 17883 440 154 18 

GO:0019439 aromatic compound catabolic 
process 7.32E-08 3.65E-05 4.61 17883 453 154 18 

GO:0090304 nucleic acid metabolic process 8.21E-08 3.97E-05 2.31 17883 2163 154 43 
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GO:0034645 cellular macromolecule 
biosynthetic process 9.17E-08 4.29E-05 3.16 17883 991 154 27 

GO:0000086 G2/M transition of mitotic cell 
cycle 1.09E-07 4.96E-05 9.44 17883 123 154 10 

GO:0044839 cell cycle G2/M phase transition 1.27E-07 5.62E-05 9.29 17883 125 154 10 
GO:0043604 amide biosynthetic process 1.42E-07 6.11E-05 5.36 17883 325 154 15 
GO:0022402 cell cycle process 1.49E-07 6.22E-05 3.28 17883 885 154 25 

GO:1901361 organic cyclic compound catabolic 
process 2.09E-07 8.49E-05 4.3 17883 486 154 18 
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