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ABSTRACT

We produced an extensive collection of deep re-sequencing datasets for the
Venter/HuRef genome using the lllumina massively-parallel DNA sequencing platform.
The original Venter genome sequence is a very-high quality phased assembly based on
Sanger sequencing. Therefore, researchers developing novel computational tools for
the analysis of human genome sequence variation for the dominant lllumina sequencing
technology can test and hone their algorithms by making variant calls from these
Venter/HuRef datasets and then immediately confirm the detected variants in the
Sanger assembly, freeing them of the need for further experimental validation. This
process also applies to implementing and benchmarking existing genome analysis
pipelines. We prepared and sequenced 200 bp and 350 bp short-insert whole-genome
sequencing libraries (sequenced to 100x and 40x genomic coverages respectively) as
well as 2 kb, 5 kb, and 12 kb mate-pair libraries (49x, 122x, and 145x physical
coverages respectively). Lastly, we produced a linked-read library (128x physical
coverage) from which we also performed haplotype phasing.
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BACKGROUND & SUMMARY

Almost two decades ago the extensive efforts of the Human Genome Project, backed
up by work from Celera, resulted in the release of a draft of the first complete sequence
of the human genome 2. This catalyzed a new era of human whole-genome analysis
where the now-available human genome sequence has been studied intensely to
understand the functions of its parts and their interactions with each other and where a
concurrent genome technology revolution has produced ever more powerful platforms
to carry out such functional studies 2. Since then, increasingly large numbers of human
genomes have been sequenced, yielding insights into population-level genetic variation
*® structural genome variation ", and mutational mechanisms *°. Technological
advances have progressively improved the information content and reduced the noise
profile of sequencing data **. A large variety of methodologies for the routine analysis of
sequencing data is now available 2. “Whole-genome sequencing” is now a standing
term that refers to the re-sequencing of a given sample of human genomic DNA using,
typically, the dominant lllumina DNA sequencing platforms which can quickly produce
several hundred million short sequencing reads at affordable costs. These reads are
then aligned to the human reference genome and analyzed using various approaches
12714 ' such as mismatch analysis, read-depth analysis, split-read analysis and discordant
read-pairs analysis, producing an extensive catalog of sequence variants that are
present in the DNA sample in question relative to the human reference sequence. The
promise of human genome research is nothing short of a complete transformation of
basic life science research, translational research, and eventually the way we diagnose,
treat, and find cures for human disease.

It is clear, however, that current standard whole-genome sequence analysis leaves a
rather large room for improvement. The standard genome analysis practices of today
perform rather poorly in certain contexts, such as in repetitive regions (i.e. in around half
the human genome), in the detection and resolution of complex structural variation, or in
placing detected variants in their proper haplotypes. Although more advanced and novel
computational algorithms that address these limitations are continuously being
developed, one essential requirement during this process is that the detected variants
are to be experimentally validated in order to establish false-positive rates and to make
it possible to further tune and optimize the new algorithms. Experimental validation,
especially of complex variants, during the tool development and testing phases is a very
laborious and time-consuming process, but it can be circumvented by using a genome
for which sufficiently large numbers of variants are already known, i.e. prevalidated.
Several studies have been conducted with the goal of extensively characterizing the
variants in a small number of human genomes using multiple sequencing technologies
1518 |n some human genomes, variants have been carefully and extensively

documented, providing a benchmark for other studies 4"~

The Venter (HuRef) Genome, however, is especially distinguished for quality among the
publicly-available human genome sequences as it is the only one for which its complete
diploid assembly was generated from high-quality Sanger reads *’ and for which
extensive catalogs of SNPs, indels, and structural variation are available **%. To date,
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80 no extensive lllumina sequencing datasets have been available for the Venter/HuRef
81 genome in contrast to other genomes that have been characterized for benchmarking
82 purposes
83
84  To unlock the potential of the Venter/HuRef genome as the outstanding benchmark
85 genome, we have conducted deep whole-genome sequencing (WGS) using a variety of
86 sequencing strategies for the lllumina platform (Table 1). Specifically, we produced
87 short-insert paired-end WGS datasets at a combined sequence coverage of 140x,
88 linked-read data at 42x de-duplicated sequencing coverage (128x physical coverage i.e.
89 the average number of times the genome is spanned by input DNA fragments rather
90 than the average number of times the genome is covered by sequencing reads as in
91 sequencing coverage), and three long-insert (2 kb, 5 kb, and 12 kb) paired-end (i.e.
92 mate-pair) WGS datasets with physical coverages of 49x, 122x, and 145X, respectively
93 (Figure 1). These datasets are of very high quality (Figures 2-4) and are
94  complemented by the existing Venter/HuRef assembly-quality Sanger reads '’ and
95 Izcl)ng-read sequencing data, which was produced using the Pacific Biosciences platform
96

97

98 Researchers developing novel computational tools for analyzing whole-genome

99 sequencing data can now test their algorithms by processing the appropriate
100 Venter/HuRef lllumina datasets described here and then turn to the already-available
101  catalogs of sequence variants, or to the original Sanger reads ', to confirm the
102 characterization of variants detected by their algorithms . Likewise, whenever a
103 laboratory implements a new computational pipeline for human genome analysis, it can
104 now use these lllumina Venter/HuRef datasets to confirm proper implementation and to
105 optimize proper settings for the pipeline.

106

107 METHODS

108

109 Venter/HuRef DNA Sample
110

111 The Venter/HuRef DNA sample as obtained as a 50 pg aliquot of LCL-extracted DNA
112 (NS12911) from the Coriell Institute for Medical Research where the iIPSC (GM25430)
113 of the same subject is also available (https://catalog.coriell.org/1/HuRef).

114

115 Illlumina paired-end WGS

116

117  Library Preparation

118 The library preparation was previously described in detail in Mu et al ?°. Briefly, 1 ug
119 of genomic DNA was fragmented using 2uL of NEBNext dsDNA fragmentase (New
120 England Biolabs, Ipswich, MA) in 1x fragmentation buffer and 1x BSA. Reaction was
121  kept on ice for 5 minutes before adding the fragmentase and was incubated at 377 °C
122 for 20 minutes. The reaction was stopped by addition of 5 yL of 0.5 M EDTA. DNA
123 was purified from the reaction mixture using 0.9x by volume AMPure XP beads
124  (Beckman Coulter, Cat# A63880) and eluted in 50 uL of 10mM Tris-Acetate (pH 8.0)
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125 buffer. Six independent fragmentation reaction replicates were performed, and the
126 sizes of the DNA were analyzed using Agilent 2100 Bioanalyzer before library
127  preparation.

128 Library preparation was performed using the KAPA Library Preparation kit (KAPA
129 Biosystems, Wilington, MA) where 200 ng of fragmented DNA was used as input.
130 Library was constructed according to manufacture’s protocol where the DNA was
131 end-repaired and A-tailed before adapter ligation with Illumina TruSeq Adapter (Index
132 1). DNA was then purified using 0.8x by volume AMPure XP beads and quantified
133 using the Qubit ds DNA High Sensitivity Assay Kit (Life Technologies, Cat# Q32851).
134 For PCR amplification, 50 ng of DNA was amplified using the KAPA HiFi DNA
135 Polymerase with the following thermocycling conditions: 987°C/45(s, 5 cycles of
136  (9811°C/15s, 601°C/30Ls, 721°C/450s), 721°C/10min, and 41°C /hold. Primers
137 from the KAPA Library Preparation kit was used for PCR amplification. Afterwards,
138 DNA was purified from the PCR reaction using AMPure XP beads and eluted in 30 pL
139 of 10mM Tris-Acetate (pH 8.0) buffer. Six independent experimental replicates were
140 performed, and the purified PCR amplified DNA fragments from each replicate was
141 pooled for size selection and gel-purified from 2% agarose gel. Two size selections
142  were made at 200 bp and 350 bp.

143  Sequencing

144  Sequencing of the 200 bp and 350 bp insert-size libraries was described previously in
145 Mu et al . The libraries were sequenced separately (2x100 bp) on an lllumina
146  HiSeq 2000 instrument in rapid run mode. For the 200 bp insert-size library, a total of
147  3,214,626,588 reads generated from 5 sequencing runs was pooled together to
148 obtain 100x genomic coverage. For the 350 bp insert-size library, a total of
149 1,280,576,580 reads generated from two sequencing runs was pooled together to
150 obtain 40x genomic coverage.

151 Analysis

152

153 Reads were trimmed at the 3' end to a uniform length of 100 bp using FASTX toolkit
154  (http://hannonlab.cshl.edu/fastx_toolkit/; version 0.0.13). The trimmed reads were
155 aligned by BWA-MEM (Li and Durbin 2009; version 0.7.17-r1188) using the hg38
156 reference with ALT alleles removed

157  (ftp://ftp.ncbi.nim.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15 GRCh38/
158 seqs_for_alignment_pipelines.ucsc_ids/), and the resulting alignment records were
159  sorted with Samtools (http://www.htslib.org/; version 1.7). Marking of PCR duplicates
160 and calculations of insert-size and coverage information was performed using Picard
161 (http://picard.sourceforge.net; version 2.17.10).

162

163 Illlumina mate-pair WGS
164

165 Library Preparation

166
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Mate Pair libraries at insert sizes 2 kb, 5 kb, and 12 kb were generated from
Venter/HuRef DNA using the Nextera Mate Pair Sample Preparation Kit (lllumina,
Cat# FC-132-1001) following standard manufacturer’s instructions with the exception
of the shearing step (see below). The Venter/HuRef DNA sample was first verified as
high molecular weight (>15 kb) by running 60 ng, quantified by using the Qubit
dsDNA HS Assay Kit (Life Technologies, Cat# Q32851), on 0.8% 1X TAE agarose
gel next to the 1 kb Plus DNA Ladder (ThermoFisher Cat# 10787018). Afterwards,
for each insert size, 4 Jug of the high molecular weight genomic DNA was tagmented
with biotinylated junction adapters and fragmented to about 7-87 kb on average in a
400 uL tagmentation reaction containing 12[ /uL of Tagmentase at 55/ 1°C for 30( Imin.
The tagmented DNA fragments were purified by adding 2X the volume of DNA
Binding Buffer with Zymo Genomic DNA Clean & Concentrator Kit (Zymo Research,
Cat# D4010) and eluted in 30 uL of Elution Buffer after two washes with the provided
Wash Buffer. To fill in the gaps in the DNA adjacent to the junction adapters as a by-
product of Tagmentation, single-strand displacement reaction was performed in a 200
ML reaction by adding 132 uL of water, 20 pyL of 10x Strand Displacement Buffer, 8 pL
of dNTPs, and 10 uL of Strand Displacement Polymerase to the 30 uL elution and at
2007°C for 300min. DNA purification was then performed in 30 pL elution with 0.5x
volume of AMPure XP Beads (Beckman Coulter, Cat# A63880) and size-selected by
using BluePippin (Sage Science). The 0.75% DF 3-10kb Marker S1 — Improved
Recovery and the 0.75% DF 10-18kb Marker U1 protocols were used for size
selection on the BluePippin for insert sizes 5 kb and 12 kb respectively, and 0.75%
DF 1-6kb Marker S1 protocol was used for insert size 2 kb. The “Tight Selection”
option was used instead of “Range” for all size selections. The size selected DNA
was then circularized overnight (12-16 hours) at 301°C with Circularization Ligase in
a 3007 1L reaction.

After overnight circularization, the uncirculated linear DNA was digested by adding 9
ML of Exonuclease and incubated at 30 1°C for 30 minutes and heat inactivated at
700°C for 30 minutes. Afterwards, 12 pL of Stop Ligation Buffer was added.
Circularized DNA was then transferred to T6 (6x321mm) glass tube (Covaris, Part#
520031 and 520042) and sheared twice on the Covaris S2 machine (Intensity of 8,
Duty Cycle of 20%, Cycles Per Burst of 200, Time of 4001s, Temperature of 2—671°C).
We find that shearing twice often creates a tighter final library size distribution which
leads to a higher fraction of pass-filter clusters during the lllumina sequencing step.
The mate pair fragments within the sheared DNA fragments contain the biotinylated
junction adapter and were selected by binding to Dynabeads M-280 Streptavidin
Magnetic Beads (Invitrogen, Part# 112-05D) by adding an equal volume of the Bead
Bind Buffer (incubated at 20 1°C for 15 minutes on shaking heat block at highest rpm
setting). The non-biotinylated molecules in solution were washed away using the
Wash Buffer. All downstream reactions were carried out on streptavidin beads with
magnetic immobilization and washes with the Wash Buffer between successive
reactions (e.g. End Repair, A-Tailing, and Adapter Ligation. The sheared DNA was
first End-repaired followed by A-Tailing and TruSeq indexed adapter ligation.

The adapter-ligated DNA was resuspended in 20 uL of Resuspension Buffer and then
PCR amplified in a 50 L reaction with 25 pL of PCR 2X Master Mix and 5 uL of
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213  Primers both provided in the Nextera Mate Pair Sample Preparation Kit (lllumina,

214 Cat# FC-132-1001) to generate the final library. The thermocycling conditions are
215 980J°C/1min, 10 cycles of (98°C/100s, 601°C/30s, 72[1°C/30Js), 72 °C/5Imin,
216 and 41 1°C /hold. The 5 kb mate-pair library was PCR-amplified for 5 cycles instead of
217 10 cycles. For the 12 kb mate-pair library, 8 ug of input DNA was used instead of 4
218 ug. The amplified library (supernatant) was purified using a 0.66x volume of AMPure
219 XP Beads (0.67x vol) and eluted in 20 puL of Resuspension Buffer. The size

220 distribution of the library was determined by Agilent Technologies 2100 Bioanalyzer
221 (High Sensitivity Assay), and the indexed library concentration was measured by the
222  Qubit dsDNA HS Assay Kit (Life Technologies, Cat# Q32851).

223

224  Sequencing

225

226  The Mate-Pair libraries were sequenced on the lllumina NextSeq 500 using the

227 NextSeq 500/550 Mid Output v2 kit (300 cycles) (lllumina, Cat# FC-404-2003) to

228 generate 2x151( bp paired-end reads. The libraries were loaded onto the flowcell at a
229 final concentration of 1.8pM and 1% PhiX Control v3 (lllumina, Cat# FC-110-3001).
230 Additional rounds of sequencing also used a final library concentration of 1.8pM and
231 1% PhiX Control v3.

232

233  Analysis

234

235 lllumina Nextera Mate Pair junction adapter sequences were first trimmed using

236  NxTrim % (version 0.4.3) with the "--aggressive --preserve-mp" settings in order to
237 maximize the number of long-insert pairs. Nxtrim outputs four sets of reads,

238 designated “Mate Pair”, “Paired-End”, “Singleton”, and “Unknown.” “Mate Pair” reads
239 have junction adapter sequence trimmed off from the 3’ end of Read 1 and/or Read 2;
240 “Paired-End” (short-insert) reads have junction adapter sequence trimmed from the 5’
241 end of Read 1 and/or Read 2; “Singleton” reads have junction adapter sequence

242  trimmed from the middle of either Read 1 or Read 2 rendering one of the reads

243  useless. “Unknown” reads have no junction adapter sequences detected. This is most
244 likely because the junction adapter sequence sits in the un-sequenced portion of the
245 template, thus whether reads are “Mate Pair” or “Paired-End” cannot be discerned.
246  Nonetheless, mate-pair reads are present in the “Unknown” fractions as well as

247 paired-end reads. The “Unknown” reads can be used for alignment and analysis if
248  more long-insert information is desired %. Here, the reads designated as “Mate Pair”
249  and “Unknown” were combined, aligned with BWA-MEM * against the hg38

250 reference without ALT alleles

251  (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15 GRCh
252  38/seqs_for_alignment_pipelines.ucsc_ids/), and sorted using samtools

253  (http://www.htslib.org/; version 1.7). Marking of PCR duplicates and calculations of
254 insert-size and coverage information was performed using Picard

255  (http://picard.sourceforge.net; version 2.17.10).

256

257 10X Genomics Chromium library for lllumina sequencing

258
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259  Input genomic DNA preparation

260

261 The Venter/HuRef DNA sample (obtained from the Coriell Institute for Medical

262 Research) was first verified as high molecular weight (>15 kb) by running 60 ng,

263 quantified by using the Qubit dsDNA HS Assay Kit (Life Technologies, Cat# Q32851),
264 on 0.8% 1X TAE agarose gel next to the 1 kb Plus DNA Ladder (ThermoFisher Cat#
265 10787018). Afterwards, 4_ug of the high molecular weight genomic DNA was loaded
266 on a BluePippin (Sage Science) instrument to select for DNA fragments 30 kb to 80
267 kb using the “0.75%DF Marker U1l high-pass 30- 40 kb vs3” protocol. The

268 concentration of the selected DNA fragments was then quantified by using the Qubit
269 dsDNA HS Assay Kit (Life Technologies, Cat# Q32851) and diluted to 1 ng/ uL. The
270 final dilution concentration of 1 ng/ pL was verified again by performing three

271 technical replicates of Qubit dsDNA HS Assay with 5 yL of the DNA dilution as input.
272  Chromium whole-genome linked-read library preparation and sequencing

273  The linked-read whole-genome library was prepared using the Chromium Genome kit
274  and reagent delivery system (10X Genomics, Pleasanton, CA). The linked-read

275 library was made following standard manufacturer’s protocol with 10 cycles of PCR
276  amplification. Briefly 17'ng of DNA (~300 genome equivalents) of size-selected high
277 molecular DNA was partitioned into ~1.5 million oil droplets in emulsion, tagged with a
278 unique 16 bp barcode within each droplet, and subjected isothermal amplification

279  (30r1°C for 3 hours; 6571°C for 30 Iminutes) by random priming within each droplet.
280 Amplified (isothermal) DNA was then purified from the droplet emulsion following the
281 manufacturer’s protocol using SPRI beads. The purified DNA was then End-Repaired
282 and A-tailed followed by adapter ligation of adapter in the same reaction mixture.

283  DNA was purified from the was the reaction mixture using SPRI beads and eluted in
284 40 uL. Sample Index PCR amplification (primers and 2X master mix provided in the
285 Chromium Genome kit) was then performed on the eluted DNA in a toal volume of
286 100 uL with the following thermocycling conditions: 981 1°C/45(s, 10 cycles of

287  (9811°C/20 1Is, 54 1°C/30l1s, 7211°C/20 Is), 72[1°C/1 min, and 41 1°C /hold. Primer
288 index SI-GA-A6 was used. DNA (final linked-read library) was purified from the PCR
289 reaction with SPRI bead size selection following manufacturer’s protocol.

290

291 Sequencing

292

293 The final purified library was quantified by gPCR (KAPA Library Quantification Kit for
294  lllumina platforms, Kapa Biosystems, Wilmington, MA) using the following

295 thermocycling conditions: 952°C/3 min, 30 cycles of (951°C/5s, 67_°C/3001s). The
296 library concentration was calculated in nanomolar (nM) concentration and then diluted
297 to 5 nM. Sequencing (2x151bp, 8 cycles of single indexing) on two lanes of Illlumina
298 HiSeq X (flowcell ID: H3MHGALXX, lanes #4 and #5) was performed at Macrogen
299  (Rockville, MD) resulting in a total of 789,239,544 paired reads (Table 1).

300

301 Analysis

302

303 FASTQ files were generated from raw BCL files using “mkfastq” mode in the Long

304 Ranger software (version 2.1.3) from 10X Genomics (Pleasanton, CA). 10X Genomics
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Chromium library index “SI-GA-A6” was specified in the required sample sheet file for
“mkfastq”. Before alignment, the hg38 genome files were downloaded from
ftp://ftp.ncbi.nim.nih.gov/genomes/all/GCA/000/001/405/GCA _000001405.15 GRCh38/
seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15 GRCh38 no_alt_analysis
set.fna.gz and indexed using the “mkref” mode in Long Ranger. Sequencing
alignment and haplotype phasing were performed using the “wgs” mode in Long Ranger,
and the options “--sex=male” and “--vcmode=freebayes” were specified. Only “PASS”
SNPs and Indels 50 bp or smaller were included in the final phased variant vcf.

DATA RECORDS

The Venter/HuRef genome sequenced is publicly available through The Coriell Institute
for Medical Research (Camden, NJ, USA) both as genomic DNA (catalog ID: NS12911)
extracted from lymphoblastoid cell line (LCL) or as retroviral reprogrammed induced
pluriplotent stem cell culture (catalog ID: GM25430). As described in the Methods,
Venter/HuRef LCL DNA (NCBI SRA biosample accession SAMN03491120) was used
for sequencing library preparation in this work.

llumina short-insert WGS

Approximately 100x sequencing coverage 2x100bp Illumina short-insert (200 bp) WGS
data generated from the Illumina HiSeq 2000 is available through NCBI SRA accession
SRR7097858 [Data Citation 1, Table 5]. Approximately 40x sequencing coverage
2x100bp Illumina short-insert (350 bp) WGS data generated from the lllumina HiSeq
2000 platform is available through NCBI SRA accession SRR7097859 [Data Citation 1,
Table 5].

lllumina mate-pair WGS

lllumina mate-pair data sequenced (2x150 bp) on the lllumina NextSeq 500 are
available through NCBI SRA accessions SRR6951312, SRR6951313, and
SRR6951310 for insert sizes 2 kb, 5 kb, and 12 kb respectively [Data Citation 1, Table
5].

10X Genomics Chromium linked-read Library

10X Genomics Chromium linked-read data sequenced (2x150 bp) on two lanes of the
lllumina HiSeq X Ten is available through NCBI SRA accession SRR6951311 [Data
Citation 1, Table 5]. The phased variants of the Venter/HuRef genome obtained
through the analysis linked reads is available through dbSNP NCBI_ss# 2137543904 to
3651364986 (For phasing information, request for original submitted vcf file through
NCBI dbSNP.) [Data Citation 2: NCBI dbSNP NCBI_ss# 2137543904-3651364986].

TECHNICAL VALIDATION
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[llumina short-insert WGS

Sequencing quality of the WGS mate-pair libraries were assessed using FastQC
(Supplementary Information). Insert-size, coverage, GC-bias, alignment, and
duplication metrics were analyzed using Picard tools
(http://broadinstitute.github.io/picard/). These statistics are summarized in Table 1,
Table 2 and Figure 2A.

[llumina mate-pair WGS

Sequencing quality of the WGS mate-pair libraries was assessed using FastQC
(Supplementary Information). Insert-size, coverage, GC-bias, alignment, and
duplication metrics were analyzed using Picard tools
(http://broadinstitute.github.io/picard/). These statistics are summarized in Table 1,
Table 2 and Figure 2c-j. Read fractions that were designated by NxTrim % as “Mate
Pair”, “Paired-End”, “Singletons”, and “Unknown” are summarized in Table 3. The
“Mate Pair” fraction for all libraries fall within the expected range (~40-60%). Expected
for mate-pair libraries, the relatively high rates of PCR duplication (Supplementary
Information) result in significant decreases in sequence coverage (3x to 7x) (Table 1,
Table 2, Figure 2). However, the more useful metric for mate-pair sequencing is high
physical coverage #*. Here, physical coverage (C¢) is calculated by the equation C = Cg
x Cg where C is the sequencing coverage and Cg is the mean fractional coverage of
input DNA fragments. The mean insert sizes for the mate pair libraries are 1.8 kb, 4.8
kb, and 12.2 kb (Table 2, Figure 2), which results in physical coverage values of 49x,
122x, and 145x respectively. For the 2 kb mate-pair library for an example, C is 7x, and
Cris 0.14 or (130 bp + 131 bp)/1845 bp, thus Cr is 49x (Table 2). The average final
library fragment lengths were approximately 800 bp, 800 bp, and 500 bp for the 2 kb, 5
kb and 12 kb mate-pair libraries respectively. The differences in average library
fragment lengths most likely contributed to the more extreme tails of the normalized
coverage vs GC% for the 2 kb and 5 kb mate-pair libraries (Figure 2e, g) .

10X Genomics Chromium Library

Sequencing quality of the linked-read library was assessed using FastQC
(Supplementary Information). Input molecule length, coverage, alignment, duplication,
droplet barcode, and phasing metrics were analyzed using the Long Ranger software
version 2.1.5 ?° (Table 1, Table 2, Table 4 and Figure 3). Overall, 2.4 million and 1.5
million, 0.42 million and 0.29 million heterozygous and homozygous SNVs and indels
respectively were called (Table 4). Of which, 96.7% and 93.85% of heterozygous SNVs
and Indels respectively were successfully phased in the Venter/HuRef Genome in a
total of 8882 haplotype blocks (N50 ~ 0.9 Mbp, longest phase block ~ 6.5 Mbp) (Table
4). Phase blocks for each chromosome are shown in Figure 4. Similar to mate-pair
libraries, the physical coverage of the linked read library is calculated to be 128x from
the mean input DNA molecule length of 32kb.

USAGE NOTES
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The Venter/HuRef genome sequenced in this work is publicly available as both cell line
and DNA from Coriell Institute for Medical Research. The mate-pair and linked-read
sequencing data used the same DNA sample/extraction as input. It is possible that
small differences may exist when compared to the short-insert datasets since the
input DNA came from different cell passages and extractions. Researchers are
especially encouraged to use the sequencing data in this work in combination with
diploid Sanger sequencing data available for the Venter/HuRef genome published in
Levy et al *'.
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FIGURE & TABLE LEGENDS

Figure 1. Schematic diagram of the study. (a) Venter/HuRef genomic DNA was used
to generate short-insert (200 bp and 350 bp), mate-pair (2 kb, 5 kb, and 12 kb), and
linked-read libraries. (b) Detailed overview of data generation including bio-sample
used, types of lllumina WGS libraries constructed, sequencing instrument platforms,
types of sequencing runs, and subsequent analysis of data.

Figure 2. Normalized coverage, GC (%) content windows, base quality at GC (%),
and corresponding insert-size histograms for all WGS libraries. (a, b) 200 bp
short-insert, (c, d) 350 bp short-insert, (e, f) 2kb-mate-pair, (g, h) 5kb-mate-pair, (i, j)
12kb-mate-pair.

Figure 3. Coverage (deduplicated) histograms. (a, b) short-insert, (c, d, €) 2 kb, 5
kb, and 12 kb mate-pair, and (f) linked-read libraries. Only reads with mapping score >
20 were used.

Figure 4. Violin plot of sizes of haplotype blocks constructed using linked-read
sequencing (128x physical coverage) for HuRef/Venter Genome for all
chromosomes.

Table 1. Summary of library construction and sequencing for short-insert, mate-
pair, and linked-read HuRef/Venter WGS libraries.

Table 2. Summary of post sequencing QC, alignment, duplication, coverage and
insert-size analysis for all libraries.

Table 3. Statistics for trimming of Nextera junction adapter sequence using
NxTrim for all mate-pair libraries.

Table 4. Summary of metrics for linked-read sequencing and phasing of the
HuRef/Venter genome.

Table 5. Details of Data Citation 1 (SRP137779). * obtained from Mu et al . Phred-
33 encoding for all files.
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