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Statistics, Operations Research and Quality, Universitat Politècnica de València, Spain and 3 Microbiology and Cell Science
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ABSTRACT

The increasing availability of multi-omic platforms poses
new challenges to data analysis. Joint visualization of multi-
omics data is instrumental to understand interconnections
across molecular layers and to fully leverage the biology
discovery power offered by the multi-omics approach.

We present here PaintOmics 3, a web-based resource
for the integrated visualization of multiple omic data types
onto KEGG pathway diagrams. PaintOmics 3 combines
server-end capabilities for data analysis with the potential
of modern web resources for data visualization, providing
researchers with a powerful framework for interactive
exploration of their multi-omics information.

Unlike other visualization tools, PaintOmics 3 covers a
complete pathway analysis workflow, including automatic
feature name/identifier conversion, multi-layered feature
matching, pathway enrichment, network analysis, interactive
heatmaps, trend charts, etc. It accepts a wide variety
of omic types, including transcriptomics, proteomics and
metabolomics, as well as region-based approaches such as
ATAC-seq or ChIP-seq data. The tool is freely available at
http://bioinfo.cipf.es/paintomics/.

INTRODUCTION

The increasing popularity of multi-omic experiments
motivates the need for developing tools to combine
the multi-layered measurements in the same integrative
analysis. The heterogeneity, high dimensionality and multiple
interconnectivity of the multi-omics data are distinct aspects
that require special attention in this type of studies. While
different analysis strategies exist for multi-omics feature
selection and for the discovery of relationships among them
(1, 2), graphical visualization of the combined datasets is
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a general and valuable way of simplifying information and
assisting interpretability (3).

Several resources for integrative visualization are already
available in the context of systems biology. Two well-
known tools for graph analysis and visualization are
Cytoscape (4) and Gephi (5). These applications provide
numerous functions for exploring, manipulating and analyzing
complex networks and are complemented with many plug-
ins that enable specialized analysis of molecular data (3).
Similarly, the web-based workbench VisANT (6) includes
several tools for drawing and analyzing large biological
networks and the ability to combine multiple types of
networks to systematically analyze correlations with the
phenotype. Another interesting tool is 3Omics (7), a web
application specifically designed for the analysis of human
data, which supports transcriptomics, metabolomics and
proteomics datasets. Using 3Omics, users can perform
correlation analysis, co-expression profiling, phenotype
mapping, pathway and GO enrichment analysis on each
dataset, and visualize results graphically.

Alternatively, other software solutions explore interactions
among biological features assisted by existing knowledge,
usually curated, such as metabolic or signaling pathways.
Pathways are a fundamental part of interpreting omics data,
as they provide the biological context for a given observation
(8). One popular tool for pathway-based visualization is
MapMan (9), that allows large datasets, including multiple
conditions or time-series experiments, to be displayed as
pathway diagrams. Another example is KaPPa-View (10) a
web-based tool for integrating transcript and metabolite data
into pathway maps. Luo and Brouwer introduced Pathview
(11), an R/Bioconductor package for data integration and
visualization using KEGG pathways, which has recently been
launched as a web tool (12). Pathview allows integration of a
wide variety of biological data based on pathways analysis, as
long as the omics features are previously mapped to genes.
Finally, Garcia-Alcalde et al. developed PaintOmics 2 as a
web-based tool for integrated visualization of transcriptomics
and metabolomics data using KEGG pathways as a template
(13).

Despite being useful, these tools do have some limitations
in terms of effective data integration and visualization.
As a general rule, network-based tools are useful forc© 2008 The Author(s)
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identifying the interconnections between multiple biological
features, but the size and complexity of the network allied
with loose integration to existing knowledge (e.g. pathway
diagrams) often hamper interpretation. Conversely, pathway-
based solutions reduce the size of the displayed data by
grouping the information based on previous knowledge, but
they do not allow new molecular connections to easily be
inferred. Moreover, most of the tools do not allow researchers
to easily integrate data from chromatin profiling experiments
or regulatory elements such as microRNAs (miRNAs) or
transcription factors (TFs).

Here we introduce PaintOmics 3, a web-based application
for integrative visualization of multiple biological datasets
on KEGG pathway diagrams. As opposed to other
visualization tools, the system covers a complete multi-
omics pathway analysis workflow, including support for data
from virtually any type of omics measurement, automatic
feature name/identifier conversion, pathway enrichment
and network analysis. PaintOmics 3 implements the latest
technologies in web-based visualization, providing powerful
exploratory tools of complex data, conveying to explanatory
views of biological processes.

MATERIALS AND METHODS

The PaintOmics 3 architecture
The PaintOmics 3 platform is a Client-Server web-application
developed entirely using open-source resources (Figure 1).
The server side is built using Python 2.7 (14) and R
(15) languages and is in charge of processing remote user
requests, managing access to biological information stored in
a non-relational database implemented in MongoDB (16) and
performing a variety of statistical and bioinformatics analyses.
The client side is responsible for the data presentation to the
user web-browser and was entirely developed using JavaScript
language and HTML5 technologies. Communication between
the client applications and the server-end is handled by AJAX
mechanisms where data are exchanged encoded using JSON.

Input data
Input data for PaintOmics 3 are processed feature-level
measurements in a tab-delimited file for each omic type. When
available, a second file can be provided with a list of relevant
features, for instance a list of differentially expressed (DE)
genes (Supplementary Figure 1). Experimental conditions
should be the same across omics. Ideally, the quantification
file should contain one column per experimental condition, so
replicated measurements should be averaged. To maximally
benefit from the coloring rules implemented in the tool,
quantification values should be provided as the log fold change
between a case condition and a control/reference condition.
The omic data types accepted by PaintOmics 3 can be broadly
classified into four categories:

Gene-based omics: The biological features measured are, or
can be, translated into genes. Some examples are mRNA-seq
or microarrays, where measurements are made at the gene or
transcript level, and proteomics, where protein quantification
can be imputed to the respective coding gene. PaintOmics
3 accepts Entrez Gene IDs as gene identifiers, but it also

Figure 1. Overview of the PaintOmics 3 architecture. The platform
follows the Client-Server paradigm. The Client side implements the Model-
View-Controller pattern. The Server side is divided in several subcomponents.
The main entry point for the client’s requests are Flask servlets, that
manage specific tasks. Heavy computational requests are encapsulated in job
objects and queued for execution as soon as enough resources are available.
Interaction with the database is made through Data Access Objects (DAO)
and connections are controlled by a database manager.

includes a module for Name/ID translation that allows users to
input many other identifiers or naming domains. This module
fetches the translation information from public databases such
as Ensembl, PDB, NCBI RefSeq, and KEGG, whenever they
are available, greatly facilitating data input.

Metabolite-based data: The biological features are
metabolites. PaintOmics 3 includes some tools for resolving
any existent ambiguity when matching user’s metabolites
to KEGG compound names. For each input metabolite, it
generates a list of potentially related compounds that are
ranked with a score based on the similarity of names, and
users can manually review, and eventually change, metabolite
assignments (Supplementary Figure 2).

Region-based omics: The measured features are a set of
genomic regions, such as those obtained by ChIP-seq, DNase-
seq, ATAC-seq, Methyl-seq, etc. For omics in this category,
chromosome, start and end position, and a quantification value
for the regions must be provided, together with a GTF file
with the reference genome annotation. PaintOmics 3 maps
each region to its proximal gene(s) with the RGmatch tool
(17), which takes into account the region relative position with
respect to the specific areas of the gene (promoter region, first
exon, intronic areas, etc.). Also, the users can provide regions
of interest for their study.

Regulatory omics: This category basically refers to miRNAs
or transcription factors. Since they are regulators of gene
expression, they are mapped to genes. For that, PaintOmics
3 requires an additional tabulated file containing a mapping
between miRNA/TF → target gene associations. The system
processes the input quantification data and assigns the
expression values to the known list of target genes for each
regulator.

PaintOmics 3 can process multi-omics datasets with any
combination of omics platforms.
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Pathway analysis options
Once data are submitted PaintOmics 3 maps all features to
the KEGG database and returns a pathway analysis interface
where users can easily keep or hide pathways for downstream
analysis, explore pathway networks at different omic layers,
visualize single and joint pathway enrichment results, and
access specific pathways for interactive browsing.

Pathway enrichment. For each omic dataset, and provided
that a list of relevant features is included, PaintOmics 3
performs a single Pathway Enrichment Analysis (PEA) using
the Fisher’s Exact test. Both p-value and false discovery rate
(FDR) adjusted p-values are returned for each dataset. A
joint pathway enrichment p-value considering all available
omics data is also computed by applying either the Fisher
combined probability test (18) or the Stouffer’s method (19).
The latter introduces a weight for each individual p-value that
allows to control the contribution of each omic type to the
computation of the joint enrichment. This is interesting as not
all platforms have the ability to measure molecular features
with the same comprehensiveness. By default, PaintOmics 3
assigns a weight to each omic that is the percentage of features
mapped to pathways in that omic.

The multi-omic pathway interaction network. PEA results
presented as a list of pathways often fall short to
reveal relationships between cellular processes and to
offer comprehensive representations of biological systems.
PaintOmics 3 includes a tool to create pathway networks based
on the multi-omics data. In this network, nodes represent
pathways and edges indicate shared features among them or
KEGG database connections. Each pathway in the network
is summarized by one (in some cases several) representative
profile obtained by dimension reduction techniques, that
recapitulate the major behavior of the pathway along the
conditions of the study (20). These pathway profiles are then
used to obtain clusters of pathways with similar trends, and
the pathway network is colored according to this clustering
(Figure 2). In this way, pathways with the same pattern of
change can be easily grouped and, if also connected by edges,
their molecular relationships revealed. Pathway profiles can
be obtained for any of the available omics data and hence
networks can be built from each molecular layer perspective.
The pathway network tool also includes several options for
node selection based either on static (KEGG database) or
dynamic (experimental) data.

Multi-omic visualization of single pathways. One of the core
features of PaintOmics 3 is the visualization of user input
data onto individual KEGG pathways. Figure 3 illustrates an
example of the typical workspace for pathway exploration.
The main panel contains the pathway diagram colored
according to the input data. Users can easily navigate through
this panel and visualize the different values associated with
each biological feature mapped on the KEGG map (Figure
3-A), Feature (genes or metabolites) boxes are divided in as
many sections as columns in the input files, and in up to
three rows to display different omics measurements. Boxes
are colored based on a blue (low) to red (high) gradient scale
calculated on each omics range of values after discarding
extreme observations. Relevant features are highlighted by a

thicker border and a special mark at the top right corner. Two
additional panels are available at the pathway workspace. The
Pathway Information panel includes summary information for
all omics data in the pathway, including the major trends for
each type of measurement (Figure 3-C). The Global Heatmap
panel displays the pathway features values in the form of
consecutive heatmaps, one per omic dataset (Figure 3-B).
More details about the functionalities of this module can be
found in Supplementary Data.

Availability and requirements
PaintOmics 3 is free to use and is distributed under
the GNU General Public License Version 3. A public
copy of the application is hosted at the CIPF facilities
(http://bioinfo.cipf.es/paintomics) and sources are available
at GitHub (https://github.com/fikipollo/paintomics3). The
documentation and guides for users and administrators are
available at the free web platform Read the Docs, and also
stored at the GitHub repository. PaintOmics 3 server-side
application has been extensively tested on Ubuntu and Debian
Linux servers.

USE CASE

To illustrate PaintOmics 3 use, we selected a multi-omic
dataset from Cacchiarelli et al. where they analyze changes
in gene expression and chromatin state that occur during
human reprogramming of immortalized fibroblasts (21).
This study includes transcriptomics (RNA-seq and small
RNA-seq), methylation (RRBS-seq) and region-based histone
modification (H3K4me3 ChIP-seq) data taken at different time
points after reprogramming. Details on data preprocessing and
input for PaintOmics 3 can be found in the Supplementary
Data file.

In order to analyze the Cacchiarelli’s multi-omics dataset
with PaintOmics 3, we started by excluding diseases related
and some organismal systems pathways that were considered
irrelevant for the study. This resulted in 199 pathways being
mapped by multi-omics data, of which 25 were found to be
significant on the combined enrichment test (Supplementary
Figure 5). Most enriched pathways were regulated at the
gene expression and H3K4me3 layers, with a large degree
of overlap, which is in agreement with the role as active
promoter mark associated to H3K4me3. Enriched pathways
at the Methyl-seq and miRNA-seq layers were much fewer,
suggesting that these regulatory levels were not as coordinated
and ubiquitous.

Significant pathways include hormone and drug
detoxification, but mainly signaling, communication and
cell lineage. To understand the dynamics and relationships
between these processes we analyzed the multi-omic pathway
network (Figure 4). The network is dominated by signalling
and lineage pathways that are activated between 10 (cluster 5)
and 24 days (cluster 6) after reprogramming, including Ca2+
signalling and Wnt signalling (Figure 4-A), also identified
by Cacchiarelli et al. as transient early upregulation. These
pathways are part of H3K4me3 cluster 1 (Figure 4-B), that
represents an increase of active promoter histone marks in
time. Previous reports indicated that these epigenetic changes
enable direct reprogramming to pluripotency (22). On the
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Figure 2. The interactive pathway network in PaintOmics 3. The interactive network panel (A) is complemented by a secondary panel showing the trends for
all pathway clusters in a given omic (B), or the trends for each omic in the chosen pathway (C).

Figure 3. Workspace for pathway exploration in PaintOmics 3. The layout for pathway exploration is divided into three panels. The main panel (A) contains
the interactive pathway diagram, the Global Heatmap panel (B) displays multi-omics data in the form of heatmaps, and the Pathway Information panel (C)
contains search and summarizing functions.

contrary cluster 4, containing extracellular matrix component
and focal adhesion pathways, shows a down-regulation
pattern, that was also observed in the original publication and
might reflect the need of loose intercellular structures during
the reprogramming process.

A significant pathway detected in PaintOmics 3 was
”Signaling pathways regulating pluripotency of stem cells”
(Figure 5). This is a complex pathway in which both naı̈ve and
primed stem cells signaling are represented. Major variation
trends computed for this pathway by PaintOmics 3 (Figure
5, bottom panels) indicate a general gene expression up-
regulation from 10 days after reprogramming that is halted
at the last hIPSC stage. H2K4me3 is strong from day 24
while the DNA methylation is consistently down-regulated as
reprogramming progresses. The miRNA regulation appears
to kick-on at 24 days for genes in this pathway. However,
regulatory patterns may vary for different genes. Some
examples are shown on the right side of the figure. Most
activated genes, including the three key pluripotency genes,

POU5F, SOX2 and NANOG are over-expressed and have
positive H3K4me3 marks at their promoters (detailed data
shown for SOX2). This is in agreement by the activity of
several epigenetic regulators like SMARCAD1 and SETDB1,
histone modifiers that increase the DNA accessibility at
promoters of these genes (23). Other genes in the pathway
are down-regulated and PaintOmics 3 reveals potential
mechanisms. For example, expression of AKT3 and SMAD3
remain low together with absence of H3K4me3 marks while
PIK3R1 is down-regulated with a strong DNA methylation
pattern. Interestingly, down-regulation of PIK3R1 has been
shown to promote a stem-like phenotype in renal cancer
cells through the AKT/GSK3/CTNNB1 pathway, due to AKT
phosphorilation (24). Although the AKT genes appear down-
regulated in Cacchiarelli’s data, their active involvement in
hIPSC has been reported (25). We speculate that the observed
lower expression of the AKT isoforms could be compensated
by their post-translational activation through the PIK3R1
pathway. Finally, other regulatory patterns appear in this
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Figure 4. Pathway networks and cluster profiles of representative temporal patterns. Network A is colored according to gene expression data. Network B
is colored according to H3K4me3 ChIP-seq data.

pathway, for example the INHBA gene details box reveals
down-regulation is correlated with an strong induction of
associated miR-509-3.

DISCUSSION

We introduce here a novel application for integrative
visualization of many different types of omics data,
PaintOmics 3, which works as a one-click web tool to enable
comprehensive exploration of multi-omics data under the light
of pathway models. Using this tool, researchers can easily
move through different levels of regulation within biological
systems. The combination of a network-based functionality
for pathway interactions with they multilayer painted pathway
maps leverages the advantages of these two types of visual
representations. The network provides an overall view of
regulated processes while keeping a manageable size as it
uses pathways rather than genes as nodes, and thanks to the
filtering options offered by the application. The utilization of
omics profiles to represent pathways and coloring the network
according to this information is helpful for understanding
functional relationships across different molecular layers.
The single pathway colored map gives the user a full
view of the pathway multi-omics data, while the details
panels available for each pathway node facilitates analysis of
complex nodes by providing multi-omics values for each of
gene independently.
PaintOmics 3 is unique in its strategy to bring data
from gene trans- and cis-regulatory factors down to the
pathway view. Cis-acting elements will be typically linked
to gene nodes thanks to the Region-based omics input
and PaintOmics 3 will calculate associations directly from
bed-like files. This kind of chromatin-based information
is normally represented using genome browsers, which
completely ignore pathway information and hence cannot
study coordinated chromatin changes for cellular processes.

Trans-acting regulatory elements (i.e. miRNAs, TFs) can be
linked through the Regulatory omics input. In this case, an
association file must be provided by the user. Although this
might appear as a limitation, it is in fact an effective solution
to provide the tool with full flexibility to visualize any kind of
trans-regulatory data the user might have, for example PAR-
CLiP or regulatory lncRNA data.
Finally, PaintOmics 3 comes with a wide range of
customization and auxiliary functions that allow data and job
storage, id conversion, re-coloring, rescaling, filtering, etc.
to create in each case the most informative representation
of the complex multi-omics dataset. The current version
of PaintOmics 3 has been available since 2013 and it
has been used by more than 3,000 users world-wide. The
variety of organisms supported by PaintOmics 3 outperforms
other domain specific tools such as MapMan, KaPPa-View
(available for plants) or 3Omics, only available for human,
making PaintOmics 3 a highly versatile tool to represent
multi-omics information.
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Figure 5. Interactive KEGG diagram for Signaling pathways regulating pluripotency of stem cells. Data obtained from Cacchiarelli’s multi-omics study
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