

1 Time-dependent mnemonic vulnerability induced by
2 new-learning

3

4

5

6 Fengtao Shen¹, Yixuan Ku^{1,3}, Jue Wu¹, Yue Cui¹, Jianqi Li², Zhaoxin
7 Wang^{1,2 *}, Huimin Wang^{1,3 *}, and Sze Chai Kwok^{1,2,3 *}

8

9

10

11

12 ¹ Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional
13 Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal
14 University, Shanghai 200062, China

15 ² Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062,
16 China

17 ³ NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China

18

19 *Correspondence: sze-chai.kwok@st-hughs.oxon.org (S.C.K.),
20 wzx425@gmail.com (Z.W.), hwang01@gmail.com (H.W.)

21

22 **Abstract**

23 Reactivation renders consolidated memory labile again, and the ensuing temporary
24 reconsolidation process is highly susceptible to mnemonic modification. Here, we
25 show that memories in such an unstable state could be reprogrammed by sheer
26 behavioral means, bypassing the need for pharmacological intervention. In two
27 experiments using a “face-location association” paradigm in which participants
28 experienced a “Learning – New-learning – Final-test” programme, we demonstrate
29 that reactivated memory traces were robustly hampered when the new learning was
30 strategically administered within a critical 20-minute time window. Using fMRI, we
31 further advance our theoretical understanding that this lability can be mechanistically
32 explained by the differential activation in the hippocampal-amygdala memory system
33 implicated by the new-learning whereas the mnemonic intrusion caused by newly
34 learned memories is efficaciously reconciled by the left inferior frontal gyrus. Our
35 findings provide important implications for educational and clinical practices in
36 devising effective strategies for memory integration.

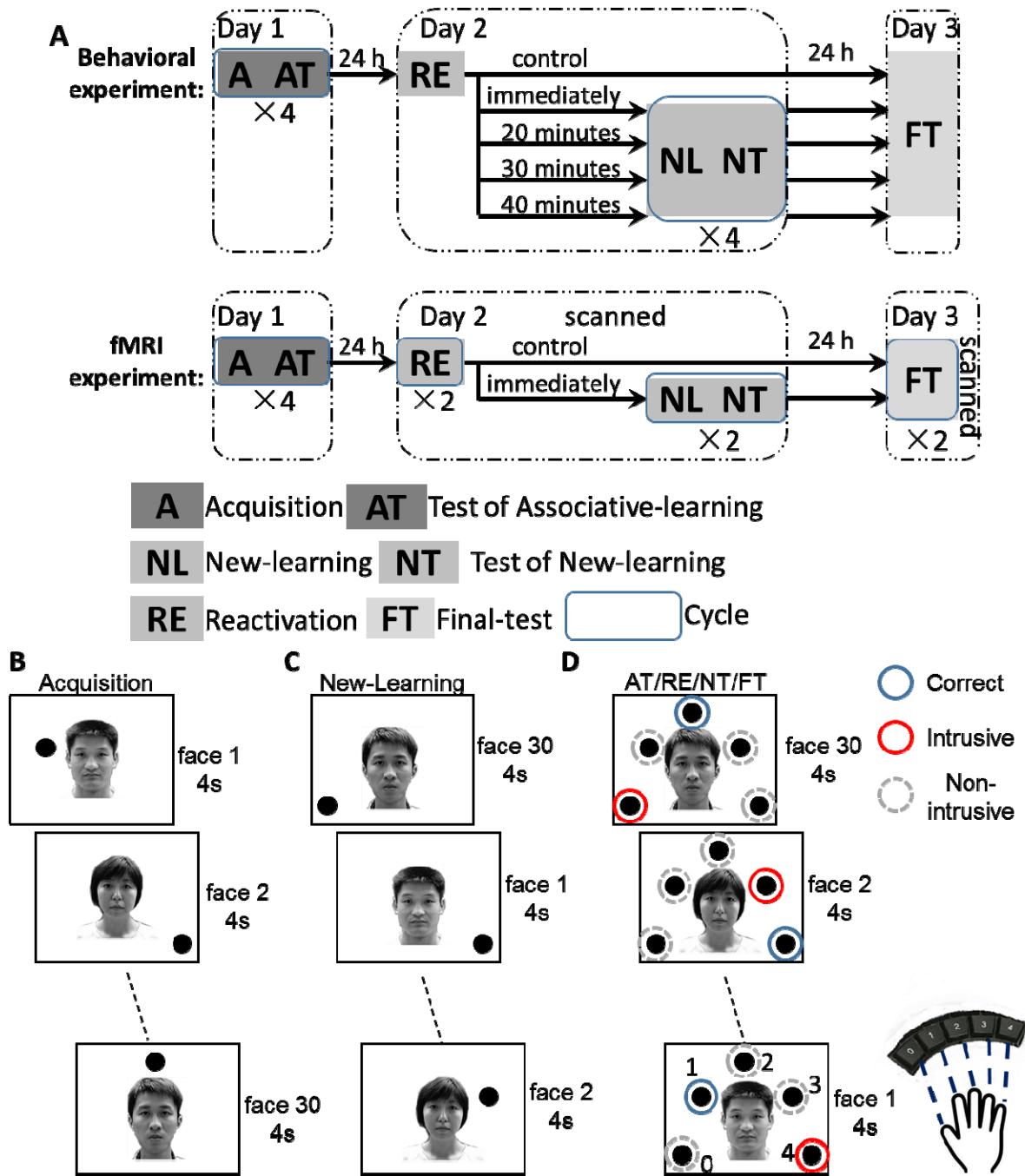
37

38 **Keywords.** non-emotional declarative memory, reconsolidation, non-invasive
39 manipulation, hippocampus, amygdala, IFG

40

41 **1 Introduction**

42 Memory recall is constructive in nature and the mere act of recalling a memory
43 renders it labile and highly susceptible to modification (Nader, Schafe et al. 2000, Lee,
44 Everitt et al. 2004, Lee, Di Ciano et al. 2005, Alberini and LeDoux 2013, Lee, Nader
45 et al. 2017, Scully, Napper et al. 2017). While emotional factors are known to exert
46 effects on reconsolidation of emotional declarative memories (Schwabe and Wolf
47 2009, Strange, Kroes et al. 2010, Chan and LaPaglia 2013), controversies still
48 surround reconsolidation theories on non-emotional declarative memories.
49 Empirically, post-retrieval manipulations gave rise to inconclusive patterns of results,
50 with some studies showing such manipulation can induce update (Hupbach, Gomez et
51 al. 2007, Hupbach, Gomez et al. 2009, Forcato, Rodriguez et al. 2010), forgetting
52 (Forcato, Burgos et al. 2007), extinction (Nader, Schafe et al. 2000, Schiller, Monfils
53 et al. 2010, Agren, Engman et al. 2012), or enhancement (Cocoz, Maldonado et al.
54 2011, Cocoz, Sandoval et al. 2013), whereas another set of studies revealing no
55 observable effect (Cammarota, Bevilaqua et al. 2004, Debiec, Doyère et al. 2006,
56 Hupbach, Hardt et al. 2008, Forcato, Argibay et al. 2009, Hupbach, Gomez et al. 2011,
57 Gershman, Schapiro et al. 2013). These previous studies indicate that manipulations
58 after reactivation would induce multiple, and at times conflicting, effects under
59 different conditions (Nader, Schafe et al. 2000, Pedreira, Perez-Cuesta et al. 2002,
60 Walker, Brakefield et al. 2003, Debiec, Doyère et al. 2006, Forcato, Argibay et al.
61 2009, Sederberg, Gershman et al. 2011, Sevenster, Beckers et al. 2012), it was thus
62 important to characterize these contributory factors. Specifically, reconsolidation is


63 known to be time-sensitive. The presence of this time-dependence in humans has been
64 coarsely derived from studies utilizing either one of the two extreme
65 reactivation-intervention intervals: either too short such that the reconsolidation was
66 still ongoing (e.g., 5 or 10 minutes, (Forcato, Burgos et al. 2007, Forcato, Argibay et
67 al. 2009, Schiller, Monfils et al. 2010, Agren, Engman et al. 2012)), or too long such
68 that the reconsolidation had concluded before the intervention began (e.g., 6 or 10
69 hours, (Forcato, Burgos et al. 2007, Schiller, Monfils et al. 2010, Agren, Engman et al.
70 2012)). Here we investigated the detailed temporal characteristics of reconsolidation
71 of declarative memory using gradient-like post-reactivation delays.

72 In light of the controversies surrounding theories on the reconstructive nature of
73 declarative memories, we evinced that human associative memories can be
74 exquisitely rendered labile by newly-acquired memories within a critical time-window.
75 Using a face-location association learning paradigm, human participants were made to
76 experience acquisition, test of associative-learning, reactivation, new-learning, and
77 final-test across three consecutive days. In a behavioral experiment (Fig. 1A, upper
78 panel), participants encoded 30 face-location associations on Day 1 (day1-Acquisition)
79 and following a 24-hour retention period, they were then divided into 5 groups and
80 asked to recall the associations they had acquired previously on day1
81 (day2-Reactivation). Importantly, the four different groups of participants received a
82 critical time-dependent new-learning manipulation (i.e., acquiring a new location
83 associated with the original 30 faces) whilst a fifth group acted as a control group and
84 did not receive any new-learning. The day2-New-learning served a critical

85 interventional purpose, aiming at interfering the originally acquired memories during
86 reconsolidation. On the third day (day3-Final-test), these participants were required to
87 recall again the face-location associations they had learned on day1-Acquisition. We
88 revealed the new-learning that occurred right after reactivation significantly
89 diminished the memory of the originally learned associations in a time-dependent
90 manner.

91 To elucidate the behavioral effects induced by the new-learning and the neural
92 underpinnings of the reconsolidation processes, we replicated the behavioral
93 experiment with a new group of participants performing a corresponding experiment
94 while their blood-oxygen-level-dependent (BOLD) activity was measured. We probed,
95 at a macro-anatomical level, in which regions might lie the influence of the
96 new-learning on the reconsolidation of non-emotional episodic memory (i.e., how
97 new-learning affected the originally learned memory) and how the intrusive effects
98 thereby induced by the newly-learned associations might manifest neurally. In this
99 fMRI experiment we included only one experimental group, which began their
100 new-learning immediately after reactivation on Day 2 (Fig. 1B-D). We employed
101 fMRI to unravel the mechanisms underlying the processes of integrating new
102 information into consolidated memories during reconsolidation.

103

104 **Figure 1. Paradigm Overview.** (A) Experimental overview for behavioral and fMRI
105 experiments. There were five and two groups in the two experiments, respectively.
106 Each of the experiments, spanning across 3 daily sessions, consisted of four stages:
107 Acquisition, Test of Associative-learning (Day 1), Reactivation, New-learning, Test of
108 Final-test (Day 3). The fMRI experiment included a scanning session (Day 2).

109 New-learning (Day 2), and Final-test (Day 3). On Day 1, the subjects acquired a set of
110 face-location associations (Acquisition). On Day 2, they were first asked to recall
111 original associations (Reactivation) and were then divided into 4 experimental groups
112 and one control group. After variable delays (i.e., 0', 20', 30', and 40'), they learned
113 another set of associations of linking a new location to each of the original faces
114 (New-learning). The control group did not receive any new learning. Finally, on Day
115 3, these subjects were asked to recall the originally learned associations which they
116 had acquired on Day 1 (Final-test). The participants in the fMRI experiment were
117 scanned on Days 2 and 3. The cycle “×4” and “×2” denote the numbers of repetition
118 in each of the tests. (B) Original learning (Acquisition) consisted of 30
119 face-to-location associations. On each trial, a unique face was presented together with
120 a location (out of five possible locations) on the screen for 4 s. The participants were
121 instructed to memorize the associations. Their memories were then tested with Tests
122 of Associative-learning. No feedback was given. (C) Importantly, using the identical
123 procedure, on Day 2, 30 new associations were acquired *de novo* by the participants in
124 the New-learning stage. (D) In Test of Associative-learning (AT), Reactivation (RE),
125 Test of New-learning (NT), and Final-test (FT) stages, on each trial, the participants
126 were required to indicate the correct location matched to each of the faces by pressing
127 a 5-button keypad. In the Final-test, each response was classified into either a Correct
128 response (blue discs), an Intrusive error (red discs), or a Non-intrusive error (grey
129 discs). The colored discs, the face ID numbers and the location numbers (0-4) were
130 not shown in the actual experiment. The order of face-presentation was randomized
131 within and across participants in all stages.

132

133

134 **2 Method**

135 The entire study consisted of one behavioral and one fMRI experiment. Each
136 consisted of four experimental sessions across three days. The separation between

137 days was strictly controlled to be 24 hours (Fig. 1).

138 **2.1 Subjects**

139 151 participants took part in the behavioral experiment proper (four experimental
140 groups n = 28 each; control group n = 39) and 46 participants took part in the fMRI
141 experiment (experimental group n = 18; control group n = 28). All of them were
142 recruited from the East China Normal University (17 – 30 years old, mean =
143 22.05±2.51, SD, 26 males). All had normal or corrected-to-normal vision and reported
144 regular nocturnal sleep and no history of any neurological, psychiatric or endocrine
145 disorder. The participants received monetary compensation for their participation.

146 Written informed consents were obtained from all participants and the study was
147 approved by the University committee on Human Research Protection (UCHRP) at
148 East China Normal University. An additional 60 participants (37 and 23 for the
149 behavioral and fMRI experiments, respectively) were recruited but were not invited to
150 enter the subsequent sessions because their performance accuracy was below 40% in
151 the last round of the Test of Associative-learning on Day 1.

152 **2.2 Stimuli**

153 60 grayscale front-facing faces of neutral expression from unfamiliar volunteers
154 (30 males) were selected from CAS-PEAL-R1 database
155 (<http://www.jdl.ac.cn/peal/index.html>). These were divided into two sets of 30 faces
156 each (each set consisted of 15 males and 15 females). One set was used in the
157 behavioral and fMRI experiments, in which both day1-Acquisition and
158 day2-New-learning employing the same set of 30 faces (Fig. 1). The second set was

159 specifically used in the day2-New-learning phase for a control experiment wherein
160 the 30 faces used in the new-learning were different from those used in the original
161 learning session (Supplementary Fig. S1).

162 **2.3 Behavioral experiments and analysis**

163 The behavioral experiment investigated how the time interval between memory
164 recall (i.e., reactivation) and interference (i.e., new-learning) affects memory
165 reconsolidation. Four gradient-like time intervals between memory recall and
166 interference were chosen: 0, 20 minutes, 30 minutes, and 40 minutes (four
167 experimental groups). To obtain a reliable baseline for comparison, a control group
168 was included in which no interference was applied (control group).

169 In a face-location association learning paradigm, the participants first familiarized
170 themselves with the 30 faces on Day 1 (familiarization session) by viewing these
171 faces passively. Each face was presented at the center of the screen for 3 s and
172 separated by a jittered inter-trial interval of 2-4 s (mean = 3s). The whole set of 30
173 faces was presented three times in a randomized order.

174 Following the familiarization phase, the participants were then asked to
175 memorize 30 face-location associations (day1-Acquisition; A), involving each face
176 being paired with one of five location points on the screen. They were allowed 4 s to
177 learn each pairing (Fig. 1B). Immediately after each acquisition of the 30
178 face-location pairings, a memory test ensued (Test of Associative-learning, AT, Fig. 1).
179 On each test trial, the face cue and all five location points were presented together,
180 and the participants were asked to indicate within 4 s which location disc was

181 originally paired with the face in the Acquisition stage by pressing the button
182 corresponding to the target location using an MRI-compatible keypad (see cartoon in
183 Fig. 1D). This Acquisition – Test of Associative-learning procedure was repeated four
184 times with the set of face-location associations presented in a new randomized order
185 in each cycle. The trials were separated by jittered inter-trial intervals of 3-7 s (mean
186 = 5s) and no feedback was given.

187 On Day 2, the participants were asked to recall their memory of the previously
188 learned face-location associations by identifying the target location that was
189 associated with a given face (day2-Reactivation; RE, Fig. 1). A New-learning
190 procedure was then administered aiming to interfere the processes of memory
191 reconsolidation. The participants were asked to learn to associate the
192 originally-learned faces with a new target location (i.e., learning new face-location
193 associations, Fig. 1C). This New-learning session consisted of four cycles of
194 New-learning (NL) and Test of New-learning (NT).

195 In order to pinpoint the temporal characteristics of interference on memory
196 reconsolidation, four temporal intervals, namely 0', 20', 30', and 40', between the
197 day2-Reactivation and New-learning were administered separately to the four
198 experimental groups. During these post-reactivation intervals, the participants listened
199 to light music without having to perform any task.

200 On Day 3, the participants recalled the face-location associations they had
201 acquired on Day 1 (day3-Final-test; FT), identifying the target locations that were
202 associated with given faces from Day 1.

203 A mixed 5 (between-group factor, four experimental conditions and control
204 condition) \times 3 (within-group factor: Day1, Day2 and Day3) analysis of variance
205 (ANOVA) was applied on percentage correct data from the behavioral experiment.
206 Analogously, a mixed 2 (Group Exp. and Ctrl.) \times 3 (Day1, Day2 and Day3) ANOVA
207 was applied on the data from the fMRI experiment.

208 Moreover, to account for inter-subject variability, the within-subjects correct rates
209 were normalized to obtain relative correct rates using the following equations,

210

$$\text{Relative Correct Rate}_{2-1} = \frac{\text{Correct Rate}_{\text{Day2-Reactivation}} - \text{Correct Rate}_{\text{Day1-Acquisition}}}{\text{Correct Rate}_{\text{Day1-Acquisition}}} \times 100\%$$
$$\text{Relative Correct Rate}_{3-2} = \frac{\text{Correct Rate}_{\text{Day3-Final}} - \text{Correct Rate}_{\text{Day2-Reactivation}}}{\text{Correct Rate}_{\text{Day2-Reactivation}}} \times 100\%$$

211

212 The within-subjects relative Correct Rate₂₋₁ reflects the memory decay after
213 Day1-Acquisition before Day2-Reactivation, whereas the relative Correct Rate₃₋₂
214 reflects the memory change due to the New-learning intervention.

215 **2.4 Classification of correct, intrusive and non-intrusive responses**

216 During the Final-test session, the participants were instructed to respond to the
217 target location as they learned in the acquisition on Day 1. Since the experimental
218 groups experienced new-learning on Day 2, there were three categories of responses
219 in the day3-Final-test. If the response was correctly matched with acquisition, it was a
220 correct hit. If it was incorrectly matched with the location they acquired in the new
221 learning on Day 2, it was classified as an intrusive error. Responses made to the other
222 three locations would be non-intrusive errors (Fig. 1D). We compared the difference

223 between the correct and the intrusive proportions among the groups. If the correct
224 rate/intrusive ratio was not significantly different between the experimental groups
225 and the control group, then we would infer that new learning did not cause any
226 significant effect. By contrast, if there were significant differences in the correct
227 rate/intrusion ratio between the groups, we would conclude that the new learning
228 might have disrupted the original-memory more severely in the experimental
229 group(s).

230 **2.5 Control experiment: Effectiveness of content-similarity in memory intervention**

231 In declarative memories, content similarity shared between the acquisition and
232 new-learning material is a key factor for effective intervention as only similar new
233 materials were found to induce memory update, disruption or enhancement via
234 reconsolidation (Forcato, Burgos et al. 2007, Hupbach, Gomez et al. 2007, Coccoz,
235 Maldonado et al. 2011, Forcato, Rodriguez et al. 2011). We hypothesized that material
236 used in the post-reactivation intervention has to be similar enough to those used in the
237 acquisition to cause any discernible effect on the reconsolidation processes. To test
238 this prediction, we ran an additional control experiment in which we utilized new and
239 unencountered faces as the post-reactivation new-learning material (i.e., new faces to
240 be paired up with the original locations).

241 **2.6 MRI acquisition and preprocessing**

242 Participants were scanned in a 3T MRI scanner (Trio Tim, Siemens) with a
243 quadrature volume head coil at the Shanghai Key Laboratory of Magnetic Resonance.
244 Thirty-three slices of functional MR images were acquired using a gradient EPI

245 sequence (EPI volumes per run = 192, FOV = 210×210 mm², matrix = 64×64,
246 in-plane resolution = 3.75×3.75 mm², thickness = 4 mm, without gap, repetition time
247 = 2 s, echo time = 30 ms, flip angle = 90°), covering the entire brain. A
248 high-resolution structural image for each participant was also acquired using 3D
249 MRI sequences for anatomical co-registration and normalization (FOV = 256×256
250 mm², matrix = 256×256, slice thickness=1 mm, without gap, repetition time = 2530
251 ms, echo time = 2.34 ms, flip angle = 7°).

252 SPM8 (Wellcome Department of Cognitive Neurology, London, UK;
253 <http://www.fil.ion.ucl.ac.uk/spm/>) was used for data processing. For each participant,
254 the functional images were realigned to correct for head movements. The structural
255 image was co-registered with the mean EPI image, then segmented and generated
256 normalized parameters to MNI space. Functional images were then normalized to the
257 MNI space using these parameters, re-sampled to 2 mm isotropic voxel size and then
258 spatially smoothed using an isotropic Gaussian kernel of 8 mm FWHM (full-width
259 half-maximum). High-pass temporal filtering with a cut-off of 128 s was performed to
260 remove low-frequency drifts.

261 **2.7 fMRI data analysis**

262 The fMRI experiment examined the neural correlates underlying the several
263 aspects elicited by the new-learning interference on memory reconsolidation. The
264 same face-location association learning paradigm as in the behavioral experiment was
265 adopted. We implemented two Reactivation sessions on Day 2 and also two Final-test
266 sessions on Day 3 to ensure a decent volume of data to be collected for the fMRI

267 analyses. Across the two sessions, we collected data for 60 test trials (i.e., two
268 repetitions of the complete set of the 30 face-location pairs). Informed by the
269 behavioral experiment that the memory reconsolidation processes were susceptible
270 after a 0'-delay, we accordingly targeted at the 0' condition here. We included one
271 control group, which received no new-learning after reactivation, for comparison.
272 Trials were separated by jittered inter-trial intervals of 3-7 s (mean = 5s) and 18 4-s
273 blank trials were included as baseline measurement. Each of the New-learning runs
274 lasted for 10 min and each of the Reactivation/Final-test runs lasted for 6 min (Fig.
275 1C-D). The fMRI data for the day2-New-learning were not included for analysis.

276 Two sets of analyses (Day \times Group model and Intrusion model) were carried out
277 using a general linear model (**Error! Reference source not found.**). Statistical
278 inference was based on a random effects approach, which comprised first-level
279 analyses estimating contrasts of interest for each subject and second-level analyses for
280 statistical inference at the group level with non-sphericity correction. For both models,
281 in the first-level, each of the 60 test trials was modelled with a canonical
282 hemodynamic response function time-locked to the trial onset as an event-related
283 response with that trial's duration (mean duration = 2466 ms). The design matrix
284 included six head motion regressors to remove the residual effects of head motion.
285 The blank trials were not modelled. The estimated parameters values were used for
286 the second-level group analysis.

287 The first model (Day \times Group model) sought to identify brain areas that activated
288 during reactivation and final-test. This allowed us to calculate the interaction effect

289 between the two factors for finding any evidence of episodic memory reconsolidation.

290 In the first-level analysis, the model included five regressors: $R_{(Day2,Exp)}$, $R_{(Day3,Exp)}$,

291 $R_{(Day2,Ctrl)}$, $R_{(Day3,Ctrl)}$, Misses, reflecting the responses of the experimental and control

292 groups in day2-Reactivation and day3-Final-test. For the group-level analysis, the

293 single-subjects contrast images for the 2 experimental conditions (i.e., “Day2/Day3”

294 trials, averaged across the two fMRI-runs) for each of the two groups were entered

295 into a mixed design ANOVA with “Day” as the within-subject variable and “Group”

296 as the between-groups variable. The random effects analysis consisted of an ANOVA

297 assessing the significance of Delta T -covariate at the group level. The statistical

298 threshold was set to P -FWE=0.05, whole brain corrected at peak level (cluster size

299 estimated at P -unc. = 0.005). With our *a priori* prediction, we performed small volume

300 correction (SVC) using a functional mask derived from subsequent memory effects as

301 the volume of interest (covering the hippocampus and the amygdala, (Kim 2011)).

302 The second model (Intrusion model) concerned responses during the final-test,

303 specifically investigating how new learning affected the original memory trace during

304 the reconsolidation process. The first-level model included three regressors obtained

305 from the day3-Final-test, reflecting the three types of the responses (correct, intrusive

306 or non-intrusive). Six motion regressors were also included. For the group-level

307 analysis, the single-subjects contrast images for the 3 experimental conditions (i.e.,

308 “correct/intrusive/non-intrusive” trials, averaged across the two fMRI-runs) were

309 entered into an ANOVA. The statistical threshold was set to P -FWE=0.05, whole

310 brain corrected at peak level (cluster size estimated at P -unc. = 0.005). The random

311 effects analysis consisted of a one-sample t-test assessing the significance of Delta
312 T -covariate at the group level. Specifically, the “Intrusive > Non-intrusive” contrast
313 revealed a cluster in the left inferior frontal gyrus. We accordingly extracted the beta
314 estimates of the left IFG from each subject using Marsbar and correlated these beta
315 estimates with the proportion of correct responses and the proportion of intrusive
316 errors separately.

317 **3 Results**

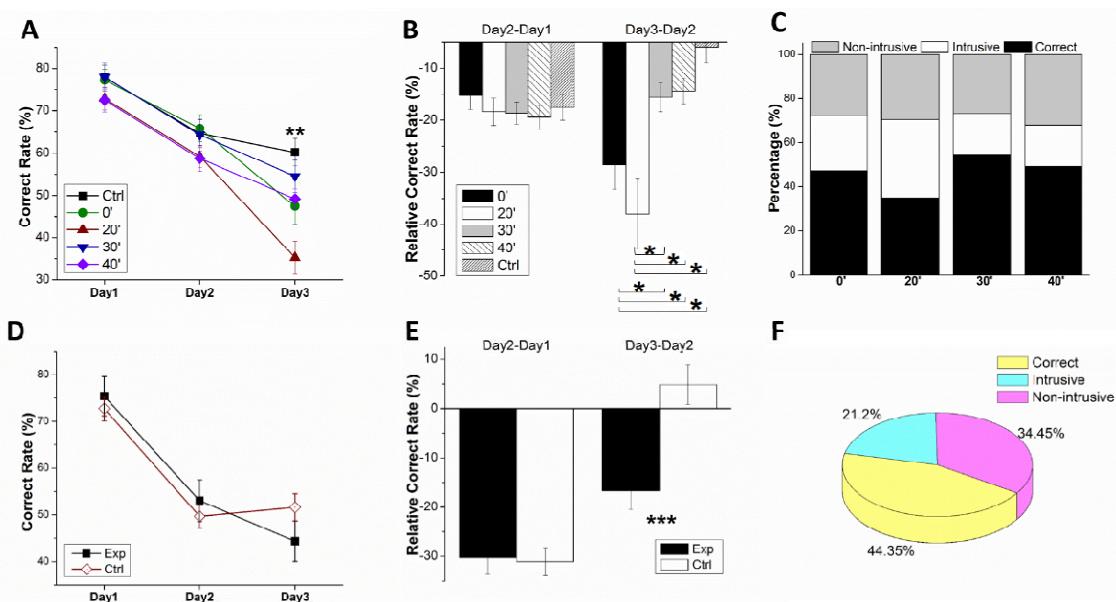
318 **3.1 Behavioral results: Main experiment**

319 We revealed compelling evidence in support of the existence of reconsolidation.
320 In the behavioral experiment, the Day \times Group repeated measures ANOVA on
321 percentage correct showed a strong “Day \times Group” interaction effect ($F_{(8, 292)} = 7.26$,
322 $P < 0.001$, Fig. 2A, Supplementary Table S1). We then ran two separate ANOVAs and
323 found the group differences were only in the day3-Final-test, ($F_{(4, 146)} = 5.11$, $P =$
324 0.002, Fig. 2A, Supplementary Table S1) but not in day2-Reactivation ($F_{(4, 146)} = 0.39$,
325 $P = 0.81$). In order to account for individual variances, we normalized the percentage
326 correct data and re-ran ANOVAs on these synthetic, more sensitive indices. A 2
327 (correct rate₂₋₁; correct rate₃₋₂) \times 5 (Group) repeated measures ANOVA equally
328 showed a strong interaction between the factors ($F_{(4, 146)} = 6.00$, $P < 0.001$). Two
329 separate ANOVAs showed that the interaction was driven by a main effect in relative
330 correct rate₃₋₂ between Days 2 and 3, confirming that the significant between-group
331 differences were specifically caused by new-learning (relative correct rate₃₋₂: $F_{(4, 146)}$
332 = 9.75, $P < 0.001$, Fig. 2B right, Supplementary Table S2) but not before

333 new-learning (relative correct rate₂₋₁: $F_{(4, 146)} = 0.39, P = 0.81$, Fig. 2B left).

334 Motivated by previous findings on the time-dependence of post-retrieval
335 manipulations (Forcato, Burgos et al. 2007, Schiller, Monfils et al. 2010, Agren,
336 Engman et al. 2012, Chan and LaPaglia 2013), we then tested the hypothesis that
337 there would be a critical time-window for the observable post-reactivation
338 reconsolidation. As expected, the difference in the relative correct rates between Day
339 2 and Day 3 for Group 0' and 20' were significantly lower than other three groups (all
340 $P < 0.05$, LSD multi-comparison, Fig. 2B), indicating the influence of new-learning
341 was indeed highly time-dependent.

342 It has been reported that new-learning could produce an intrusive effect to our
343 memories by replacing the original memories in a specific retrograde manner
344 (Hupbach, Gomez et al. 2007, Hupbach, Gomez et al. 2009, Schiller, Monfils et al.
345 2010). In view of this, we tested for the intrusive effect in the current context. On
346 each trial, there were five location points; each of which could be a potential choice.
347 Operationally, for the experimental groups, at day3-Final-test, responses made to the
348 target location would be a hit, responses made to the newly-learned location would be
349 an intrusive error, whereas responses made to any of the other three locations would
350 be a non-intrusive error (see Methods). The intrusive proportion of Group 20' was
351 significantly higher than other three groups (all $P < 0.05$, Fig. 2C, Supplementary Fig.
352 S2, Supplementary Table S3), whereas these intrusive errors in the other three groups
353 did not differ. Interestingly, in Group 20', the intrusive proportion did not differ from
354 the correct rate, while in other three groups the correct rates were significantly higher


355 than the intrusive proportions (Supplementary Fig. S2, Supplementary Table S3),
356 implying the new-learning might have caused differential effects on Group 0' and 20'.

357 We further analyzed these intrusive effects in all experimental groups.

358 Interestingly, the quantity of intrusive errors in the 20' condition is significantly
359 higher than those in the other conditions ($F_{(3,108)} = 5.08, P = 0.003$; LSD
360 multi-comparison: $P_{(20'>0')} = 0.035^*, P_{(20'>30')} = 0.001^{**}, P_{(20'>40')} = 0.001^{**}$ vs. P
361 $_{(0'>30')} = 0.21, P_{(0'>40')} = 0.23, P_{(30'>40')} = 0.96$), indicating the intrusive effects
362 induced by new-learning following different post-reactivation delays are differential.

363

364

365 **Figure 2. Behavioral results of both experiments.** (A) Memory performance plotted
366 as a function of days in the behavioral experiment. Memory of the face-to-location
367 associations diminished in all five groups gradually across days but a main effect of
368 Group was found on Day 3 at the Final-test. (B) The reduction in memory in the
369 behavioral experiment was plotted for relative correct rate₂₋₁ and relative correct

370 rate₃₋₂, respectively. There was no difference in Group for relative correct rate₂₋₁ but
371 there was a significant interaction for the relative correct rate₃₋₂. Post-hoc tests
372 confirmed that the memory for the Group 0' and 20' decreased far more drastically
373 than Group 30', 40' and the control group. (C) The intrusive proportion of Group 20'
374 was significantly larger than other groups. (D) Behavioral result in the fMRI
375 experiment was consistent with that of the behavioral experiment. Both Group Exp.
376 and Ctrl. performed similarly on Day 2. But the performance of the Group Exp., who
377 had received post-reactivation New-learning on Day 2, diminished far more severely
378 than Group Ctrl. at the Final-test. (E) Using a relative measure, in the fMRI
379 experiment, there was no Group difference in the relative correct rate₂₋₁, but Group
380 Exp. was significantly more impaired than Group Ctrl. in the relative correct rate₃₋₂.
381 (F) The intrusive proportion of Group Exp. in the fMRI experiment (21.2%) was
382 similar as Group 0' in the behavioral experiment (cf. leftmost bar in Fig. 2C). Error
383 bar denotes standard error of the means. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

384

385 **3.2 Control experiment results: Effective manipulation requires high
386 content-similarity between acquisition and intervention**

387 In this control experiment, the new-face-learning caused no effect on
388 reconsolidation. We ran a 3×2 repeated measures ANOVA (Day \times Group) on
389 percentage correct and found neither a group main effect nor an interaction effect
390 (group main effect: $F_{(1,2)} = 1.49, p = 0.24$; interaction: $F_{(2, 2)} = 1.29, p = 0.29$;
391 Supplementary Fig. S1). We conducted the post-hoc tests regardless and confirmed
392 there were no group differences in day2-Reactivation ($t_{(1, 20)} = 0.47, p = 0.65$) or
393 day3-Final-test ($t_{(1, 20)} = -0.22, p = 0.82$), nor in the relative correct rate₃₋₂ between
394 Days 2 and 3 ($t_{(1, 20)} = -1.36, p = 0.19$). These indicate that new-learning using “new
395 faces” was ineffective in causing interference in the memory traces during

396 reconsolidation.

397 **3.3 fMRI experiment results**

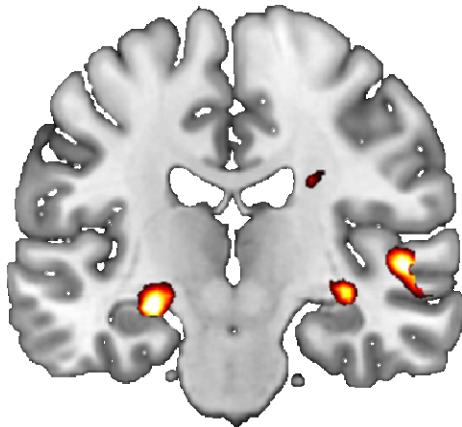
398 We have thus far established in the behavioral experiment that new-learning
399 following reactivation did intrude into the already encoded, yet labile memories, and
400 produce overt changes in terms of memory behavior. We then tap into the rather
401 complicated and unresolved mechanisms of reconsolidation by means of functional
402 imaging. We replicated these behavioral patterns in the fMRI experiment with a new
403 group of participants. A 2×2 repeated measures ANOVA (Day \times Group) showed an
404 interaction effect ($F_{(2, 88)} = 6.86, P = 0.002$, Fig. 2D). The performance for the
405 experimental group was significantly lower than that of control group in the relative
406 correct rate₃₋₂ ($t_{(44)} = -3.65, P < 0.001$, Fig. 2E right) but not in the relative correct
407 rates₂₋₁ ($t_{(44)} = 0.18, P = 0.860$, Fig. 2E left).

408 To look into the neural correlates, we ran a “Day \times Group” model to test for the
409 interaction between Day and Group to look for the effects of new-learning on original
410 memory. Specifically, the interaction term ($R_{Day2,Exp} - R_{Day3,Exp}$) vs. ($R_{Day2,Ctrl} - R_{Day3,Ctrl}$)
411 revealed activation of left hippocampus and right amygdala (Fig. 3). Both regions
412 yielded significant activation (hippocampus: peak P -svc = 0.049; amygdala: peak
413 P -svc = 0.037) with small volume correction (SVC) (volume-of-interest obtained
414 from a subsequent memory effects contrast: remembered vs. forgotten) (Kim 2011).
415 Notably, the amygdala has been known to be related to emotional processes especially
416 by those that are involved in fear and threat memory reconsolidation (Agren, Engman
417 et al. 2012, Schiller, Kanen et al. 2013). However, in the present setting, considering

418 our paradigm did not contain any emotional factors, the right amygdala was
419 implicated regardless.

420

421


422

423 Table 1. Summary of all 1st-/2nd-level analyses and contrasts for both models.

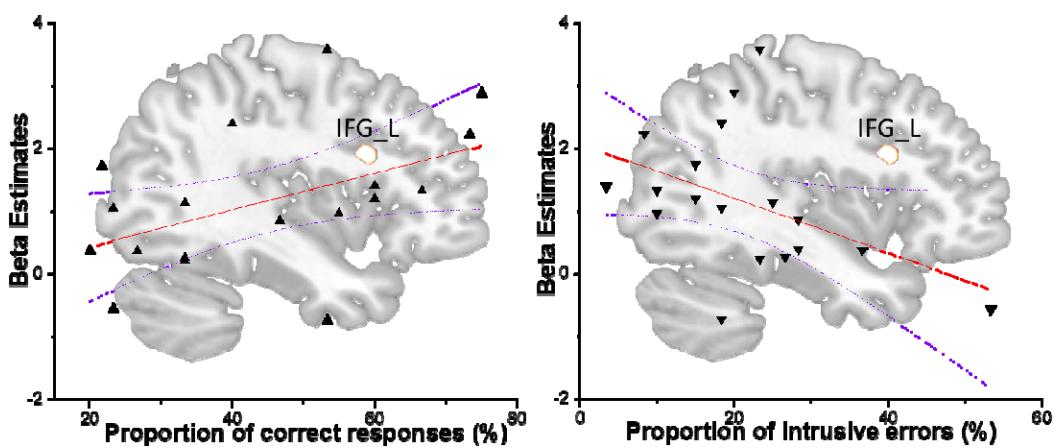
Models	First-level		Second-level	
	<i>Regressors</i>	<i>Contrasts</i>		<i>Search Volume</i>
Day×Group	$R_{Day2,Exp}$, $R_{Day3,Exp}$, $R_{Day2,Ctrl}$, $R_{Day3,Ctrl}$, Misses	$(R_{Day2,Exp}-R_{Day3,Exp})$ $(R_{Day2,Ctrl}-R_{Day3,Ctrl})$	>	SVC (hippocampus and amygdala)
Intrusion	Correct, Intrusive, Non-intrusive (including Misses)	Correct, Intrusive, Intrusive > Non-intrusive		Whole-brain; SVC (left IFG)

424 R refers to trials in which subjects made a response on day2-Reactivation and
425 day3-Final-test, irrespective of being correct or incorrect; Misses refer to trials of no
426 response. Corrects, Intrusive and Non-intrusive errors classification are illustrated in
427 Fig. 1D.

428

429

430 **Figure 3. Neural correlates associated with the impact of new-learning on**
431 **reconsolidation.** Hippocampal and amygdala are differentially activated at the
432 Final-test following New-learning administered during reconsolidation on Day 2, as
433 given by the interaction term: $(R_{Day2, Exp} - R_{Day3, Exp}) > (R_{Day2, Ctrl} - R_{Day3, Ctrl})$; $P\text{-}svc <$
434 0.05.


435

436 In a separate model (Intrusion model), the contrast “Intrusive Non-intrusive
437 errors” revealed activation of the left inferior frontal gyrus (IFG, Fig. 4). This
438 indicated the post-reactivation new-learning was associated with activation in the
439 inferior frontal area, which has long been implicated in resolving interference between
440 competing mnemonic representations of the originally learned and newly acquired
441 associations (Badre, Poldrack et al. 2005). For consistency, we also performed SVC
442 for the IFG using a functional mask defined in a previous study (mid-ventrolateral
443 PFC, post-retrieval selection) (Badre, Poldrack et al. 2005) and confirmed the results
444 (peak $P\text{-}svc = 0.010$).

445 To elucidate the functional significance of the inferior frontal activation in

446 relation to the behavioral results, we extracted the beta estimates of BOLD signal
447 from the left IFG cluster and correlated these individual beta estimates with subjects'
448 percentage correct and intrusive proportion respectively. The individual beta estimates
449 showed a significant positive correlation with the percentage correct rates ($r = 0.48, P$
450 $= 0.045$, Fig. 4 left panel), whereas the beta estimates showed a negative correlation
451 with the subjects' intrusive proportion ($r = -0.45, P = 0.060$, Fig. 4 right panel). We
452 interpret these pattern of results as that the IFG is involved in mediating the
453 recollection bias towards the originally learned information. The more strongly the
454 inferior frontal cortex is activated, the successful the participant would be in
455 discriminating the respective memory traces associated with the original acquisition
456 and new-learning, whereas a weaker inferior frontal involvement signifying a lower
457 ability in dealing with the competition between mnemonic representations of the
458 initially-learned and newly-acquired associations.

459

460

461 **Figure 4. Engagement of IFG by new-learning intrusion.** Left IFG activation

462 measured on the Final-test reflects individuals' variability in guarding against memory
463 intrusion imposed by New-learning during reconsolidation on Day 2. The left inferior
464 frontal gyrus is more activated by intrusive errors than by non-intrusive errors during
465 Final-test ($P < 0.05$). This difference in neural activation mediated the behavioral
466 performance. Activation in the left IFG across participants is correlated positively
467 with the percentage correct ($P = 0.045$, left), but is correlated in a negative trend with
468 the number of intrusive errors ($P = 0.060$, right). Such IFG activation is however not
469 correlated with the number of non-intrusive errors ($P > 0.5$, not shown). This result
470 shows that post-reactivation new-learning manipulates memory by affecting
471 reconsolidation on day 2, with the intrusion-effects being observed on day 3 in the
472 Final-test. Triangles on the scatterplots represent individual subjects. The central line
473 is the best linear fit with 90% confidence interval.

474

475 **4 Discussion**

476 In light of the previous studies which failed to observe the reconsolidation
477 process in humans and non-human animals (Cammarota, Bevilaqua et al. 2004,
478 Debiec, Doyère et al. 2006, Forcato, Argibay et al. 2009), we deduced several factors
479 which might be instrumental for the reconsolidation processes at play. In declarative
480 memories, content similarity shared between the acquisition and new-learning
481 material is a key factor for effective intervention as only similar new materials were
482 found to induce memory update, disruption or enhancement via reconsolidation
483 (Forcato, Burgos et al. 2007, Hupbach, Gomez et al. 2007, Coccoz, Maldonado et al.
484 2011, Forcato, Rodriguez et al. 2011). Based on the results of the control experiment,
485 we ascertain that the new-learning was most effective in affecting reconsolidation
486 when “same faces” were employed. We thus assert that reconsolidation could be

487 disrupted by post-reactivation new-learning *if and only if* the new material was similar
488 enough to those involved in the acquisition, establishing content similarity in the
489 associative memory traces between acquisition and new-learning to be a determinant
490 factor. If the new-face-learning was distinct from the reactivated memory traces then
491 these new-face-learning might have induced a different set of consolidation processes
492 independently of the targeted reactivation.

493 In the rodents, any intervention disrupting memory reconsolidation is only
494 effective when it is administered shortly after reactivation (Nader, Schafe et al. 2000,
495 Debiec, LeDoux et al. 2002, Pedreira, Perez-Cuesta et al. 2002, Debiec and Ledoux
496 2004), suggesting that reconsolidation is a highly time-dependent phenomenon. In the
497 humans, there has not been a consensus on the precise interval for this mnemonic
498 fragility (Forcato, Burgos et al. 2007, Schiller, Monfils et al. 2010, Agren, Engman et
499 al. 2012). Our current study incorporated a range of gradient-like post-reactivation
500 delays. The New-learning administered within 20 minutes caused retrograde amnesia,
501 whereas delays longer than that elicited no effect. Our results thus provide a qualifier
502 on defining the critical time-window for post-reactivation manipulation to be effective
503 for inducing forgetting: immediately after reactivation when memory is being updated.
504 When the interval was long and beyond the susceptible period, the reactivated
505 memories would become stable again and immune to any new-learning, thus no effect
506 would be observed. This conclusion is further verified by the analyses of the intrusive
507 effect reported in Fig. 2C, which illustrate that the differential intrusive effects
508 induced by new-learning following different post-reactivation delays.

509 Our fMRI findings demonstrate how the memory systems might have acted
510 interactively in declarative memory reconsolidation. It is known that memory
511 reactivation will render consolidated memory (hippocampus-independent) to be
512 hippocampus-dependent again (Debiec, LeDoux et al. 2002, Kelly, Laroche et al.
513 2003, Lee, Everitt et al. 2004). Our fMRI results reveal that memory processes during
514 reconsolidation are hippocampus-dependent, strengthening the view that the
515 hippocampal and amygdala involvement change with the passage of time during
516 reconsolidation (Agren, Engman et al. 2012, Schwabe, Nader et al. 2012). When the
517 post-reactivation manipulation requiring the hippocampus (and amygdala) to process
518 new but similar information during active reconsolidation, the originally acquired
519 memories would be affected by disruption or intrusion.

520 In contrast to previous studies (Nader, Schafe et al. 2000, Debiec and Ledoux
521 2004, Lee, Di Ciano et al. 2005), the amygdala activation was presently observed in
522 the absence of emotional input or incentive factors (neutral faces \square location
523 association). We proposed two possible explanations for this: First, the faces encoded
524 by the participants might inherently carry emotional valence and collaterally engaged
525 the amygdala. However, an alternative, more nascent, account is that the amygdala
526 has a seat during declarative memories reconsolidation, irrespective of emotion
527 aspects, acting in concert with the hippocampus. We are in favor of the latter account
528 especially our results align with some recent causal evidence that the human
529 amygdala possesses a general capacity to endogenously initiate memory prioritization
530 processes of declarative memories without eliciting any subjective emotional response

531 (Inman, Manns et al. 2018), establishing the amygdala as an overarching operator of
532 downstream memory processes.

533 The activation in the left inferior frontal gyrus was differentially increased by
534 intrusive events, suggesting that left IFG is involved in discriminating the originally
535 learned and newly-learned memories and deciding which memories should be
536 reactivated according to the cue (Zhang, Feng et al. 2004, Badre, Poldrack et al. 2005,
537 Moss, Abdallah et al. 2005, St Jacques, Olm et al. 2013). Due to the high similarity
538 between the originally learned and newly learned memories, the participants have to
539 recollect the episodes in greater detail to overcome the competition and meet the goal
540 in recalling the relevant, correct memories among competitive sources. In line with
541 the view that the left ventral PFC mediates post-retrieval selection during source
542 recollection and decision (Badre, Poldrack et al. 2005, Badre and Wagner 2007), our
543 findings of increased left IFG activation characterize this region as a target area for
544 manipulating memory retrieval especially during reconsolidation. The individual
545 difference in left IFG activation among participants further serves as an indicator of
546 individual's ability in reconciling the mnemonic intrusion during memory
547 reconsolidation.

548 **5 Conclusion**

549 Overall, we reveal three neuro-behavioral features in declarative memory
550 reconsolidation in humans. The results provided insights into the mechanisms of
551 episodic memory reconsolidation, suggesting that reactivation can indeed effectively
552 trigger reconsolidation with several qualifiers. First, new-learning is effective only

553 when sharing common components with initial learning (acquisition). Second, we
554 establish the existence of a critical time-window for reconsolidation, defining it to be
555 20 minutes. Third, we show the involvement of the hippocampus and amygdala in
556 integrating newly-formed memories during reconsolidation, and with the IFG
557 resolving the mnemonic competition caused by the intrusion by newly-formed
558 memories. From a translational perspective, the present findings support the
559 possibility that non-invasive manipulation may one day make drug therapy obsolete
560 and carry important implications for educational and clinical practices in devising
561 learning strategies.

562

563 **Supplementary information** containing 2 figures and 3 tables is included.

564

565 **Author Contributions**

566 All authors contributed to the study design. F. S., J. W., and Y. C. conducted the
567 behavioral experiment. F. S. and J. L. performed the fMRI experiment. F. S., Y. K., Z.
568 W., H. W. and S. C. K. analyzed the data. F. S., Z. W., H. W. and S. C. K. wrote and
569 approved the final version of manuscript.

570

571 **Acknowledgements**

572 We thank Qing Cai for her advice on MRI data collection and analysis.

573

574 **Funding**

575 This research was supported by National Key Fundamental Research (973) Program
576 of China Grant 2013CB329501 (Y.K.), the Natural Science Foundation of China
577 31271134 & 30970968 (H.W.), Shanghai Municipal Education Commission
578 Innovative Project 10ZZ35 (H.W.), Large Instruments Open Foundation at ECNU
579 (H.W.), Ministry of Education of PRC Humanities and Social Sciences Research
580 Grant 16YJC190006 (S.C.K.), STCSM Shanghai Pujiang Program 16PJ1402800
581 (S.C.K.), and STCSM Natural Science Foundation of Shanghai 16ZR1410200
582 (S.C.K.).

583

584 **Declaration of Conflicting Interest**

585 The author(s) declared that there were no conflicts of interest with respect to the
586 authorship or the publication of this article.

587

588 **Open Practices Statement**

589 The data that support the findings of this study are available from the corresponding

590 author on request.

591

592

593 REFERENCES

594

595 Agren, T., J. Engman, A. Frick, J. Bjorkstrand, E. M. Larsson, T. Furmark and M.
596 Fredrikson (2012). "Disruption of reconsolidation erases a fear memory trace in the
597 human amygdala." *Science* **337**(6101): 1550-1552.

598 Alberini, C. M. and J. E. LeDoux (2013). "Memory reconsolidation." *Current Biology*
599 **23**(17): R746-R750.

600 Badre, D., R. A. Poldrack, E. J. Pare-Blagoev, R. Z. Insler and A. D. Wagner (2005).
601 "Dissociable controlled retrieval and generalized selection mechanisms in
602 ventrolateral prefrontal cortex." *Neuron* **47**(6): 907-918.

603 Badre, D. and A. D. Wagner (2007). "Left ventrolateral prefrontal cortex and the
604 cognitive control of memory." *Neuropsychologia* **45**(13): 2883-2901.

605 Cammarota, M., L. R. Bevilaqua, J. H. Medina and I. Izquierdo (2004). "Retrieval
606 does not induce reconsolidation of inhibitory avoidance memory." *Learning &*
607 *Memory* **11**(5): 572-578.

608 Chan, J. C. and J. A. LaPaglia (2013). "Impairing existing declarative memory in
609 humans by disrupting reconsolidation." *Proc Natl Acad Sci U S A* **110**(23):
610 9309-9313.

611 Coccoz, V., H. Maldonado and A. Delorenzi (2011). "The enhancement of
612 reconsolidation with a naturalistic mild stressor improves the expression of a
613 declarative memory in humans." *Neuroscience* **185**: 61-72.

614 Coccoz, V., A. V. Sandoval, J. Stehberg and A. Delorenzi (2013). "The temporal
615 dynamics of enhancing a human declarative memory during reconsolidation."
616 *Neuroscience* **246**: 397-408.

617 Debiec, J., V. Doyère, K. Nader and J. E. LeDoux (2006). "Directly reactivated, but
618 not indirectly reactivated, memories undergo reconsolidation in the amygdala." *Proc*
619 *Natl Acad Sci U S A* **103**(9): 3428-3433.

620 Debiec, J. and J. E. Ledoux (2004). "Disruption of reconsolidation but not
621 consolidation of auditory fear conditioning by noradrenergic blockade in the
622 amygdala." *Neuroscience* **129**(2): 267-272.

623 Debiec, J., J. E. LeDoux and K. Nader (2002). "Cellular and systems reconsolidation
624 in the hippocampus." *Neuron* **36**(3): 527-538.

625 Forcato, C., P. F. Argibay, M. E. Pedreira and H. Maldonado (2009). "Human
626 reconsolidation does not always occur when a memory is retrieved: the relevance of
627 the reminder structure." *Neurobiol Learn Mem* **91**(1): 50-57.

628 Forcato, C., V. L. Burgos, P. F. Argibay, V. A. Molina, M. E. Pedreira and H.
629 Maldonado (2007). "Reconsolidation of declarative memory in humans." *Learn Mem*
630 **14**(4): 295-303.

631 Forcato, C., M. L. Rodriguez and M. E. Pedreira (2011). "Repeated
632 labilization-reconsolidation processes strengthen declarative memory in humans."
633 *PLoS One* **6**(8): e23305.

634 Forcato, C., M. L. Rodriguez, M. E. Pedreira and H. Maldonado (2010).

635 "Reconsolidation in humans opens up declarative memory to the entrance of new
636 information." *Neurobiol Learn Mem* **93**(1): 77-84.

637 Gershman, S. J., A. C. Schapiro, A. Hupbach and K. A. Norman (2013). "Neural
638 context reinstatement predicts memory misattribution." *J Neurosci* **33**(20):
639 8590-8595.

640 Hupbach, A., R. Gomez, O. Hardt and L. Nadel (2007). "Reconsolidation of episodic
641 memories: a subtle reminder triggers integration of new information." *Learn Mem*
642 **14**(1-2): 47-53.

643 Hupbach, A., R. Gomez and L. Nadel (2009). "Episodic memory reconsolidation:
644 Updating or source confusion?" *Memory* **17**(5): 502-510.

645 Hupbach, A., R. Gomez and L. Nadel (2011). "Episodic memory updating: the role of
646 context familiarity." *Psychon Bull Rev* **18**(4): 787-797.

647 Hupbach, A., O. Hardt, R. Gomez and L. Nadel (2008). "The dynamics of memory:
648 context-dependent updating." *Learn Mem* **15**(8): 574-579.

649 Inman, C. S., J. R. Manns, K. R. Bijanki, D. I. Bass, S. Hamann, D. L. Drane, R. E.
650 Fasano, C. K. Kovach, R. E. Gross and J. T. Willie (2018). "Direct electrical
651 stimulation of the amygdala enhances declarative memory in humans." *Proceedings of
652 the National Academy of Sciences*: 201714058.

653 Kelly, A., S. Laroche and S. Davis (2003). "Activation of mitogen-activated protein
654 kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for
655 consolidation and reconsolidation of recognition memory." *J Neurosci* **23**(12):
656 5354-5360.

657 Kim, H. (2011). "Neural activity that predicts subsequent memory and forgetting: a
658 meta-analysis of 74 fMRI studies." *Neuroimage* **54**(3): 2446-2461.

659 Lee, J. L., P. Di Ciano, K. L. Thomas and B. J. Everitt (2005). "Disrupting
660 reconsolidation of drug memories reduces cocaine-seeking behavior." *Neuron* **47**(6):
661 795-801.

662 Lee, J. L., B. J. Everitt and K. L. Thomas (2004). "Independent cellular processes for
663 hippocampal memory consolidation and reconsolidation." *Science* **304**(5672):
664 839-843.

665 Lee, J. L., K. Nader and D. Schiller (2017). "An update on memory reconsolidation
666 updating." *Trends in cognitive sciences* **21**(7): 531-545.

667 Moss, H. E., S. Abdallah, P. Fletcher, P. Bright, L. Pilgrim, K. Acres and L. K. Tyler
668 (2005). "Selecting among competing alternatives: selection and retrieval in the left
669 inferior frontal gyrus." *Cereb Cortex* **15**(11): 1723-1735.

670 Nader, K., G. E. Schafe and J. E. Le Doux (2000). "Fear memories require protein
671 synthesis in the amygdala for reconsolidation after retrieval." *Nature* **406**(6797):
672 722-726.

673 Pedreira, M. E., L. M. Perez-Cuesta and H. Maldonado (2002). "Reactivation and
674 reconsolidation of long-term memory in the crab *Chasmagnathus*: protein synthesis
675 requirement and mediation by NMDA-type glutamatergic receptors." *J Neurosci*
676 **22**(18): 8305-8311.

677 Schiller, D., J. W. Kanen, J. E. LeDoux, M.-H. Monfils and E. A. Phelps (2013).
678 "Extinction during reconsolidation of threat memory diminishes prefrontal cortex

679 involvement." *Proceedings of the National Academy of Sciences* **110**(50):
680 20040-20045.

681 Schiller, D., M. H. Monfils, C. M. Raio, D. C. Johnson, J. E. Ledoux and E. A. Phelps
682 (2010). "Preventing the return of fear in humans using reconsolidation update
683 mechanisms." *Nature* **463**(7277): 49-53.

684 Schwabe, L., K. Nader, O. T. Wolf, T. Beaudry and J. C. Pruessner (2012). "Neural
685 signature of reconsolidation impairments by propranolol in humans." *Biological
686 Psychiatry* **71**(4): 380-386.

687 Schwabe, L. and O. T. Wolf (2009). "New episodic learning interferes with the
688 reconsolidation of autobiographical memories." *PLoS One* **4**(10): e7519.

689 Scully, I. D., L. E. Napper and A. Hupbach (2017). "Does reactivation trigger episodic
690 memory change? A meta-analysis." *Neurobiol Learn Mem* **142**(Pt A): 99-107.

691 Sederberg, P. B., S. J. Gershman, S. M. Polyn and K. A. Norman (2011). "Human
692 memory reconsolidation can be explained using the temporal context model." *Psychon Bull Rev* **18**(3): 455-468.

693 Sevenster, D., T. Beckers and M. Kindt (2012). "Retrieval per se is not sufficient to
694 trigger reconsolidation of human fear memory." *Neurobiol Learn Mem* **97**(3):
695 338-345.

696 St Jacques, P. L., C. Olm and D. L. Schacter (2013). "Neural mechanisms of
697 reactivation-induced updating that enhance and distort memory." *Proc Natl Acad Sci
698 U S A* **110**(49): 19671-19678.

699 Strange, B. A., M. C. Kroes, J. E. Fan and R. J. Dolan (2010). "Emotion causes
700 targeted forgetting of established memories." *Front Behav Neurosci* **4**: 175.

701 Walker, M. P., T. Brakefield, J. A. Hobson and R. Stickgold (2003). "Dissociable
702 stages of human memory consolidation and reconsolidation." *Nature* **425**(6958):
703 616-620.

704 Zhang, J. X., C. M. Feng, P. T. Fox, J. H. Gao and L. H. Tan (2004). "Is left inferior
705 frontal gyrus a general mechanism for selection?" *Neuroimage* **23**(2): 596-603.

706

707