bioRxiv preprint doi: https://doi.org/10.1101/279984; this version posted March 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Breast cancer susceptibility: an integrative analysis of genomic data

Simone Mocellin, MD, 1-2; Sara Valpione, MD, 3; Carlo Riccardo Rossi, MD, 1-2, Karen Pooley, PhD, 4

1) Istituto Oncologico Veneto (IOV-IRCCS), Padova, Italy

2) Dept. Surgery Oncology and Gastroenterology, University of Padova, Italy

3) CRUK Manchester Institute, The University of Manchester, UK

4) Centre for Cancer Genetic Epidemiology, Dept. Public Health and Primary Care, University of
Cambridge, UK

Corresponding author: Simone Mocellin

Istituto Oncologico Veneto (IOV-IRCCS), Padova, Italy

Dept. Surgery Oncology and Gastroenterology, University of Padova, Italy

Via Gattamelata 64

35128 Padova, Italy

E: simone.mocellin@unipd.it

P: 049 8215743

F: 049 8215575


https://doi.org/10.1101/279984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279984; this version posted March 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Key words: breast cancer, susceptibility, risk, predisposition, germline DNA variant, single nucleotide
polymorphism, SNP, knowledge-base, integrative analysis, network analysis, pathway analysis, genome-wide

association study, GWAS, genomic data.

Abbreviations: GWAS: genome-wide association study; SNP: single nucleotide polymorphism; BCPG: breast

cancer predisposition gene; LD: linkage disequilibrium


https://doi.org/10.1101/279984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279984; this version posted March 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Background

Genome wide association studies (GWAS) are greatly accelerating the pace of discovery of germline variants
underlying the genetic architecture of sporadic breast cancer predisposition. We have built the first
knowledge-base dedicated to this field and used it to generate hypotheses on the molecular pathways

involved in disease susceptibility.

Methods

We gathered data on the common single nucleotide polymorphisms (SNPs) discovered by breast cancer risk
GWAS. Information on SNP functional effect (including data on linkage disequilibrium, expression
guantitative trait locus, and SNP relationship with regulatory motifs or promoter/enhancer histone marks)
was utilized to select putative breast cancer predisposition genes (BCPGs). Ultimately, BCPGs were subject

to pathway (gene set enrichment) analysis and network (protein-protein interaction) analysis.

Results

Data from 38 studies (28 original case-control GWAS enrolling 383,260 patients with breast cancer; and 10
GWAS meta-analyses) were retrieved. Overall, 281 SNPs were associated with the risk of breast cancer with
a P-value <10E-06 and a minor allele frequency >1%. Based on functional information, we identified 296
putative BCPGs. Primary analysis showed that germline perturbation of classical cancer-related pathways
(e.g., apoptosis, cell cycle, signal transduction including estrogen receptor signaling) play a significant role in
breast carcinogenesis. Other less established pathways (such as ribosome and peroxisome machineries) were
also highlighted. In the main subgroup analysis, we considered the BCPGs encoding transcription factors
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(n=36), which in turn target 252 genes. Interestingly, pathway and network analysis of these genes yielded
results resembling those of primary analyses, suggesting that most of the effect of genetic variation on

disease risk hinges upon transcriptional regulons.

Conclusions

This knowledge-base, which is freely available and will be annually updated, can inform future studies

dedicated to breast cancer molecular epidemiology as well as genetic susceptibility and development.
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Introduction

With a 10-12% lifetime risk, breast cancer is the most common cancer among women with about 1,700,000
new cases and more than 500,000 deaths each year worldwide (1). Breast cancer is a multifactorial disease
stemming from a complex interplay between environmental, reproductive/endocrine and genetic risk
factors. Dissecting the genetic architecture of breast cancer susceptibility is a pivotal step to understand the
cascade of molecular events underlying breast carcinogenesis, which ultimately could lead to better

preventive and therapeutic strategies according to the precision medicine principles (2).

Familial aggregation of breast cancer (which occurs in about 10% of cases) has led to family-based linkage
analysis and positional cloning studies demonstrating that rare (<1%) germline DNA variation in high to
moderate penetrance cancer predisposition genes - such as BRCA1, BRCA2, PTEN, CHEK2, ATM, BRIP1 and
PALB2 - accounts for about 15-20% of the familial risk of this disease (3,4). The residual heritability for breast
cancer is believed to be sustained by a polygenic model according to the common disease/common variant
hypothesis. Subsequent case-control studies based on the candidate gene approach (also known as
hypothesis testing approach) have identified some common germline variants (mainly single nucleotide
polymorphisms, SNPs) linked to breast cancer risk, though the evidence quality is often low mainly because
of small sample size and result heterogeneity (5,6). More recently, the completion of the Human Genome
Project and the implementation of genome-wide association studies (GWAS) — based on a hypothesis
generating (also known as data driven) approach and testing hundreds of thousands of SNPs at a time - has
greatly accelerated the pace of discovery of low penetrance variants linked to the risk of many diseases,

including several cancer types (7).

To date, tens of GWAS dedicated to breast cancer have been published, and many single SNPs have been
associated with the risk of this malignancy (3,6). This has led to an overwhelming wealth of data which are

often difficult to manage by the single reader, in part because most susceptibility loci are intergenic (and thus
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are linked neither to an obvious gene nor to an obvious functional effect), which hinders a straightforward

biological interpretation typical of candidate gene studies.

With the present work we intended to systematically review breast cancer GWAS findings in order to provide
readers with the first publicly available knowledge-base dedicated to the relationship between germline
genomic DNA variation and breast cancer risk. According to the above mentioned polygenic model of
sporadic tumor inheritance and using modern SNP-to-gene and gene-to-function approaches such as
integrative analysis of genomic data (8,9) as well as pathway and network analysis (10,11), we also aimed to
suggest a biological interpretation of current findings. In particular, we tried to exploit the available GWAS
evidence to comprehensively identify the cell pathways whose germline variation condition the
predisposition to breast cancer, with an additional effort to prioritize genes/pathways/networks which could
be of special relevance to inform future studies in the fields of both molecular epidemiology and biology of

breast cancer.


https://doi.org/10.1101/279984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279984; this version posted March 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

We collected GWAS findings on breast cancer risk (along with other genomic data, see below) to identify
breast cancer risk associated SNPs, which were then linked to breast cancer predisposition genes (BCPGs):
the data from this knowledge-base were used to perform pathway and network analysis. A flowchart of the

study design is reported in Figure 1.

Figure 1

Study design: flow chart of the integrative analysis of genomic data on breast cancer susceptibility
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Breast cancer risk associated SNPs

GWAS addressing the role of germ-line single nucleotide polymorphisms (SNPs) in breast cancer susceptibility
were retrieved in the GWAS Catalog repository (7) as well as by performing a systematic review in PubMed
(search terms: “breast cancer”, “GWAS”). GWAS meta-analyses were also included for data extraction.

Searches were updated until the 11* of December 2017.

To be included in the knowledge-base, each SNP had to be associated with breast cancer risk with a nominal
P-value lower than 1x10E-06 (genome-wide significance level) and have a minor allele frequency 2 1% in the

general population of European ancestry.

SNP-to-gene analysis

Following the principles of integrative analysis of genomic data (8,9), the functional association between a
breast cancer risk associated SNP and a gene (hereafter called BCPG) was scored according to three types of

information:

A) SNP relationship with gene(s):
[Category 1 — score=2] This applies to within-gene non-synonymous variants (e.g., missense SNPs),
variants associated with expression quantitative trait locus (eQTL) data (based on GTex portal
database (12)), variants in high linkage disequilibrium (LD) (pairwise r-squared 2> 0.8) with another SNP
that is an eQTL hit, or variants in high LD with a within-gene non-synonymous variant;
[Category 2 — score=1] This applies to within-gene synonymous variants, or variants located in a non-
coding gene region (e.g., intronic SNPs), or variants in high LD with another within gene SNP

(synonymous variant, or variant located in a non-coding gene region);

[Category 3 — score=0] intergenic and non eQTL hit variants.
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B) SNP relationship with regulatory motifs (i.e., variant potentially affecting the binding of transcription
factors based on a library of position weight matrices scored on genomic sequences (13)):
[Category 1 — score=1] variant changing these motifs, or variant in high LD with another SNP changing
these motifs;
[Category 2 - score = 0] no change of motif/LD with SNP changing motif.

C) SNP relationship with breast tissue specific promoter/enhancer histone marks (based on data from
the Roadmap Epigenomics Project (14)):
[Category 1, score=1] variant co-localization with these marks, or variant in high LD with another SNP
co-localising with these marks;
[Category 2, score=0] no co-localization with epigenetic marks/LD with SNP colocalising with

epigenetic marks.

The principles underlying the above scoring system are analogous to those employed in well-established
functional annotation databases (such as RegulomeDB (15) and HaploReg (16)). However, we added the
information deriving from LD analysis (which was performed using the LDLink website (17)), which increases

the likelihood of identifying additional functional variants relevant to disease susceptibility.
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Gene-to-function: pathway and network analysis

Once BCPGs were identified, we used them to perform pathway and network analysis in order to identify

biological functions whose genetic perturbations can predispose to breast cancer development (10,11).

For pathway analysis purposes we utilized gene set enrichment analysis (GSEA) as performed by the EnrichR
web server (18). Hypergeometric distribution was used to calculate the statistical significance of gene
overlapping (19), followed by correction for multiple hypotheses testing (using the false discovery rate [FDR]

method (20)). Only pathways with a FDR <0.05 were considered of interest.

Also protein-protein interaction (PPI) networks can be employed to select gene sets. In contrast to pathways,
networks are not based on specific biological functions but are built on the basis of both direct (physical) and
indirect (genetic) interactions between gene products (proteins). For network analysis, we utilized the
STRING 10.5 web server (21). In order to consider only highly reliable information on protein-protein
interactions (PPI), we set the interaction score to = 0.7 (high confidence). The resulting network provides
information of the degree of overall connectivity across imputed gene products (as quantified by the ratio
between observed and expected interactions [a.k.a. “edges”] between proteins [a.k.a. “nodes”], and formally
tested by means of a PPl enrichment test). Then, molecular clusters (subnetworks) can be identified that can
be utilized for gene set enrichment analysis (only subnetworks with at least three BCPGs were considered).
When the network connectivity is low, the PPl database can be exploited to add first-shell interactors (we
chose to add no more than 10 such interactors to avoid data over-interpretation) and then re-run pathway
analysis. Ultimately, this data augmentation process increases the likelihood of identifying relevant biological
pathways which would be otherwise overlooked when starting with only few BCPGs belonging to a given

pathway.
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Other analyses

Within the frame of network analysis, we searched for so called “hub proteins”: these are molecules with a
high degree of connectivity with the other network components and thus are likely to play a dominant role
in the activity of the network itself (they are also known as “influencers”) (22). To this aim, we used the EsyN
webtool (23) to calculate the collective influence score, which defined as the product of a node-reduced
degree (number of edges minus one) times the sum of the reduced degree of the nodes that are two steps

away (a.k.a. radius) (24).

Finally, in order to provide further information beyond the cis effects of included variants (as done in the
above analyses), we explored the potential effect in trans of breast cancer associated SNPs. To this aim, we
first identified the transcription factors among the putative BCPGs: then, the genes whose expression were
regulated by these transcription factors (identified by using the Uniprot (25) and TRRUST (26) repositories)
were input in both pathway and network analysis to assess the cellular functions potentially affected by

germline variation linked to cancer risk.
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Results

Breast cancer risk associated SNPs

We found 38 studies (published between 2007 and 2017) which matched our inclusion criteria (27-64). Of
these, 28 were original case-control GWAS (overall enrolling 383,260 patients with breast cancer) and 10
were meta-analyses of previously published case-control GWAS (overall enrolling 239,271 patients with

breast cancer) (Supplementary Table 1).

In most studies, patients and controls were of European ancestry (71% among original GWAS; 97% among
GWAS meta-analyses); in the remaining studies, individuals were mainly of Asian ancestry among original
GWAS (96%) and African-American among GWAS meta-analyses (100%). Only one original study was
dedicated to male breast cancer. As regards tumor subtype by estrogen receptor expression, two original
GWAS were dedicated to receptor negative and two to receptor positive breast cancer, whereas four GWAS
meta-analyses were dedicated to ER negative cases. In the original articles associations were reported (and

are reported hereafter in the text) as per-allele odds ratios (ORs).

Overall, 281 SNPs were associated with the risk of breast cancer with a P-value <10E-06 and a MAF >0.01
(Supplementary Table 2); the median minor allele frequency was 0.28 (interquartile range [IQR]: 0.16-0.39);

the median OR was 0.93 (IQR: 0.91-0.95) and 1.11 (IQR: 1.06-1.19) for protective and risk alleles, respectively.

Chromosome distribution showed an over-representation of chromosome 5 (signals observed: 32; expected:

15; FDR: 0.0003) and chromosome 19 (signals observed: 12; expected: 5; FDR: 0.014).

Linkage disequilibrium (LD) analysis of the 281 SNPs showed that 48 polymorphisms were tagged by one or
more other variants (LD r-squared >0.8), leading to the identification of 233 breast cancer predisposition loci

(Supplementary Table 3).

Out of 281 reported SNPs associated with breast cancer risk at a genome-wide significance level, only 34

(12.1%) were reported by two or more data sources.
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Whereas most studies (n=21, 55.3%) enrolled women with unspecified sporadic breast cancer, subgroups
were specifically investigated by others: estrogen receptor negative breast cancer (n=7); estrogen receptor
positive tumor (n=2); triple negative tumor (n=1); breast cancer in BRCA1/2 mutation carriers (studies, n=3);
early onset breast cancer (n=1); breast cancer in post-menopausal women (n=1); lobular carcinoma (n=1);

and breast cancer in males (n=1).

Breast cancer predisposition genes

The majority of SNPs were located within coding genes (n=160, 56.9%). More specifically, SNPs were located
in gene 3’-UTR (n=7, 2.5%), intron (n=140, 49.8%), exon (n=13, 4.6%; of these: missense, n=8, synonymous,
n=4 and non-sense [stop gain], n=1). The remaining SNPs were intergenic region (n=95, 33.8%) and within
non-coding genes (n=17, 9.2%). Of note, 6 intergenic SNPs (2.1%) were in high LD with non-tested SNPs

located within a gene and other 8 SNPs (2.8%) were in high LD with non-tested missense variants.

As regards eQTL analysis, 107 SNPs (38.1%) were directly associated with a significant effect on the
expression of one or more genes, and 3 SNPs (1.1%) were in high LD with SNPs with an eQTL effect. A large
majority of 229 variants (81.5%) were associated with changing regulatory motifs, with 43 SNPs (15.3%) in
high LD with those 229 variants, whereas only 9 SNPs had no impact on regulatory motifs. In addition, 79
SNPs (28.1%) co-localized with promoter/enhancer histone marks, with 107 variants (38.1%) in high LD with

those 79 SNPs, and 95 SNPs (33.8%) having no such property.

Based on the above information, we associated the 281 SNPs linked with breast cancer risk to 334 genes with
a score ranging from 0 to 4 (Supplementary Table 4): SNPs with low (0-1), intermediate (2) and high (3-4)
functional score were 30 (10.7%), 68 (24.2%), and 183 (65.1%), respectively. In order to exclude genes with
low level of evidence of association with breast cancer risk SNPs, we further considered only SNPs with a
score equal or greater than 2 (n=251). With this cut off, we identified 296 putative BCPGs, which were the
genes utilized in the following primary analysis. These genes code for known proteins in most cases (n=255,

86.1%).
14
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Pathway and network analysis

Primary gene set enrichment analysis demonstrated that the 296 BCPGs are enriched in genes involved in

apoptotic pathway and peroxisome machinery, as illustrated in Table 1.

Table 1: Pathway analysis of breast cancer predisposition genes (BCPGs). Overlap: number of
BCPGs over number of pathway genes. FDR: false discovery rate.

PRIMARY ANALYSIS (296 BCPGs)

Pathway Overlap FDR Genes
Apoptosis 9/140 0.04330 PIDD1;DFFA;BCL2L11;CASP8;TNFSF10;ITPR1;PIK3R3;CTSW;CFLAR
DCLRE1B;TCF7L2;DFFA;CDKN2B;STXBP4;PDE4D; MKL1;EBF1;LSP1;PEX14
Peroxisomal importomer | 18/82 <0.00001 ;RAD51B;
BABAM1;TOX3;ADAM?29; RALY;MDM4;LGR6;CASC16

FIRST-SHELL AUGMENTATION (296 BCPGs + 10 interactors)

Pathway Overlap FDR Genes

Prostate cancer 6/89 0.04198 TCF7L2;CCND1;CCNEL;PIK3R3;FGFR2;CREBS

Apoptosis 8/140 0.02506 DFFA;BCL2L11;CASP8;TNFSF10;ITPRL;PIK3R3;CTSW;CFLAR

FoxO signaling 8/133 0.02373 CDKN2B;BCL2L11;CCND;IRS1;TNFSF10;PIK3R3;FBX032; TGFBR2
Ribosome 10/137 0.00261 RPS16;RPS15A;RPS29;RPLPL;RPS3;RPLP2;RPS2;MRPL34;RPS13;RPS23
gi‘:;‘;'?ho"c fattyliver | o/1¢4 0.01670 ITCH;NDUFA13;BCL2L11;CASP8;IRS1;NDUFB3;NDUFA2;PIK3R3;COX6A1

SMALL SUBNETWORK (5 BCPGs)

Pathway Overlap FDR Genes
Translation Initiation 3/114 0.00001 RPLP2;EIF2S2;RPS23
Ribosome formation 3/180 0.00003 RPLP2;WDR43;RPS23

LARGE SUBNETWORK (59 BCPGs)

Pathway Overlap FDR Genes

Pathways in cancer 11/397 <0.00001 "I:'gz;?-ll_.é;‘:CBI'DRI;NZB;CASP8;CCND1;CCNE1;ADCY3;LPAR2;P|K3R3;BRCA2;FG
Pancreatic cancer 4/66 0.00057 CCND1;PIK3R3;BRCA2;TGFBR2

Prostate cancer 6/89 <0.00001 TCF7L2;CCND1;CCNE1;PIK3R3;FGFR2;CREBS

Colorectal cancer 4/62 0.00049 TCF7L2;CCND1;PIK3R3;TGFBR2

Small cell lung cancer 4/86 0.00118 CDKN2B;CCND1;CCNE1;PIK3R3

Endometrial cancer 3/52 0.00258 TCF7L2;CCND1;PIK3R3

Acute myeloid leukemia 3/57 0.00312 TCF7L2;CCND1;PIK3R3

Chronic myeloid leukemia | 3/73 0.00520 CCND1;PIK3R3;TGFBR2

Proteoglycans in cancer 5/203 0.00219 PPP1CB;CCND1;ERBB4;PIK3R3;ESR1

15


https://doi.org/10.1101/279984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279984; this version posted March 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MicroRNAs in cancer 4/297 0.03057 BCL2L11;CCND1;CCNE1;IRS1

FoxO signaling 8/133 <0.00001 CDKN2B;BCL2L11;CCND1;IRS1; TNFSF10;PIK3R3;FBX032; TGFBR2
PI3K-AKt signaling 10/341 <0.00001 E;NAl;COLlAZ;BCL2L11;CCND1;CCNE1;IRSl;LPARZ;PIK3R3;FGFR2;CRE
p53 signaling 3/69 0.00481 CASP8;CCND1;CCNE1

cAMP signaling 6/199 0.00048 PPP1CB;GIPR;PDE4D;ADCY3;PIK3R3;CREB5

Rap1 signaling 5/211 0.00249 EFNA1;ADCY3;LPAR2;PIK3R3;FGFR2

AMPK signaling 4/124 0.00258 CCND1;IRS1;PIK3R3;CREBS

Hippo signaling 4/153 0.00481 PPP1CB;TCF7L2;CCND1;TGFBR2

MAPK signaling 4/255 0.02078 MAP3K1;TAB2;FGFR2; TGFBR2

Phospholipase D signaling | 3/144 0.02410 ADCY3;LPAR2;PIK3R3

TNF signaling 6/110 0.00002 ITCH;CASP8;PIK3R3;TAB2;CFLAR;CREB5

Longevity regulation 4/94 0.00147 IRS1;ADCY3;PIK3R3;CREBS

Apoptosis 5/140 0.00065 BCL2L11;CASP8;TNFSF10;PIK3R3;CFLAR

Cell cycle 4/124 0.00258 CDKN2B;CCND1;CCNE1;0RC2

Viral carcinogenesis 6/205 0.00049 CDKN2B;CASP8;CCND1;CCNE1;PIK3R3;CREBS
Hepatitis B 6/146 0.00010 MAP3K1;CASP8;CCND1;CCNE1;PIK3R3;CREB5
Measles 5/136 0.00061 CCND1;CCNE1;TNFSF10;PIK3R3;TAB2

HTLV-I infection 7/258 0.00022 CDKN2B;MAP3K1;TERT;CCND1;ADCY3;PIK3R3;TGFBR2
Herpes simplex infection | 3/185 0.04043 PPP1CB;CASPS8;TAB2

Estrogen signaling 4/99 0.00170 ADCY3;PIK3R3;ESR1;CREBS

;Zﬁ;"l::ghormone 4/118 0.00249 NCOA1;CCND1;PIK3R3;ESR1

Oxytocin signaling 4/158 0.00511 PPP1CB;CCND1;ADCY3;PIK3R3

Prolactin signaling 3/72 0.00513 CCND1;PIK3R3;ESR1

Focal adhesion 4/202 0.01145 PPP1CB;COL1A2;CCND1;PIK3R3

Toll-like receptor signaling | 3/106 0.01327 CASP8;PIK3R3;TAB2

Endocytosis 4/259 0.02105 ITCH;ERBB4;FGFR2; TGFBR2
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Network analysis suggested that BCPGs protein products did not have more interactions among themselves
than expected for a random protein set of equal size drawn from the proteome (observed edges: 98;
expected edges: 83; PPl enrichment test P-value: 0.0527), indicating that these proteins are not remarkably
biologically connected as a group. When 10 first-shell interactors were added to the network, ribosome

proteins were then included in the enrichment list (Table 1).

Network analysis also enabled us to identify one large (n=59) and one small (n=5) subnetwork (Figure 2): the
former was enriched in several cancer-related pathways, including apoptosis and estrogen receptor signaling,
whereas the latter was enriched in ribosome machinery components (see Table 1). Finally, influence analysis
of the large subnetwork identified estrogen receptor 1 (ESR1) as the most influential protein (Suppementary

Table 5).

Figure 2

Network analysis: network plot of protein-protein interactions regarding the products of the putative
breast cancer predisposition genes identified through the integrative analysis of GWAS data
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Subgroup analysis

In a first subgroup analysis we considered the BCPGs encoding transcription factors: there were 36 such
genes (Figure 3), which represent 12.2% of the BCPGs identified in this work, a figure only slightly higher than
expected (10%). These transcription factors target 252 genes (Figure 3), with nine also being BCPGs (AHRR,

BRCA2, CCND1, CDKN2B, ESR1, FOXP1, FTO, LPAR2, TERT).

Figure 3

Breast cancer susceptibility regulons: targets of transcription factors whose germline variation is associated
with breast cancer risk
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Pathway analysis of the 252 targets demonstrated a significant enrichment in many cancer-related pathways,
including those involved in the pathogenesis of different tumor types (mainly but not only carcinomas), cell
cycle and apoptosis, multiple signaling pathways (such as p53, PI3K-Akt, Wnt, Hippo, Mapk, ErbB, HIF-1 and
VEGF), hormone pathways (including sex hormones), immunity (with special regard to anti-viral immune

response), and cell adhesion (Table 2).

Table 2: Pathway analysis of breast cancer predisposition genes (BCPGs) encoding transcription
factors. Overlap: number of BCPGs over number of pathway genes. FDR: false discovery rate.

Pathways Overlap | FDR Genes

RET;ITGB1;CDKN1A;SPI1;CDKN1B;ITGA2B;PTEN;PIK3CD;BRCA2;MECOM;CCND1;
CDH1;MYC;HSP90AAL;ITGA3;WNT5A; ARNT;FOS; MMP9;AR; COLAA1;COLAAS;

Pathways in cancer 51/397 | <0.00001 | RARA;BIRC5;TP53;CSF1R;PTGER2;LPAR2; TGFA;CXCR4;KLK3;PTGS2;HIF1A;EGFR;
FOXO1;RELA;RASGRP3;ERBB2;E2F1;JUN;CDKN2B;STAT1;STAT3;NFKB1;VEGFA;
IL6;CXCL12;CDK4;MDM2;BCL2;CTNNB1

HSP90AATL;CDKN1A;CDKN1B;PTEN;TGFA;PIK3CD;KLK3;RELA;EGFR;FOXO1;NFKB1;

Prostate cancer 19/89 | <0.00001 | \o.CND1.ERBB2;BCL2;E2F1MDM2;CTNNBLTP53

ITGB1;CDKN2B;CDKN1B;ITGA3;ITGA2B;PTEN;PIK3CD;PTGS2;RELA;NFKB1;CCND1;

Small cell lung cancer 18/86 | <0.00001 | ) ) OL4ATMYC,COLAAA;BCL2;E2FTPS3

Non-small cell lung cancer | 8/56 <0.00001 CCND1;CDK4;ERBB2;E2F1;TGFA;PIK3CD;TP53;EGFR

STAT1;STAT3;TGFA;PIK3CD;BRCA2;RELA;EGFR;NFKB1;VEGFA;CCND1;CDK4;ERBB2;

Pancreatic cancer 14/66 <0.00001 E2F1.TP53

Bladder cancer 12/41 <0.00001 CDKN1A;CCND1;CDK4;CDH1;MYC;ERBB2;MDM2;E2F1;MMP9;TP53;EGFR;VEGFA
Chronic myeloid leukemia | 12/73 <0.00001 EI?ESEA;CDKNlB;MECOM;CCNDl;CDK4;MYC;EZFl;MDMZ;PIK3CD;TP53;RELA;
Glioma 10/65 <0.00001 CDKN1A;CCND1;CDK4;E2F1;MDM2;PTEN;TGFA;PIK3CD;TP53;EGFR

Melanoma 10/71 <0.00001 CDKN1A;CCND1;CDK4;CDH1;E2F1;MDM2;PTEN;PIK3CD;TP53;EGFR

Endometrial cancer 9/52 <0.00001 CCND1;CDH1;MYC;ERBB2;PTEN;CTNNB1;PIK3CD;TP53;EGFR

Colorectal cancer 9/62 <0.00001 JUN;CCND1;MYC;BCL2;BIRC5;CTNNB1;PIK3CD;FOS;TP53

Renal cell carcinoma 6/66 0.00052 JUN;TGFA;ARNT;PIK3CD;HIF1A;VEGFA

Acute myeloid leukemia 8/57 <0.00001 | SPI1;CCND1;MYC;STAT3;RARA;PIK3CD;RELA;NFKB1

ITGB1;CSF1R;CDKN1A;CDKN1B;FLT1;CSF1;EPO;ITGB4;ITGA2B;PTEN;LPAR2;PIK3CD;
PI3K-Akt signaling 37/341 | <0.00001 | PRL;BRCA1;RELA;EGFR;CCND2;CCND1;YWHAQ;MYC;KDR;JAK2;HSP90AAL;ITGA3;
NFKB1;IL2;VEGFA;COL1A1;IL3;IL6;COL4A1;CDK4;COLAA4;IL2RA;MDM2;BCL2;TP53

JUN;SRF;HSPB1;FOS;RELA;EGFR;NFKB1;RASGRP3;MECOM; MAPKAPK3;MYC;IL1B;

MAPK signaling 14/255 | 0.00001 NF11P53

ErbB signaling 8/87 | 0.00004 JUN;CDKN1A;CDKN1B;MYC;ERBB2;TGFA;PIK3CD;EGFR

Ras signaling 11/227 |0.00043 CSF1R;FLT1;CSF1;KDR;NF1;PIK3CD;RELA;EGFR;NFKB1;VEGFA;RASGRP3

p53 signaling 11/69 | <0.00001 | CDKN1A;CCNB1;CCND2;CCND1;CDK4;CCNG2;SERPINE1;MDM2;PTEN;PMAIP1;TP53
Fox signaling 15/133 | <0.00001 EEEI;?:(C:LDBK;I!(I::;EZI;/INDI'\I;;:TATS;PTEN;PIK3CD;EGFR;FOX01;CCNBl;IL6;CCND2;
cAMP signaling 13/199 |<0.00001 | OXTR;JUN;PTGER2;PIK3CD;FOS;ATP1A1;RELA;NFKB1;MC2R;FSHR;AMH;MYL9;CFTR
Rap1 signaling 14/211 |<0.00001 | ITGB1;CSF1R;FLT1;CSF1;ITGA2B;ITGB2;LPAR2;PIK3CD;EGFR;VEGFA;RASGRP3;CDH1;
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KDR;CTNNB1
Chemokine signaling 10/187 | 0.00039 | CXCL12;STAT1;STAT3;CCL3;PIK3CD;CXCR4;JAK2;RELA:NFKBL;PF4
. CDKN1A;CSF2;EPO;STATL;1L13;STAT3;MPL;PIK3CD;PRLIL2;IL3;1L6;CCND2;,CCNDL;
Jak-STAT signaling 19/158 | <0.00001 IFNG:MYG;IL2RA;BCL2:JAK2
NF-kappa B signaling 9/93 | 0.00001 | CD40;CXCL12;IL1B;BCL2;LY96;PRKCQ;PTGS2;RELA;NFKB1
o WNTSA;SERPINEL;TGB2;AFP;BMP7;CCND2;CCNDL;YWHAQ;CDH1;DLG4; MYC;BIRCS;
Hippo signaling 15/153 | <0.00001 SNAIZ;CTNNBLAMH
Whnt signaling 7/142 |0.00496 | JUN;CCND2;CCND1;MYC;WNT5SA;CTNNB1;TP53
. CDKN1A;FLT1;CDKN1B;EPO;SERPINEL;STAT3;CYBB;ARNT;PIK3CD;HIF1A;RELA;EGFR;
HIF-1 signaling 19/103 | <0.00001 | \c\ o1\ /EGFAILG;IFNG;ERBB2;BCL2,TIMP1
VEGF signaling 6/61 |0.00034 | MAPKAPK3;KDR;HSPB1;PIK3CD;PTGS2;VEGFA
TNF signaling 13/110 | <0.00001 | JUN:CEBPB;CSF2;CSF1;PIK3CD;FOS;PTGS2;MMP9;RELA;NFKBL;IL6;IL1B;JUNB
Apoptosis 12/140 | <0.00001 | IL3;JUN;BCL2;BIRCS;HTRA2;PMAIP1;PIK3CD;FOS;TP53;CTSD;RELA;NFKB1
CDKN2B;CDKN1A;PCNA;CDKN1B;CCNA2;CCNBL;CCND2;CCND1;YWHAQ; CDK4;MYC;
Cell cycle 15/124 | <0.00001 E2F1MDM2;TP53;MAD2L1
Estrogen signaling 8/99 0.00012 HSP90AA1;JUN;SP1;PIK3CD;FOS;ESR1;MMP9;EGFR
sterod hormone HSD3B2;UGT1AL;HSD3B1;UGT2B15;AKR1C4;,CYP19AL;,CYP17AL,CYP11B2,CYP11AL;
o 15/58 | <0.00001 | CYP11B1;CYP1A2;CYP1AL;
4 CYP1B1;UGT1A4;UGT1A6
Prolactin signaling /72 | <0.00001 j.:lszR;STATl;STAT?,;LHB;PIK3CD;PRL;FOS;ESR1;RELA;NFKBl;CYP17A1;CCND2;CCND1;
Thyroid hormone signaling | 12/118 | <0.00001 | NOTCH1;CCND1;STATL;MYC;MDM2;CTNNBL;PIK3CD;ATP1AL;TP53;ESRL;HIF1A;FOXO1
Oxytocin signaling pathway | 10/158 | 0.00011 OXTR;JUN;CDKN1A;CCND1;PIK3CD;OXT;FOS;PTGS2;MYL9;EGFR
T cell receptor signaling 11/104 | <0.00001 | JUN;CSF2;IFNG:CDK4;CTLA4;PIK3CD;PRKCQ;FOS;RELA;NFKBL;IL2
Toll-like receptor signaling | 11/106 | <0.00001 JUN;IL6;CD40;STAT1;IL1B;CCL3;LY96;PIK3CD;FOS;RELA;NFKB1
viokine-cviokine recentor CSF1R;CD40;CSF2;FLT1;CSF1;EPO;MPL;CXCR4; TNFRSF11B;PRLEGFR;KDR;CCL3;AMH;
in‘ieractiony PLOT 1 56/265 | <0.00001 | TNFRSF18;IL13;BMP7;IL2;
VEGFA;IL3;IL6;CXCL12;IFNG;IL1B;IL2RA;PF4
tf;';;’;‘:: transendothelial | 16,118 | (000001 | ITGB1;,0CLN;CXCL12;ITGB2;CYBB;CTNNB1;PIK3CD;CXCRA;MYLO:; MMP9
Regulation of actin 10/214 | 0.00107 | ITGBL;ITGA3;ITGB4:RDX;ITGA2B;ITGB2;PIK3CD;MYLI;MYH10;EGFR
cytoskeleton
- JUN;CDKNLA;PCNA;CDKN1B;STATL;STAT3;PTEN;PIK3CD;FOS;MMP9;RELA;NFKB1;
Hepatitis B 22/146 | <0.00001 | - \h5 11 6.CONDLYWHAQ;CDK4;MYC;E2F 1;BCL2; BIRCS,TP53
CD40;CDKN1A;SPI1;PCNA;CSF2;SRF;ITGB2;PIK3CD;RELA;CCND2; TERT,CCNDL;MYC;
HTLV-I infection 27/258 |<0.00001 | E2F1;JUN;CDKN2B;WNT5A;FOS;NFKBL;IL2;IL6;CDK4;IL2RA;CTNNBL;TCF3;TP53;
MAD2L1
CDKN1B;STATL;MXL;IL13;STAT3;PIK3CD;RELA;NFKBL;1L2;IL6;CCND2;CCNDLIFNG;
Measles 19/136 | <0.00001 | <ny .11 15;112RAPRKCQ;JAK2TPS3
Herpes simplex infection | 12/185 | 0.00001 | JUN;IL6;IFNG;STATL;IL1B:FOS;JAK2; TP53;CLOCK;RELA;NFKBL;ARNTL
) o JUN;CD40;CDKN1A;CR2;SPI1;CDKN1B;STAT3;HSPB1;PIK3CD;RELA;NFKB1;CCNAZ;
Epstein-Barr virus infection | 19/202 | <0.00001 IENG;YWHAQ:MYC;MDM2;BCL2:TP53;PTMA
Influenza A 10/175 | 0.00023 | JUN;ILE;IFNG;STATL;IL1B;MX1;PIK3CD;JAK2;RELA;NFKB1
Hepatitis C 9/133 | 0.00015 | OCLN;CDKN1A;STAT1;STAT3;PIK3CD;TP53;RELA;EGFR;NFKB1
) . ) JUN;CDKN2B;CDKNLA;CDKN1B;SRF;STAT3;PIK3CD;RELA;NFKBL;CCNA2;CCND2;
Viral carcinogenesis 17/205 | <0.00001 CCND1;YWHAQ;CDK4:;MDM2;PMAIP1;TP53
Chemical carcinogenesis | 10/82 | <0.00001 | UGT1A1;CYP1A2;UGT2B15;CYP1AL;,CYP1BL;ARNT;UGT1A4;CYP2C19;PTGS2;UGT1A6
Drug
metabolism_cytochrome | 9/69 | <0.00001 | CYP2B6;UGT1A1;MAOA;CYP2D6;CYP1A2;UGT2B15;UGT1A4;CYP2C19;UGT1A6
P450
Xenobiotics
metabolism_cytochrome | 9/73 | <0.00001 | CYP2B6;UGT1A1;CYP2D6;CYP1A2;UGT2B15;CYP1AL;CYP1BL;UGT1A4;UGT1A6
P450
Insulin resistance 9/109 |0.00003 | IL6;PPP2R4;STAT3;PTEN;PIK3CD;PRKCQ;RELA;FOXO1;NFKB1
f::c':'re metabolism in 8/101 |0.00013 | DGKG;SLC22A4;JUN;SP1;PIK3CD;FOS;HIFLA;EGFR
Retinol metabolism 7/65 | 0.00005 | CYP2B6;UGT1AL,CYP1A2;UGT2B15;CYPIAL,UGT1A4;UGT1A6
ﬁ‘e::;aclecrarbon metabolism | ¢ /00 | .0.00001 | RET:MYC;ERBB2;PTEN:PIK3CD;TPS3;HIFIAEGFR
Focal adhesion 20/202 |<0.00001 | ITGBL;JUN;FLTL;ITGA3;ITGB4;ITGA2B;PTEN;PIK3CD;EGFR;VEGFA;COL1AL,CCND2;
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CCND1;COL4A1;COL4A4;ERBB2;KDR;BCL2;CTNNB1;MYL9

Cell adhesion molecules | o145 | 500024 | ITGB1;0CLN;CDA0;CD6;CDH1;ITGB2;CTLA4;NCAM1;CD34

(CAMS)
Adherens junction 5/74 0.00540 CDH1;ERBB2;SNAI2;CTNNB1;EGFR
Tight junction 9/139 | 0.00021 OCLN;CDK4;PTEN;SYMPK;CTNNB1;MYH11;PRKCQ;MYL9;MYH10

ECM-receptor interaction | 8/82 0.00003 COL1A1;ITGB1;ITGA3;COLAAL;ITGB4;COL4AL;ITGA2B;GP1BA

CSF1R;CD40;CEBPB;CDKN1A;CSF2;SPI1;FLT1;CDKN1B;MPO;RELA;FOXO1;CCND2;
27/180 | <0.00001 | MYC;ELANE;MMP9;RUNX2;NFKB1;PBX1;IL3;IL6;ZEB1;BCL6;SP1;MDM2;RARA;
TCF3;TP53

Transcriptional
misregulation in cancer

CDKN1A;CDKN1B;NOTCH1;ABCB1;PTEN;BRCAL;PTGS2;SLC7AL;EGFR;CCND2;
MicroRNAs in cancer 26/297 | <0.00001 | CCND1;MYC;ERBB2;E2F1;CYP1B1;RDX;STAT3;MIR27A;MMP9;NFKB1;VEGFA;
FOXP1;ZEB1;MDM2;BCL2;TP53

Signaling pathways of stem

wells 11/142 | <0.00001 | ZFHX3;SETDB1;MYC;WNTSA;STAT3;CTNNB1;PIK3CD;TCF3;KLF4;JAK2;POUSF1

ITGB1;CDKN1A;RDX;STAT3;WNT5A;IGF2;TWIST1;PIK3CD;HIF1A;ESR1;MMP9;

Proteoglycans in cancer 20/203 | <0.00001 | o ccp e GFA.CONDIL;MYC,ERBB2;KDR: MDM2;CTNNBL,TP53
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Network analysis revealed a very high degree of connectivity across these target genes (observed edges:
3105; expected: 1104; PPI enrichment p-value: <10E-16); influence analysis showed that the top ten most
influential proteins largely overlapped with those identified in the primary analysis (8/10), with ESR1 being

the second ranking molecule (Suppementary Table 5).

Data were available for 238 SNPs linked to 275 genes which also allowed us to perform a subgroup analysis
dedicated to estrogen receptor negative breast cancer (only four SNPs were available for estrogen receptor
positive cases). Pathway and network analysis yielded results very similar to those obtained in the primary
analysis where all breast cancer cases (both receptor positive and negative) were included (data not shown),
likely because of the high degree of overlapping between the SNPs (and consequently of genes) of the two

series.

SNPs shared with other tumors

Finally, we assessed whether some breast cancer risk associated SNPs are shared with other malignancies, a
phenomenon known as pleiotropy (65). Querying the GWAS Catalog, we found 37 breast cancer risk SNPs
shared with other eight tumor types (details are reported in Table 3): ovarian carcinoma (n=7), prostate
carcinoma (n=4), lung carcinoma (n=2), thyroid carcinoma (n=1), esophageal carcinoma (n=1), renal cell
carcinoma (n=1), cutaneous melanoma (n=1), glioma/glioblastoma (n=1) and a tumor miscellany mainly
including ovarian, prostate and lung carcinoma (n=28). In two cases, the breast cancer susceptibility locus
was shared with other three tumor types: one SNP (rs13016963) was located in chromosome 2q33.1 (sharing
tumors: prostate and esophageal carcinomas, and cutaneous melanoma), the other SNP (rs10069690) in

chromosome 5p15.33 (sharing tumors: ovarian and thyroid carcinomas, and glioma/glioblastoma).

These shared SNPs were associated with 34 genes: when we input these BCPGs into a pathway analysis,
enrichment in apoptosis and cancer-related pathways was observed (Supplementary Table 6). Upon network

analysis, the connectivity was very low (observed edges: 2; expected edges: 1; PPl enrichment P-value:
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0.386). Adding 10 first-shell interactors showed the enrichment in cancer-related pathways as well as

ribosome machinery and degenerative disease pathways (Supplementary Table 6).

Table 3: Breast cancer risk associated single nucleotide polymorphisms (SNPs) shared with other
malignancies

Cancer Chromosome | SNP Genes

Glioma/Glioblastoma 5p15.33 rs10069690 | TERT

Ovarian carcinoma 5p15.33 rs10069690 | TERT

Thyroid carcinoma 5p15.33 rs10069690 | TERT

Miscellany 9p21.3 rs1011970 CDKN2B

Prostate carcinoma 9p21.3 rs1011970 CDKN2B

Miscellany 19p13.11 rs10419397 | ABHD8;ANKLE1;BABAM1
Ovarian carcinoma 19p13.11 rs10419397 | ABHD8;ANKLE1;BABAM1
Miscellany 14q24.1 rs10483813 | RAD51B

Miscellany 104g26.13 rs1078806 FGFR2

Miscellany 104g26.13 rs11200014 | FGFR2

Lung carcinoma 13g13.1 rs11571833 | BRCA2

Miscellany 14q24.1 rs11844632 | RAD51B

Miscellany 20911.22 rs11907546 | CHMP4B

Miscellany 104g26.13 rs1219648 FGFR2

Esophageal carcinoma 2g33.1 rs13016963 | CASP8;ALS2CR12

Melanoma (cutaneous) | 2g33.1 rs13016963 | CASP8;ALS2CR12

Prostate carcinoma 2g33.1 rs13016963 | CASP8;ALS2CR12

Miscellany 3p24.1 rs1352941 NEK10;SLC4A7

Miscellany 19p13 rs1469713 MAU2;SUGP1;NDUFA13;GATAD2A;CILP2,TM6SF2
Prostate carcinoma 5p15.33 rs2242652 TERT

Ovarian carcinoma 19p13.11 rs2363956 ABHDS8;ANKLE1;MRPL34;0CEL1
Miscellany 3p24.1 rs2590265 NEK10

Miscellany 104g26.13 rs2912780 FGFR2

Miscellany 104g26.13 rs2981575 FGFR2

Miscellany 10426.13 rs2981582 FGFR2

Miscellany 104g26.13 rs3135718 FGFR2

Prostate carcinoma 1932.1 rs4245739 MDM4;PIK3C2B

Miscellany 19p13.11 rs4808075 ANOS8;ABHDS8;ANKLE1;BABAM1;0CEL1
Ovarian carcinoma 19p13.11 rs4808075 ANOS8;ABHDS8;ANKLE1;BABAM1;0CEL1
Miscellany 3p24.1 rs481519 NEK10

Miscellany 3p24.1 rs571978 NEK10

Miscellany 3p24.1 rs580057 NEK10

Miscellany 5q11.2 rs59957907 | C5o0rf67,MAP3K1
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Miscellany 19p13.11 rs61494113 | ABHD8;ANKLE1;0CEL1
Ovarian carcinoma 19p13.11 rs61494113 | ABHD8;ANKLE1;0CEL1
Miscellany 14q24.1 rs61986943 | RAD51B

Ovarian carcinoma 9p34 rs635634 SURF6;ABO
Miscellany 5q11.2 rs6450401 MAP3K1;SETD9
Miscellany 5q11.2 rs6890270 MIER3;SETD9
Miscellany 14q24.1 rs71423318 | RAD51B

Renal cell carcinoma 11g22.3 rs74911261 | KDELC2

Miscellany 5q11.2 rs7709971 C50rf67;MAP3K1
Miscellany 5q11.2 rs7714232 C50rf67;MAP3K1

Lung carcinoma 5p15.33 rs7726159 TERT

Miscellany 5p15.33 rs7726159 TERT

Ovarian carcinoma 19p13.11 rs8170 PLVAP;NR2F6;,BABAM1;MRPL34;USHBP1;ABHD8;ANKLE1
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Discussion

We reported on the first knowledge-base dedicated on GWAS-based evidence linking common germline
variants to the risk of breast cancer. The information on breast cancer risk associated SNPs forms a

knowledge-base which will be made publicly available at our cancer dedicated website (www.mmmp.org

(66)) and will be annually updated.

Following the principles of integrative analysis of genomic data, we combined genome-wide information
from different sources (e.g., high-throughput genotyping experiments, eQTL analysis, LD analysis, and so on)
to make the most of the available evidence (8,9). This is of particular relevance because most SNPs do not
have a direct functional effect, indeed a large proportion of associated SNPs are not in the coding regions of
genes, and thus additional information is needed to link them to a gene. Then, we used these data to make
tentative inferences on the pathways (and most influential molecules within them) whose variation can affect

the risk of developing breast cancer.

Data from almost 400,000 women affected with breast cancer showed that 281 SNPs are significantly
associated with the risk of this disease, which reduced to 233 risk loci when linkage disequilibrium was taken
into account. These findings add new information to the already existing recent literature reviews on this
subject, which report up to 172 common variants linked to breast cancer susceptibility (3,4,6,67-71). These
SNPs are estimated to account 15-20% of the genetic component of disease risk (3,72), which clearly implies
that much more work is needed to fully elucidate the molecular basis of breast cancer predisposition. It has
been argued that future GWAS will not lead to the discovery of many more risk variants (3). This appears
especially true in terms of rare variants (that is, variants with a MAF <1%) (3,72), as GWAS studies are
designed to identify only common polymorphisms (MAF >1%) through a tagging strategy (tested tag-SNPs
are in high linkage disequilibrium with non-tested SNPs). Moving forward, massively parallel sequencing
technology (a.k.a. next generation sequencing [NGS], which can directly interrogate every genomic position)
could provide investigators with the right tool to overcome the challenging hurdle of interrogating rarer

variants which may affect risk, thus adding essential information to this field of investigation (73).
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The data collected in our knowledge-base can be used to build polygenic predictive models and thus help
optimize breast cancer secondary prevention programs (i.e. early detection by mammographic screening) by
selecting women at higher risk (74-77). So far, such models have yielded generally unsatisfactory results, as
their accuracy remains too low to be clinically implemented. This could be due to the fact that the complex
genetic architecture of sporadic breast cancer predisposition remains still to be fully elucidated, as well as to
the lack of information on gene-environment interactions (78,79). Nevertheless, the systematic collection of
variants associated with breast cancer risk, along with information on their functional effect (as proposed in

our knowledge-base) is the first step to build more effective predictive tools.

We utilized the collected information to generate tentative mechanistic hypotheses on the pathways whose
perturbation (as determined by germline variation of the corresponding genes) affect breast cancer
susceptibility. Some studies have already investigated the role of the variation of a single pathway across the
results of multiple GWAS or the variation of multiple pathways within a single GWAS in the determinism of
breast carcinogenesis (80,81). However, to the best of our knowledge, this is the first time that the
comprehensive collection of variants linked to breast cancer risk by means of all available GWAS (and their
meta-analyses) has been employed to systematically explore the cell pathways potentially involved in breast
cancer development. Our gene set enrichment analysis led to the identification of multiple pathways well
known to be involved in cancer development in general (such as apoptosis, cell cycle, and signal transduction)
and breast cancer in particular (such as steroid hormone pathways). As regards the latter, the estrogen
receptor pathway was confirmed to play a pivotal role in the carcinogenesis of a hormone dependent
neoplasm such as breast carcinoma (82), within this frame, the gene encoding the estrogen receptor alpha
(ESR1) was a key influencer in the generated networks of BCPGs (see Figure 1 and Supplementary Table 5).
This finding might be of relevance with regard to breast cancer chemoprevention, which aims to reduce
disease incidence by the administration of anti-estrogen drugs such as selective estrogen receptor modifiers
(e.g., tamoxifen) (83). The selection of women who could most benefit from these risk reducing medications

might be improved by genetic testing based on polymorphisms that affect breast cancer risk (84).
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Another interesting piece of information yielded from data analysis is the high degree of overlap between
network-guided gene set enrichment primary analysis and the pathway analysis performed with the targets
of BCSGs acting as transcription factors (see Table 1 and Table 2). This finding supports the hypothesis that
most of the biological effect of the SNPs linked to breast cancer risk might actually be mediated by regulons
governed by the transcription factors associated with those SNPs. Notably, our data confirm the results of a
recent publication where investigators have identified a breast cancer risk regulatory network comprising

some of the transcription factors we identified as BCPGs (85).

Besides well known cancer-related pathways (such as apoptosis, signal transduction and so on), our gene set
enrichment analysis showed that germline variation of other pathways might be of particular relevance for
breast cancer susceptibility, such as those involved in anti-viral immunity, degenerative diseases as well as
peroxisome and ribosome activity (see Table 1 and Table 2). Actually, peroxisomes are known to be linked
to carcinogenesis through their production of reactive oxygen species (86), which in turn can initiate tumor
development by causing DNA damage. Of special interest is also the case of genes encoding ribosome
proteins, which were repeatedly enriched in our pathway and network analyses of the whole series, as well
as in the analysis of pleiotropic SNPs. Indeed, it has recently been suggested that ribosome derangement
may play a significant role in both development and progression of different tumor types (87,88), including

breast cancer (89).

In conclusion, we present the first knowledge-base dedicated to sporadic breast cancer predisposition
variants. This wealth of information can inform future studies aimed to dissect the molecular epidemiology

and the molecular basis of this disease.
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