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Abstract 

Convergent adaptation can occur at the genome scale when independently evolving 

lineages use the same genes to respond to similar selection pressures. These patterns 

provide insights into the factors that facilitate or constrain the diversity of genetic 

responses that contribute to adaptive evolution. A first step in studying such factors is to 

quantify the observed amount of repeatability relative to expectations under a null 

hypothesis. Here, we formulate a novel metric to quantify the constraints driving the 

observed amount of repeated adaptation in pairwise contrasts based on the 

hypergeometric distribution, and then generalize this for simultaneous analysis of 

multiple lineages. This metric is explicitly based on the probability of observing a given 

amount of repeatability by chance under an arbitrary null hypothesis, and is readily 

compared among different species and types of trait. We also formulate a metric to 

quantify the effective proportion of genes in the genome that have the potential to 

contribute to adaptation. As an example of how these metrics can be used to draw 

inferences, we assess the amount of repeatability observed in existing datasets on 

adaptation to antibiotics in yeast and climate in conifers. This approach provides a 

method to test a wide range of hypotheses about how different kinds of factors can 

facilitate or constrain the diversity of genetic responses observed during adaptive 

evolution.  

 

 

Introduction 

What factors limit the diversity of viable genetic routes to adaptation? If different species 

encounter the same selection pressure, will adaptive responses occur through mutations in 

homologous nucleotides, regulatory regions, protein domains, genes, or gene pathways? 

Empirical studies have identified different amounts of convergent adaptation across a 

range of species, traits, timescales, and levels of genetic hierarchy [1–3]. But why do 

similar forms evolve at the genomic level, and what does the level of convergence tell us 

about underlying constraints? Does evolution use the same genes repeatedly because 

there are only a limited number of ways that genetic and developmental pathways can 

generate a given phenotype or because only a limited proportion of generated phenotypes 
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are selectively optimal? These two explanations represent fundamentally different kinds 

of constraints affecting the diversity of genetic responses generated by evolution, so 

studying their relative importance is central to understanding adaptation. Our broad aim 

here is to develop methods that represent how empirical observations deviate from null 

hypotheses under different models of the mapping of genotype to phenotype to fitness. 

While discriminating between these alternative models may prove difficult in practice, 

this provides a first step towards quantifying constraints in a way that is readily compared 

across study systems, with the eventual goal being a comprehensive understanding of the 

relative importance of different factors shaping the diversity of routes to adaptation. 

 To rephrase the above questions in quantitative terms based on the flexibility of 

the mapping from genotype to phenotype to fitness: does repeatability occur because of 

low redundancy in the mapping of genotype to phenotype (only a few ways to make the 

same phenotype; Figure 1A), or because of low redundancy in the mapping of genotype 

to fitness? (only a subset of the genotypes yielding the same phenotype are optimal; 

Figure 1B). Redundancy in the mapping of genotype to phenotype (hereafter, GP-

redundancy; [4]) is determined by two factors: 1) the difference between the number of 

genes that need to mutate to yield a given phenotype and the number of genes that could 

potentially mutate to give rise to variation in the trait, and 2) the extent to which different 

genes have interchangeable vs. uniquely important effects on the phenotype. High GP-

redundancy means that many different combinations of alleles can have the same 

phenotype, so if all else is equal, then independent bouts of adaptation are likely to occur 

via different sets of mutations and repeatability will be low ([4,5]). The standard 

quantitative genetic model implicitly assumes complete GP-redundancy with fully 

interchangeable allelic effects, while the recently proposed omnigenic model assumes 

high but incomplete redundancy, with “core” vs. “peripheral” genes having different 

potential to affect variation [6].  

Redundancy in the mapping of genotype to fitness (hereafter, GF-redundancy) is 

determined by both the direct effects of genotype on phenotype and phenotype on fitness 

and a number of possible indirect effects. These indirect effects can arise due to epistatic 

interactions or pleiotropic effects on other selected traits. Alternatively, GF-redundancy 

can also be affected by aspects of the genetic architecture such as the number of alleles 
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and their linkage relationships and effect sizes, depending upon the interaction between 

migration, selection, and drift. For example, if a given phenotype is coded by many small 

unlinked alleles, this architecture would be less fit than a similar phenotype coded by a 

few large or tightly linked alleles, in the context of migration-selection balance [7] or 

negative frequency dependence [8,9]. Similarly, the increased drift that occurs in small 

populations may prevent alleles of small effect from responding to natural selection 

[10,11], resulting in such genotypes being effectively neutral and therefore lower in 

realized fitness than those made up of large-effect alleles. Polygenic models of 

directional selection (e.g. [12]) assume no GP- and GF-redundancy, while traditional 

quantitative genetic models of Gaussian stabilizing selection assume high GP- and GF-

redundancy (e.g. [13]). Rephrasing the main question in terms of redundancy: when high 

repeatability is observed, is the low diversity of genetic routes to adaptation being 

constrained by low GP-redundancy (few ways to make a phenotype) or by high GP-

redundancy but low GF-redundancy (many ways but few are good)? 

 
Figure 1. Scenarios with different combinations of GP- and GF-redundancy that result in 
high repeatability of adaptation (adapted from [14]).  
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In addition to these types of redundancy, differences in mutation rate among 

genes or types of variants (e.g. SNPs, indels, microsatellites) can also greatly affect the 

repeatability of adaptation [2,15–17]. Genes that can mutate to a beneficial phenotype 

through loss-of-function mutations are often implicated in repeated evolution (e.g. 

[18,19]), likely because there are more ways to break a gene than to beneficially refine its 

protein function. Also, in cases where there is insufficient time since the most recent 

common ancestor for complete lineage sorting, shared standing variation can greatly 

increase repeatability, due to higher fixation probability of variants at intermediate 

frequency [17,20]. Finally, if some genes tend to maintain more standing variation than 

other genes, then repeatability will be higher for genes with higher standing variation, 

even if the actual causal alleles are different in each lineage. If a given gene has the 

capacity to mutate more rapidly or maintain more standing variation, these factors could 

be seen as fundamental drivers of evolvability that contribute to realized to GP- and GF-

redundancy. However, because shared standing variation is more dependent on historical 

contingency, it is important to control for its contribution when drawing inferences about 

the importance of redundancy (see Discussion). 

It is important to note that the constraint that we discuss here is only referring to 

factors that affect the diversity of genes used in independent bouts of adaptation, rather 

than factors that limit an adaptive phenotypic response in general. Observing the same 

gene contribute to adaptation in numerous lineages (e.g. Mc1r; [21]) can rightly be 

interpreted as evidence that some feature of the interaction between the developmental-

genetic program and ecology facilitates the rapid emergence of adaptation, rather than 

constraining it. However, the same example can also be interpreted as being severely 

constrained in terms of the diversity of forms, since there are so few viable alternative 

genetic solutions that actually evolve [19]. Thus, evolutionary constraints can be 

considered along two related but distinct axes: factors that affect the potential for any 

adaptive response [22,23] vs. factors that affect the diversity of forms (i.e., genetic routes 

to adaptation). A scenario that is highly constrained in terms of the diversity of forms 

may be least constrained in terms of the potential for a rapid adaptive response to a 

change in environment, and low redundancy in the mapping of genotype-phenotype-

fitness may itself be a product of adaptation over deep time. For the remainder of this 
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manuscript, we focus on constraints affecting the diversity of forms, which we refer to as 

“diversity constraints” for simplicity. 

There has been considerable discussion in the literature about the effects of these 

different factors on convergence [3,16,17,20,24–28], and various metrics have been used 

to quantify repeatability in empirical contexts (e.g. Jaccard index, Proportional 

Similarity; [2,1]). However, there are several limitations in using these metrics to study 

diversity constraints, as they do not incorporate information about genes that could 

contribute to adaptation but don’t and are not explicitly tied to the probability of 

repeatability occurring under a null model. These existing metrics provide a useful 

description of how often the same gene is used in adaptation, but as we will show below, 

they are not well-suited for testing of hypotheses to discriminate between these different 

kinds of constraint.  

Here, we develop statistical approaches for quantifying the diversity constraints 

that drive repeatability in genomic data from studies of local adaptation and experimental 

evolution. To study these constraints, we formulate an explicit probability-based 

representation of the deviation of observed repeatability from expectations under 

different null hypotheses. This approach can be used after standard tests have been 

applied to identify the putative genes driving adaptation, and uses as input either binary 

categorization of genes as “adapted” or “non-adapted” or any continuous metric 

representing the relative amount of evidence for a given gene being involved in 

adaptation (e.g. FST, p-values, Bayes factors). We begin by formulating an analytical 

model for a contrast of two lineages with binary data, and then generalize this model for 

contrasts of multiple lineages using either binary or continuous data. We also propose a 

novel metric estimating the proportion of genes in the genome that can potentially give 

rise to adaptation. In all cases, these models can be used to successively test null 

hypotheses that incorporate different amounts of information about the constraints that 

could shape repeatability.  

The simplest null hypothesis is that there are no constraints and all genes have 

equal probability of contributing to adaptation. If more repeatability is observed than 

expected under this null model, then two inferences can be made: natural selection is 

driving patterns of convergence (and that observed signatures are not false positives), and 
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some diversity constraints are operating to increase the repeatability of adaptation. We 

then consider how other null hypotheses can be formulated to represent the various kinds 

of constraints discussed above. We focus mainly on the effect of low GP-redundancy, 

where the number of genes that could potentially contribute to adaptation is much smaller 

than the total number of genes in the genome, but also discuss how constraints arising 

from GF-redundancy, standing variation, or mutation rate could be modeled. Because this 

method quantifies repeatability in terms of probability-scaled deviations from 

expectations, it can be applied across any trait or species of interest, allowing contrasts to 

be made on the same scale of measurement.  

 

Methods  

Quantifying diversity constraints in pairwise contrasts 

Suppose there are two lineages, x and y, that have recently undergone adaptation to a 

given selection pressure, resulting in convergent evolution of the same phenotype within 

each lineage. This adaptation could be global, with new mutations fixed within lineages 

(e.g., in experimental evolution studies with multiple replicate populations), or local, with 

mutations contributing to divergence among populations within each lineage  (e.g., in 

observational studies of natural adaptation to environmental gradients). In either case, we 

assume that adaptation can be reduced to a binary categorization of genes as “adapted” or 

“non-adapted”. We use the following notation to represent different properties of the 

genomic basis of trait variation: the number of loci in the genome of each species is nx, 

and ny, with the number of orthologous loci shared by both species being ns; the adaptive 

trait is controlled by gx and gy loci in each species, with gs shared loci (i.e. the loci in 

which mutations will give rise to phenotypic variation in the trait, hereafter the 

“mutational target”); of the g loci that give rise to variation, only a subset have the 

potential to contribute to adaptation due to the combined effect of all constraints, 

represented by gax and gay, with gas shared loci (the “effective adaptive target”); in a 

given bout of adaptation, the number of loci that contribute to adaptation in each lineage 

is ax and ay, with as orthologous loci contributing in both lineages. For simplicity, we 

assume that there is complete overlap in the genomes (ns = nx = ny) , mutational targets 

(gs = gx = gy), and loci potentially contributing to adaptation (gas = gax = gay) in both 
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species (see supplementary materials and Figure S1 for set notation). These assumptions 

are most appropriate for lineages that are relatively recently diverged, where most 

orthologous genes are retained at the same copy number and the developmental-genetic 

program is relatively conserved, so that the same genes potentially give rise to variation 

in both lineages. Lineages separated by greater amounts of time would be expected to 

have reduced ns due to gene deletion, duplication, and pseudogenization in either lineage, 

and reduced gs and gas due to evolution and divergence of the developmental-genetic 

program, through sub- and neo-functionalization, and divergence in regulatory networks.  

Under the assumption that all gas genes have equal probability of contributing to 

adaptation, the amount over overlap in the complement of genes that are adapted in both 

lineages (as) is described by a hypergeometric distribution where the expected amount of 

overlap is 𝑎! = 𝑎!𝑎!/𝑔𝑎! (e.g. [29]). In practice, we typically have little prior 

knowledge about which genes have the potential to contribute to either adaptation (gas) or 

standing variation in the trait (gs), but we can draw inferences about how these 

parameters constrain the diversity of adaptive responses by testing hypotheses and 

comparing the observed amount of overlap (as) to the amount expected under a given null 

hypothesis (𝑎!). To test different hypotheses about how diversity constraints give rise to 

repeated adaptation, we represent the total number of genes included in the test set as g0. 

The simplest null hypothesis is that there are no diversity constraints and all genes 

potentially give rise to variation and contribute to adaptation (g0 = gas = gs = ns), so by 

rejecting this null, we can infer that gas < ns. In model systems where something is 

known about which genes potentially contribute to variation for the trait (based on 

mutation accumulation or GWAS), then a more refined null hypothesis can be tested, 

where g0 = gs. By rejecting this null, we can infer that gas < gs, which could occur due to 

low GF-redundancy or differences among genes in mutation rate or standing variation. 

We can also reverse the direction of inquiry and estimate gas directly from the data by 

calculating 𝑔𝑎! = 𝑎!𝑎!/𝑎!, such that a metric representing the effective proportion of 

the genome that can potentially contribute to adaptation can be calculated as 𝑃!,!!"#$ =

𝑎!𝑎!/(𝑎!𝑛!). 

For any value of g0, an effect size representing the excess in overlap due to 

convergence relative to the null hypothesis can be expressed by standardizing the 
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observed overlap by subtracting the mean (𝑎! = 𝑎!𝑎!/𝑔!) and dividing by the standard 

deviation of the hypergeometric distribution:  

 

𝐶!!"#$ = (𝑎! −
!!!!
!!

)/ (𝑎!𝑎!)(𝑔! − 𝑎!)(𝑔! − 𝑎!)/(𝑔!!(𝑔! − 1)).  (1) 

 

This metric provides a quantitative representation of how much more overlap occurs than 

expected under the null hypothesis, scaled according to how much a given bout of 

evolution would deviate from this expectation if the null hypothesis were true. Similarly, 

the exact probability of observing as or more shared loci contributing to adaptation can 

also be calculated using the hypergeometric probability (see Supplementary Information 

for sample R-script), which provides a p-value. 

 

Quantifying diversity constraints in multiple lineages 

While pairwise contrasts are most straightforward statistically, they have considerably 

lower power than comparisons among multiple lineages. If one gene (such as Mc1r) tends 

to drive adaptation repeatedly in a large number of lineages, this may go undetected in an 

approach using multiple pairwise comparisons, but would be readily detected in a 

simultaneous comparison of multiple lineages. Unfortunately, while the hypergeometric 

distribution provides an exact analytical prediction for the amount of overlap in a 

pairwise comparison, which can be used to calculate a p-value and the probability-based 

effect size (Chyper), it cannot be easily generalized to simultaneously analyze multiple 

lineages. While it is possible to conduct pairwise analysis and average the results across 

multiple comparisons, p-values from this approach might fail to detect cases where a 

single gene contributes repeatedly to adaptation in more than two lineages, as information 

does not transfer among the pairwise comparisons. We now develop an alternate, 

approximate approach to assess repeatability in multiple lineages by calculating 

Pearson’s χ2 goodness of fit statistic and comparing this to a null distribution of χ2 

statistics simulated under the null hypothesis to calculate a p-value and an effect size. The 

p-value obtained by this approach represents the probability of observing a test statistic as 

extreme or more extreme under the null hypothesis, considering all lineages 
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simultaneously. The effect size is instead calculated as an average across all pairwise 

comparisons among the k replicate lineages, so that it represents the increase in 

repeatability relative to expectations under the null for a given bout of adaptation in a 

single lineage (and does not therefore depend upon sampling effort in terms of the 

number of lineages). 

Consider the case where g0 genes can potentially contribute to adaptation in the 

given trait and each lineage has some complement of genes that have mutated to drive 

adaptation, with αi,j representing the binary score for gene i in lineage j (1 = adapted, 0 = 

non-adapted). The summation for gene i across all lineages provides the observed counts 

(𝑜! = 𝛼!,!  ! ) while the expected counts (ei) can be set based on the null hypothesis 

being tested. Under null hypotheses where all genes in g0 have equal probability of 

contributing to adaptation, the expected counts are equal to the mean of the observed 

counts ( 𝑒 = 𝑜!/𝑔! ! ), and Pearson’s χ2 statistic can be calculated by the usual 

approach: χ2 = (𝑜 − 𝑒)!/𝑒. Under ideal conditions, Pearson’s χ2 would approximate the 

analytical χ2 distribution with its mean and standard deviation equal to the degrees of 

freedom (df) and 2df, respectively. While this could be used to make an analytical 

hypothesis test (as above), in practice there will often be large deviations between 

Pearson’s χ2 and the analytical distribution, due to violation of the assumptions when 

expected counts are low (See Supplementary Materials, Figure S2). Instead, we simulate 

a null distribution of 𝜒!"#!
 values under the null hypothesis by using permutation within 

each lineage and recalculating 𝜒!"#!  for each replicate. The p-value is then equal to the 

proportion of the 𝜒!"#! values that exceed the observed χ2 (using all lineages 

simultaneously), while the effect size is calculated as the mean C-score across all 

pairwise contrasts (simulating 𝜒!"#! for each pairwise contrast): 

 

 𝐶!!!"# =
!!!!"#$ !!"#

!

!" !!"#
! .     (2) 

 

The magnitude of Cchisq therefore represents deviation between the observed amount of 

repeatability and that expected under the null hypothesis, which will vary as a function of 

the diversity constraints affecting the trait evolution, but not the number of lineages being 
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compared. While Cchisq relies upon simulation of a null distribution, it can be calculated 

relatively quickly. Importantly, the magnitude of Cchisq varies linearly with Chyper (Figure 

3A & B), showing that it represents the extent of diversity constraints in the same way as 

the analytically precise Chyper. While this approach provides a more accurate p-value for 

comparisons of multiple lineages, there is no particular reason to use Cchisq rather than 

Chyper for binary input data, as both effect sizes are calculated on a pairwise basis. The 

main reason that we develop this approach is to extend it to continuously distributed data, 

which can allow greater sensitivity and avoid arbitrary choices necessary to categorize 

the commonly used metrics of local adaptation (e.g. FST or p-values) into “adapted” or 

“non-adapted”.  

 
Figure 3. Cchisq and Chyper provide approximately equal estimates of the magnitude of the 
diversity constraints driving repeatability, while 𝑃!,!"# provides an estimate of the 
proportion of all genes that could potentially contribute to adaptation, which is not 
collinear with the C-scores. Plots show values calculated for simulated datasets generated 
by randomly drawing two arrays with gs genes, with ai loci adapted in one array and ai + 
20 in the other, and then sorting a proportion of the rows in each array to artificially 
generate more repeatability than would occur by chance (with a different proportion 
sorted in each replicate). In Panel A&C, gs = 200; in panel B&D, ai  = 10; 𝑃!,!"# 
calculated using equation 4. 
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Quantifying diversity constraints with continuous data 

In many empirical contexts, genome scans for selection yield continuously distributed 

scores representing the strength of evidence for each locus contributing to adaptation 

(e.g., FST, p-values, Bayes factors). Using the same notation as above, but with αi,j 

representing the continuous score for the ith gene in the jth lineage, the total score for each 

gene can be calculated as a sum across lineages, 𝛼! = 𝛼!,!!
! , while the mean score over 

all genes and lineages is 𝛼 = 𝛼!
!!
! /𝑔!. A statistic analogous to the above χ2 can then 

be calculated as 𝜒! = (𝛼!−𝛼)! /𝛼, and the same approach for calculating the null 

distribution of this statistic can then be used to calculate Cchisq according to equation 2. 

With continuous data, there are additional complexities that arise depending on the 

distribution of the particular input metric being used and how its magnitude represents 

evidence for a gene’s involvement adaptation. One approach, which we used in all 

examples here, is to transform data so that values scale positively and approximately 

linearly with the weight of evidence for adaptation, by standardizing data within each 

lineage by subtracting their observed minimum and dividing by their observed maximum, 

such that the values within each lineage are bounded from 0 to 1. This reduces 

differences among lineages in the absolute magnitude of metrics representing adaptation, 

which can be desirable when they vary across many orders of magnitude (e.g. p-values of 

10-10 and 10-20 both provide strong evidence of adaptation). However, if some lineages 

actually have stronger signatures of adaptation at more loci, then this kind of 

standardization should not be used, as it would obscure these true differences among 

lineages. In this case, it would be preferable to use the same standardization across all 

lineages by subtracting the minimum and dividing by the maximum values observed 

across all lineages. While Pearson’s χ2 statistic was designed for discrete data, the above 

approach using continuous data represents the variability among lineages in the same 

way, as a variance among genes in the sum of their scores representing putative 

adaptation. The Cchisq statistic on continuous data behaves similarly to the Chyper statistic 

across wide ranges of parameter space, as both are formulated in terms of deviations from 

the null distribution (see below). 
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What proportion of the genome can potentially contribute to adaptation? 

While the number of genes that potentially contribute to adaptation (gas) can be estimated 

using the hypergeometric equation, 𝑔𝑎! = 𝑎!𝑎!/𝑎!, it is difficult to apply this to 

comparisons of multiple lineages, as some pairwise contrasts may have no overlap in the 

genes contributing to adaptation (as = 0), making the equation undefined. To estimate 

𝑔𝑎! from all lineages simultaneously, we can instead formulate a likelihood-based 

approach where the probability that we observe locus i adapted in oi lineages is: 

  

 𝜁! = 𝑃 ∗ 𝐵𝑖𝑛 𝑘, 𝑜, 𝑜! + 1− 𝑃 𝐵𝑖𝑛 𝑘, 0, 𝑜! ,  (3) 

 

where Bin(n,y,x) is the probability under the binomial distribution of getting x successes 

in n trials, each with probability y. As above, oi is the number of adapted genes in k 

lineages (with 𝑜! = 𝛼!,!  ! ), Pa is the proportion of g0 that can actually contribute to 

adaptation (Pa = gas / ns), and 𝑜 is the probability of each gene contributing to adaptation 

𝑜 = 𝑜!/(𝑔𝑎! 𝑘). The estimated value of 𝑔𝑎!is then the value at which the likelihood 

function: 

 

𝐿 𝑔𝑎! = log 𝜁!        (4) 

   

is maximized. Once the maximum-likelihood value of 𝑔𝑎! is estimated, this can be 

expressed either as an absolute number representing the effective number of genes that 

can contribute to adaptation or as a proportion of the total number of shared genes in the 

genome: 𝑃!,!"# = 𝑔!"/ ns. This approach implicitly assumes that all genes that have the 

potential to contribute to adaptation (gas) have approximately equal probabilities of 

actually contributing to adaptation. In very extreme cases, such where one gene is very 

highly repeatable while other genes only contribute to adaptation in a single lineage, 𝑔𝑎! 

will tend to represent the contribution of the repeatable genes and discount the 

contribution of the idiosyncratic genes (see Supplementary Materials). Multi-class 

models could be developed to estimate gas for different classes of genes in such scenarios 

by accounting for their different probabilities of contributing to adaptation (See 
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supplementary materials for a link to scripts containing functions for the above 

calculations).  

 

Results 

Comparison between metrics for quantifying convergence 

The Chyper, Cchisq, and 𝑃!,!"# estimators capture different aspects of the biology underlying 

convergence than other previously used estimators of repeatability. To estimate the 

repeatability of evolution, Conte et al. [1] used the additive and multiplicative 

Proportional Similarity (PSadd and PSmult) metrics of [30] in a meta-analysis of QTL and 

candidate gene studies, while Bailey et al. [2] used the Jaccard Index to quantify patterns 

in bacterial evolution experiments. The PS metrics are defined as 

𝑃𝑆!"" = min 𝛼!" ,𝛼!"  and 𝑃𝑆!"#$ = 𝛼!"𝛼!" /  (𝛼!")!(𝛼!")!, where αix and αiy 

are the relative contribution of gene i to adaptation in lineages x and y [1], while the 

Jaccard index is defined as 𝐽 = (𝐴! ∩ 𝐴!)/(𝐴! ∪ 𝐴!), where Ax and Ay are the sets of 

adapted genes in each lineage [2]. Both of these metrics are based on standardizing the 

number of overlapping adapted loci by the total number of adapted loci, and neither 

includes information about non-adapted genes that potentially could have contributed to 

adaptation. 

To illustrate the differences between these various metrics of convergence, we 

generated four example datasets showing either randomly drawn complements of genes 

with adapted mutations (Figure 4A) or highly convergent datasets drawn from a smaller 

(Figure 4B) or larger (Figure 4C & D) pool of genes that potentially contribute to trait 

variation (gs), with differing numbers of loci contributing to adaptation. Scenario C is the 

most constrained, as it exhibits the same amount of overlap as B, but this overlap is 

drawn from a larger pool of mutations so it is less likely to occur by chance. While 

neither the Jaccard index nor the PS metrics distinguish between the B, C, and D 

scenarios (as the same proportions of genes are being used for adaptation, so repeatability 

is the same), both the Cchisq and Chyper metrics show the highest scores for scenario C, 

because it has the smallest probability of occurring by chance if all genes had equal 

probabilities of contributing to adaptation. The 𝑃!,!"# metric also identifies scenario C as 

most constrained in terms of the smallest proportion genes potentially contributing to 
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adaptation. The 𝑃!,!"#  metric also shows that this proportion is equal for scenarios B & D, 

despite differences in the probability of the observed repeatabilities occurring by chance 

(as per the C-scores). More generally, while 𝑃!,!"# tends to decrease with increasing C-

score, these metrics differ in magnitude (Figure 3C & D), as they represent different 

aspects of diversity constraints. In summary, the Jaccard and PS metrics quantify the 

proportion of genes used for adaptation that are used repeatedly, the C-score metrics 

represent the probability of the observed repeatability occurring if there were no 

constraints, and 𝑃!,!"# represents the proportion of genes in the genome that are available 

for adaptation, given the existing diversity constraints (also see Figure S3 for further 

comparisons). 

 

Simulating convergence using individual-based simulations 

To further explore the effect of population genetic parameters on the behaviour of the 

above metrics of repeatability and constraint, we used Nemo (v2.3.45; [31]) to simulate 

two scenarios of two-patches under migration-selection balance: (i) constant size of 

mutational target with variable proportions of small- and large-effect loci; and (ii) 

constant number of large-effect loci and variable number of small effect loci, resulting in 

a variable size of mutational target. For scenario (i), simulations had n = gs = 100 loci, of 

which u loci had alleles of size +/- 0.1, while (100 – u) loci had alleles of size +/- 0.01 

(with subsequent mutations causing the allele sign to flip from positive to negative or the 

reverse). For scenario (ii), simulations had 10 large-effect loci with alleles of size +/- 0.1 

and v small-effect loci with alleles of size +/- 0.01, resulting in a variable size of mutation 

target. In all simulations, migration rate was set to 0.005 and the strength of quadratic 

phenotypic selection was 0.5, so that an individual perfectly adapted to one patch would 

suffer a fitness cost of 0.5 in the other patch (patch optima were +/- 1; similar to [32]). 

Simulations were run for 50,000 generations and censused every 100 generations. For 

binary categorization of the input data, loci were considered to be “adapted” if FST > 0.1 

for >80% of the last 25 census points (these cut-offs are somewhat arbitrary, but 

qualitative patterns were comparable under different cut-offs); for continuous input data, 

raw FST values were used. Results are averaged across 20 runs, each with 20 replicates, 

with Cchisq calculated across the 20 replicates within each run.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/279661doi: bioRxiv preprint 

https://doi.org/10.1101/279661
http://creativecommons.org/licenses/by/4.0/


	 16	

 
Figure 4. Four example datasets showing different levels of convergent adaptation and a 
comparison of different metrics assessing overlap among adapted genes. Scenario A is 
unconstrained and exactly equal to the mean expectation under a random draw; scenarios 
B & C show the same amount of overlap (as) and number of adaptively mutated genes 
(ai), but scenario C is drawn from a larger number of potential genes (gs). Scenario D has 
the same proportion of overlap as B & C, but twice as many adapted genes.  
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 These scenarios further illustrate the difference between the Jaccard and PSadd 

metrics of repeatability and the C-score and 𝑃!,!"# metrics of constraint. In both scenarios, 

the small effect loci do not tend to contribute much to adaptation because large effect loci 

are more strongly favoured under migration-selection balance [33], which results in low 

GF-redundancy. In scenario (i), all metrics show qualitatively similar patterns, with 

decreasing repeatability occurring as a result of the decreasing constraints that occur as 

the number of large-effect loci increases, increasing the GP- and GF-redundancy (Figure 

5A). By contrast, in scenario (ii), the Jaccard and PSadd metrics indicate that roughly the 

same amount of repeatability is occurring regardless of the number of small effect loci 

and total size of mutational target (Figure 5B). However, over this same range of 

parameter space, the C -score metrics show that constraint increases as the total 

mutational target is increasing. This occurs because while a larger number of potential 

routes to an adaptive phenotype are available with increasing number of small effect loci, 

only the same small number of loci are actually being involved in adaptation (i.e. the 

large effect loci), which is illustrated by the decrease in the 𝑃!,!"# metric. While there are 

many potential genetic routes to adaptation that could involve these small effect loci 

(high GP-redundancy), the large effect loci tend to be favoured and repeatedly involved 

in adaptation (low GF-redundancy). Thus, when the size of the mutational target 

increases in scenario (ii), the repeatability tends to stay about the same (Jaccard and 

PSadd) but the amount of constraint is higher (C-scores), because a smaller proportion of 

the available routes to adaptation are being used (𝑃!,!"#). The continuous and binary Cchisq 

metrics are broadly similar across these parameters because there is very little variation in 

FST among loci within the same size class (see Supplementary Materials for additional 

simulations under varying allele effect sizes). 
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Figure 5.  C-score metrics of constraint are qualitatively similar to Jaccard and PSadd 
metrics of repeatability when simulations have a constant size of mutational target (A), 
but differ when simulations vary in the size of mutational target (B). 𝑃!,!"# shows 
qualitatively similar patterns to the C-scores, with a decreasing proportion of the genome 
accessible to adaptation occurring in scenarios with higher C-scores and higher 
constraints. In panel A, all runs have ns = gs = 100 loci, with u large effect loci and (100 – 
u) small-effect loci. In panel B, there are 10 large-effect loci, and v small-effect loci. In 
both scenarios, simulations were run with N = 10,000 individuals in each patch, 
recombination rate of r = 0.5 between loci, and per-locus mutation rate = 10-5. The 
calculation of Chyper is based on categorizing genes as adapted when FST > 0.1, while the 
calculation of Cchisq is based on FST standardized by subtracting the minimum value and 
dividing by the maximum within each lineage. 
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Adjusting for incomplete sampling of the genome 
The amount of constraint quantified by the C-score will depend upon the proportion of 

the mutational target (gs) that is sampled by the sequencing approach, which should be 

proportional to the sampling of the total number of genes in the genome (ns). Some 

approaches, such as targeted sequence capture, will sample on only a subset of the total 

number of genes in the genome, which will therefore cause a bias in the estimation of 

constraint due to this incomplete sampling, even if the genes included are a random 

subset of gs. This can be most clearly seen in the calculation of Chyper, where multiplying 

all the variables in Eq. 1 by a given factor will cause a change in the magnitude of the 

effect size. By contrast, the Jaccard and PS measures of repeatability are not affected by 

incomplete sampling. If binary input data are being used and the proportion of gs that has 

been sampled can be accurately estimated (q), then the calculation of Chyper can be 

corrected by dividing all input variables by q prior to calculation, yielding a corrected 

score Chyper-adj. If continuously distributed input data are being used, then the dataset can 

be adjusted by adding g0
 (1 - q) new entries to the dataset by randomly sampling genes 

with replacement from the existing dataset, and then calculating applying Eq. 2 to this 

extended set.  

 To explore the effect of incomplete sampling of the genome on the calculation of 

C-scores and the impact of these types of correction, we constructed a test dataset by 

concatenating 5 replicates from the simulations in Figure 5A with 10 large effect loci, 

yielding a dataset with 500 loci in total and a high amount of repeatability. We then 

sampled a proportion q of this total dataset to simulate incomplete representation of the 

genome and used the above approach calculate uncorrected and corrected C-scores. 

While incomplete sampling can cause considerable bias in C-scores, as long as q is not 

too small, these approaches yield relatively accurate corrections of these estimates 

(Figure 6). At very low values of q, the variance in estimation among replicate subsets 

increases as a result of sampling effects when only a small number of adapted loci are 

included, but on average the magnitude of the corrected C’-score is independent of q. 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/279661doi: bioRxiv preprint 

https://doi.org/10.1101/279661
http://creativecommons.org/licenses/by/4.0/


	 20	

 
Figure 6. Incomplete sampling of the genome causes a bias in the estimation of C -scores 
(Chyper and Cchisq), but this can be adjusted by using a correction factor (Chyper-adj) or 
resampling from the existing dataset up to the estimated genome size (Cchisq-adj). These 
approaches yield unbiased C-scores, although the variance of the estimates increases due 
to sampling effects when the proportion of sampled genes (q) is small. Figure shows 
estimates for 10 replicate subsamples performed for each value of q. 
 

 

Example: Antibiotic resistance in yeast 

Experimental evolution studies provide a controlled framework to test theories on the 

genetic basis of adaptation under a diversity of scenarios. Gerstein et al. (2012) 

previously conducted an experiment to examine the diversity of first-step adaptive 

mutations that arose in different lines initiated with the same genotypes in response to the 

antifungal drug nystatin [34] and in response to copper [35]. The design allowed them to 

directly test how many different first-step solutions were accessible to evolution when the 

same genetic background adapted to this same environmental stressor. In the nystatin-

evolved lines they identified 20 unique and independently evolved mutations in only four 
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different genes that act in the nystatin biosynthesis pathway: 11 unique mutations in 

ERG3, 7 unique mutations in ERG6, and 1 unique mutation in each of ERG5 and ERG7 

[34]. The genotypic basis of copper adaptation was broader, and there were both genomic 

(SNPs, small indels) and karyotypic (aneuploidy) mutations identified. If we consider just 

the genomic mutations, mutations were found in 28 different genes, with multiple 

mutations identified in four genes (12 unique mutations in VTC4, four unique mutations 

in PMA1, and 3 unique mutations in MAM3 and VTC1). If we assume that all genes in the 

genome could potentially contribute to adaptation (i.e. g0 = 6604), then Chyper-nystatin = 

32.5, while Chyper-copper = 12.3, and p < 0.00001 in both cases.  

If we assume much lower GP-redundancy and that only the observed genes could 

possibly contribute to the phenotype (i.e. g0-nystatin = 4, g0-copper = 28), we can test whether 

the mutations are still more clustered than expected within these sets. Using the methods 

outlined above, we find Chyper-nystatin = 0.35, p = 0.002, and Chyper-copper = 0.43, p < 0.0001, 

indicating that even under the severe developmental-genetic constraints to diversity 

represented by this model, these data are slightly more overlapping more than expected at 

random, likely due low GF-redundancy and potentially gene-specific differences in 

mutation rate. (Because these experiments were initiated using isogenic strains, standing 

variation was precluded).  

 Experimental evolution studies lend themselves nicely to future hypothesis testing 

about the impact of constraint on the genetic basis of adaptation, and provide us with 

hypotheses about differences between the genes that were and were not observed in the 

screen. For example, we parsed the Saccharomyces Genome Database 

(http://www.yeastgenome.org) for genes that have been annotated as “resistance to 

nystatin: increased”, where this phenotype is conferred by the null mutation. This should 

be a conservative dataset, as we also expect there could be mutations in additional genes 

that do not result in a loss-of-function phenotype that could also confer tolerance to 

nystatin (although we expect that the mutations we recovered in ERG3, ERG5 and ERG6 

are all similar to loss of function mutations, ERG7 is inviable when null [34]). This 

identified an additional five genes (KES1, OSH2, SLK19, VHR2, YEH2). We can test 

whether the five genes without an observed mutation have a negative pleiotropic effect 

when null, or are in areas of the genome with a lower mutation rate compared to the ERG 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/279661doi: bioRxiv preprint 

https://doi.org/10.1101/279661
http://creativecommons.org/licenses/by/4.0/


	 22	

genes (particularly compared to ERG3 and ERG6). Similar experiments could also be 

conducted with different Saccharomyces cerevisiae genetic backgrounds, with closely 

related species, or under slightly different environmental conditions (e.g., increased or 

decreased levels of stressor) to directly examine how different aspects of the genomic and 

ecological environments influence the observed level of constraints acting on adaptation 

 
Example: Cold tolerance in conifers 

Lodgepole pine and interior spruce both inhabit large ranges of western North America 

and display extensive local adaptation, with large differences in cold tolerance between 

northern and southern populations in each species. Recent work studied the strength of 

correlations between population allele frequencies and a number of environmental 

variables and phenotypes in each species [36]. Taking one representative environmental 

variable as an example, a total of 50 and 121 single-copy orthologs showed strong 

signatures of association to Mean Coldest Month Temperature (MCMT) in pine and 

spruce, respectively, with 5 of these genes overlapping (based on binary categorization 

using the binomial cutoff “top candidate” method, as per [36]). This study included a 

total of 9891 one-to-one orthologs with sufficient data in both species (i.e. at least 5 SNPs 

per gene), so observing 5 genes overlapping corresponds to Chyper = 5.6 and p = 0.00034 

under the null hypothesis that all genes had equal potential to contribute to adaptation. 

Alternatively, it is also possible to estimate Cchisq on continuously distributed data by 

calculating top candidate scores for each gene using the binomial probability of seeing u 

outliers when there are v SNPs in a given gene, with an overall rate of w outliers per SNP 

(as per [36], this yields an index rather than an exact probability, due to linkage among 

SNPs). This approach is more sensitive to weak signatures of adaptation that occur below 

the binary categorization cutoff, yielding Cchisq = 5.1 and p < 0.00001. Assuming that the 

9891 studied genes represent a random sample from approximately 23,000 genes in the 

whole genome and ignoring divergence in gene content between species (ns = nx = ny), 

the adjusted C-scores are Chyper-adj = 8.6 and Cchisq-adj = 7.8 (with resampling of 50 

replicates and 10,000 permutations per replicate), providing a very rough estimate of the 

total diversity constraints driving repeatability. These diversity constraints correspond to 

an effective adaptive target of gas = 1462 genes that could potentially contribute to 
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adaptation in these species (out of 9891), which yields 𝑃!,!"#  = 0.15. However, a large 

number of the 50 and 121 genes identified using their “top candidate test” were likely 

false positives, because there were no controls for population structure during the 

association test, as this was subsequently accounted for by the among-species 

comparison. Thus, if we assume a 50% false positive rate for ax and ay, then gas declines 

to 370 genes, with 𝑃!,!"# = 0.037. In their analysis, Yeaman et al. [36] used another more 

sensitive test (null-W) to identify loci with signatures of convergence that were not 

detected based on overlap in the top candidates lists, which suggests the true amount of 

repeatability may be higher than Chyper = 5.6. This example illustrates how these kinds of 

statistics may be used to make inferences about constraints, but also highlights the 

sensitivity of the results to small changes in parameters.  

 

Discussion 

Mc1r provides perhaps the most well known case of convergent local adaptation at the 

gene scale, and has been implicated in driving colour pattern variation in mice, lizards, 

mammoths, fish, and a range of other organisms ([21,37–40]). Extensive study in mice 

has revealed that over 50 genes can be mutated to give rise to variation in colour pattern 

[41], yet Mc1r consistently tends be one of the main contributors to local adaptation in 

colour pattern in many vertebrates. Given the apparent high GP-redundancy, this can be 

seen as a likely example of GF-redundancy constraining the diversity of forms: Mc1r has 

minimal pleiotropic side effects [39,41] and it can mutate to similar phenotypes through 

numerous different changes in its protein sequence [21,41] and therefore may have a 

higher rate of mutation to beneficial alleles than other genes with similar per-nucleotide 

mutation rates. If all of these features of Mc1r serve to facilitate adaptation by repeated 

change in the same gene, should this really be called “constraint”? Again, it is critical to 

differentiate between “constraints to adaptation” and “constraints on the diversity of 

forms”. Evolution via Mc1r can clearly occur quite readily, and is therefore relatively 

unconstrained in terms of the potential for contributing to fitness gains over time. But the 

lack of other equally suitable alternative routes for realizing change in colouration 

phenotypes constitutes a clear constraint on the diversity of forms. Other genes are more 

constrained than Mc1r, resulting in evolution overall being constrained to evolve similar 
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forms through similar genetic routes. This of course brings up the fascinating question: 

why do such constraints exist? Are the factors that constrain adaptation actually 

themselves evolving adaptively? 

 Our aim here has been to develop a method to quantify the constraints that drive 

repeatability so that we can test hypotheses about the nature of these constraints on the 

diversity of forms and reasons they exist. We have focused on how convergence can be 

inferred from observational studies of local adaptation and experimental investigations of 

short-term laboratory evolution, but phylogenetic studies of convergence in nucleotide 

substitution rates could also be used (e.g. [42,43]). With any type of study, comparative 

approaches examining the same trait across different branches of the phylogeny may 

allow us to infer rates of evolution in constraints and study whether adaptation drives 

such changes. Comparisons across traits within lineages will illuminate how different 

kinds of traits (e.g. morphological, physiological, behavioural) are constrained, and 

whether low GF- and GP-redundancy constitute important constraints at different levels 

of biological organization (e.g. pathways and products, tissues, organs, integrated traits). 

Similarly, it will be interesting to examine whether the types of constraint that 

predominate depend upon critical population genetic parameters such as effective 

population size (Ne) that affect the long term efficiency of selection on the 

developmental/genetic/ecological landscape that gives rise to constraint. While we have 

focused on repeatability at the gene level, this framework could be applied at other levels 

of organization, such as gene network, protein domain, or individual nucleotide 

(reviewed by [3]), and could include the contribution of intergenic regulatory regions if it 

is possible to identify orthology.  

  

Hypothesis testing to identify the factors that constrain diversity 

Under the simplest null hypothesis that there are no diversity constraints, g0 = gs = gas = 

ns  (i.e. all genes can give rise to variation in the trait). While simplistic, this approach 

provides an intuitive method to assess whether the amount of convergence observed is 

more than expected due to pure randomness. But what do we learn if we reject such a 

simple null hypothesis? Two inferences can be drawn in this case: many of the genes 

flagged by our tests for selection are likely evolving by natural selection (i.e. they are not 
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all false positives) and some kind of constraint is involved in shaping this adaptation. The 

former inference means that analyzing comparative data for convergence can provide a 

powerful tool for identifying the genes involved in local adaptation, as this is often as 

significant methodological hurdle in evolutionary biology (e.g. [36]). The latter inference 

may seem a straw-man, as few molecular biologists would advocate a model where every 

gene can mutate to give rise to variation in a given trait. However, different forms of the 

“universal pleiotropy” model have been assumed in theoretical quantitative genetics [44], 

and the recently proposed “omnigenic model” advocates extensive pleiotropy [45]. 

Regardless of whether this null hypothesis represents a plausible biological scenario, it 

provides a benchmark against which we can  quantify how all factors constraining the 

diversity of forms combine to drive repeatability, which is useful for interpreting patterns 

of repeatability among species and traits.  

In order to make inferences about the potential importance of different kinds of 

diversity constraints driving repeatability, it is necessary to specify more realistic models 

for the evolution of local adaptation that incorporate different assumptions about size of 

the mutational target of the trait, extent of shared standing variation, differences in 

mutation rate among genes, distribution of mutation effect sizes, and species 

demography. The simplest modification to the above null model is to represent the extent 

of GP-redundancy by specifying the number of loci that potentially contribute to trait 

variation as a subset of the total number of loci in the genome (g0 = gs < ns). In the 

context of eq. (1), reducing g0 increases both the mean and standard deviation of the 

hypergeometric distribution and therefore decreases Chyper and the inferred level of 

residual (unexplained) constraints. If empirical estimates of gs result in  Chyper ~ 0, then it 

is reasonable to conclude that low GP-redundancy is mainly responsible for the observed 

amount of convergent adaptation. This would not discount the importance of natural 

selection overall, as selection on the phenotype is still responsible for adaptation, but 

would suggest that individual loci are more or less interchangeable and GP-redundancy is 

high. However, as we have few (if any) conclusive estimates of gs in highly polygenic 

traits [46,47], the extent of constraint arising through low GP-redundancy will be difficult 

to assess without further directed study. Although they are by no means simple 

experiments to conduct, it should be possible to estimate gs from QTLs identified in 
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multiple mutation accumulation experiments, as the number of loci detected across all 

experiments should asymptote towards gs, and rarefaction designs could be used to 

estimate gs based on the overlap between QTLs detected in two experiments (although 

this would likely still be biased by failing to detect loci of small effect). A similar 

approach could be taken using Genome Wide Association Studies on standing variation 

for a given trait and comparing the loci identified in different species to assess the 

proportion of shared loci. Depending on the difference between the size of the mutational 

target (gs) and the inferred size of the effective adaptive target (gas), it is possible to draw 

conclusions about the relative importance of GP- vs. GF-redundancy (Table 1).  

In order to draw inferences about the importance of these types of redundancy, it 

is critical to account for other factors unrelated to GP- and GF-redundancy that might 

drive repeatability, mainly through differences among genes in mutation rate or standing 

variation. The simplest approach to control these factors is to design studies that preclude 

shared standing variation, either through experiments founded from isogenic strains (e.g. 

[2,34]) or comparisons of distantly related lineages (divergence time >> 4Ne) where 

lineage sorting has been completed (as per [36]). While repeatability could still be driven 

by differences among genes in mutation rate, this can be seen as a component of 

redundancy and therefore as factor that can also constrain diversity. By contrast, the 

existence of shared standing variation occurs mainly due to historical contingency, and is 

therefore a bias affecting estimation of C-scores, rather than a constraint. As such, 

parsing the contribution of mutation rate to the repeatability assessed by C-scores and 𝑃! 

is less critical than parsing the contribution of standing variation when using these as 

overall metrics of constraint. Unfortunately, in studies of recently diverged natural 

populations, it is not possible to preclude shared standing variation, so C-scores and 𝑃! 

could be strongly driven by this factor and therefore not particularly representative of 

diversity constraints. The recently developed likelihood-based method for discriminating 

between convergence via de novo mutation, migration, or shared standing variation ([17]) 

may provide a means to parse these contributions to repeatability and refine the inference 

of constraint. While testing the null hypothesis of no constraints is relatively 

straightforward, discriminating among other potential factors constraining diversity is 

much more complicated. Although it is possible to make very intricate models with 
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variable mutation rates or shared standing variation, selection coefficients or indices of 

pleiotropy, and other factors determining the likelihood of each gene contributing to 

adaptation [3,20,26,48], it may be very difficult to actually confidently discriminate 

between such models.  

 

Table 1: Drawing inferences about the nature of constraints to diversity that drive 
repeatability 
  
Observation Inference 
ns ≅ gs ≅ gas No diversity constraints 
ns ≅ gs > gas High GP-redundancy, low GF-redundancy 
ns > gs > gas Low GP-redundancy, low GF-redundancy 
ns > gs ≅ gas Low GP-redundancy, no additional contribution of 

low GF-redundancy 
 

	
Practical considerations in implementation 

The accuracy of these metrics will depend critically on the correct identification of the 

genes contributing to adaptation. Studies of local adaptation are particularly prone to 

false positives when population structure is oriented on the same axis as adaptive 

divergence, and it is unclear how extensively methods that correct for population 

structure induce false negatives or fail to accurately control false positives [49,50]. 

Assuming false positives are distributed randomly throughout the genome in each 

lineage, failure to remove them will cause the C-scores derived here to be biased 

downwards. Failure to identify true positives (i.e. false negatives) will impair the 

accuracy of Cchisq but will not necessarily bias it in one direction or the other, as this 

would depend upon the underlying biology. Assuming false negatives are randomly 

distributed in the genome, they could reduce the magnitude of C-scores due to lower 

information content. But on the other hand, because large-effect loci are more likely to be 

both detected and convergent and small effect loci are more likely to be missed, false 

negatives will tend to bias C-scores upwards. As it is typically necessary to set arbitrary 

cutoffs for statistical significance to identify putatively adapted loci, we might expect 

Cchisq to increase with increasing stringency of these cutoffs, as this would be expected to 

reduce false positives. However, as there are many potential contingencies and 
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interactions between the factors that affect these two types of error, there is a clear need 

for both theoretical studies on how the repeatability of local adaptation is affected by the 

interplay between demography and selection (e.g. [26]), and refinement of these methods 

to derive confidence intervals taking into account likely error rates. 

 A particularly important problem to address in implementing this method is that 

false positives may be non-randomly distributed throughout the genome in a similar way 

in different lineages. As local variations in the rate of mutation or recombination can 

drive genome-wide patterns in some metrics used to identify selection and adaptation 

[51–53], this could lead to signatures of convergence among distantly-related species if 

such patterns are conserved over long periods of evolutionary time. For example, 

genome-wide patterns of variation in nucleotide diversity, FST, and dxy were all 

significantly correlated across three distantly related bird species, likely driven in part by 

conservation of local recombination rate coupled with linked selection [54]. The extent of 

convergence of local recombination rates appears to vary considerably among species 

[55–58], so it will be important to consider this factor as a potential driver of similarity in 

the genomic signatures used to identify selection. Methods for identifying signatures 

adaptation that are explicitly linked to a phenotype or environment of interest across 

multiple pairs of populations may be less likely to be affected by such factors, as 

recombination and linked selection are unlikely to drive a pattern of repeated correlation 

between allele frequency and phenotype/environment. However, such methods are still 

vulnerable to potential biases that arise from the complex interplay between genomic 

landscape, selection, and recombination, and further study in both theoretical and 

empirical contexts will be important to test the robustness of different methods to this 

important source of bias. 

While studying adaptation across multiple pairs of populations can greatly 

increase the power to detect signatures of selection when all populations are adapting via 

the same loci, such methods are inherently unable to detect idiosyncratic patterns where 

different populations of a given species are adapting via different loci. By its very nature, 

it may be very difficult, if not impossible to detect local adaptation in traits with high GP- 

or GF-redundancy, as each pair of populations may be differentiated via a different set of 

loci [32]. If local adaptation is much more readily detected when it arises repeatedly 
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within a lineage, then it will be difficult to identify conclusive cases with low C-scores, 

causing an overestimation of the prevalence of highly repeated adaptation.  

If patterns of genomic convergence are compared among multiple differentially-

related lineages, it is important to consider their phylogeny when testing the importance 

of phylogenetic sharing of different factors affecting the propensity for gene reuse [59]. 

Also, the ability to resolve orthology relationships decreases with increasing phylogenetic 

distance, which can affect the estimation of ns. Similarly, the set of genes in a trait’s 

mutational target (gi) is expected to evolve over time, so the set of shared genes should 

decrease with phylogenetic distance (so that gi – gs increases with divergence time), 

leading to decreased repeatability over time [1]. When studies include multiple 

differentially-related lineages, it is probably useful to estimate C-scores on both a 

pairwise and mean-across-all-lineages basis to more clearly describe cases where 

convergence is high within pairs of closely related lineages but low among more distantly 

related lineages.  

 Finally, physical linkage is a factor that could critically affect the measurement of 

repeatability, as neutral alleles in other genes linked to a causal allele will tend to respond 

to indirect selection, causing spurious signatures of selection/local adaptation. If the same 

causal gene is driving adaptation in two lineages, this will tend to overestimate 

repeatability on a gene-by-gene basis, whereas the opposite will occur if different causal 

genes are driving adaptation. Yeaman et al. [36] found significantly elevated levels of 

linkage disequilibrium (LD) among candidate genes for local adaptation, which may have 

arisen due to physical linkage (with or without selection on multiple causal loci) or 

statistical associations driven by selection among physically unlinked loci. In this case, 

the fragmented genome and lack of suitable genetic map precluded a comprehensive 

analysis of the impact of LD. If genome/genetic map resources permit, it may be possible 

to analyse repeatability on haplotype blocks rather than individual genes, which could 

minimize the biases due to physical linkage. 

 
Comparison to other metrics of repeatability 

A large number of metrics have been developed to characterize similarity among 

ecological communities, which can be broadly grouped based on binary vs. quantitative 
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input data and whether they account for joint absence of a given type (reviewed in [60]). 

In most cases, these metrics are not derived from a probability-based representation of 

expectations, though Raup and Crick [61] quantified an index of similarity based on the 

p-value of a hypergeometric test (see also [62]). The Chyper metric that we have developed 

here uses the same underlying logic as the Raup-Crick metric, but quantifies the effect 

size as a deviation from the expectation under the null hypothesis in units of the standard 

deviation of the null distribution. The C-score and 𝑃! metrics developed here provide a 

complement to metrics of repeatability that have been used in previous studies of 

convergence at the genome scale (e.g. [1,2]). Whereas the Jaccard, PSadd, and other 

similar metrics represent how commonly a given gene tends to be used in adaptation, the 

C-score metrics quantify how much constraint is involved in driving this observed 

repeatability, whereas 𝑃! quantifies the proportion of the genome that is effectively 

available for adaptation. In some cases, these metrics will be qualitatively similar in 

quantifying patterns of convergence (e.g. Figure 5A), but in other cases they will diverge 

considerably, because the C-scores are explicitly aimed at representing the importance of 

genes that could contribute to adaptation but do not.  

 

Conclusions 

When adaptation uses the same genes, does this occur because there are only a few 

genetic ways to make a given phenotype, or because only a few ways are optimally fit? 

Direct quantification of genotype-phenotype landscapes that could answer this question 

has been conducted in some very specific cases, yielding fascinating insights into how 

such landscapes shape evolution (e.g., [63]). Unfortunately, for most traits in most 

species, it is currently impractical to systematically and directly quantify the mapping of 

genotype to phenotype to fitness. However, studying the repeatability of adaptation can 

provide an indirect way to learn about the topology of this landscape. In this case, a first 

step towards quantifying how the genotype-phenotype-fitness map shapes adaptation is to 

compare the genes that potentially contribute to standing variation (g) with the genes that 

potentially contribute to adaptation (ga). The recently formulated “omnigenic model” 

posits that most genes can have some effect on phenotypic variation in a given trait but 

that they can be subdivided into “core” vs. “peripheral” genes with large and small 
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effects, respectively [45]. Other reviews of Genome-Wide Association Studies have come 

to similar conclusions about the large size of mutational target and interchangebility of 

allelic effects underlying standing variation [64,65]. These studies therefore imply that 

many complex traits exhibit high GP-redundancy. But what fraction of the alleles 

contributing to standing variation actually have the potential to contribute to adaptation? 

Is GF-redundancy also high? Given that most phenotype-affecting mutations are thought 

to be deleterious rather than beneficial [66], it seems likely that most of the alleles 

contributing to standing variation are simply deleterious variants that have not yet been 

purged from the population, and therefore may not be representative of the “stuff” of 

long-term adaptation. This is probably especially true for the genetic basis of disease in 

humans and other animals, which in most cases are deleterious by definition. Studying 

the repeatability of adaptation at the genome scale will provide insights into the extent of 

GF-redundancy by comparing the change in metrics of repeatability for the null 

hypothesis of no constraints (complete GP-redundancy) vs. a null hypothesis under a 

more limited mutational target (lower GP-redundancy). As we now have many examples 

of convergent adaptation at different levels of organization [1,3,67], it seems likely that 

many traits exhibit quite limited GF-redundancy and that standing variation does not 

necessarily correspond to long-term adaptive potential. We hope that the methods 

formulated here provide a useful way to compare results among studies and test these 

hypotheses directly. Unfortunately, it will be much easier to detect the cases with high 

convergence than to conclusively demonstrate non-convergence, so a great deal of care 

will be required when interpreting these data. 
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