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Abstract

Convergent adaptation can occur at the genome scale when independently evolving
lineages use the same genes to respond to similar selection pressures. These patterns
provide insights into the factors that facilitate or constrain the diversity of genetic
responses that contribute to adaptive evolution. A first step in studying such factors is to
quantify the observed amount of repeatability relative to expectations under a null
hypothesis. Here, we formulate a novel metric to quantify the constraints driving the
observed amount of repeated adaptation in pairwise contrasts based on the
hypergeometric distribution, and then generalize this for simultaneous analysis of
multiple lineages. This metric is explicitly based on the probability of observing a given
amount of repeatability by chance under an arbitrary null hypothesis, and is readily
compared among different species and types of trait. We also formulate a metric to
quantify the effective proportion of genes in the genome that have the potential to
contribute to adaptation. As an example of how these metrics can be used to draw
inferences, we assess the amount of repeatability observed in existing datasets on
adaptation to antibiotics in yeast and climate in conifers. This approach provides a
method to test a wide range of hypotheses about how different kinds of factors can
facilitate or constrain the diversity of genetic responses observed during adaptive

evolution.

Introduction

What factors limit the diversity of viable genetic routes to adaptation? If different species
encounter the same selection pressure, will adaptive responses occur through mutations in
homologous nucleotides, regulatory regions, protein domains, genes, or gene pathways?
Empirical studies have identified different amounts of convergent adaptation across a
range of species, traits, timescales, and levels of genetic hierarchy [1-3]. But why do
similar forms evolve at the genomic level, and what does the level of convergence tell us
about underlying constraints? Does evolution use the same genes repeatedly because
there are only a limited number of ways that genetic and developmental pathways can

generate a given phenotype or because only a limited proportion of generated phenotypes
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are selectively optimal? These two explanations represent fundamentally different kinds
of constraints affecting the diversity of genetic responses generated by evolution, so
studying their relative importance is central to understanding adaptation. Our broad aim
here is to develop methods that represent how empirical observations deviate from null
hypotheses under different models of the mapping of genotype to phenotype to fitness.
While discriminating between these alternative models may prove difficult in practice,
this provides a first step towards quantifying constraints in a way that is readily compared
across study systems, with the eventual goal being a comprehensive understanding of the
relative importance of different factors shaping the diversity of routes to adaptation.

To rephrase the above questions in quantitative terms based on the flexibility of
the mapping from genotype to phenotype to fitness: does repeatability occur because of
low redundancy in the mapping of genotype to phenotype (only a few ways to make the
same phenotype; Figure 1A), or because of low redundancy in the mapping of genotype
to fitness? (only a subset of the genotypes yielding the same phenotype are optimal;
Figure 1B). Redundancy in the mapping of genotype to phenotype (hereafter, GP-
redundancy; [4]) is determined by two factors: 1) the difference between the number of
genes that need to mutate to yield a given phenotype and the number of genes that could
potentially mutate to give rise to variation in the trait, and 2) the extent to which different
genes have interchangeable vs. uniquely important effects on the phenotype. High GP-
redundancy means that many different combinations of alleles can have the same
phenotype, so if all else is equal, then independent bouts of adaptation are likely to occur
via different sets of mutations and repeatability will be low ([4,5]). The standard
quantitative genetic model implicitly assumes complete GP-redundancy with fully
interchangeable allelic effects, while the recently proposed omnigenic model assumes
high but incomplete redundancy, with “core” vs. “peripheral” genes having different
potential to affect variation [6].

Redundancy in the mapping of genotype to fitness (hereafter, GF-redundancy) is
determined by both the direct effects of genotype on phenotype and phenotype on fitness
and a number of possible indirect effects. These indirect effects can arise due to epistatic
interactions or pleiotropic effects on other selected traits. Alternatively, GF-redundancy

can also be affected by aspects of the genetic architecture such as the number of alleles
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and their linkage relationships and effect sizes, depending upon the interaction between
migration, selection, and drift. For example, if a given phenotype is coded by many small
unlinked alleles, this architecture would be less fit than a similar phenotype coded by a
few large or tightly linked alleles, in the context of migration-selection balance [7] or
negative frequency dependence [8,9]. Similarly, the increased drift that occurs in small
populations may prevent alleles of small effect from responding to natural selection
[10,11], resulting in such genotypes being effectively neutral and therefore lower in
realized fitness than those made up of large-effect alleles. Polygenic models of
directional selection (e.g. [12]) assume no GP- and GF-redundancy, while traditional
quantitative genetic models of Gaussian stabilizing selection assume high GP- and GF-
redundancy (e.g. [13]). Rephrasing the main question in terms of redundancy: when high
repeatability is observed, is the low diversity of genetic routes to adaptation being
constrained by low GP-redundancy (few ways to make a phenotype) or by high GP-

redundancy but low GF-redundancy (many ways but few are good)?

A Low GP-redundancy constrains diversity of adaptation
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Figure 1. Scenarios with different combinations of GP- and GF-redundancy that result in
high repeatability of adaptation (adapted from [14]).
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In addition to these types of redundancy, differences in mutation rate among
genes or types of variants (e.g. SNPs, indels, microsatellites) can also greatly affect the
repeatability of adaptation [2,15-17]. Genes that can mutate to a beneficial phenotype
through loss-of-function mutations are often implicated in repeated evolution (e.g.
[18,19]), likely because there are more ways to break a gene than to beneficially refine its
protein function. Also, in cases where there is insufficient time since the most recent
common ancestor for complete lineage sorting, shared standing variation can greatly
increase repeatability, due to higher fixation probability of variants at intermediate
frequency [17,20]. Finally, if some genes tend to maintain more standing variation than
other genes, then repeatability will be higher for genes with higher standing variation,
even if the actual causal alleles are different in each lineage. If a given gene has the
capacity to mutate more rapidly or maintain more standing variation, these factors could
be seen as fundamental drivers of evolvability that contribute to realized to GP- and GF-
redundancy. However, because shared standing variation is more dependent on historical
contingency, it is important to control for its contribution when drawing inferences about
the importance of redundancy (see Discussion).

It is important to note that the constraint that we discuss here is only referring to
factors that affect the diversity of genes used in independent bouts of adaptation, rather
than factors that limit an adaptive phenotypic response in general. Observing the same
gene contribute to adaptation in numerous lineages (e.g. Mclr; [21]) can rightly be
interpreted as evidence that some feature of the interaction between the developmental-
genetic program and ecology facilitates the rapid emergence of adaptation, rather than
constraining it. However, the same example can also be interpreted as being severely
constrained in terms of the diversity of forms, since there are so few viable alternative
genetic solutions that actually evolve [19]. Thus, evolutionary constraints can be
considered along two related but distinct axes: factors that affect the potential for any
adaptive response [22,23] vs. factors that affect the diversity of forms (i.e., genetic routes
to adaptation). A scenario that is highly constrained in terms of the diversity of forms
may be least constrained in terms of the potential for a rapid adaptive response to a
change in environment, and low redundancy in the mapping of genotype-phenotype-

fitness may itself be a product of adaptation over deep time. For the remainder of this
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manuscript, we focus on constraints affecting the diversity of forms, which we refer to as
“diversity constraints” for simplicity.

There has been considerable discussion in the literature about the effects of these
different factors on convergence [3,16,17,20,24-28], and various metrics have been used
to quantify repeatability in empirical contexts (e.g. Jaccard index, Proportional
Similarity; [2,1]). However, there are several limitations in using these metrics to study
diversity constraints, as they do not incorporate information about genes that could
contribute to adaptation but don’t and are not explicitly tied to the probability of
repeatability occurring under a null model. These existing metrics provide a useful
description of how often the same gene is used in adaptation, but as we will show below,
they are not well-suited for testing of hypotheses to discriminate between these different
kinds of constraint.

Here, we develop statistical approaches for quantifying the diversity constraints
that drive repeatability in genomic data from studies of local adaptation and experimental
evolution. To study these constraints, we formulate an explicit probability-based
representation of the deviation of observed repeatability from expectations under
different null hypotheses. This approach can be used after standard tests have been
applied to identify the putative genes driving adaptation, and uses as input either binary
categorization of genes as “adapted” or “non-adapted” or any continuous metric
representing the relative amount of evidence for a given gene being involved in
adaptation (e.g. Fst, p-values, Bayes factors). We begin by formulating an analytical
model for a contrast of two lineages with binary data, and then generalize this model for
contrasts of multiple lineages using either binary or continuous data. We also propose a
novel metric estimating the proportion of genes in the genome that can potentially give
rise to adaptation. In all cases, these models can be used to successively test null
hypotheses that incorporate different amounts of information about the constraints that
could shape repeatability.

The simplest null hypothesis is that there are no constraints and all genes have
equal probability of contributing to adaptation. If more repeatability is observed than
expected under this null model, then two inferences can be made: natural selection is

driving patterns of convergence (and that observed signatures are not false positives), and
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some diversity constraints are operating to increase the repeatability of adaptation. We
then consider how other null hypotheses can be formulated to represent the various kinds
of constraints discussed above. We focus mainly on the effect of low GP-redundancy,
where the number of genes that could potentially contribute to adaptation is much smaller
than the total number of genes in the genome, but also discuss how constraints arising
from GF-redundancy, standing variation, or mutation rate could be modeled. Because this
method quantifies repeatability in terms of probability-scaled deviations from
expectations, it can be applied across any trait or species of interest, allowing contrasts to

be made on the same scale of measurement.

Methods

Quantifying diversity constraints in pairwise contrasts

Suppose there are two lineages, x and y, that have recently undergone adaptation to a
given selection pressure, resulting in convergent evolution of the same phenotype within
each lineage. This adaptation could be global, with new mutations fixed within lineages
(e.g., in experimental evolution studies with multiple replicate populations), or local, with
mutations contributing to divergence among populations within each lineage (e.g., in
observational studies of natural adaptation to environmental gradients). In either case, we
assume that adaptation can be reduced to a binary categorization of genes as “adapted” or
“non-adapted”. We use the following notation to represent different properties of the
genomic basis of trait variation: the number of loci in the genome of each species is n,,
and n,, with the number of orthologous loci shared by both species being n,; the adaptive
trait is controlled by g, and g, loci in each species, with g, shared loci (i.e. the loci in
which mutations will give rise to phenotypic variation in the trait, hereafter the
“mutational target”); of the g loci that give rise to variation, only a subset have the
potential to contribute to adaptation due to the combined effect of all constraints,
represented by ga, and ga,, with ga, shared loci (the “effective adaptive target”); in a
given bout of adaptation, the number of loci that contribute to adaptation in each lineage
is a, and a,, with a, orthologous loci contributing in both lineages. For simplicity, we
assume that there is complete overlap in the genomes (n, = n, = n,) , mutational targets

(gs = g+ = g), and loci potentially contributing to adaptation (ga, = ga. = ga,) in both
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species (see supplementary materials and Figure S1 for set notation). These assumptions
are most appropriate for lineages that are relatively recently diverged, where most
orthologous genes are retained at the same copy number and the developmental-genetic
program is relatively conserved, so that the same genes potentially give rise to variation
in both lineages. Lineages separated by greater amounts of time would be expected to
have reduced n, due to gene deletion, duplication, and pseudogenization in either lineage,
and reduced g, and ga, due to evolution and divergence of the developmental-genetic
program, through sub- and neo-functionalization, and divergence in regulatory networks.

Under the assumption that all ga, genes have equal probability of contributing to
adaptation, the amount over overlap in the complement of genes that are adapted in both
lineages (a;) is described by a hypergeometric distribution where the expected amount of
overlap is as = axa,/ga, (e.g. [29]). In practice, we typically have little prior
knowledge about which genes have the potential to contribute to either adaptation (gay) or
standing variation in the trait (g;), but we can draw inferences about how these
parameters constrain the diversity of adaptive responses by testing hypotheses and
comparing the observed amount of overlap (a;) to the amount expected under a given null
hypothesis (a;). To test different hypotheses about how diversity constraints give rise to
repeated adaptation, we represent the total number of genes included in the test set as gj.
The simplest null hypothesis is that there are no diversity constraints and all genes
potentially give rise to variation and contribute to adaptation (go = gas = g = 1), so by
rejecting this null, we can infer that ga, < n,. In model systems where something is
known about which genes potentially contribute to variation for the trait (based on
mutation accumulation or GWAS), then a more refined null hypothesis can be tested,
where gy = g;. By rejecting this null, we can infer that ga, < g;, which could occur due to
low GF-redundancy or differences among genes in mutation rate or standing variation.
We can also reverse the direction of inquiry and estimate ga, directly from the data by
calculating ga, = a,a,/as, such that a metric representing the effective proportion of
the genome that can potentially contribute to adaptation can be calculated as Pa,hyper =
AxQy [ (AsNs).

For any value of gy, an effect size representing the excess in overlap due to

convergence relative to the null hypothesis can be expressed by standardizing the
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observed overlap by subtracting the mean (as = a.a,/g,) and dividing by the standard

deviation of the hypergeometric distribution:

Craper = (@5 = (Z2))/ (@) (90 = ) (g0 ~ a,)/ (G (g0 — D). (1)

This metric provides a quantitative representation of how much more overlap occurs than
expected under the null hypothesis, scaled according to how much a given bout of
evolution would deviate from this expectation if the null hypothesis were true. Similarly,
the exact probability of observing a, or more shared loci contributing to adaptation can
also be calculated using the hypergeometric probability (see Supplementary Information

for sample R-script), which provides a p-value.

Quantifying diversity constraints in multiple lineages

While pairwise contrasts are most straightforward statistically, they have considerably
lower power than comparisons among multiple lineages. If one gene (such as Mcr) tends
to drive adaptation repeatedly in a large number of lineages, this may go undetected in an
approach using multiple pairwise comparisons, but would be readily detected in a
simultaneous comparison of multiple lineages. Unfortunately, while the hypergeometric
distribution provides an exact analytical prediction for the amount of overlap in a
pairwise comparison, which can be used to calculate a p-value and the probability-based
effect size (Chyper), it cannot be easily generalized to simultaneously analyze multiple
lineages. While it is possible to conduct pairwise analysis and average the results across
multiple comparisons, p-values from this approach might fail to detect cases where a
single gene contributes repeatedly to adaptation in more than two lineages, as information
does not transfer among the pairwise comparisons. We now develop an alternate,
approximate approach to assess repeatability in multiple lineages by calculating
Pearson’s )’ goodness of fit statistic and comparing this to a null distribution of x’
statistics simulated under the null hypothesis to calculate a p-value and an effect size. The
p-value obtained by this approach represents the probability of observing a test statistic as

extreme or more extreme under the null hypothesis, considering all lineages
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simultaneously. The effect size is instead calculated as an average across all pairwise
comparisons among the k replicate lineages, so that it represents the increase in
repeatability relative to expectations under the null for a given bout of adaptation in a
single lineage (and does not therefore depend upon sampling effort in terms of the
number of lineages).

Consider the case where gy genes can potentially contribute to adaptation in the
given trait and each lineage has some complement of genes that have mutated to drive
adaptation, with a;; representing the binary score for gene i in lineage j (1 = adapted, 0 =
non-adapted). The summation for gene i across all lineages provides the observed counts
(0; = Xj a; ; ) while the expected counts (e;) can be set based on the null hypothesis
being tested. Under null hypotheses where all genes in go have equal probability of
contributing to adaptation, the expected counts are equal to the mean of the observed
counts (e = ¥;0;/go ), and Pearson’s y’ statistic can be calculated by the usual
approach: x° =Y.(o — e)?/e. Under ideal conditions, Pearson’s y’ would approximate the
analytical y’ distribution with its mean and standard deviation equal to the degrees of
freedom (df) and 2df, respectively. While this could be used to make an analytical
hypothesis test (as above), in practice there will often be large deviations between
Pearson’s )’ and the analytical distribution, due to violation of the assumptions when
expected counts are low (See Supplementary Materials, Figure S2). Instead, we simulate
a null distribution of y?Z,, values under the null hypothesis by using permutation within
each lineage and recalculating 2, for each replicate. The p-value is then equal to the
proportion of the 2, values that exceed the observed x° (using all lineages
simultaneously), while the effect size is calculated as the mean C-score across all

pairwise contrasts (simulating yZ,, for each pairwise contrast):

2_ 2,
Conisq = Ly Lin) @

The magnitude of Ceis, therefore represents deviation between the observed amount of

repeatability and that expected under the null hypothesis, which will vary as a function of

the diversity constraints affecting the trait evolution, but not the number of lineages being
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compared. While C,;, relies upon simulation of a null distribution, it can be calculated
relatively quickly. Importantly, the magnitude of Cey;, varies linearly with Cyype, (Figure
3A & B), showing that it represents the extent of diversity constraints in the same way as
the analytically precise Cj,p.-. While this approach provides a more accurate p-value for
comparisons of multiple lineages, there is no particular reason to use Ceyisq rather than
Chyper for binary input data, as both effect sizes are calculated on a pairwise basis. The
main reason that we develop this approach is to extend it to continuously distributed data,
which can allow greater sensitivity and avoid arbitrary choices necessary to categorize
the commonly used metrics of local adaptation (e.g. Fst or p-values) into “adapted” or

“non-adapted”.
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Figure 3. Cepisg and Cyyper provide approximately equal estimates of the magnitude of the
diversity constraints driving repeatability, while Pa,lik provides an estimate of the
proportion of all genes that could potentially contribute to adaptation, which is not
collinear with the C-scores. Plots show values calculated for simulated datasets generated
by randomly drawing two arrays with g, genes, with a; loci adapted in one array and a; +
20 in the other, and then sorting a proportion of the rows in each array to artificially
generate more repeatability than would occur by chance (with a different proportion
sorted in each replicate). In Panel A&C, g; = 200; in panel B&D, a; = 10; ﬁa,”k
calculated using equation 4.
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Quantifying diversity constraints with continuous data

In many empirical contexts, genome scans for selection yield continuously distributed
scores representing the strength of evidence for each locus contributing to adaptation
(e.g., Fsr, p-values, Bayes factors). Using the same notation as above, but with a;;
representing the continuous score for the i gene in the /™ lineage, the total score for each

gene can be calculated as a sum across lineages, @, = Zf a; j, while the mean score over
all genes and lineages is @ = Zfo @; /go-. A statistic analogous to the above x’ can then

be calculated as y? = Y.(@;—a&)? /@, and the same approach for calculating the null
distribution of this statistic can then be used to calculate Cs according to equation 2.
With continuous data, there are additional complexities that arise depending on the
distribution of the particular input metric being used and how its magnitude represents
evidence for a gene’s involvement adaptation. One approach, which we used in all
examples here, is to transform data so that values scale positively and approximately
linearly with the weight of evidence for adaptation, by standardizing data within each
lineage by subtracting their observed minimum and dividing by their observed maximum,
such that the values within each lineage are bounded from 0 to 1. This reduces
differences among lineages in the absolute magnitude of metrics representing adaptation,
which can be desirable when they vary across many orders of magnitude (e.g. p-values of
10" and 10™° both provide strong evidence of adaptation). However, if some lineages
actually have stronger signatures of adaptation at more loci, then this kind of
standardization should not be used, as it would obscure these true differences among
lineages. In this case, it would be preferable to use the same standardization across all
lineages by subtracting the minimum and dividing by the maximum values observed
across all lineages. While Pearson’s x° statistic was designed for discrete data, the above
approach using continuous data represents the variability among lineages in the same
way, as a variance among genes in the sum of their scores representing putative
adaptation. The C,;4 statistic on continuous data behaves similarly to the Cjy,. statistic
across wide ranges of parameter space, as both are formulated in terms of deviations from

the null distribution (see below).
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What proportion of the genome can potentially contribute to adaptation?

While the number of genes that potentially contribute to adaptation (ga,) can be estimated
using the hypergeometric equation, ga, = a,a, /as, it is difficult to apply this to
comparisons of multiple lineages, as some pairwise contrasts may have no overlap in the
genes contributing to adaptation (a, = 0), making the equation undefined. To estimate
gas from all lineages simultaneously, we can instead formulate a likelihood-based

approach where the probability that we observe locus i adapted in o; lineages is:
{i =Px Bln(k' 0_) Oi) + (1 - P)Bln(k' 0; Oi)o (3)

where Bin(n,y,x) is the probability under the binomial distribution of getting x successes
in n trials, each with probability y. As above, o; is the number of adapted genes in &
lineages (with 0; = ¥ @; ; ), P, is the proportion of gy that can actually contribute to
adaptation (P, = ga,/ n,), and 0 is the probability of each gene contributing to adaptation
0 = ), 0;/(gas k). The estimated value of ga,is then the value at which the likelihood

function:

L(gas) = Xlogd; 4

is maximized. Once the maximum-likelihood value of ga, is estimated, this can be
expressed either as an absolute number representing the effective number of genes that
can contribute to adaptation or as a proportion of the total number of shared genes in the
genome: ﬁa,lik = Jas/ ns. This approach implicitly assumes that all genes that have the
potential to contribute to adaptation (ga,) have approximately equal probabilities of
actually contributing to adaptation. In very extreme cases, such where one gene is very
highly repeatable while other genes only contribute to adaptation in a single lineage, ga,
will tend to represent the contribution of the repeatable genes and discount the
contribution of the idiosyncratic genes (see Supplementary Materials). Multi-class
models could be developed to estimate ga, for different classes of genes in such scenarios

by accounting for their different probabilities of contributing to adaptation (See
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supplementary materials for a link to scripts containing functions for the above

calculations).

Results

Comparison between metrics for quantifying convergence

The Chyper, Cenisq, and ﬁa'lik estimators capture different aspects of the biology underlying
convergence than other previously used estimators of repeatability. To estimate the
repeatability of evolution, Conte et al. [1] used the additive and multiplicative
Proportional Similarity (PS,4; and PS,,,;) metrics of [30] in a meta-analysis of QTL and
candidate gene studies, while Bailey et al. [2] used the Jaccard Index to quantify patterns
in bacterial evolution experiments. The PS metrics are defined as

PS,4qa = 2. min(aix, al-y) and PS,ut = 2. (aixaiy)/ \/Z(aix)z(aiy)z, where o, and o,
are the relative contribution of gene i to adaptation in lineages x and y [1], while the

Jaccard index is defined as | = (A, N A,)/(Ax U A,), where A4, and 4, are the sets of

adapted genes in each lineage [2]. Both of these metrics are based on standardizing the
number of overlapping adapted loci by the total number of adapted loci, and neither
includes information about non-adapted genes that potentially could have contributed to
adaptation.

To illustrate the differences between these various metrics of convergence, we
generated four example datasets showing either randomly drawn complements of genes
with adapted mutations (Figure 4A) or highly convergent datasets drawn from a smaller
(Figure 4B) or larger (Figure 4C & D) pool of genes that potentially contribute to trait
variation (g;), with differing numbers of loci contributing to adaptation. Scenario C is the
most constrained, as it exhibits the same amount of overlap as B, but this overlap is
drawn from a larger pool of mutations so it is less likely to occur by chance. While
neither the Jaccard index nor the PS metrics distinguish between the B, C, and D
scenarios (as the same proportions of genes are being used for adaptation, so repeatability
is the same), both the Ccy;sy and Cpype metrics show the highest scores for scenario C,
because it has the smallest probability of occurring by chance if all genes had equal
probabilities of contributing to adaptation. The P\a,lik metric also identifies scenario C as

most constrained in terms of the smallest proportion genes potentially contributing to
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adaptation. The P\a,lik metric also shows that this proportion is equal for scenarios B & D,
despite differences in the probability of the observed repeatabilities occurring by chance
(as per the C-scores). More generally, while Pa,lik tends to decrease with increasing C-
score, these metrics differ in magnitude (Figure 3C & D), as they represent different
aspects of diversity constraints. In summary, the Jaccard and PS metrics quantify the
proportion of genes used for adaptation that are used repeatedly, the C-score metrics
represent the probability of the observed repeatability occurring if there were no
constraints, and Pa_lik represents the proportion of genes in the genome that are available
for adaptation, given the existing diversity constraints (also see Figure S3 for further

comparisons).

Simulating convergence using individual-based simulations

To further explore the effect of population genetic parameters on the behaviour of the
above metrics of repeatability and constraint, we used Nemo (v2.3.45; [31]) to simulate
two scenarios of two-patches under migration-selection balance: (i) constant size of
mutational target with variable proportions of small- and large-effect loci; and (ii)
constant number of large-effect loci and variable number of small effect loci, resulting in
a variable size of mutational target. For scenario (i), simulations had n = g, = 100 loci, of
which u loci had alleles of size +/- 0.1, while (100 — u) loci had alleles of size +/- 0.01
(with subsequent mutations causing the allele sign to flip from positive to negative or the
reverse). For scenario (ii), simulations had 10 large-effect loci with alleles of size +/- 0.1
and v small-effect loci with alleles of size +/- 0.01, resulting in a variable size of mutation
target. In all simulations, migration rate was set to 0.005 and the strength of quadratic
phenotypic selection was 0.5, so that an individual perfectly adapted to one patch would
suffer a fitness cost of 0.5 in the other patch (patch optima were +/- 1; similar to [32]).
Simulations were run for 50,000 generations and censused every 100 generations. For
binary categorization of the input data, loci were considered to be “adapted” if Fsp > 0.1
for >80% of the last 25 census points (these cut-offs are somewhat arbitrary, but
qualitative patterns were comparable under different cut-offs); for continuous input data,
raw Fsr values were used. Results are averaged across 20 runs, each with 20 replicates,

with Ceisq calculated across the 20 replicates within each run.
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B adapted
O non-adapted

C100 100
2225 2-50
a=10 a =20
ag=9

Jaccard: 0.17 0.35 0.35 0.35
PSaq¢:  0.20 0.36 0.36 0.36
PSmuti:  0.32 0.57 0.57 0.57
hyper:  0.00 2.80 4.98 3.98
chisa’ -0.00 2.79 4.97 3.97
Paik  1.00 0.68 0.34 0.68

Figure 4. Four example datasets showing different levels of convergent adaptation and a
comparison of different metrics assessing overlap among adapted genes. Scenario A is
unconstrained and exactly equal to the mean expectation under a random draw; scenarios
B & C show the same amount of overlap (a,) and number of adaptively mutated genes
(ai), but scenario C is drawn from a larger number of potential genes (g;). Scenario D has
the same proportion of overlap as B & C, but twice as many adapted genes.
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These scenarios further illustrate the difference between the Jaccard and PS 4,
metrics of repeatability and the C-score and ﬁa,”k metrics of constraint. In both scenarios,
the small effect loci do not tend to contribute much to adaptation because large effect loci
are more strongly favoured under migration-selection balance [33], which results in low
GF-redundancy. In scenario (i), all metrics show qualitatively similar patterns, with
decreasing repeatability occurring as a result of the decreasing constraints that occur as
the number of large-effect loci increases, increasing the GP- and GF-redundancy (Figure
5A). By contrast, in scenario (ii), the Jaccard and PS,;; metrics indicate that roughly the
same amount of repeatability is occurring regardless of the number of small effect loci
and total size of mutational target (Figure 5B). However, over this same range of
parameter space, the C -score metrics show that constraint increases as the total
mutational target is increasing. This occurs because while a larger number of potential
routes to an adaptive phenotype are available with increasing number of small effect loci,
only the same small number of loci are actually being involved in adaptation (i.e. the
large effect loci), which is illustrated by the decrease in the Pa,lik metric. While there are
many potential genetic routes to adaptation that could involve these small effect loci
(high GP-redundancy), the large effect loci tend to be favoured and repeatedly involved
in adaptation (low GF-redundancy). Thus, when the size of the mutational target
increases in scenario (ii), the repeatability tends to stay about the same (Jaccard and
PS.4q) but the amount of constraint is higher (C-scores), because a smaller proportion of
the available routes to adaptation are being used (Pa'lik). The continuous and binary Cejsg
metrics are broadly similar across these parameters because there is very little variation in
Fst among loci within the same size class (see Supplementary Materials for additional

simulations under varying allele effect sizes).
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Figure 5. C-score metrics of constraint are qualitatively similar to Jaccard and PS4,
metrics of repeatability when simulations have a constant size of mutational target (A),
but differ when simulations vary in the size of mutational target (B). ﬁa'lik shows
qualitatively similar patterns to the C-scores, with a decreasing proportion of the genome
accessible to adaptation occurring in scenarios with higher C-scores and higher
constraints. In panel A, all runs have n, = g; = 100 loci, with u large effect loci and (100 —
u) small-effect loci. In panel B, there are 10 large-effect loci, and v small-effect loci. In
both scenarios, simulations were run with N = 10,000 individuals in each patch,
recombination rate of = 0.5 between loci, and per-locus mutation rate = 10™. The
calculation of Cjy,., is based on categorizing genes as adapted when Fgr > 0.1, while the
calculation of Ce;s 1 based on Fsr standardized by subtracting the minimum value and
dividing by the maximum within each lineage.
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Adjusting for incomplete sampling of the genome
The amount of constraint quantified by the C-score will depend upon the proportion of

the mutational target (g,) that is sampled by the sequencing approach, which should be
proportional to the sampling of the total number of genes in the genome (#,). Some
approaches, such as targeted sequence capture, will sample on only a subset of the total
number of genes in the genome, which will therefore cause a bias in the estimation of
constraint due to this incomplete sampling, even if the genes included are a random
subset of g,. This can be most clearly seen in the calculation of Cjyer, Wwhere multiplying
all the variables in Eq. 1 by a given factor will cause a change in the magnitude of the
effect size. By contrast, the Jaccard and PS measures of repeatability are not affected by
incomplete sampling. If binary input data are being used and the proportion of g; that has
been sampled can be accurately estimated (g), then the calculation of Cjyy.- can be
corrected by dividing all input variables by ¢ prior to calculation, yielding a corrected
score Chyper-aq;- 1f continuously distributed input data are being used, then the dataset can
be adjusted by adding g (1 - ¢) new entries to the dataset by randomly sampling genes
with replacement from the existing dataset, and then calculating applying Eq. 2 to this
extended set.

To explore the effect of incomplete sampling of the genome on the calculation of
C-scores and the impact of these types of correction, we constructed a test dataset by
concatenating 5 replicates from the simulations in Figure SA with 10 large effect loci,
yielding a dataset with 500 loci in total and a high amount of repeatability. We then
sampled a proportion ¢ of this total dataset to simulate incomplete representation of the
genome and used the above approach calculate uncorrected and corrected C-scores.
While incomplete sampling can cause considerable bias in C-scores, as long as ¢ is not
too small, these approaches yield relatively accurate corrections of these estimates
(Figure 6). At very low values of g, the variance in estimation among replicate subsets
increases as a result of sampling effects when only a small number of adapted loci are

included, but on average the magnitude of the corrected C’-score is independent of g
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Figure 6. Incomplete sampling of the genome causes a bias in the estimation of C -scores
(Chyperand Cepigq), but this can be adjusted by using a correction factor (Chyper-adj) OF
resampling from the existing dataset up to the estimated genome size (Cepisg-aqj)- These
approaches yield unbiased C-scores, although the variance of the estimates increases due
to sampling effects when the proportion of sampled genes (¢g) is small. Figure shows
estimates for 10 replicate subsamples performed for each value of g.

Example: Antibiotic resistance in yeast

Experimental evolution studies provide a controlled framework to test theories on the
genetic basis of adaptation under a diversity of scenarios. Gerstein et al. (2012)
previously conducted an experiment to examine the diversity of first-step adaptive
mutations that arose in different lines initiated with the same genotypes in response to the
antifungal drug nystatin [34] and in response to copper [35]. The design allowed them to
directly test how many different first-step solutions were accessible to evolution when the
same genetic background adapted to this same environmental stressor. In the nystatin-

evolved lines they identified 20 unique and independently evolved mutations in only four
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different genes that act in the nystatin biosynthesis pathway: 11 unique mutations in
ERG3, 7 unique mutations in ERG6, and 1 unique mutation in each of ERGS5 and ERG7
[34]. The genotypic basis of copper adaptation was broader, and there were both genomic
(SNPs, small indels) and karyotypic (aneuploidy) mutations identified. If we consider just
the genomic mutations, mutations were found in 28 different genes, with multiple
mutations identified in four genes (12 unique mutations in ¥'7C4, four unique mutations
in PMA1, and 3 unique mutations in MAM3 and VTC1). If we assume that all genes in the
genome could potentially contribute to adaptation (i.e. go = 6604), then Chyper-nystatin =
32.5, while Cyper-copper=12.3, and p < 0.00001 in both cases.

If we assume much lower GP-redundancy and that only the observed genes could
possibly contribute to the phenotype (i.e. go-nystatin = 4, €o-copper = 28), we can test whether
the mutations are still more clustered than expected within these sets. Using the methods
outlined above, we find Cjyper-nysiain = 0.35, p = 0.002, and Chyper-copper = 0.43, p < 0.0001,
indicating that even under the severe developmental-genetic constraints to diversity
represented by this model, these data are slightly more overlapping more than expected at
random, likely due low GF-redundancy and potentially gene-specific differences in
mutation rate. (Because these experiments were initiated using isogenic strains, standing
variation was precluded).

Experimental evolution studies lend themselves nicely to future hypothesis testing
about the impact of constraint on the genetic basis of adaptation, and provide us with
hypotheses about differences between the genes that were and were not observed in the
screen. For example, we parsed the Saccharomyces Genome Database
(http://www.yeastgenome.org) for genes that have been annotated as “resistance to
nystatin: increased”, where this phenotype is conferred by the null mutation. This should
be a conservative dataset, as we also expect there could be mutations in additional genes
that do not result in a loss-of-function phenotype that could also confer tolerance to
nystatin (although we expect that the mutations we recovered in ERG3, ERGS5 and ERG6
are all similar to loss of function mutations, ERG7 is inviable when null [34]). This
identified an additional five genes (KESI, OSH2, SLK19, VHR2, YEH?2). We can test
whether the five genes without an observed mutation have a negative pleiotropic effect

when null, or are in areas of the genome with a lower mutation rate compared to the ERG
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genes (particularly compared to ERG3 and ERG6). Similar experiments could also be
conducted with different Saccharomyces cerevisiae genetic backgrounds, with closely
related species, or under slightly different environmental conditions (e.g., increased or
decreased levels of stressor) to directly examine how different aspects of the genomic and

ecological environments influence the observed level of constraints acting on adaptation

Example: Cold tolerance in conifers

Lodgepole pine and interior spruce both inhabit large ranges of western North America
and display extensive local adaptation, with large differences in cold tolerance between
northern and southern populations in each species. Recent work studied the strength of
correlations between population allele frequencies and a number of environmental
variables and phenotypes in each species [36]. Taking one representative environmental
variable as an example, a total of 50 and 121 single-copy orthologs showed strong
signatures of association to Mean Coldest Month Temperature (MCMT) in pine and
spruce, respectively, with 5 of these genes overlapping (based on binary categorization
using the binomial cutoff “top candidate” method, as per [36]). This study included a
total of 9891 one-to-one orthologs with sufficient data in both species (i.e. at least 5 SNPs
per gene), so observing 5 genes overlapping corresponds to Cpyper = 5.6 and p = 0.00034
under the null hypothesis that all genes had equal potential to contribute to adaptation.
Alternatively, it is also possible to estimate Cis, On continuously distributed data by
calculating top candidate scores for each gene using the binomial probability of seeing u
outliers when there are v SNPs in a given gene, with an overall rate of w outliers per SNP
(as per [36], this yields an index rather than an exact probability, due to linkage among
SNPs). This approach is more sensitive to weak signatures of adaptation that occur below
the binary categorization cutoff, yielding Cesiq = 5.1 and p < 0.00001. Assuming that the
9891 studied genes represent a random sample from approximately 23,000 genes in the
whole genome and ignoring divergence in gene content between species (1, = n, = n,),
the adjusted C-scores are Chyper-aqj = 8.6 and Cepisg-agqi = 7.8 (With resampling of 50
replicates and 10,000 permutations per replicate), providing a very rough estimate of the
total diversity constraints driving repeatability. These diversity constraints correspond to

an effective adaptive target of ga, = 1462 genes that could potentially contribute to
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adaptation in these species (out of 9891), which yields Pa,lik =0.15. However, a large
number of the 50 and 121 genes identified using their “top candidate test” were likely
false positives, because there were no controls for population structure during the
association test, as this was subsequently accounted for by the among-species
comparison. Thus, if we assume a 50% false positive rate for a, and a,, then ga, declines
to 370 genes, with ﬁa,”k =0.037. In their analysis, Yeaman et al. [36] used another more
sensitive test (null-W) to identify loci with signatures of convergence that were not
detected based on overlap in the top candidates lists, which suggests the true amount of
repeatability may be higher than Cj,y.- = 5.6. This example illustrates how these kinds of
statistics may be used to make inferences about constraints, but also highlights the

sensitivity of the results to small changes in parameters.

Discussion

MecIr provides perhaps the most well known case of convergent local adaptation at the
gene scale, and has been implicated in driving colour pattern variation in mice, lizards,
mammoths, fish, and a range of other organisms ([21,37—40]). Extensive study in mice
has revealed that over 50 genes can be mutated to give rise to variation in colour pattern
[41], yet Mclr consistently tends be one of the main contributors to local adaptation in
colour pattern in many vertebrates. Given the apparent high GP-redundancy, this can be
seen as a likely example of GF-redundancy constraining the diversity of forms: Mc/r has
minimal pleiotropic side effects [39,41] and it can mutate to similar phenotypes through
numerous different changes in its protein sequence [21,41] and therefore may have a
higher rate of mutation to beneficial alleles than other genes with similar per-nucleotide
mutation rates. If all of these features of Mc1r serve to facilitate adaptation by repeated
change in the same gene, should this really be called “constraint”? Again, it is critical to
differentiate between “constraints to adaptation” and “constraints on the diversity of
forms”. Evolution via Mcr can clearly occur quite readily, and is therefore relatively
unconstrained in terms of the potential for contributing to fitness gains over time. But the
lack of other equally suitable alternative routes for realizing change in colouration
phenotypes constitutes a clear constraint on the diversity of forms. Other genes are more

constrained than Mc/r, resulting in evolution overall being constrained to evolve similar
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forms through similar genetic routes. This of course brings up the fascinating question:
why do such constraints exist? Are the factors that constrain adaptation actually
themselves evolving adaptively?

Our aim here has been to develop a method to quantify the constraints that drive
repeatability so that we can test hypotheses about the nature of these constraints on the
diversity of forms and reasons they exist. We have focused on how convergence can be
inferred from observational studies of local adaptation and experimental investigations of
short-term laboratory evolution, but phylogenetic studies of convergence in nucleotide
substitution rates could also be used (e.g. [42,43]). With any type of study, comparative
approaches examining the same trait across different branches of the phylogeny may
allow us to infer rates of evolution in constraints and study whether adaptation drives
such changes. Comparisons across traits within lineages will illuminate how different
kinds of traits (e.g. morphological, physiological, behavioural) are constrained, and
whether low GF- and GP-redundancy constitute important constraints at different levels
of biological organization (e.g. pathways and products, tissues, organs, integrated traits).
Similarly, it will be interesting to examine whether the types of constraint that
predominate depend upon critical population genetic parameters such as effective
population size (N.) that affect the long term efficiency of selection on the
developmental/genetic/ecological landscape that gives rise to constraint. While we have
focused on repeatability at the gene level, this framework could be applied at other levels
of organization, such as gene network, protein domain, or individual nucleotide
(reviewed by [3]), and could include the contribution of intergenic regulatory regions if it

is possible to identify orthology.

Hypothesis testing to identify the factors that constrain diversity

Under the simplest null hypothesis that there are no diversity constraints, go = g = ga, =
ns (i.e. all genes can give rise to variation in the trait). While simplistic, this approach
provides an intuitive method to assess whether the amount of convergence observed is
more than expected due to pure randomness. But what do we learn if we reject such a
simple null hypothesis? Two inferences can be drawn in this case: many of the genes

flagged by our tests for selection are likely evolving by natural selection (i.e. they are not
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all false positives) and some kind of constraint is involved in shaping this adaptation. The
former inference means that analyzing comparative data for convergence can provide a
powerful tool for identifying the genes involved in local adaptation, as this is often as
significant methodological hurdle in evolutionary biology (e.g. [36]). The latter inference
may seem a straw-man, as few molecular biologists would advocate a model where every
gene can mutate to give rise to variation in a given trait. However, different forms of the
“universal pleiotropy” model have been assumed in theoretical quantitative genetics [44],
and the recently proposed “omnigenic model” advocates extensive pleiotropy [45].
Regardless of whether this null hypothesis represents a plausible biological scenario, it
provides a benchmark against which we can quantify how all factors constraining the
diversity of forms combine to drive repeatability, which is useful for interpreting patterns
of repeatability among species and traits.

In order to make inferences about the potential importance of different kinds of
diversity constraints driving repeatability, it is necessary to specify more realistic models
for the evolution of local adaptation that incorporate different assumptions about size of
the mutational target of the trait, extent of shared standing variation, differences in
mutation rate among genes, distribution of mutation effect sizes, and species
demography. The simplest modification to the above null model is to represent the extent
of GP-redundancy by specifying the number of loci that potentially contribute to trait
variation as a subset of the total number of loci in the genome (gy = g; < #,). In the
context of eq. (1), reducing gy increases both the mean and standard deviation of the
hypergeometric distribution and therefore decreases Cyype- and the inferred level of
residual (unexplained) constraints. If empirical estimates of g, result in  Cpye ~ 0, then it
is reasonable to conclude that low GP-redundancy is mainly responsible for the observed
amount of convergent adaptation. This would not discount the importance of natural
selection overall, as selection on the phenotype is still responsible for adaptation, but
would suggest that individual loci are more or less interchangeable and GP-redundancy is
high. However, as we have few (if any) conclusive estimates of g in highly polygenic
traits [46,47], the extent of constraint arising through low GP-redundancy will be difficult
to assess without further directed study. Although they are by no means simple

experiments to conduct, it should be possible to estimate g; from QTLs identified in
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multiple mutation accumulation experiments, as the number of loci detected across all
experiments should asymptote towards g;, and rarefaction designs could be used to
estimate g, based on the overlap between QTLs detected in two experiments (although
this would likely still be biased by failing to detect loci of small effect). A similar
approach could be taken using Genome Wide Association Studies on standing variation
for a given trait and comparing the loci identified in different species to assess the
proportion of shared loci. Depending on the difference between the size of the mutational
target (g,) and the inferred size of the effective adaptive target (ga;), it is possible to draw
conclusions about the relative importance of GP- vs. GF-redundancy (Table 1).

In order to draw inferences about the importance of these types of redundancy, it
is critical to account for other factors unrelated to GP- and GF-redundancy that might
drive repeatability, mainly through differences among genes in mutation rate or standing
variation. The simplest approach to control these factors is to design studies that preclude
shared standing variation, either through experiments founded from isogenic strains (e.g.
[2,34]) or comparisons of distantly related lineages (divergence time >> 4N,) where
lineage sorting has been completed (as per [36]). While repeatability could still be driven
by differences among genes in mutation rate, this can be seen as a component of
redundancy and therefore as factor that can also constrain diversity. By contrast, the
existence of shared standing variation occurs mainly due to historical contingency, and is
therefore a bias affecting estimation of C-scores, rather than a constraint. As such,
parsing the contribution of mutation rate to the repeatability assessed by C-scores and B,
is less critical than parsing the contribution of standing variation when using these as
overall metrics of constraint. Unfortunately, in studies of recently diverged natural
populations, it is not possible to preclude shared standing variation, so C-scores and P,
could be strongly driven by this factor and therefore not particularly representative of
diversity constraints. The recently developed likelihood-based method for discriminating
between convergence via de novo mutation, migration, or shared standing variation ([17])
may provide a means to parse these contributions to repeatability and refine the inference
of constraint. While testing the null hypothesis of no constraints is relatively
straightforward, discriminating among other potential factors constraining diversity is

much more complicated. Although it is possible to make very intricate models with
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variable mutation rates or shared standing variation, selection coefficients or indices of
pleiotropy, and other factors determining the likelihood of each gene contributing to
adaptation [3,20,26,48], it may be very difficult to actually confidently discriminate

between such models.

Table 1: Drawing inferences about the nature of constraints to diversity that drive

repeatability

Observation Inference

ng = g = ga No diversity constraints

ng = g, > gay High GP-redundancy, low GF-redundancy

ns > gy > ga Low GP-redundancy, low GF-redundancy

ng> gy = gas Low GP-redundancy, no additional contribution of
low GF-redundancy

Practical considerations in implementation

The accuracy of these metrics will depend critically on the correct identification of the
genes contributing to adaptation. Studies of local adaptation are particularly prone to
false positives when population structure is oriented on the same axis as adaptive
divergence, and it is unclear how extensively methods that correct for population
structure induce false negatives or fail to accurately control false positives [49,50].
Assuming false positives are distributed randomly throughout the genome in each
lineage, failure to remove them will cause the C-scores derived here to be biased
downwards. Failure to identify true positives (i.e. false negatives) will impair the
accuracy of Ce;s4 but will not necessarily bias it in one direction or the other, as this
would depend upon the underlying biology. Assuming false negatives are randomly
distributed in the genome, they could reduce the magnitude of C-scores due to lower
information content. But on the other hand, because large-effect loci are more likely to be
both detected and convergent and small effect loci are more likely to be missed, false
negatives will tend to bias C-scores upwards. As it is typically necessary to set arbitrary
cutoffs for statistical significance to identify putatively adapted loci, we might expect
Cehisq to increase with increasing stringency of these cutoffs, as this would be expected to

reduce false positives. However, as there are many potential contingencies and
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interactions between the factors that affect these two types of error, there is a clear need
for both theoretical studies on how the repeatability of local adaptation is affected by the
interplay between demography and selection (e.g. [26]), and refinement of these methods
to derive confidence intervals taking into account likely error rates.

A particularly important problem to address in implementing this method is that
false positives may be non-randomly distributed throughout the genome in a similar way
in different lineages. As local variations in the rate of mutation or recombination can
drive genome-wide patterns in some metrics used to identify selection and adaptation
[51-53], this could lead to signatures of convergence among distantly-related species if
such patterns are conserved over long periods of evolutionary time. For example,
genome-wide patterns of variation in nucleotide diversity, Fsr, and dyxy were all
significantly correlated across three distantly related bird species, likely driven in part by
conservation of local recombination rate coupled with linked selection [54]. The extent of
convergence of local recombination rates appears to vary considerably among species
[55-58], so it will be important to consider this factor as a potential driver of similarity in
the genomic signatures used to identify selection. Methods for identifying signatures
adaptation that are explicitly linked to a phenotype or environment of interest across
multiple pairs of populations may be less likely to be affected by such factors, as
recombination and linked selection are unlikely to drive a pattern of repeated correlation
between allele frequency and phenotype/environment. However, such methods are still
vulnerable to potential biases that arise from the complex interplay between genomic
landscape, selection, and recombination, and further study in both theoretical and
empirical contexts will be important to test the robustness of different methods to this
important source of bias.

While studying adaptation across multiple pairs of populations can greatly
increase the power to detect signatures of selection when all populations are adapting via
the same loci, such methods are inherently unable to detect idiosyncratic patterns where
different populations of a given species are adapting via different loci. By its very nature,
it may be very difficult, if not impossible to detect local adaptation in traits with high GP-
or GF-redundancy, as each pair of populations may be differentiated via a different set of

loci [32]. If local adaptation is much more readily detected when it arises repeatedly
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within a lineage, then it will be difficult to identify conclusive cases with low C-scores,
causing an overestimation of the prevalence of highly repeated adaptation.

If patterns of genomic convergence are compared among multiple differentially-
related lineages, it is important to consider their phylogeny when testing the importance
of phylogenetic sharing of different factors affecting the propensity for gene reuse [59].
Also, the ability to resolve orthology relationships decreases with increasing phylogenetic
distance, which can affect the estimation of #,. Similarly, the set of genes in a trait’s
mutational target (g;) is expected to evolve over time, so the set of shared genes should
decrease with phylogenetic distance (so that g; — g, increases with divergence time),
leading to decreased repeatability over time [1]. When studies include multiple
differentially-related lineages, it is probably useful to estimate C-scores on both a
pairwise and mean-across-all-lineages basis to more clearly describe cases where
convergence is high within pairs of closely related lineages but low among more distantly
related lineages.

Finally, physical linkage is a factor that could critically affect the measurement of
repeatability, as neutral alleles in other genes linked to a causal allele will tend to respond
to indirect selection, causing spurious signatures of selection/local adaptation. If the same
causal gene is driving adaptation in two lineages, this will tend to overestimate
repeatability on a gene-by-gene basis, whereas the opposite will occur if different causal
genes are driving adaptation. Yeaman et al. [36] found significantly elevated levels of
linkage disequilibrium (LD) among candidate genes for local adaptation, which may have
arisen due to physical linkage (with or without selection on multiple causal loci) or
statistical associations driven by selection among physically unlinked loci. In this case,
the fragmented genome and lack of suitable genetic map precluded a comprehensive
analysis of the impact of LD. If genome/genetic map resources permit, it may be possible
to analyse repeatability on haplotype blocks rather than individual genes, which could

minimize the biases due to physical linkage.

Comparison to other metrics of repeatability
A large number of metrics have been developed to characterize similarity among

ecological communities, which can be broadly grouped based on binary vs. quantitative
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input data and whether they account for joint absence of a given type (reviewed in [60]).
In most cases, these metrics are not derived from a probability-based representation of
expectations, though Raup and Crick [61] quantified an index of similarity based on the
p-value of a hypergeometric test (see also [62]). The Cjy.- metric that we have developed
here uses the same underlying logic as the Raup-Crick metric, but quantifies the effect
size as a deviation from the expectation under the null hypothesis in units of the standard
deviation of the null distribution. The C-score and P, metrics developed here provide a
complement to metrics of repeatability that have been used in previous studies of
convergence at the genome scale (e.g. [1,2]). Whereas the Jaccard, PS4, and other
similar metrics represent how commonly a given gene tends to be used in adaptation, the
C-score metrics quantify how much constraint is involved in driving this observed
repeatability, whereas P, quantifies the proportion of the genome that is effectively
available for adaptation. In some cases, these metrics will be qualitatively similar in
quantifying patterns of convergence (e.g. Figure 5A), but in other cases they will diverge
considerably, because the C-scores are explicitly aimed at representing the importance of

genes that could contribute to adaptation but do not.

Conclusions

When adaptation uses the same genes, does this occur because there are only a few
genetic ways to make a given phenotype, or because only a few ways are optimally fit?
Direct quantification of genotype-phenotype landscapes that could answer this question
has been conducted in some very specific cases, yielding fascinating insights into how
such landscapes shape evolution (e.g., [63]). Unfortunately, for most traits in most
species, it is currently impractical to systematically and directly quantify the mapping of
genotype to phenotype to fitness. However, studying the repeatability of adaptation can
provide an indirect way to learn about the topology of this landscape. In this case, a first
step towards quantifying how the genotype-phenotype-fitness map shapes adaptation is to
compare the genes that potentially contribute to standing variation (g) with the genes that
potentially contribute to adaptation (ga). The recently formulated “omnigenic model”
posits that most genes can have some effect on phenotypic variation in a given trait but

that they can be subdivided into “core” vs. “peripheral” genes with large and small
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effects, respectively [45]. Other reviews of Genome-Wide Association Studies have come
to similar conclusions about the large size of mutational target and interchangebility of
allelic effects underlying standing variation [64,65]. These studies therefore imply that
many complex traits exhibit high GP-redundancy. But what fraction of the alleles
contributing to standing variation actually have the potential to contribute to adaptation?
Is GF-redundancy also high? Given that most phenotype-affecting mutations are thought
to be deleterious rather than beneficial [66], it seems likely that most of the alleles
contributing to standing variation are simply deleterious variants that have not yet been
purged from the population, and therefore may not be representative of the “stuff” of
long-term adaptation. This is probably especially true for the genetic basis of disease in
humans and other animals, which in most cases are deleterious by definition. Studying
the repeatability of adaptation at the genome scale will provide insights into the extent of
GF-redundancy by comparing the change in metrics of repeatability for the null
hypothesis of no constraints (complete GP-redundancy) vs. a null hypothesis under a
more limited mutational target (lower GP-redundancy). As we now have many examples
of convergent adaptation at different levels of organization [1,3,67], it seems likely that
many traits exhibit quite limited GF-redundancy and that standing variation does not
necessarily correspond to long-term adaptive potential. We hope that the methods
formulated here provide a useful way to compare results among studies and test these
hypotheses directly. Unfortunately, it will be much easier to detect the cases with high
convergence than to conclusively demonstrate non-convergence, so a great deal of care

will be required when interpreting these data.
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