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Abstract

An essential step for understanding the transcriptional circuits that control development
and physiology is the global identification and characterization of regulatory elements.
Here we present the first map of regulatory elements across the development and
ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans
stage. Based on nuclear transcription profiles, we define 15,714 protein-coding
promoters and 19,231 putative enhancers, and find that both types of element can drive
orientation-independent transcription. Additionally, hundreds of promoters produce
transcripts antisense to protein coding genes, suggesting involvement in a widespread
regulatory mechanism. We find that the accessibility of most elements is regulated
during development and/or ageing and that patterns of accessibility change are linked to
specific developmental or physiological processes. The map and characterization of
regulatory elements across C. elegans life provides a platform for understanding how

transcription controls development and ageing.
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Introduction

The genome encodes the information for organismal life. Because the deployment of
genomic information depends in large part on regulatory elements such as promoters
and enhancers, their identification and characterization is essential for understanding

genome function and its regulation.

Regulatory elements are typically depleted for nucleosomes, which facilitates
their identification using sensitivity to digestion by nucleases such as DNase | or Tn5
transposase, termed DNA accessibility (Sabo et al. 2006; Crawford et al. 2006;
Buenrostro et al. 2013). In different organisms, large repertoires of regulatory elements
have been determined by profiling DNA accessibility genome-wide in different cell types
and developmental stages (Thomas et al. 2011; Kharchenko et al. 2011; Thurman et al.
2012; Yue et al. 2014; Roadmap Epigenomics Consortium et al. 2015; Daugherty et al.
2017; Ho et al. 2017). However, no study has yet investigated regulatory element usage
across the life of an animal, from the embryo to the end of life. Such information is
important, because different transcriptional programs operate in different periods of life
and ageing. C. elegans is ideal for addressing this question, as it has a simple anatomy,
well defined cell types, and short development and lifespan. A map of regulatory
elements and their temporal dynamics would facilitate understanding of the genetic

control of organismal life.

Active regulatory elements have previously been shown to have different
transcriptional outputs and chromatin modifications (Andersson 2015; Kim and
Shiekhattar 2015). Transcription is initiated at both promoters and enhancers, with most

elements having divergent initiation events from two independent sites (Core et al. 2008;
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Kim et al. 2010; De Santa et al. 2010; Koch et al. 2011; Chen et al. 2013). However,
promoters and enhancers differ in the production of stable transcripts. At protein-coding
promoters, productive transcription elongation produces a stable transcript, whereas
enhancers and the upstream divergent initiation from promoters generally produce short,
aborted, unstable transcripts (Core et al. 2014; Andersson et al. 2014; Rennie et al.
2017).

Promoters and enhancers have also been shown to be differently enriched for
specific patterns of histone modifications. In particular, promoters often have high levels
of H3K4me3 and low levels of H3K4me1, whereas enhancers tend to have the opposite
pattern of higher H3K4me1 and lower H3K4me3 (Heintzman et al. 2007, 2009).
However, in human and Drosophila cell lines it was observed that H3K4me3 and
H3K4me1 levels correlate with levels of transcription at regulatory elements, rather than
whether the element acts as a promoter or an enhancer (Core et al. 2014; Henriques et
al. 2018; Rennie et al. 2018). Further, analyses of genes that are highly regulated in
development showed that their promoters lacked chromatin marks associated with
activity (including H3K4me3), even when the associated genes are actively transcribed
(Zhang et al. 2014; Pérez-Lluch et al. 2015). Therefore, stable elongating transcription,
rather than histone modification patterns, appears to be the defining feature that
distinguishes active promoters from active enhancers (reviewed in Andersson 2015;
Andersson et al. 2015; Kim and Shiekhattar 2015; Henriques et al. 2018; Rennie et al.
2018).

Regulatory elements have not been systematically mapped and annotated in C.
elegans. Promoter identification has been hampered because the 5’ ends of ~70% of

protein-coding transcripts are trans-spliced to a 22nt leader sequence (Allen et al. 2011).
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Because the region from the transcription initiation site to the trans-splice site (the
“outron”) is removed and degraded, the 5’ end of the mature mRNA does not mark the
transcription start site. To overcome this difficulty, previous studies identified
transcription start sites for some genes through profiling transcription initiation and
elongation in nuclear RNA or by inhibiting frans-splicing at a subset of stages (Gu et al.
2012; Chen et al. 2013; Kruesi et al. 2013; Saito et al. 2013). In addition, two recent
studies used ATAC-seq or DNAse | hypersensitivity to map regions of accessible
chromatin in some developmental stages, and predicted element function by proximity to

first exons or chromatin state (Daugherty et al. 2017; Ho et al. 2017).

Towards building a comprehensive map of regulatory elements and their use
during the life of an animal, here we used multiple assays to systematically identify and
annotate accessible chromatin in the six C. elegans developmental stages and at five
time points of adult ageing. Strikingly, most elements undergo a significant change in
accessibility during development and/or ageing. Clustering the patterns of accessibility
changes in promoters reveals groups that act in shared processes. This map makes a

major step towards defining regulatory element use during C. elegans life.


https://paperpile.com/c/B40Els/aXlq+RyOO+tjrs+LOlm
https://paperpile.com/c/B40Els/aXlq+RyOO+tjrs+LOlm
https://paperpile.com/c/B40Els/72i4+njivq
https://doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279158; this version posted June 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Results and Discussion

Defining and annotating regions of accessible DNA

To define and characterize regulatory elements across C. elegans life, we collected
biological replicate samples from a developmental time course and an ageing time
course (Figure 1A). The developmental time course consisted of wild-type samples from
each of the six developmental stages (embryos, four larval stages, and young adults).
For the ageing time course, we used glp-1(e2144ts) mutants to prevent progeny
production, as they lack germ cells at the restrictive temperature. Five adult ageing time
points were collected, starting from the young adult stage (day 1) and ending at day 13,

just before the major wave of death.

Figure 1A outlines the datasets generated. For all developmental and ageing
time points, we used ATAC-seq to identify accessible regions of DNA. We also
sequenced strand-specific nuclear RNA (>200nt long) to determine regions of
transcriptional elongation, because previous work demonstrated that this approach could
capture outron signal linking promoters to annotated exons (Chen et al. 2013; Kruesi et
al. 2013; Saito et al. 2013). For the development time course, we additionally sequenced
short (<100nt) capped nuclear RNA to profile transcription initiation, profiled four histone
modifications to characterize chromatin state (H3K4me3, H3K4me1, H3K36me3, and
H3K27me3), and performed a DNase | concentration course to investigate the relative
accessibility of elements. Micrococcal nuclease (MNase) data were also collected for the
embryo stage. As previously noted by others, we found that the ATAC-seq accessibility

signal is similar to that observed using a low concentration DNase | or MNase, and that
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the ATAC-seq data has the highest signal to noise ratio (Buenrostro et al. 2013; Figure 1

- figure supplement 1A).

To define sites that are accessible in at least one developmental or ageing stage,
focal peaks of significant ATAC-seq enrichment were identified across all developmental
and ageing samples, yielding 42,245 individual elements (Figure 1B, Figure 1 - source
data 1; see Methods for details). Of these, 72.8% overlap a transcription factor binding
site (TFBS) mapped by the modENCODE or modERN projects (Araya et al. 2014;
Kudron et al. 2017), supporting their potential regulatory functions (Figure 2 - figure

supplement 1A).

Two recent studies reported accessible regions in C. elegans identified using
DNase | hypersensitivity or ATAC-seq (Ho et al. 2017; Daugherty et al. 2017). The
42,245 accessible elements defined here overlap 33.7% of (Ho et al. 2017) DNase |
hypersensitive sites and 47.9% of (Daugherty et al. 2017) ATAC-seq peaks (Figure 2 -
figure supplement 1B,C). Examining the non-overlapping sites from pairwise
comparisons, it appears that differences in peak calling methods account for some of the
differences. Accessible regions determined here required a focal peak of enrichment
whereas the other studies found both focal sites and broad regions with increased
signal. Consistent with these differences in methods, sites reported in the two studies but
not identified here are enriched for exonic chromatin, depleted for both TFBS and
transcription initiation sites, and often found in broad regions of increased accessibility

across transcriptionally active gene bodies (Figure 2 - figure supplement 1B-E).

To functionally classify elements, we annotated each of the 42,245 elements for

transcription initiation and transcription elongation signals on both strands (Figure 2A,
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Figure 2 - source data 1; see Methods for details). Overall, 37.1% of elements had
evidence of promoter activity, indicated by an increase in transcription elongation signal
in at least one stage and one direction, and 82.3% of elements had transcription
initiation signal. These patterns of nuclear transcription were used together with gene
and ncRNA annotations to functionally separate the accessible elements into six
classes: protein-coding promoter, pseudogene promoter, unknown promoter, putative
enhancer, ncRNA (tRNA, snoRNA, rRNA, or miRNA), or other (Figure 2B). Elements
were defined as promoters where there was a significant increase in transcription
elongation signal originating at the element. Promoters were assigned to protein-coding
or pseudogenes if there was continuous signal extending from the element to an
annotated first exon (covering the outron). Promoters were annotated as “unknown” if
transcription elongation signal was not linked to an annotated gene. Elements were
annotated as putative enhancers where there was transcription initiation signal but no
significant transcription elongation signal (hereafter referred to as “enhancers”).
Elements were assigned to the ncRNA class if they overlapped an annotated tRNA,
snoRNA, rRNA, or miRNA. Finally, elements with no transcriptional activity were
annotated as “other”. Overall, accessible sites are enriched for being located within

outrons or intergenic regions (Figure 2 - figure supplement 2A).

Of the 42,245 elements, 13,596 were defined as protein-coding promoters:
11,478 elements are unidirectional promoters and 2,118 are divergent promoters that
drive expression of two oppositely oriented protein-coding genes (Figure 2 - source data
1). In total, promoters were defined for 11,196 protein-coding genes, with 3,000 genes
having >1 promoter (Figure 2C). The protein-coding promoter annotations show good

overlap with four sets of TSSs previously defined based on mapping transcription (Chen
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et al. 2013; Kruesi et al. 2013; Saito et al. 2013; Gu et al. 2012; 76.8%—-85.1%; Figure 2 -
figure supplement 5). A further 19,231 elements were defined as enhancers. Enhancers
were assigned to a gene if they are located within the region from its most upstream
promoter to its gene end, with the rest left unassigned; 6,668 genes have at least one

associated enhancer, and 3,240 genes have >1 enhancer (Figure 2C).

The locations of unknown promoters suggest different potential functions. A large
fraction (34.9%) generate antisense transcripts within the body of a protein coding gene,
suggesting a possible role in regulating expression of the associated gene (Figure 2 -
figure supplement 4). Another large group (41.1%) produce antisense transcripts from an
element that is a protein coding promoter in the sense direction, a pattern seen in many
mammalian promoters (Figure 2 - figure supplement 4; Preker et al. 2008; Flynn et al.
2011; Sigova et al. 2013). Most of the rest (19.1%) are intergenic and may define

promoters for unannotated transcripts.

Patterns of histone marks at promoters and enhancers

Promoters and enhancers show general differences in patterns of histone modifications,
such as higher levels of H3K4me3 at promoters or H3K4me1 at enhancers, and
chromatin states are frequently used to define elements as promoters or enhancers
(Heintzman et al. 2007; Ernst and Kellis 2010; Ernst et al. 2011; Kharchenko et al. 2011;
Hoffman et al. 2013; Daugherty et al. 2017). However it has been shown that H3K4me3
levels correlate with transcriptional activity rather than with function (Pekowska et al.

2011; Core et al. 2014; Andersson et al. 2014; Henriques et al. 2018; Rennie et al.
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2018), suggesting that defining regulatory elements solely based on chromatin state is
likely to lead to incorrect annotations.

To further investigate the relationship between chromatin marking and element
function, we mapped four histone modifications at each developmental stage (H3K4me3,
H3K4me1, H3K27me3, H3K36me3) and examined their patterns around coding
promoters and enhancers. As expected, many coding promoters had high levels of
H3K4me3 and were depleted for H3K4me1 (Figure 3A). Moreover, enhancers had
generally low levels of H3K4me3 and higher levels of H3K4me1 than promoters (Figure
3A). However many elements did not have these patterns. For example, about 50% of
coding promoters have a high level of H3K4me1 and no or low H3K4me3 marking
(Figure 3A).

To investigate the nature of these patterns, we examined coefficients of variation
of gene expression (CV; Gerstein et al. 2014) of the associated genes. Genes with
broad stable expression across cell types and development, such as housekeeping
genes, have low gene expression variation and hence a low CV value. In contrast,
genes with regulated expression, such as those expressed only in particular stages or
cell types have a high CV value. We found a strong inverse correlation between a gene’s
CV value and its promoter H3K4me3 level (-0.64, Spearman's rank correlation; Figure 3;
Figure 3 - figure supplement 1A). Furthermore, promoters with low or no H3K4me3
marking are enriched for H3K27me3 (Figure 3; Figure 3 - figure supplement 1A), which
is associated with regulated gene expression (Tittel-Elmer et al. 2010; Pérez-Lluch et al.
2015; Evans et al. 2016). These results support the view that H3K4me3 marking may be
a specific feature of promoters with broad stable activity, consistent with the finding that

active promoters of regulated genes lack H3K4me3 (Pérez-Lluch et al. 2015). The
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profiling here was done in whole animals, which may have precluded detecting
modifications occurring in a small number of nuclei. Nevertheless, the results indicate
that chromatin state alone is not a reliable metric for element annotation. Histone
modification patterns at many promoters resemble those at enhancers, and vice versa.
Promoters and enhancers also share sequence features. Both are enriched for
initiator INR elements, although enhancers have a slightly lower INR frequency (Figure
3B). Promoters and enhancers show a similar level of enrichment for CpG dinucleotides,
with the exception of promoters with high H3K4me3 and low CV values (broadly
expressed genes), which have higher CpG content than other elements (Figure 3B and
Figure 3 - figure supplement 1B). As expected from other studies, promoters also differ
from enhancers by the presence of TATA motifs, which occur predominantly in genes
with low H3K4me3 and high CV values (i.e., with regulated expression; Figure 3B and

Figure 3 - figure supplement 1B).

Promoters and enhancers can drive gene expression in an orientation
independent manner

To validate the promoter annotations, we compared them with studies where small
regions of DNA had been defined as promoters using transgenic assays. These
comprised ten regions defined based on transcription initiation signal (Chen et al. 2014),
nine regions defined based on proximity to a germ line gene (Merritt et al. 2008), and
four defined by proximity to the first exon of a muscle expressed gene (Hunt-Newbury et
al. 2007). Of these 23 regions, 21 overlap an element in our set of accessible sites, 19 of
which are annotated as protein coding promoters (Figure 2 - Figure supplement 5A).

One of the remaining two is annotated as an enhancer and the other overlaps an
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accessible element for which no transcriptional signal was detected. We further directly
tested three elements annotated as promoters (for hih-2, ztf-11 and bed-3 genes), and

found that all three drove robust expression of a histone-GFP reporter (Figure 2 - figure
supplement 5A). Overall, there is good concordance between promoter annotation and
promoter activity.

Most of the elements annotated as protein-coding promoters are flanked by
bidirectional transcription initiation signal (74.0%), similar to the pattern seen in
mammals. Most (82.6%) are unidirectional promoters, producing a protein-coding
transcript in one direction, but no stable transcript from the upstream initiation site. To
test whether such upstream antisense initiation sites could function as promoters, we
inverted the orientation of two of the unidirectional promoters found to be active (ztf-11
and F58D5.5). If the lack of in vivo transcription elongation was a property of the element
or initiation site itself, the GFP fusion should not be expressed. However, we observed
that the two inverted unidirectional promoters both drove GFP expression. The
expression patterns generated were similar in both orientations, although one was
weaker when inverted (Figure 2 - figure supplements 6B,C). These results suggest that
signals for productive elongation occur downstream of the transcription initiation site.

Similar to the upstream antisense transcription initiation observed at promoters,
enhancers also show transcription initiation signals but generally do not produce stable
transcripts (Core et al. 2014; Andersson et al. 2014). Previous studies have reported that
some enhancers can function as promoters in transgenic assays and also at
endogenous loci (Kowalczyk et al. 2012; Leung et al. 2015; Nguyen et al. 2016; van
Arensbergen et al. 2016; Mikhaylichenko et al. 2018). To assess the potential promoter

activities of C. elegans enhancers, we directly fused 12 putative enhancers that had
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transcription initiation signal in embryos to a histone-GFP reporter gene and assessed
transgenic strains for embryo expression. Two of the tested enhancers are located in
introns, and one of these, from the bro-1 gene, has been previously validated as an
enhancer (Brabin et al. 2011); most of the others are associated with the hih-2 or ztf-11
genes. We found that 10 of 12 tested regions drove reporter expression in embryos,
including the two intronic enhancers (Figure 2 - figure supplement 5B,C). Whereas the
hih-2 and ztf-11 promoters drove strong, broad expression, the associated enhancers
were active in a smaller number of cells and expression levels were overall lower
(Figure 2 - figure supplement 6B,C). We also tested two enhancers in inverted
orientation and found that both showed similar activity in both orientations, as observed
for the two tested promoters (Figure 2 - figure supplement 5B,C). The percentage of
enhancers that functioned as active promoters is higher than that observed in a cell
based assay (Nguyen et al. 2016), possibly because all cell types are tested in an intact
animal. Episomal based assays have also been reported to underestimate activity (Inoue

et al. 2016).

Extensive regulation of chromatin accessibility in development

We observed that chromatin accessibility is highly dynamic across development, with
most elements showing a significant change within the developmental time course (71%,
>=2-fold change, FDR<0.01; Figure 4 - source data 1; see Methods). To investigate how
accessibility relates to gene expression, we focused on the 13,596 elements annotated
as protein-coding promoters. Of these, 10,199 displayed significant changes in
accessibility in development, with the remaining 3397 promoters classified as having

stable accessibility.
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We defined 16 clusters of promoters with shared accessibility dynamics in
development (Figure 4A and Figure 4 - figure supplement 1; Figure 4 - source data 1;
Methods). Within clusters, we observed that promoter accessibility and nuclear RNA
levels are usually correlated (mean r=0.47 (sd=0.11) across all clusters), indicating that
accessibility is a good metric of promoter activity and overall gene expression (Figure 4 -

figure supplement 1).

The shared patterns of developmental accessibility suggest that promoters within
each cluster may control genes involved in common processes. To explore this
possibility, we took advantage of recent single cell profiling data obtained from L2 larvae,
which provides gene expression measurements for different tissues (Cao et al. 2017).
We find that half of the developmental promoter clusters are enriched for genes with
tissue biased expression (Figure 4A and Figure 4 - figure supplement 1). Based on these
patterns of enrichment, we defined four gonad clusters (G1-G4), two intestine clusters
(11, 12), one hypodermal cluster (H) and one cluster enriched for neural and muscle
genes (N+M) (Figure 4A and Figure 4 - figure supplement 1). Genes associated with the
remaining eight clusters (Mix1-8) are generally expressed in multiple tissues, but
predominantly in the soma (Figure 4A and Figure 4 - figure supplement 1). As expected,
genes linked to the stable promoters are widely expressed (Figure 4A and Figure 4 -
figure supplement 1). Interestingly, clusters associated with the same tissues-specific
profiles can exhibit similar variations in accessibility but with different amplitude. For
instance, gonad clusters G1 and G2 both show a sharp increase in accessibility at the L3

stage, however the increase is 1.5-fold larger in G2 than in G1. The gonad clusters are
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generally characterized by an increase of promoter accessibility starting in L3 when

germ cell number strongly increases.

To further investigate promoter clusters sharing accessibility dynamics, we
performed Gene Ontology analyses on the associated genes. As expected, we found
that clusters containing genes enriched for expression in a particular tissue are also
associated with GO terms related to that tissue (Figure 4C and Figure 4 - figure
supplement 1). For instance, cluster H contains genes highly expressed in hypodermis
and GO terms linked to cuticle development. Of note, the four accessibility clusters
enriched for expression in germ line are associated with GO terms for different sets of
germ line functions (Figure 4 - figure supplement 1). Similarly, the two intestinal clusters
also identify genes with different types of intestinal function. Furthermore, accessibility
dynamics can reflect the temporal function of the associated promoters. For instance,
cluster Mix4 has GO terms indicative of neuronal development and highest accessibility
in the embryo, when many neurons develop. These results suggest that promoter
clusters contain genes acting in a shared process and having a similar mode of

regulation.

To identify potential transcriptional regulators, we asked whether the binding of
particular transcription factors is enriched in any promoter clusters, using TF binding
data from the modENCODE and modERN projects (Boyle et al. 2014; Kudron et al.
2017). TFs with enriched binding were found for each cluster, and the expression of
such TFs was generally enriched in the expected tissue (Figure 5A ; Methods). For
example, ELT-2, an intestine specific GATA protein (Fukushige et al. 1998), has

enriched binding at promoters of intestinal clusters 1 and 2. Similarly, hypodermal
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transcription factors BLMP-1 (Horn et al. 2014), NHR-25 (Gissendanner and Sluder
2000) and ELT-3 (Gilleard et al. 1999) are enriched in the hypodermal promoter cluster,
and germ line XND-1 transcription factor (Wagner et al. 2010) is enriched in the germ
line clusters of promoters. Following this approach, we identified novel tissue-specific
associations for uncharacterized transcription factors, such as ZTF-18 and ATHP-1 with
promoters of germ line clusters and CRH-2 with the intestinal clusters (Figure 5A). Taken
together, the results suggest that promoters with shared accessibility patterns have
shared cell-type specific activity, and they highlight potential regulators that are

candidates for future studies.

Analysis of Ageing clusters

We next focused on chromatin accessibility changes during ageing. In contrast to the
development time course, the accessibility of most promoters is stable during ageing,
with only 13% (n=1,800) of promoters showing changes (Figure 4 - source data 1).

Interestingly, 75% of these also had regulated accessibility in development.

As for the development time course, we clustered accessibility changes in
ageing. We identified eight clusters of promoters with similar accessibility changes
across ageing and annotated them based on tissue biases in gene expression
(Figure 4B; Figure 4 - source data 1). This defined one intestinal cluster (1), two clusters
enriched for intestine or hypodermal biased expression (I+H) and 5 mixed clusters.
Several mixed clusters show weak gene expression enrichments, such as intestine

expression in Mix1-2 and neural expression in Mix3 (Figure 4B). As observed for the

16


https://paperpile.com/c/B40Els/Z1dO
https://paperpile.com/c/B40Els/35oC
https://paperpile.com/c/B40Els/35oC
https://paperpile.com/c/B40Els/vsL4
https://paperpile.com/c/B40Els/xZD0
https://doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279158; this version posted June 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

development clusters, enriched GO terms were consistent with gene expression biases

(Figure 4B, Figure 4 - figure supplement 2).

We then evaluated the enrichment of transcription factors at each ageing
promoter cluster. The binding of DAF-16/FoxO, a master regulator of ageing (Lin et al.
2001), is associated with four ageing promoter clusters (Figure 5B). Consistent with a
prominent role in the intestine (Figure 4B; Kaplan and Baugh 2016), promoter clusters
enriched for DAF-16 binding are enriched for intestinal genes (Figure 4B). The binding
enrichment patterns of five other TFs implicated in ageing (DVE-1, NHR-80, ELT-2,
FOS-1 and PQM-1 (Uno et al. 2013; Folick et al. 2015; Goudeau et al. 2011; Mann et al.
2016; Tian et al. 2016; Mao et al. 2016; Tepper et al. 2013) are similar to DAF-16 (Figure
5B). These TFs and DAF-16 are also enriched in developmental intestine promoter
clusters (Figure 5A), supporting cooperation in development and ageing. A group of
hypodermal TFs including BLMP-1, ELT-1 and ELT-3 are found enriched at promoters in
the two | + H ageing clusters (Figure 5B). Finally, CEPB-1 binding is enriched in clusters
Mix3 and Mix4, which are characterized by a continuous increase of promoter
accessibility across ageing. This suggests a potential role of CEBP-1 in activating a
subset of genes during ageing, as it is the case for its homologue CEBP-3 in mouse

(Sandhir and Berman 2010).

Conclusion

For the first time, we systematically map regulatory elements across the lifespan of an
animal. We identified 42,245 accessible sites in C. elegans chromatin and functionally

annotated them based on transcription patterns at the accessible site. This avoided the

17


https://paperpile.com/c/B40Els/0zp3
https://paperpile.com/c/B40Els/0zp3
https://paperpile.com/c/B40Els/XIcL/?prefix=Figure%204B%3B
https://paperpile.com/c/B40Els/FsQS+NTmC+erck+ZiBg+VUCz+kbUw+S7QG
https://paperpile.com/c/B40Els/FsQS+NTmC+erck+ZiBg+VUCz+kbUw+S7QG
https://paperpile.com/c/B40Els/DZCd
https://doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279158; this version posted June 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

problems of histone-mark based approaches for defining element function (Core et al.
2014; Henriques et al. 2018; Rennie et al. 2018). Our map identified promoters active
across development and ageing, but we did not find promoters for every gene. Classes
that would have been missed are those for genes expressed only in males or dauer
larvae (which we did not profile) and genes not active under laboratory conditions. In
addition, whole-animal profiling would miss promoters active in only a small number of
cells. In the future, assaying accessible chromatin and nuclear transcription in specific

cell types should identify many of these missed elements.

We found that accessibility of most elements changes during the life of the worm,
supporting a key role played by chromatin structure. Despite the map being based on
bulk profiling in whole animals, we find that regulatory elements with shared accessibility
dynamics often share patterns of tissue-specific expression, GO annotation, and TF
binding. The promoters within clusters are therefore excellent starting points for studies
of cell- and process-specific gene expression. In summary, our identification of
regulatory elements across C. elegans life together with an initial characterisation of their
properties provides a key resource that will enable future studies of transcriptional

regulation in development and ageing.
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Methods

Collection of developmental time series samples

Wild-type N2 were grown at 20°C in liquid culture to the adult stage using standard
S-basal medium with HB101 bacteria, animals bleached to obtain embryos, and the
embryos hatched without food in M9 buffer for 24 hrs at 20°C to obtain synchronized
starved L1 larvae. L1 larvae were grown in a further liquid culture at 20°C to the desired
stage, then collected, washed in M9, floated on sucrose, washed again in M9, then
frozen into "popcorn” by dripping embryo or worm slurry into liquid nitrogen. Popcorn
were stored at -80°C until use. Times of growth were L1 (4 hrs), L2 (20 hrs), L3 (30 hrs),
L4 (45 hrs), young adults (60 hrs). Mixed populations of embryos were collected by

bleaching cultures of synchronized one day old adults.

Collection of ageing time series samples

glp-1(e2144) were raised at 15°C on standard NGM plates seeded with OP50 bacteria.

Embryos were obtained by bleaching gravid adults and then approximately 6000 placed
at 25°C on 150mm 2% NGM plates seeded with a 30X concentrated overnight culture of
OP50. For harvest, worms were washed 3X in M9 and then worm slurry was frozen into
popcorn by dripping into liquid nitrogen and stored at -80°C. Harvest times after embryo

plating were D1/YA (53 hrs), D2 (71 hrs), D6 (167 hrs), D9 (239 hrs), D13 (335 hrs).
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Nuclear isolation and ATAC-seq

Frozen embryos or worms (1-3 frozen popcorns) were broken by grinding in a mortar
and pestle or smashing using a Biopulverizer, then the frozen powder was thawed in 10
ml Egg buffer (25 mM HEPES pH 7.3, 118 mM NaCl, 48 mM KCI, 2 mM CaCl2, 2 mM
MgCI2). Ground worms were pelleted by spinning at 1500 g for 2 minutes, then
resuspended in 10ml working Buffer A (0.3M sucrose, 10 mM Tris pH 7.5, 10 mM
MgCI2, 1mM DTT, 0.5 mM spermidine 0.15 mM spermine, protease inhibitors (Roche
complete, EDTA free) containing 0.025% IGEPAL CA-630. The sample was dounced
10X in a 14ml stainless steel tissue grinder (VWR), then the sample spun 100g for 6 min
to pellet large fragments. The supernatant was kept and the pellet resuspended in a
further 10 ml Buffer A, then dounced for 25 strokes. This was spun 100g for 6 min to
pellet debris and the supernatants, which contain the nuclei, were pooled, spun again at
100g for 6 min to pellet debris, and transferred to a new tube. Nuclei were counted using
a hemocytometer. One million nuclei were transferred to a 1.5 ml tube and spun 2000g
for 10min to pellet. ATAC-seq was performed essentially as in (Buenrostro et al. 2013).
The supernatant was removed, the nuclei resuspended in 47.5 ul of tagmentation buffer,
incubated for 30 minutes at 37°C with 2.5 ul Tn5 enzyme (lllumina Nextera kit), and then
tagmented DNA purified using a MinElute column (Qiagen) and converted into a library
using the Nextera kit protocol. Typically, libraries were amplified using 12—-16 PCR
cycles. ATAC-seq was performed on two biological replicates for each developmental

stage and each ageing time point.
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DNAse | and MNase mapping

Replicate concentration courses of DNase | were performed for each stage as follows.
Twenty million nuclei were digested in Roche DNAse | buffer for 10 minutes at 25C using
2.5, 5,10, 25, 50, 100, 200, and 800 units/ml DNase | (Roche), then EDTA was added to
stop the reactions. Embryo micrococcal nuclease (MNase) digestion concentration
courses for embryos were made by digesting nuclei with 0.025, 0.05, 0.1, 0.25, 0.5, 1, 4,
8, or 16 units/ml MNase in 10mM Tris pH 7.5, 10mM MgCI2, 4mM CacCl2 for 10 minutes
at 37C. Reactions were stopped by the additon of EDTA. Following digestions, total DNA
was isolated from the nuclei following proteinase K and RNase A digestion, then large
fragments removed by binding to Agencourt AMPure XP beads (0.5 volumes). Small
double cut fragments < 300 bp were isolated either using a Pippen prep gel (protocol 1)
or using Agencourt AMPure XP beads (protocol 2). DNA was converted into sequencing

libraries using the lllumina Truseq kit or a homemade equivalent.

Transcription initiation and nuclear RNA profiling

Nuclei were isolated and then chromatin associated RNA (development series) or
nuclear RNA (ageing series) was isolated. Chromatin associated RNA was isolated as in
(Pandya-Jones and Black 2009), resuspending washed nuclei in Trizol for RNA
extraction. To isolate nuclear RNA, nuclei were directly mixed with Trizol. Following
purification, RNA was separated into fractions of 17—-200nt and >200nt using Zymo clean
and concentrate columns. To profile transcription elongation ("long cap RNA-seq") in the
nucleus, stranded libraries were prepared from the >200nt RNA fraction using the NEB

Next Ultra Directional RNA Library Prep Kit (#£7420S). Libraries were made from two
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biological replicates for each developmental stage and each ageing time point. To profile
transcription initiation ("short cap RNA-seq"), stranded libraries were prepared from the
17-200nt RNA fraction. Non-capped RNA was degraded by first converting uncapped
RNAs into 5’-monophosphorylated RNAs using RNA polyphosphatase (Epibio), then
treating with 5' Terminator nuclease (Epibio). The RNA was treated with calf intestinal
phosphatase to remove 5’ phosphates from undegraded RNA, and decapped using
Tobacco Acid Pyrophosphatase (Epicentre), Cap-Clip Acid Pyrophosphatase (CellScript,
for one L2 and one L3 replicate) or Decapping Pyrophosphohydrolase, (Dpph tebu-bio,
for one L3 replicate) and then converted into sequencing libraries using the lllumina
TruSeq Small RNA Preparation Kit kit. Libraries were size selected to be 145-225 bp
long on a 6% acrylamide gel, giving inserts of 20—100 bp long. Libraries were made from
two biological replicates for each developmental stage. During the course of this work,
the TAP enzyme stopped being available; the Cap-Clip and Dpph enzymes perform less
well than TAP. One L3 and one YA replicate was made using a slightly different protocol.
Embryo short cap RNA-seq data from (Chen et al. 2013) was also included in the

analyses (GSE42819).

ChlP-seq

Balls of frozen embryos or worms were ground to a powder using a mortar and pestle or
a Retch Mixer Mill to break animals into pieces. Frozen powder was thawed into 1%
formaldehyde in PBS, incubated 10 minutes, then quenched with 0.125M glycine. Fixed
tissue was washed 2X with PBS plus protease inhibitors, once in FA buffer, then

resuspended in 1ml FA buffer per 1 mL of ground worm powder and the extract
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sonicated to an average size of 200 base pairs with a Diagenode Bioruptor or Bioruptor
Pico for 25 pulses of 30 seconds followed by 30 seconds pause. For ChIP, 500ug
protein extract was incubated 2ug antibody in FA buffer with protease inhibitors
overnight at 4°C, then incubated with magnetic beads conjugated to secondary
antibodies for 2hrs at 4°C. Magnetic beads bound to immunoprecipitate were washed at
room temperature twice in FA+protease inhibitors (50mM Hepes pH7.5, 1mM EDTA, 1%
TritonX-100, 0.1% sodium deoxycholate, and 150mM NaCl), then once each in FA with
0.5M NacCl, FA with 1M NaCl, 0.25M LiCl (containing 1% NP-40, 1% sodium
deoxycholate, TmM EDTA, 10mM Tris pH8) and finally twice with TE pH8.
Immunoprecipitated DNA was then eluted at twice with 1%SDS, 250mM NaCl, 10mM
Tris pH8, 1mM EDTA at 65°C. Eluted DNA was treated with RNase for 30min at 37C
and crosslinks reversed by overnight incubation at 65°C with 200ug/ml proteinaseK, and
the DNA purified using a Qiagen column. Following ChIP and DNA purification, libraries
were prepared using the Illlumina TruSeq kit. Fragments in the 250-350 base pair range
were selected using Agencourt AMPure XP beads. Two biological replicate ChlPs were
conducted for each histone modification at each developmental time point (Embryo, L1,
L2, L3, L4, YA). Antibodies used were: anti-H3K4me3 (Abcam ab8580, GR273043-4),
anti-H3K4me1 (Abcam ab8895, GR149140-2), anti-H3K36me3 (Abcam ab9050, lot

GR288636-2), and anti-H327me3 (Wako 309-95259).

Data processing

The WBcel215/ce10 (WS220) version of the C. elegans genome was used throughout

the study. Reads were aligned using bwa-backtrack (H. Li and Durbin 2009) in
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single-end (ATAC-seq, short cap RNA-seq, ChlP-seq) or paired-end mode (ATAC-seq -
developmental only, DNase-seq, MNase-seq, long cap RNA-seq). Low-quality (q < 10),
mitochondrial and modENCODE-blacklisted (Boyle et al., 2014) reads were discarded at

this point.

For ATAC-seq, normalised genome-wide accessibility profiles from single-end
reads were then calculated with MACS2 (Zhang et al. 2008) using the parameters
--format BAM --bdg --SPMR --gsize ce --nolambda --nomodel --extsize 150 --shift -75
--keep-dup all. Developmental ATAC-seq was also processed in paired-end mode
(ATAC-seq libraries of ageing samples were single-end). We did not observe major
differences between accessible sites identified from paired-end, and single-end profiles,

and therefore use single-end profiles throughout the study for consistency.

Short cap and long cap data was processed essentially as in (Chen et al. 2013).
Following alignment, and filtering, transcription initiation was represented using
strand-specific coverage of 5’ ends of short cap reads. Transcription elongation was
represented as strand-specific coverage of long cap reads, with regions between read
pairs filled in. For browsing, transcription elongation signal was normalised between
samples by sizeFactors calculated from gene-level read counts using DESeq2 (Love,
Huber, and Anders 2014). Normalised (linear) coverage signal was then further

log-transformed with log,(normalised_coverage +1).

ChlP-seq data was processed as in (Chen et al. 2014). After alignment and
filtering, the BEADS algorithm was used to generate normalised ChIP-seq coverage

tracks (Cheung et al. 2011).
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For downstream analyses - aggregate plots, heatmaps, screen shots -
stage-specific tracks were obtained by averaging normalised signal across two biological
replicates. Manipulations of genome-wide signal were performed using bedtools
(Quinlan and Hall 2010), UCSC utilities (Kent et al. 2010), and wiggleTools (Zerbino et
al. 2014). Computationally intensive steps were managed and parallelised using
snakemake (Koster and Rahmann 2012). Genome-wide data was visualised using the

Integrative Genomics Viewer (Robinson et al., 2011; Thorvaldsdottir et al., 2013).

Identification of accessible sites

Accessible sites were identified as follows. We first identified concave regions (regions
with negative smoothed second derivative) from ATAC-seq coverage averaged across
all stages and replicates. This approach is extremely sensitive, identifying a large
number (>200,000) of peak-like regions. We then scored all peaks in each sample using
the magnitude of the sample-specific smoothed second derivative. We used IDR(Q. Li et
al. 2011) on the scores to assess stage-specific signal levels and biological
reproducibility, setting a conservative cutoff at 0.001. Final peaks boundaries were set to
peak accessibility extended by 75bp on both sides. We found that calling peaks using
paired end or single end data were highly similar, but some regions were captured better
by one or the other. Developmental ATAC-seq datasets were sequenced paired-end and
ageing datasets single-end. Peaks were therefore called separately using developmental
paired-end data, developmental single-end data extended to 150bp and shifted 75bp
upstream, and ageing (single-end only) data, and then merged. This was achieved by

successively including peaks from the three sets if they did not overlap a peak already
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identified in an earlier set. Figure 1 - source data 1 gives peak calls and ATAC peak

heights at each stage.

Annotation of regulatory elements

Patterns of nuclear transcription were used to annotate elements. At each stage,
separately on both strands, we assessed 1) initiating and elongating transcription at the
site, 2) continuity of transcription from the site to the closest downstream gene, and 3)
positioning of nearby exons (on the matching strand). WormBase WS260 genome
annotations - with coordinates backlifted to WBcel215/ce10 (WS220) - were used

throughout this study.

To assess for transcription elongation at an accessible site, we counted 5' ends
of long cap reads upstream (-250:-75), and downstream (+75:+250) of peak
accessibility. We then used two approaches to identify sites with a local increase in
transcription elongation. First, we used DESeq2 to test for an increase in downstream vs
upstream counts ("jump" method). Statistical significance was called at log2FoldChange
> 1.5, and adjusted p-value < 0.1 (one-sided test). To capture additional regions with
weak signal ("incr" method), we accepted sites with 0 reads upstream, at least one read
in both biological replicates downstream, and 3 reads total when summed across both

biological replicates.

To assess transcription initiation, we pooled short cap across all six wild-type
stages, and included two additional embryo replicates from (Chen et al. 2013). The

pooled signal was filtered for reproducibility by only keeping signal at base pairs with
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non-zero transcription initiation in at least two replicates. We then required the presence
of at least one base pair with reproducible signal within 125bp of peak accessibility to
designate an accessible site as having transcription initiation. For every site, we also
defined a representative transcription initiation mode as the position with maximum short
cap signal within 125bp of peak accessibility. For sites without reproducible short cap
signal, we used an extrapolated, "best-guess" position at 60bp downstream of peak

accessibility.

We annotated accessible sites as coding_promoter or pseudogene_promoter if
they fulfilled the following four criteria. 1) The accessible site had transcription initiation,
and passed at least one of the elongation tests (jump or incr), or passed both elongation
tests (jump and incr). 2) Transcription initiation mode at the accessible site was either
upstream of the closest first exon, or, in the presence of a UTR, up to 250bp
downstream within the UTR. (The closest first exon was chosen based on the distance
between the 5' end of the first exon and peak accessibility at the accessible site, allowing
the 5' end of the exon to be up to 250bp upstream or anywhere downstream of peak
accessibility). 3) The region from peak accessibility to the closest first exon did not
contain the 5' end of a non-first exon. 4) Distal sites (peak accessibility >250bp from the
closest first exon) were additionally required to (a) have continuous long cap coverage
from 250bp downstream of peak accessibility to the closest first exon, and (b) be further

than 250bp away from any non-first exon.

We then further attempted to assign a single, lower-confidence promoter to
genes that were not assigned a promoter so far. For every gene without promoter

assignments, we re-examined sites that fulfilled criteria (2-4), and were either intergenic,
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or within 250bp of the closest first exon. We then annotated the site with the largest jump

test log2FoldChange as the promoter, if it was also larger than 1.

Next, sites within 250bp of the 5' end of an annotated tRNA, snoRNA, miRNA,
snRNA or rRNA were annotated as non-coding_RNA. Intergenic sites more than 250bp
away from annotated exons that had initiating transcription, and passed the jump test
were annotated as unknown_promoter. All remaining sites were annotated as
transcription_initiation or no_transcription based on whether they had transcription

initiation.

Elements were then annotated on each strand based on aggregating
transcription patterns across stages by determining the "highest" annotation using the
ranking of: coding_promoter, pseudogene_promoter, non-coding_RNA,
unknown_promoter, transcription_initiation, no_transcription. Element type was then
defined using the following ranking: coding_promoter on either strand =>
coding_promoter; pseudogene_promoter on either strand => pseudogene_promoter;
non-coding_RNA on either strand => non-coding_RNA; unknown_promoter on either
strand => unknown_promoter; transcription_initiation on either strand =>
putative_enhancer; all remaining sites => other_element. Figure 2 - source data 1 gives

annotation information.

Motif analyses

Inr and TATA consensus sequences were obtained from (Sloutskin et al. 2015), and

mapped with zero mismatches using homer (Heinz et al. 2010).
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Clustering of promoter accessibility

Regulatory elements with regulated accessibility were determined as follows. All
elements (n=42,245) were tested for a difference in ATAC-seq coverage between any
developmental time point or between any ageing time point using DESeq2 (Love, Huber,
and Anders 2014). Sites with >= 2 absolute fold change and adjusted p-value < 0.01
were defined as "regulated" (n=30,032 in development and 6,590 in ageing), and
regulated promoters (n=10,199 in development and 1,800 in ageing) were used in

clustering analyses.

For clustering analyses, depth-normalised ATAC-seq coverage of each promoter
was calculated at each time point in development or ageing. The relative accessibility of
a regulated promoter was calculated at each time point in development or ageing by

applying the following formula:

log , (ATACseq coverage + l) —log , (mean AT ACseq coverage across time points + 1)

time point i
For each promoter, its mean ATAC-seq coverage across time points was calculated
separately for developmental or ageing time course. Clustering was performed using
k-medoids, as implemented in the pam() method of the cluster R package (Maechler et
al. 2017). Different numbers of clusters were tested for clustering of regulatory elements
in developmental and ageing datasets and the ones with the best homogeneity of
normalized changes in ATAC-seq signals within each cluster was chosen. We manually
merged two ageing clusters showing comparable accessibility and tissue-specific genes

enrichment (resulting in the cluster I1+H [2]). Clusters labels were determined based on
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which tissues showed a strong enrichment for tissue-enriched genes within each cluster

(> 3.5-fold increase in the proportion of tissue-enriched genes between each tissue).

To compare accessibility and gene expression, FPM-normalised gene-level read
counts were calculated using DESeq2, and then averaged across biological replicates.
For visualisation, relative expression levels were calculated using the approach
described above for relative promoter accessibility (see formula above), with FPM values

instead of ATAC-seq coverage values.

Tissue-specific enrichment analyses used single-cell RNA-seq data from (Cao et
al. 2017). Genes were considered enriched in a given tissue if they had a fold-change >=
3 between the first and the second tissues with the highest expression and an adjusted
p-value < 0.01. GO enrichments were evaluated using the R package gProfileR
(Reimand et al. 2016). Significant enrichment was set at an adjusted p-value of 0.05,

and hierarchically redundant terms were automatically removed by gProfileR.

Cluster-specific transcription factors binding enrichment

Optimal IDR-thresholded transcription factors ChlP-seq peaks datasets were
downloaded from ENCODE portal. When multiple datasets were available for a given
transcription factor, peaks from all of the datasets were combined and merged. ChIP-seq
profiles were manually inspected and datasets showing poor-quality tracks were

discarded, resulting in a set of 152 transcription factors.
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To define TFBS clusters (Figure 1 - figure supplement 1C, Figure 2 - figure
supplement 1), we extended the TF peak calls to 200bp on either side of the summit,

and clustered overlapping peak calls using a single-linkage approach.

Prior to analysis of TF peak enrichment at annotated promoters (Figure 5), any
promoter overlapping with more than 10 transcription factors peaks was considered as
“hot” and removed from the initial set of 13,596 annotated promoters, resulting in 8,351
to be assessed by enrichment analysis. Only transcription factors with more than 200
peaks overlapping “non-hot” promoters were kept, to remove potentially weak TF peaks
datasets constituted only of residual “hot” peaks. Following this stringent filtering, 62
transcription factors could be assayed for binding enrichment. A transcription factor peak
was assigned to a promoter if any portion of the 400bp region centered at the peak
summit intersected the promoter. Transcription factor binding enrichment in each cluster
was estimated using the odds ratio and enrichments with an associated p-value < 0.01
(Fisher’s exact test) were kept. Transcription factors which did not show enrichment
higher than 2 in any cluster were discarded. Figure 5 summarizes the transcription factor
binding enrichment in each cluster during development or ageing. Relative tissue
expression profiles of each transcription factor at the L2 stage (data from Cao et al.
2017) was calculated in each tissue by taking the log2 of its expression (TPM) in the
tissue divided by its mean expression across all tissues. A pseudo-value of 0.1 was first

added to all the TPM values before calculation of the relative levels of expression.
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Construction of transgenic lines

Transgene constructs were made using three-site Gateway cloning (Invitrogen) as in
(Chen et al. 2014). Site 1 has the regulatory element sequence to be tested, site 2 has a
synthetic outron (OU141; Conrad et al. 1995) fused to his-58 (plasmid pJA357), and site
3 has gfp-tbb-2 3’'UTR (pJA256; Zeiser et al. 2011) in the MosSCI compatible vector
pCFJ150, which targets Mos site Mos1(ttTi5605); MosSCI lines were generated as

described (Frokjaer-Jensen et al. 2008).

Data access

ATAC-seq, ChlP-seq, DNase/MNase-seq, long/short cap RNA-seq data from this study
have been deposited in the NCBI Gene Expression Omnibus (GEO)

(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE114494.
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Figure legends

Figure 1. Overview of the project.

(A) Overview of genome-wide assays and time points of developmental and ageing
samples. For development samples, chromatin accessibility, transcription initiation,
productive elongation, and chromatin state were profiled in six stages of wild-type
animals (embryos, four larval stages, young adults). For ageing samples, chromatin
accessibility and productive transcription elongation were profiled in five time points of
sterile adult glp-1 mutants (Day 1, Day 2, Day 6, Day 9, Day 13). (B) Representative

screen shot of normalised genome-wide accessibility profiles in the eleven samples.

Figure 2. Annotation of accessible elements.

(A) Top, strand specific nuclear RNA in each developmental stage monitors transcription
elongation; plus strand, blue; minus strand, red. Below is transcription initiation signal,
element annotation coloured as in (B) right, and gene model. (B) Accessible elements by
annotation class. (C) Left, distribution of the number of promoters and enhancers per

gene; right, boxplot shows that genes with more promoters also have more enhancers.

Figure 3. Heatmaps of HMs/factors and properties of enhancers and promoters.

(A) Heatmaps of indicated histone modifications and CV values at coding promoters
(top), and enhancers (bottom). Elements are ranked by mean H3K4me3 levels. CV

values are correlated with H3K4me3 levels. (B) Distribution of initiator Inr motif, TATA
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motif, and CpG content at coding promoters and enhancers, separated by H3K4me3

level (top, middle, and bottom thirds).

Figure 4. Shared dynamics of promoter accessibility in development and ageing.

(A,B) Clusters of promoters showing shared relative accessibility patterns across (A)
development or (B) ageing. Relative accessibility at each time point was defined by the
log2 of the depth-normalized ATAC-seq coverage at each time divided by the mean
ATAC-seq coverage across the time series (see Methods). For each cluster, the
percentage of associated genes with tissue-enriched expression determined from
single-cell L2 larval RNA-seq data (Cao et al. 2017) for each tissue is also shown. (C,D)

Examples of GO terms enriched in (C) developmental or (D) ageing clusters.

Figure 5. Transcription factor binding enrichment in developmental and ageing

promoter clusters.

Transcription factor (TF) binding enrichments in developmental (A) or ageing (B)
promoter clusters from Figure 4. TF binding data are from modENCODE/modERN
(Araya et al. 2014; Kudron et al. 2017); peaks in HOT regions were excluded (see
Methods). Only TFs enriched more than 2-fold in at least one cluster are shown, and
only enrichments with a p < 0.01 (Fisher’s exact test) are shown. Plots show TF binding
enrichment odds ratio, relative tissue expression (log2(tissue TPM/mean TPM across all

tissues)), and tissue expression level TPM. Expression data are from (Cao et al. 2017).
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Legends for Figure Supplements

Figure 1 - figure supplement 1. Comparison of ATAC-seq to concentration courses

of DNase I-seq and MNase-seq.

(A) Genomic DNA digested using different concentrations of DNase | (top) or MNase
(bottom). Red rectangles highlight approximate size ranges subjected to paired-end
lllumina sequencing. (B) SPMR-normalised coverage of a DNase | concentration series
(blue tracks), MNase concentration series (green tracks), and ATAC-seq (red track) at
the lin-23 locus. The modENCODE/modERN ChIP-seq peak call pileup (grey track)
shows a TF binding region upstream of the gene. Different concentrations of nuclease
show different types of signal. Low concentrations of DNase | and MNase produce a
peak in the middle of the TF binding region, at the expected NDR (middle vertical bar).
At higher concentrations, both enzymes show a peak at the -1 and +1 nucleosomes (left
and right vertical bars). ATAC-seq has a single large peak centered in the middle of the
TF binding region. (C) Mean normalised coverage at transcription factor binding sites
defined by clustering modENCODE/modERN peak calls (n=36,389; Methods) in
ATAC-seq, DNase-seq, and MNase-seq (the latter two are shown at concentrations with
the highest accessibility enrichment). ATAC-seq shows higher signal than DNase-seq or
MNase-seq. (D) Normalised read coverage of ATAC-seq prepared from nuclei harvested

from live (red), or frozen (blue) embryos.

Figure 2 - figure supplement 1. Comparisons to existing accessibility maps.

(A) Venn diagrams showing the overlap of transcription factor binding sites defined by
clustering modENCODE/modERN peak calls (n=36,389; Methods) to accessible sites

from this study and two previous studies ((Daugherty et al. 2017) and (Ho et al. 2017)).

43


https://paperpile.com/c/B40Els/72i4
https://paperpile.com/c/B40Els/njivq
https://doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279158; this version posted June 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

(B) Comparison of accessible sites defined in this study to accessible sites defined in
(Daugherty et al. 2017). (C) Comparison of accessible sites defined in this study to
accessible sites defined in (Ho et al. 2017). (B,C) Leftmost plot shows overlaps between
accessible sites; remaining plots compare regions found in only one study or both
studies. Plots show mean profile of mMOdENCODE/modERN peak call pileup, fraction of
sites with transcription initiation signal (negative values are reverse strand signals), and
fraction overlapping an exon. (D,E) IGV screenshots of stage-specific accessibility
profiles and peak calls from (Daugherty et al. 2017) (top, red), (Ho et al. 2017) (middle,

green), and this study (bottom, blue).

Figure 2 - figure supplement 2. Genomic locations of accessible sites.

(A) Left: distribution of bases in the C. elegans genome, partitioned into outronic, exonic,
intronic, intergenic or mixed, based on the regulatory annotation. Right: distribution of
genomic region type at accessible sites. (B) Distribution of genomic region at specific

types of accessible sites.

Figure 2 - figure supplement 3. Comparison to published TSS maps.

(A-D) Left: overlap between accessible sites and TSS annotations from (A) (Chen et al.
2013); (B) (Kruesi et al. 2013); (C) (Saito et al. 2013); (D) (Gu et al. 2012). Right:
accessible site annotations of elements that overlap a TSS in the indicated study. TSSs
were considered to overlap an accessible site if they were located within 150bp of peak
accessibility. For (Gu et al., 2012), TSSs were clustered using a single-linkage approach

using a distance threshold of 50bp, and the overlaps are based on those clusters.

Figure 2 - figure supplement 4. Types of unknown promoters.
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(A) Position and orientation of sites annotated as unknown_promoter on the forward or
reverse strands relative to gene annotations (n=3,026). (B—D) Examples of transcription
patterns at unknown promoters (B) coding_promoter_antisense, (C)

genic_region_antisense, (D) intergenic.

Figure 2 - figure supplement 5. Tests of promoter activity of annotated promoters

and enhancers

(A) Comparison of annotations to 23 elements previously shown to function as
promoters in transgenic assays (Merritt et al. 2008; Hunt-Newbury et al. 2007; Chen et
al. 2014). (B) Indicated elements were fused to his-58-gfp (see Methods) and the
resulting transgenic strains tested for GFP expression in embryos. Elements were
cloned in the endogenous orientation relative to their associated gene or in inverted
orientation, as indicated. In expression strength column, “strong” and “medium” indicate
high and low level of GFP visible in live embryos; “weak” indicates expression only
visible by immunofluorescence. (C) Examples of transgene expression. Shown is
expression driven by the ztf-11 promoter and the bro-1 enhancer in both orientations;

DIC image on left, HIS-58-GFP on right.

Figure 3 - figure supplement 1. Histone marks and motif enrichments sorted by CV

value.

(A) As Figure 3A, except that accessible sites were ranked based on CV values, and the
heatmap additionally includes H3K36me3, aligned at the start of the associated gene

annotation. (B) As Figure 3B, except that the three groups of promoters and enhancers

45


https://paperpile.com/c/B40Els/alN3+NAyS+4MlC
https://paperpile.com/c/B40Els/alN3+NAyS+4MlC
https://doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/279158; this version posted June 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

were defined based on CV values. Bottom CV represents stable expression and top CV

regulated expression.

Figure 4 - figure supplement 1. Characteristics of developmental clusters.

Clusters of promoters showing shared accessibility patterns across development. The
first column of plots shows promoter relative ATAC coverage across the time series as
described in Methods. The second column shows the same information displayed as a
heatmap, each row representing a promoter. Values are contained within a color scale
from -2 (dark blue) to 0 (white) to +2 (dark red). The third column shows relative gene
expression across the same time series as described in Methods, each row representing
a gene. The same color scale is used here. The boxplots column represents expression
(in TPM) of clustered genes in individual tissues (data from Cao et al 2017). The barplots
column represents the percentage of genes within the cluster enriched in each tissue as
described in Methods. Finally, the horizontal bar plots column shows the top 5 enriched
GO terms obtained for each cluster from the corresponding list of genes using gProfiler
as described in Methods. MF=Molecular Function, CC=Cellular Component,

BP=Biological Process.

Figure 4 - figure supplement 2. Characteristics of ageing clusters.

Similar to Figure 4 - figure supplement 1 for ageing clusters.
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Source data

Figure 1 - source data 1. Accessible sites identified using ATAC-seq

e chrom, start, end location of the accessible site in bed-style coordinates (ce10)
e atac_%stage_height maximum SPMR-normalised ATAC-seq signal at the peak
in %stage (one of wt_emb, wt_I1, wt_I2, wt_I3, wt_I4, wt_ya, glp1_d1, glp1_d2,
glp1_d6, glp1_d9, gip1_d13)
e atac_source source of the ATAC-seq peak call (see Methods)
o atac_wt_pe wt (developmental) ATAC-seq treated as paired-end
o atac_wt_se wt (developmental) ATAC-seq treated as single-end

o atac _glp1_se glp-1 (aging) ATAC-seq, single-end only

Figure 2 - source data 1. Regulatory annotation of accessible sites

e chrom, start, end location of the accessible site in bed-style coordinates (ce10)

e annot final regulatory element type, obtained by combining strand-specific
transcription patterns (see Methods)

e annot_%strand annotation of the strand-specific transcription patterns at the site
(Y%strand is either fwd or rev)

e promoter_gene_id_%strand, promoter_locus_id_%strand,
promoter_gene_biotype_%strand WormBase gene id, locus id, biotype for
sites annotated as coding_promoter, pseudogene_promoter or non-coding_ RNA
on %strand

e associated_gene_id, associated_locus_id WormBase gene id, locus id of

genes whose gene body or outron region overlaps the site. These are defined for
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for sites annotated as unknown_promoter, putative_enhancer or other_element.
If a site overlaps multiple genes, all overlaps are reported, separated by commas.

o tss_%strand representative transcription initiation mode on %strand (Methods)

e scap_%strand_passed True or False based on whether the site has
reproducible transcription initiation (Methods)

o Icap_%stage_%strand_passed_jump True or False based on whether the site
passed the jump test for elongating transcription (Methods, %stage is one of
wt_emb, wt_I1, wt_12, wt_I3, wt_I4, wt_ya, glp1_d1, glp1_d2, glp1_d6, gip1_d9,
glp1_d13)

e Icap_%stage_%strand_passed_incr True or False based on whether the site

passed the incr test for elongating transcription (Methods)

Figure 4 - source data 1. Promoter accessibility clusters in development and

ageing

e chrom, start, end location of the accessible site in bed-style coordinates (ce10)

e devel_is_dynamic True or False based on whether the site shows differential
accessibility between any two developmental stages

e ageing_is_dynamic True or False based on whether the site shows differential
accessibility between any two ageing time points

e devel_prom_cluster_label assigned developmental accessibility promoter
cluster

e ageing_prom_cluster_label assigned ageing accessibility promoter cluster
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