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Abstract 
 
Autism is a diagnostic label based on behavior. While the diagnostic criteria attempts to 
maximize clinical consensus, it also masks a wide degree of heterogeneity between and within 
individuals at multiple levels of analysis. Understanding this multi-level heterogeneity is of high 
clinical and translational importance. Here we present organizing principles to frame the work 
examining multi-level heterogeneity in autism. Theoretical concepts such as ‘spectrum’ or 
‘autisms’ reflect non-mutually exclusive explanations regarding continuous/dimensional or 
categorical/qualitative variation between and within individuals. However, common practices of 
small sample size studies and case-control models are suboptimal for tackling heterogeneity. Big 
data is an important ingredient for furthering our understanding heterogeneity in autism. In 
addition to being ‘feature-rich’, big data should be both ‘broad’ (i.e. large sample size) and 
‘deep’ (i.e. multiple levels of data collected on the same individuals). These characteristics help 
ensure the results from a population are more generalizable and facilitate evaluation of the utility 
of different models of heterogeneity. A model’s utility can be shown by its ability to explain 
clinically or mechanistically important phenomena, but also by explaining how variability 
manifests across different levels of analysis. The directionality for explaining variability across 
levels can be bottom-up or top-down, and should include the importance of development for 
characterizing change within individuals. While progress can be made with ‘supervised’ models 
built upon a priori or theoretically predicted distinctions or dimensions of importance, it will 
become increasingly important to complement such work with unsupervised data-driven 
discoveries that leverage unknown and multivariate distinctions within big data. Without a better 
understanding of how to model heterogeneity between autistic people, progress towards the goal 
of precision medicine may be limited. 
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Autism occurs in approximately 1-2% of the population1 and autistic individuals’ 
wellbeing is a major public health issue. In economic terms, the lifetime individual cost of 
autism is estimated at $2.4 (£1.5) million in the USA and UK and annual population costs are 
around $268 billion in the USA2, 3. While interest in and science on autism has been growing 
rapidly, progress towards translating scientific knowledge into high-impact clinical practice has 
been less rapid. We are still far from delivering more effective intervention and support, more 
precise and earlier diagnosis, better understanding and prediction of prognosis and development, 
and personalization of support and intervention. All of these points are within the scope of 
stratified psychiatry4 and precision medicine5. To get to this point, our main contention in this 
review is that we will first need to grapple with an important issue holding back progress – 
heterogeneity within the autistic population.  

 
The field is currently grappling with this paramount issue. Some have argued that we are 

at a crossroads and must acknowledge that the concept of autism as a single entity lacks validity 
at a biological level6, 7 and that autism must be taken apart8. This idea relates to what others have 
discussed regarding autism as an umbrella label referring to many different kinds of ‘autisms’9 
and regarding how the scientific community should abandon attempts to continue characterizing 
all of autism under a single theory10. Research has begun along these new directions but is highly 
fractionated because heterogeneity is discussed across multiple levels of analysis, from 
genetics11, neural systems12-14, cognition15, behavior and development16-18, and clinical topics 
(e.g., response to treatment, outcome19, 20). Approaches differ in how heterogeneity is 
decomposed, from utilizing theoretical a priori known stratifiers21, 22 or dimensions, to 
completely data-driven approaches12, 23-25. Models for understanding heterogeneity also differ 
considerably, with some conceptualizing distinctions as categorical/qualitative, 
continuous/dimensional, and/or where distinctions or similarities may cut across diagnostic 
boundaries25-27. Work can also differ with regards to aims that are specific to understanding 
heterogeneity within one level of analysis28, 29, while others attempt to extend models to explain 
heterogeneity across levels30-35.  

 
The purpose of this paper is not to provide an in-depth review of the literature on these 

areas. Rather, we see a need to provide organizing principles for framing these diverse areas of 
research, so that future synthesis and theoretical development about heterogeneity can be 
facilitated. Specifically, we first discuss the meaning behind the usage of different relevant 
terminology when discussing heterogeneity in autism. Next, we discuss how heterogeneity arises 
within the context of the historical change in diagnostic criteria. Third, we provide overarching 
arguments behind why understanding heterogeneity is critical for furthering progress towards 
precision medicine. Fourth, we discuss some of the problems with the dominant paradigm still in 
use in the field – the case-control paradigm. In discussing these issues, we point towards 
problems with small sample studies and the need for bigger data. This leads into a discussion 
regarding characteristics of big data that are important for studying heterogeneity in autism. We 
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follow this with organizing principles behind how one attempts to understand multi-level 
heterogeneity. Finally, we conclude with a discussion about the role of transdiagnostic 
viewpoints which go beyond understanding heterogeneity just within autism.   

 
Terminology behind ‘heterogeneity’ and impact on building and evaluating models 
 

The concept of heterogeneity in autism has been around for some time and dates back to 
the original conceptions of an ‘autistic spectrum’ from Lorna Wing36. Since then, we now apply 
the concept of heterogeneity beyond just clinical, behavioral, and/or cognitive levels. A hallmark 
of heterogeneity in autism is its multi-level presentation (Fig 1C), applicable from genotype 
through phenotype9, 10, throughout development16, 37, and manifesting as important clinical 
differentiation (e.g., outcome20, response to treatment19, etc.). Thus, the concept of heterogeneity 
not only applies to how individuals differ at one level of analysis, but also when and at which 
levels those differences arise. Theoretically, it is important to consider that multi-level 
heterogeneity in autism may or may not converge across levels. An important future empirical 
endeavor will be to sort out how heterogeneous multi-level phenomena may converge or diverge. 
Pulling such concepts back to familiar language for studying developmental psychopathology, 
we must understand heterogeneity through the lens of concepts such as equifinality and 
multifinality38. For example, a diversity of different developmental starting points or causal 
mechanisms in the genome may reach similar endpoints (equifinality) at levels more proximate 
to clinical outcomes or behavior39. However, very similar mechanisms at one level could also 
result in a diversity of endpoints (multifinality)40. Currently the mapping of multi-level 
heterogeneity in autism is unclear, but it is imperative that we understand these mappings and 
which are likely to be indicative of useful explanations that place us further down the path 
towards precision medicine goals. 

 
There are many ways to talk about how individuals with autism are similar to or different 

from each other41. On the one hand, we can intuitively understand phrases like the ‘spectrum’ as 
referring to heterogeneity as graded continuous change between individuals. ‘Spectrum’ can also 
apply to both the clinically diagnosed autism population or the whole population, including those 
with the ‘broader autism phenotype’42-45. The idea of a spectrum can be applied as a model for 
understanding heterogeneity between autistic individuals – a model we would refer to as a 
‘dimensional model’. Dimensional models can also cut across traditional diagnostic boundaries, 
with the most prominent example of this being the NIMH Research Domain Criteria (RDoC) 
model46. However, we also use heterogeneity as a way of conceptualizing categorical or 
qualitative differences between autistic individuals. The term ‘spectrum’ could imply a 
qualitative, rather than a quantitative difference between individuals. However, terms that 
pluralize autism as ‘autisms’ may be more applicable here, as the idea of multiple kinds of 
autisms lends itself to categorical ways of thinking about patients as ‘subgroups’ or ‘subtypes’. A 
subtype model for explaining heterogeneity in autism can also be called a ‘stratified model’.  
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Since we have different ways of talking about heterogeneity that have direct impact for 

how we attempt to build models of within- or between-individual variability, the question will 
naturally arise as to which way of conceptualizing heterogeneity is best. Are categorical 
‘subtype’ models better than continuous ‘dimensional’ models or vice versa? This could be an 
ill-posed question, since these concepts and models need not be mutually exclusive. First, 
theoretically we could imagine an important blending between the two types of models for 
understanding heterogeneity and this can be tested statistically (e.g., factor mixture models47). 
For instance, one could first subtype the autistic population, and then further characterize 
between-individual variability through continuous models within each subtype. Second, the 
answer to such a question may differ depending on the aim of the model. For example, a subtype 
model might be better at predicting treatment responses, whereas a dimensional model might be 
better at predicting basic biological mechanisms, or vice versa. As we build a literature on 
understanding heterogeneity in autism, it will be important to be clear about how different 
models conceptualize heterogeneity, as well as understanding that different models may be 
important for different types of aims. The statistical aphorism by George Box that ‘all models 
are wrong, but some are useful’ is applicable here48. Models are simplified explanations that 
typically account only for some portion of variability in a phenomenon. Even if models are quite 
different in their explanation and predictive power, they can still be quite useful for a variety of 
different aims. Therefore, pragmatic way of evaluating heterogeneity models is important for 
moving forward, since it is unlikely that we’ll converge on single explanations (models) that can 
explain the wide array of multi-level heterogeneity in autism. 
 
Heterogeneity, evolution of the diagnostic concept 
 

The evolution of the nosology and diagnostic concept of autism inevitably changes the 
definition of autism – who counts as being on ‘on the spectrum’ and who gets a clinical 
diagnosis49. This evolution also inevitably contributes to the discussion about heterogeneity in 
autism. When ‘autism’ was first defined as ‘autistic disturbances of affective contact’, the core 
features were considered to be ‘extreme self-isolation’ and ‘obsessive insistence on the 
preservation of sameness’50, 51. At the cognitive level, language impairments or peculiarities were 
seen as secondary to ‘basic disturbances in human relatedness’51. Moreover, both Leo Kanner 
and Hans Asperger recognized good cognitive potential in their child patients50, 52 and therefore 
autism was not necessarily tied to intellectual disability. However, at the next stage of 
nosological evolution, language and cognitive impairments began to be considered ‘core’53 and 
this conceptualization directly impacted the first operationalization of autism in the DSM-III54, in 
which language deficits were core to diagnosis. Individuals identified as having autism in the 
1970s and 1980s were therefore mostly those with marked difficulties in verbal communication, 
and many were considered to have intellectual disability. In the 1980s, Lorna Wing and 
colleagues not only introduced the work of Hans Asperger into the English speaking world55 but 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2018. ; https://doi.org/10.1101/278788doi: bioRxiv preprint 

https://doi.org/10.1101/278788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

also conducted epidemiological studies that demonstrated the heterogeneity in social, language, 
motor, and cognitive abilities in the autistic and developmentally delayed population56, 57. Wing’s 
ideas of the ‘triad of social and language impairment’, the lack of clear division between 
Kanner’s autism and less extreme forms, and the shift of core social impairment from ‘extreme 
autistic aloneness’ to ‘deficits in the use and understanding of unwritten rules of social behavior’, 
clearly broadened what autism encompassed. All these ideas were subsequently adopted into 
versions of diagnostic systems including DSM-III-R, DSM-IV and ICD-10. Phenotypic 
heterogeneity therefore increased, allowing an autistic individual to be verbal or minimally 
verbal, ‘active but odd’, ‘passive’, ‘aloof’ or ‘loners’58, and with various combinations of 
repetitive and stereotyped behaviors. The DSM-5’s exclusion of language impairments from, and 
inclusion of sensory idiosyncratic responses into core symptoms, reflects how the concept of 
autism nowadays is much broader than how it had initially been conceptualized. With the 
changing and broadening diagnostic concept comes increased heterogeneity, inevitably at the 
behavioral phenotypic level, and possibly also at other levels of analysis.  

 
This history behind the evolving diagnostic concept is an important, yet often not fully 

acknowledged caveat for interpreting research on autism. Research spanning several decades 
may have been isolating phenomena in altogether different types of individuals than does more 
modern research. Since the spectrum of diagnosed individuals is wider today than in the past, 
interpretations behind lack of replication or inconsistencies across studies should take this into 
account, rather than assuming the population under study has not changed over time. As the 
diagnostic concept continues to change we must be mindful of this issue when interpreting how 
current research matches up to work that may be several decades old.  
 
Shifting from the ‘one-size-fits-all’ paradigm towards understanding heterogeneity 

 
Perhaps the most prominent justification behind why understanding heterogeneity is 

important is because individuals with autism widely differ in response to treatment. While most 
treatment approaches are early intensive behavioral intervention (EIBI) and naturalistic 
developmental behavioral intervention (NDRI), the existing literature suggests that they have 
variable levels of effectiveness and in some cases may not significantly affect core autism 
features such as social-communication difficulties59-63. Currently there are also no medical 
treatments that significantly affect the core characteristics of autism64, 65. Rather than advocating 
a ‘one-size-fits-all’ approach to treatment, most recent best practice recommendations 
specifically highlight the critical need for future research to identify factors that explain 
heterogeneity in response to treatment, in order to better individualize treatment approaches and 
to better target changes in core symptomatology59, 63. 

 
Heterogeneity also limits basic scientific progress towards understanding autism. To 

understand why, it is important to first make salient the problems with the dominant paradigm, 
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which is ill-equipped to clarify heterogeneity - the case-control paradigm. The case-control 
paradigm exemplifies the ‘one-size-fits-all’ approach, since all cases are treated identically due 
to the same diagnostic label. Studies that attempt to identify ‘biomarkers’ via case-control 
designs have implicitly conceptualized the notion that if a strong biomarker did exist, that it 
would completely differentiate cases from all controls. We have yet to isolate any biomarkers for 
autism that can reliably and consistently reach this high bar7, 66. One reason why case-control 
research has fallen short on identifying high impact biomarkers could be that we are looking at 
the wrong features. However, an alternative explanation is that high-impact biomarkers are likely 
exclusive to specific subsets of autistic individuals. That is, a high-impact biomarker may be 
informative for one subtype of autism, but not others (Fig 1B). In order to identify such 
stratification or dimensional biomarkers67, one will have to change the approach from the case-
control model to a stratified and/or dimensional model. This is not to say that case-control 
studies are not useful. Isolation of consistent and reliable case-control differences are useful for 
identifying on-average differences, but typically with substantial degree of overlap in the 
distributions. However, because we are in the search for biomarkers that could help us move 
towards precision medicine, we will need to pivot our approach away from case-control studies 
as the dominant paradigm and towards stratified models that could yield much higher impact 
larger effects.  
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Fig 1:  Approaches to decomposing heterogeneity in autism. Panel A shows a population of interest, and autism 
cases are colored in green, pink, and blue. The different colors are meant to represent different autism subtypes. In 
panel B we show the impact of ignoring heterogeneity on effect size. With a typical case-control model, we ignore 
these possible subtype distinctions and compare autism to controls on some dependent variable. In this example 
scenario there is no clear case-control difference but the autism group shows higher variability (indicated by the 
larger error bars). An approach towards decomposing heterogeneity might be to construct a stratified model 
whereby we model the subtype labels instead of one autism label, and then re-examine differences on the 
hypothetical dependent variable of interest. In this example the autism subtypes show contradictory effects. These 
effects are masked in the case-control model as the averaging cancels out the interesting different effects across the 
subgroups. Panel C shows heterogeneity in autism as multi-level phenomena. This panel also visualizes the 
difference between broad versus deep big data characteristics and labels the top-down versus bottom-up 
approaches to understanding heterogeneity in this multi-level context. Finally, this panel also shows how 
development is another important dimension of heterogeneity to consider at each level of analysis (i.e. 
‘chronogeneity’). In this example chronogeneity is represented by different trajectories for different types of autism 
individuals. 
 

As an illustrative example, we take our own recent work on mentalizing ability in adults 
with autism. From a case-control perspective, adults with autism perform on-average lower on 
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the ‘Reading the Mind in the Eyes’ Test (RMET) compared to matched typically-developing 
controls68. However, taking a stratified approach, we find that the autistic adult population can be 
reliably split into subtypes that either are completely unimpaired on the RMET, versus those who 
are highly impaired24  (Fig 2). Thus, in this example, while replicable on-average case-control 
effects appear, a stratified approach that takes into account heterogeneity can isolate higher 
impact and more precise considerations about mentalizing as measured by the RMET in the adult 
autistic population. 
 

 
Fig 2:  Case-control vs stratified model example with adult autism and mentalizing ability. This figure reports 
data from Lombardo et al., (2016)24 on two independent datasets of adults with autism and performance on an 
advanced mentalizing test, the Reading the Mind in the Eyes Test (RMET). Panels A (Discovery) and B (Replication) 
show case-control differentiation and the standardized effect size for each dataset. Panels C-F shows RMET scores 
and standardized effect sizes from the same two datasets after unsupervised data-driven stratification into 5 distinct 
autism subgroups and 4 distinct TD subgroups. autism subgroups 1-2 are highly impaired on the RMET, while 
autism subgroups 3-5 are completely overlapping in RMET scores with the TD population.  
 
Imprecise effect size estimates and lack of power in small sample size studies 
 

Compounding the problem of utilizing ‘one-size-fits-all’ models like the case-control 
paradigm is the issue of small sample size studies. Over the last several decades, it has been 
common practice to conduct and publish small sample size studies. Small sample studies can be 
problematic from the statistical viewpoint that statistical power is low for all but the largest 
effects. Small sample size also means that estimated sample statistics vary considerably relative 
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to their population parameters in small samples due to more pronounced sampling variability. In 
Fig 3, we show simulations that illustrate the issues of low power and imprecise estimates of 
effect size so that they are clear and salient to readers. A common case-control study with n=20 
per group results in an effect size that varies considerably relative to the true population effect. 
This variability in estimated effect size at small samples is consistent irrespective of what the 
true population effect is. Only with very large sample sizes (e.g., n>1000) can we see that sample 
effect size hones in with some precision on the true population effect size. The histograms 
shaded in red in Fig 3 also show the limited statistical power one has at smaller effect sizes and 
small sample size. 

 
Effect size inflation in small sample studies 
 

Our simulations also make salient another common characteristic of small sample size 
studies - the possibility for vast effect size inflation when statistically significant effects are 
identified69. Inflated effects occur because effect sizes that are deemed statistically significant in 
small studies benefit from noise in the direction of the effect. Such inflated effects present an 
over-optimistic view on the identified effects and are prone to the winner’s curse69. Inflated 
effects look attractive and may be easier to publish due to their apparent indication of large 
effects. However, in subsequent replication attempts, investigators likely will fail to identify 
effects as large as the original small sample study because the effect size in the original study 
was inflated by some degree. We can clearly see effect size inflation and its interaction with true 
population effect size in Fig 3. At very small true population effect sizes, sample effect size 
estimates that are deemed statistically significant (i.e. red histograms in Fig 3A-E) are wildly 
inflated, and this problem is most pronounced for small sample size studies. For example, tiny 
population effect sizes of 0.1 standard deviations of difference show on-average greater than 300 
to 350% effect size inflation when a study observes a statistically significant effect at p<0.05 
with an n=50 or n=20, respectively (Fig 3F). If the true population effect size is much larger 
(e.g., d>0.5), inflation in effect size is attenuated, and at relatively large sample sizes (n>100 per 
group), there is very little effect size inflation on-average for such effects. Of course, these 
simulations here are a simplistic example of a study with only one statistical comparison. The 
reality is that typically studies make many multiple comparisons and sometimes on a massive 
scale (e.g., neuroimaging, genetics). In these situations, inflated effect sizes become an even 
larger problem70. 

 
Why is such a characteristic important in discussions on case-control paradigms versus 

paradigms that acknowledge heterogeneity? The pervasiveness of small sample sizes and effect 
size inflation in case-control studies tend to give over-optimistic views on the utility of case-
control studies. Over the course of time, replication attempts typically decrease the enthusiasm 
for many such effects, because the reality is likely that most case-control effect sizes are much 
smaller than published small sample size studies would suggest. By portraying initial novel case-
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control studies as showing large effects, we may be less inclined to ask the question of whether 
heterogeneity is involved. Furthermore, very small case-control effects may be due to 
complicated heterogeneity in the autism population that hides potentially very large effects 
restricted to specific subtypes. By focusing on heterogeneity, we are likely to better identify true 
population effects of much larger magnitude. Assuming that such work identifies true large 
effects in relatively large samples, the issue of effect size inflation may be much less of an issue 
(as the simulations here demonstrate). However, any models where statistical power is low can 
show inflated effect sizes. Therefore, models that try to explain heterogeneity can be prone to 
effect size inflation as well, hence the need for very large samples and high statistical power in 
stratified or dimensional models. 

 

 
Figure 3:  Simulation of sample effect size estimates at different sample sizes and across a range of true 
population effects for a hypothetical case-control study. In this simulation we set the population effect size to a 
range of different values, from very small (e.g., d=0.1) to very large (e.g., d>1.0). We then simulated data from two 
populations (cases and controls), each with n=10,000,000, that had a case-control difference at these population 
effect sizes. Next, we simulated 10,000 experiments where we randomly sampled from these populations different 
sample sizes (n=20, n=50, n=100, n=200, n=1000, n=2000) and computed the sample effect size estimate 
(standardized effect size, Cohen’s d) for the case-control difference. These histograms (grey) show how variable the 
sample effect size estimates are (black lines show 95% confidence intervals) relative to the true population effect 
size (green line). Visually, it is quite apparent how small sample sizes (e.g., n=20) have wildly varying sample effect 
size estimates and that this variability is consistent irrespective of what the true population effect size is. Overlaid 
on each grey histogram are red histograms that show the distribution of sample effect size estimates where the 
hypothesis test (e.g., independent samples t-test) passes statistical significance at p<0.05. The rightward shift in this 
red distribution relative to the true population effect size (green line) illustrates the phenomenon of effect size 
inflation. The problem is much more pronounced at small sample sizes and when true population effects are smaller. 
We then computed what is the average effect size inflation for this red distribution and plotted this average effect 
size inflation as a percentage increase relative to the true population effect in panel F. This plot directly quantifies 
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the degree of effect size inflation across a range of true population effects and across a range of sample sizes. The 
code for implementing and reproducing these simulations is available at 
https://github.com/mvlombardo/effectsizesim. 
 
Sampling bias across strata nested in the autism population 
 

Small sample size case-control studies that do not acknowledge heterogeneity in the 
autism population are also particularly problematic because increased sampling variability has 
substantial biasing impact in enriching specific strata of the population over others. Ideally, to 
get a generalizable sample of the population in a case-control paradigm, one hopes that if there 
are unknown strata nested in the population, the sample prevalence of each strata reflects the true 
prevalence of that strata in the population. If such a criterion is not achieved, it means that 
samples can be biased by the enrichment of certain strata of the population over others. If 
enrichment of different strata of the population are present across multiple studies, they may 
paint a confusing and potentially contradictory picture of the phenomenon. A primary example 
of this is the systematic over-enrichment of males over females in most case-control studies, 
particularly intervention and biological studies71-73, which may lead to male-biased inferences 
about autism74. Another simulation shown in Fig 4 illustrates that small samples are much more 
prone to this bias due to enrichment of specific strata over others. In this simulation, there are 5 
subtypes in the autism population, and each have different effects relative to the control 
population. Therefore, enrichment of different subtypes can have dramatic effects on the results 
of the study. Our simulation had equal population prevalence for each subtype (i.e. 20% in all 
autism population), which meant that from study to study, the specific strata that may be 
enriched is random. Obviously, in the likely scenario where population prevalences are 
asymmetrical across subtypes, the enrichment of specific strata could favor those subtypes with 
higher population prevalence.   

 
Such biases due to sampling variability across subtypes can paint a confusing picture and 

has considerable importance for replicability. To illustrate, we give a simple example indicative 
of many cases in the current literature. For example, Study 1 may unknowingly possesses a 
sample enriched with specific autism subtypes that show a decreased response on some 
dependent variable. Study 2 unknowingly has a different autism sample enriched with subtypes 
that show a contradictory increased response on the same dependent variable. Both studies are 
published and the authors of each may get into a heated debate, claiming that the other has the 
wrong viewpoint. Yet a third study comes out with perhaps a more unbiased (and possibly 
larger) sample, and given that the overall population effect could be near zero for a case-control 
comparison (as in the simulations in Fig 4), this third study finds no difference and claims that 
both studies 1 and 2 are false positives. While the third study may be the clearest indication of 
what occurs as an overall case-control effect, this study too may be missing the point completely 
– the population under investigation is not homogeneous and is stratified. Therefore, each study 
could have merit, if better contextualized and with some attempt to grapple with issues of 
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heterogeneity. Thus, it is clear from these example that practices of running case-control studies, 
utilizing small sample sizes, and not fully confronting the issue of heterogeneity in autism may 
compound our problems and lead to a conflicted literature and the possibility of delayed 
scientific progress. 

 

 
Figure 4:  Simulation showing sampling variability and bias of enrichment of specific strata in small sample size 
studies. In this simulation we generated a control population (n=1,000,000) with a mean of 0 and a standard 
deviation of 1 on a hypothetical dependent variable (DV). We then generated an autism population (n=1,000,000) 
with 5 different autism subtypes each with a prevalence of 20% (e.g., n=200,000 for each subtype). These subtypes 
vary from the control population in effect size in units of 0.5 standard deviations, ranging from -1 to 1. This was 
done to simulate heterogeneity in the autism population that is reflective of very different types of effects. For 
example, the autism subtype 5 shows a pronounced increased response on the DV, whereas autism subtype 1 shows 
a pronounced decreased response on the DV. Across 10,000 simulated experiments, we then randomly sampled from 
the autism population sample sizes of n=20, n=200, and n=2000, and computed the sample prevalence of each 
autism subtype. The ideal result without any bias would be sample prevalences of around 20% for each subtype. 
This 20% sample prevalence is approached at n=2000, and to some extent at n=200. However, small sample sizes 
such as n=20 shows large variability in sample prevalences of the subtypes and this can markedly bias the results of 
a case-control comparison. The code for implementing and reproducing these simulations is available at 
https://github.com/mvlombardo/effectsizesim. 
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Given these considerations, our recommendation is to shift away from case-control 
models and more towards stratified and/or dimensional models that take into account important 
heterogeneity in autism. However, the suggestion here is easier said than done in practice. Thus, 
it may be important to spell out some reasons for why we think case-control models still persist. 
Conducting studies with very large sample sizes is challenging and perhaps only the most well-
funded laboratories and/or consortiums can regularly conduct such work. In a situation where we 
are investigating phenomena with stratified models, this problem is magnified since one now 
needs large sample sizes within each strata being investigated. The practical issues are further 
compounded when there is need to replicate – a need which we would fully suggest is absolutely 
necessary to build confidence in identified effects. Therefore, it is easy to see why in practice the 
case-control paradigm persists, due to its practical ease compared to a stratified or dimensional 
model. It is also the case that many interesting types of stratifications may not be apparent to 
investigators and this could be another reason for the persistence of case-control models. 
Certainly there is also some value in results from well done work utilizing case-control models. 
Nevertheless, in order to make substantial progress towards precision medicine, we should begin 
shifting paradigms towards more research utilizing stratified and/or dimensional models that 
explicitly try to explain aspects of heterogeneity in autism. Contributions towards delineating 
heterogeneity could still be made by studies with moderate-sized samples, as long as a stratified 
model is applied in an a priori manner and with sufficient statistical power and ideally 
demonstration of replication. Such studies could focus on examining narrowly defined subgroups 
in the autism spectrum, derived either from hypothesis-driven strata (e.g. individuals with 
specific behavioral profile, specific neurobiological status, specific developmental 
characteristics, specific etiological factor, etc.) or strata discovered via prior data-driven studies.   
 
 
 
Essential big data characteristics for studying heterogeneity 

 
 While the idea of heterogeneity in autism has been around for some time, it is 
understandable why as a field we have made only limited progress. Conducting research on 
heterogeneity can be difficult for reasons of lack of data. As the previous discussions on issues 
with small sample sizes suggest, we would argue that one key ingredient to successfully studying 
heterogeneity in autism is ‘big data’. When we use the phrase ‘big data’, we are not necessarily 
referring to the ‘feature’ dimension of the data – that is, massively multivariate ‘feature rich’ data 
(e.g., neuroimaging or genomics data). Obviously, feature rich aspects of big data are indeed 
important in their own right and for the purposes of understanding heterogeneity. Rather, the 
dimensions we would emphasize about big data are the participant dimension (i.e. large sample 
size) as well as the depth of the measured features embedded in the participant dimension. Put 
another way, we need big data that has characteristics of being is both ‘broad’ and ‘deep’75 (Fig 
1C).  
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Broad data refers directly to participant or sample dimension of the dataset (as opposed to 
the feature dimension) and is characteristic of massive sample size. Such a broad spread over 
individuals should ideally provide good coverage over the population of interest and allows for 
sufficient sampling of each strata of interest. Broad data is, we argue, an essential big data 
ingredient for decomposing heterogeneity in autism since, as noted above, we can run into many 
problems with data that is not sufficiently large or does not allow for such broad coverage over 
the population. Sufficiently broad data can also open up opportunities for replicating findings, 
since experimental designs can be planned out to hold ahead of time to set aside a sufficiently 
large validation set to replicate findings from an initial broad discovery set. As data sharing and 
open data initiatives become more prevalent, we should see more investigations on heterogeneity 
that meet this big data requirement. There are some current resources that are immediately 
available to meet such needs (e.g., the ABIDE datasets76, the National Database for Autism 
Research (NDAR)77, the Simons Simplex Collection78, SPARK79, the Healthy Brain Network80, 
and see81, 82) and we would expect much more in the coming years. As we get better at detecting 
what are the relevant dimensions and/or subtypes explaining important heterogeneity in autism, 
we may be better able to design high-powered targeted studies where the requirements for 
massive n may be reduced substantially. However, for most topics, we are not yet at this stage, 
and thus, broad data with massive sample size is necessary. 

 
Developing models to explain aspects of heterogeneity at one level is only the first step. 

Once we have built good models that explain heterogeneity at one level, we will need to ask the 
next translational question: ‘What else are these models good for?’ Put differently, stratified or 
dimensional models can be good at predicting phenomena at one level of analysis, but because 
autism is heterogeneous at multiple levels, could such models help us make sense of 
heterogeneity outside of the domain that the model was originally built upon? Answering this 
question can have considerable impact towards precision medicine goals. For instance, a 
geneticist may have identified a unique biological subtype of autism based around a certain 
genetic mechanism. Such a genetic stratifier would already be quite useful for pinpointing a 
specific discrete cause for some proportion of the autism population. However, working towards 
precision medicine, we would next want to know whether such a genetic subtype is different 
from other autistic individuals on clinically relevant aspects such as prognosis, response to 
treatment, symptomatology, cognition, etc. Thus, when we ask this type of question, we need big 
data that is not only broad, but also ‘deep’75.  Deep data is data collected on the same individuals 
that penetrates through multiple levels of analysis (Fig 1C). Deep data allows for stratifications 
or dimensional models to be built at one level, but the important tests of such stratifications can 
be done at other levels. An example of this can be seen in recent work on the Simons Simplex 
Collection. Here the authors made stratifications on the phenotype and then asked the question of 
whether such stratifications increased power for detecting GWAS-type effects at the genetic 
level30. Thus, to best answer questions by utilizing stratified or dimensional models, we will 
require big data that is both broad and deep, as the combination of both types of data can allow 
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for discovery of explanations of autism heterogeneity and can immediately point towards the 
utility of such models for explaining the multi-level complexity inherent in autism. New multi-
site studies such as EU-AIMS LEAP are targeted to directly address both issues of broad and 
deep data83-85 and we need other efforts along these lines. 
 
Approaches to decomposing heterogeneity in autism: top-down, bottom-up, and chronogeneity 
 

Since the approach to decomposing heterogeneity in autism towards precision medicine 
goals is one of identifying clinically and mechanistically useful models, it is helpful to make 
salient some different approaches towards these goals. A common circumstance might be where 
a researcher makes a stratification at a level higher up in the hierarchy presented in Fig 1C. The 
translational next step may be to work down towards understanding how a stratified and/or 
dimensional model at this higher level of analysis can explain some phenomenon at a lower 
level. We refer to this as a top-down approach. For example, a clinically-important stratification 
can be made in the early development of autism regarding language outcome at 4-5 years of age. 
Some children keep up with age-appropriate norms in the areas of expressive and receptive 
language development, whereas others fall far behind in their language abilities across these 
domains. The empirical question after making such stratification could be whether such autism 
language-outcome subtypes differentiate at the level of neural systems organization, particularly 
neural systems that are developing specialization of function for speech and language 
processes22. In this example, it is clear that the stratifications were made at a level of analysis 
above the level that was later interrogated for mechanistic utility. Thus, while on its own, early 
language outcome was itself a clinically important stratifier, this top-down work also indicates 
that the stratifier may also be mechanistically useful for pointing towards different underlying 
biology. Other examples of a top-down approach may be based on cognitive characteristics86, 
sex/gender74, and co-occurring medical and psychiatric conditions (e.g. epilepsy87, ADHD26, 
etc). This type of top-down approach may then ultimately motivate future work that could 
potentially identify unique discoveries about biology behind a subset of the autism population 
that was previously unknown. 
 
 In contrast to top-down approaches,  an approach that works from the bottom-up could be 
highly complementary. As the phrase implies, a bottom-up approach starts with identifying and 
building useful models from a lower level in the hierarchy, and then asks questions about how 
such low-level models can explain phenomena higher up in the hierarchy. For example, in the 
‘genetics first’ approach, an investigator may be interested in identifying how different high-
impact genetic causes for autism may be similar or different at a phenotypic or cognitive level of 
analysis88-91. In another example, an investigator may compare autism subtypes at the level of 
neural systems or structural brain features (e.g., with or without early brain enlargement), and 
then ask the question of whether such a stratification provides a meaningful indicator of 
differentiation at a clinical level14. Both top-down and bottom-up approaches can be useful, 
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depending on the particular research question, and each can highlight different aspects of 
important heterogeneity in autism. In order to link up such multi-level complexity into 
explanations behind heterogeneity in autism, it will be imperative for work to engage in both of 
these approaches. 
  
 A final approach to decomposing heterogeneity deals with the lifespan developmental 
dimension across any level of analysis, or ‘chronogeneity’37. Several large longitudinal studies 
consistently indicate that there are several autism subtypes with different developmental 
trajectories16-18, 37, 92. Regression, a developmental feature not uncommonly seen in autistic 
individuals, is another key stratifier that is surprisingly under-studied but with plausible unique 
biological bases93, 94. Within the developmental dimension, heterogeneity can be assessed as both 
inter- and intra-individual variability, but can also cover individualized deviance from group 
trajectories over time37 or age-specific norms95, 96. Chronogeneity thus offers a unique vantage 
point on multi-level heterogeneity not covered by understanding heterogeneity at static time 
points.  
 
Approaches to decomposing heterogeneity in autism: supervised versus unsupervised 
 
 In addition to conceptualizing stratified and/or dimensional models by top-down, bottom-
up, or developmental approaches, it is also important to clarify how we build on the process of 
understanding heterogeneity. Ultimately, the scientific process of better understanding 
heterogeneity in autism is a learning problem. Taking ideas from statistical or machine learning, 
we can broadly divide learning processes into supervised and unsupervised learning97. 
Supervised learning deals with a priori knowledge about a topic (i.e. known labels), and then 
seeks to derive a model to best predict that known information. With regard to the process of 
understanding heterogeneity in autism, the analogy of supervised learning can apply to all 
instances where the experimenter uses their own knowledge and justifications to dictate where 
the stratifications are made (e.g., top-down, bottom-up, or developmental). In other words, 
knowledge from a supervised source (e.g., an investigator, a theory) informs the stratification or 
dimension to be modeled. This type of approach has the advantage of being theory-driven and/or 
builds on expert knowledge of the investigator (e.g., clinical intuition or experience), who may 
already have highlighted a distinction that is meaningful and justified in a variety of ways.  
 

The disadvantage of solely relying on a ‘supervised’ approach is that the investigator 
and/or a theory may be missing other important distinctions about how to model heterogeneity 
for the question of interest. In this case, the learning process can be helped by some type of 
‘unsupervised’ statistical learning process that uncovers distinctions that may not be readily 
apparent from a priori knowledge. Because big data is a key ingredient for building models to 
explain heterogeneity, we can utilize the feature-rich aspects of big data to embark on data-
driven discovery of potentially complex multivariate patterns that distinguish different types of 
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individuals. We refer to this data-driven approach as an ‘unsupervised’ approach since 
computationally, the learning occurs without any expert a priori knowledge and justifications 
and solely relies on statistical distinctions embedded in the data itself. With this approach we 
likely rely on advanced computational techniques from machine learning that are tailored to best 
identify complex multivariate distinctions. For example, we utilized clustering methods taken 
from systems biology and applied them to item-level patterning of behavioral responses on the 
Reading the Mind in the Eyes Test (RMET). This unsupervised approach yielded discovery of 5 
different autism subtypes that could be replicably identified in an independent replication set 
(Fig 2)24. In other work, Ellegood and colleagues applied clustering to neuroanatomical 
phenotypes across a range of different mouse models for autism. This work illustrated that 
heterogeneous starting points (e.g., different genetic mutations highly associated with autism) 
can converge and diverge at the level of neuroanatomical phenotypes98. Using structural MRI 
measures of cortical morphometry, Hong and colleagues used clustering to identify 3 autism 
subtypes with different anatomical profiles. These anatomically-defined subtypes were then 
found to be useful for increasing the performance of supervised learning models to predict 
symptom severity on measures such as the ADOS12. 

 
It should be noted that both supervised and unsupervised approaches have their 

advantages and disadvantages, and can be complementary. An example of this complementarity 
can be seen in a hybrid supervised/unsupervised approach from Feczko and colleagues15. In this 
study, the authors utilized a supervised ensemble learning model called Functional Random 
Forest (FRF), to classify autism versus typically developing children based on cognitive features 
from a neuropsychological test battery. In addition to classifying autism versus typically 
developing children, the FRF model produces a proximity matrix that indicates similarity 
between individuals. The authors then utilized this proximity matrix to identify subgroups in an 
unsupervised manner utilizing a community detection algorithm, typically used in network 
science to discover ‘modules’. This hybrid approach to cognitive subtyping proved useful as a 
top-down approach towards identifying different patterns of resting state functional connectivity 
across the subtypes. Thus, through the scientific process of building knowledge about important 
stratified or dimensional models, both unsupervised and supervised approaches can inform each 
other, and in some cases may be utilized together in a hybrid fashion. 
  
Decomposing heterogeneity in relation to transdiagnostic constructs 
 
 Although so far we treat autism as an entity and focus on heterogeneity within it, this 
diagnostic construct is human-made, cumulative and evolving99, 100. Phenotypically, autism 
frequently co-occurs with other neurodevelopmental (e.g., ADHD, tic disorders) and psychiatric 
(e.g., anxiety, depression, obsessive-compulsive disorder, psychotic disorders) conditions1, 101 
and heightened autistic traits often cut across other categorical diagnoses as well102. Underlying 
this may be multi-level processes cutting across sets of frequently co-occurring diagnoses103, 
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which potentially can be delineated by transdiagnostic approaches such as using the RDoC 
framework46. In this respect, we should acknowledge that heterogeneity in autism is part of the 
broader heterogeneity existing across neurodevelopmental and psychiatric conditions. In the 
same vein, the reasons, principles and approaches described above to tackle heterogeneity in 
autism can be similarly applied when autism is studied within a transdiagnostic framework 
cutting across multiple diagnoses. In the background of high co-occurrence, a transdiagnostic 
framework is necessary in deepening our understanding of the heterogeneity within and beyond 
autism.  
 
Conclusions 
 
 Understanding how heterogeneity manifests in different individuals with autism is 
amongst the biggest challenge our field currently faces. As we continue to develop models for 
explaining this heterogeneity, it will be useful to capture such work under the organizing 
concepts we have laid out in this article. Heterogeneity must be interpreted relative to the 
zeitgeist, particularly as it pertains to how diagnostic concepts evolve. Models for explaining 
heterogeneity manifest in many ways, depending on whether the researcher conceptualizes the 
differences between individuals as quantitative and dimensional, or qualitative and categorical. 
There is room for both models that fuse together both dimensional and categorical distinctions. 
In general, we need to move beyond one-size-fits-all models such as case-control models, and we 
need to be stringent with respect to methodology, since practices such as small sample size 
research cannot live up to the challenges that heterogeneity creates. Small samples cannot 
adequately cover heterogeneity in the autism population in a highly generalizable fashion, and 
hence there is a need for ‘big data’ when studying heterogeneity. Big data should be both broad 
and deep, to sample adequately across different strata from the population but also to examine 
how strata defined at one level may be relevant for explaining variability at other levels. 
Heterogeneity can be parsed from multiple approaches that capitalize on information from levels 
of analysis either most proximate or most distal from the clinical phenotype and which work 
their way down or up through the hierarchy, or via examination of changes over development. 
Also important for conceptually organizing work on this topic is whether we utilize a priori 
knowledge to build heterogeneity models or whether we allow computational methods to inform 
us about data-driven distinctions that may be hidden and not readily apparent to most 
researchers. Finally, models to understand heterogeneity can move beyond just those with 
clinical diagnoses of autism and, in the future, transdiagnostic approaches utilizing similar 
organizing concepts may provide complimentary information. Overall, the push to understand 
heterogeneity is critical as we attempt to move towards precision medicine.  
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