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Abstract: Although much work has linked the human microbiome to specific phenotypes and
lifestyle variables, data from different projects have been challenging to integrate and the extent
of microbial and molecular diversity in human stool remains unknown. Using standardized
protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-
scientists, together with an open research network, we compare human microbiome specimens
primarily from the USA, UK, and Australia to one another and to environmental samples. Our
results show an unexpected range of beta-diversity in human stool microbiomes as compared to
environmental samples, demonstrate the utility of procedures for removing the effects of
overgrowth during room-temperature shipping for revealing phenotype correlations, uncover
new molecules and kinds of molecular communities in the human stool metabolome, and
examine emergent associations among the microbiome, metabolome, and the diversity of plants
that are consumed (rather than relying on reductive categorical variables such as veganism,
which have little or no explanatory power). We also demonstrate the utility of the living data
resource and cross-cohort comparison to confirm existing associations between the microbiome
and psychiatric illness, and to reveal the extent of microbiome change within one individual

during surgery, providing a paradigm for open microbiome research and education.

Importance: We show that a citizen-science, self-selected cohort shipping samples through the
mail at room temperature recaptures many known microbiome results from clinically collected
cohorts and reveals new ones. Of particular interest is integrating n=1 study data with the

population data, showing that the extent of microbiome change after events such as surgery can
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92  exceed differences between distinct environmental biomes, and the effect of diverse plants in the
93  diet which we confirm with untargeted metabolomics on hundreds of samples.

94

95 Introduction

96 The human microbiome plays a fundamental role in human health and disease. While

97  many studies link microbiome composition to phenotypes, we lack understanding of the

98  boundaries of bacterial diversity within the human population, and the relative importance of

99 lifestyle, health conditions, and diet, to underpin precision medicine or to educate the broader
100  community about this key aspect of human health.

101 We launched the American Gut Project (AGP; http://americangut.org) in November of

102 2012 as a collaboration between the Earth Microbiome Project (EMP) (1) and the Human Food

103  Project (HFP; http://humanfoodproject.com/) to discover the kinds of microbes and microbiomes

104  "in the wild” via a self-selected citizen-scientist cohort. The EMP is tasked with characterizing
105  the global microbial taxonomic and functional diversity, and the HFP is focused on

106  understanding microbial diversity across human populations. As of May 2017, the AGP included
107  microbial sequence data from 15,096 samples from 11,336 human participants, totaling over 467
108  million (48,599 unique) 16S rRNA V4 gene fragments (“16S”). Our project informs citizen-

109  scientist participants about their own microbiomes by providing a standard report (fig 1A) and
110  resources to support human microbiome research, including an online course (Gut Check:

111 Exploring Your Microbiome; https://www.coursera.org/learn/microbiome). AGP deposits all de-
112  identified data into the public domain on an ongoing basis without access restrictions (table S1).
113  This reference database characterizes the diversity of the industrialized human gut microbiome
114 on an unprecedented scale, reveals novel relationships with health, lifestyle, and dietary factors,

115  and establishes the AGP resource and infrastructure as a living platform for discovery.
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116

117  Results

118  Cohort characteristics. AGP participants primarily reside in the United States (n=7,860).

119  However, interest in the AGP rapidly expanded beyond the US to United Kingdom (n=2,518),
120  and Australia (n=321), with 42 other countries or territories also represented (fig 1A; table S1).
121 Participants in the US inhabit urban (n=7,317), rural (n=29), and mixed (#=98) communities
122 (2010 US Census data based on participant zip codes), and span greater ranges of age, race, and
123  ethnicity than other large-scale microbiome projects (2—6). Because the AGP is crowdsourced
124  and self-selected, and subjects generally support the cost of sample processing, the population is
125  unrepresentative in several important respects, including having lower prevalence of smoking
126  and obesity, higher education and income (fig S1A), and underrepresentation of Hispanic and
127  African American communities (table S1); generalization of the results is cautioned. Targeted
128  and population-based studies will be crucial for filling these cohort gaps (Supplemental text).
129 Using a survey modified from (7, 8), participants reported general health status, disease
130  history, and lifestyle data (table S2, supplemental text). In accordance with our IRB, all survey
131 questions were optional (median per-question response 70.9%; table S2). Additionally, 14.8% of
132  participants completed a validated picture-based food frequency questionnaire (FFQ)

133 (VioScreen; http.//www.viocare.com/vioscreen.html), and responses correlated well with primary

134  survey diet responses (table S2).

135 We sought to minimize errors and misclassifications well-known to occur in self-reported
136  data (9). Survey responses relied on controlled vocabularies. For analyses, we trimmed numeric
137  entries at extremes (e.g., weight over 200kg or below 2.5kg) and excluded obviously incorrect

138  answers (e.g., infants drinking alcohol) and samples for which necessary data were not supplied
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139  (e.g., missing zip code data for spatial analyses); see supplement for details. We focused our

140  primary investigative efforts on a “healthy adult” subset (n=3,942) of individuals aged 20-69

141 with BMIs ranging between 18.5-30 kg/m?, no self-reported history of inflammatory bowel

142  disease, diabetes, or antibiotic use in the past year, and at least 1,250 16S sequences/sample (fig
143 1B, S1B).

144 The two largest populations in the dataset (US and UK) differed significantly in alpha-
145  diversity, with Faith’s phylogenetic diversity (PD) higher in UK samples (/3) (Mann Whitney
146  p<l1x107'5; fig 1C). One balance (10) (a log-ratio compositional transform) explained most of the
147  taxonomic separation between US and UK samples (AUC=77.7% ANOVA p=1.01x10""8,

148  F=386.85) (fig S1C, table S3). To understand how these two populations differed from others,
149  we compared adult AGP samples (predominantly from industrialized regions) to samples from
150  adults living traditional lifestyles (6, 11, 12). As previously observed (6), samples from industrial
151  and traditional populations separated in Principal Coordinates Analysis (PCoA) space of

152  unweighted UniFrac distances (13) (fig SID). They show greater variation within industrial

153  populations than within traditional populations (2) and facile separation based on microbial

154  taxonomy (industrial vs. non-industrial agrarian: AUC=98.9%, ANOVA p=1.52x102°,

155  F=1265.8; industrial vs. hunter-gatherer: AUC=99.5%, ANOVA p=4.48x102%7, F=1092.35) (fig

156 1D, table S3).
157

158  Removal of bacterial blooms. An important practical question is whether self-collected
159  microbiome samples can match those from better-controlled studies. Most AGP samples are
160  stools collected on dry swabs and shipped without preservative to minimize costs and avoid

161  exposure to toxic preservatives. E. coli and a few other taxa grow in transit, so based on data
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162  from controlled storage studies as previously described (14) we removed sOTUs (sub-OTUs

163  (15); median of 7.9% of sequences removed per sample) shown to bloom.

164 We further characterized the impact of these organisms through culturing, HPLC-MS
165  analysis of cultured isolates, and shotgun metagenomics of the primary samples and storage

166  controls (16). Culturing primary specimens stored at -80°C (US: n=116; UK: n=73; other: n=25)
167  showed a strong correlation between the fraction of sequences reported as blooms in 16S

168  sequencing and positive microbial growth following overnight incubation in aerobic conditions
169  (fig 2A). Culture supernatants were characterized using HPLC-MS; most metabolites in these
170  supernatants were absent from the primary specimens (fig 2B, C, method details in SI). We

171 sequenced draft genomes of 169 isolates; of these, 65 contained the exact E. coli 16S sequence in
172  the published bloom filter (14). To characterize the impact of the 16S bloom filter, we computed
173  effect sizes over the participant covariates and technical parameters for 9,511 individual

174  participant samples, including and excluding blooms (complete list table S2; comparisons to (17,
175  18) in supplementary text), and observed tight correlations for both unweighted (fig 2D, Pearson
176 r=0.91, p=3.76x1077; Spearman 7=0.90, p=9.45x10->%) and weighted UniFrac (fig 2E, Pearson
177  r=0.42, p=1.71x10; Spearman r=0.58, p=1.03x10"). An outlier on the quantitative metric

178  (weighted UniFrac) is present and corresponds to a variable representing the fraction of bloom
179  reads in a sample.

180

181  Novel taxa and microbiome configurations. To understand human microbiome diversity, we
182  placed AGP samples in the context of the EMP (1). Building on earlier work revealing a striking

183  difference between host-associated and environmental microbiomes (19), we found that the
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184  diversity of microbiomes associated with the human gut (just one vertebrate) occupies a vast
185  extent of the microbiome diversity of the planet (fig 3A).

186 Inserting the sOTU fragments of AGP and EMP samples into a Greengenes (20)

187  reference phylogenetic tree using SEPP (21) (fig 3B) showed that the AGP population harbored
188  much broader microbial diversity than the Human Microbiome Project (5). Both datasets are
189  dwarfed by the breadth of bacterial and archaeal phylogenetic diversity in environmental

190  samples. Examining sOTUs over increasing numbers of samples, we observed a reduction in the
191  discovery rate of novel sOTUs starting around 3,000 samples, emphasizing the need for focused
192  sampling efforts outside the present AGP population (fig 3C). The importance of sample size for
193  detecting novel microbes and microbiomes is apparent when contrasted against Yatsunenko et al.
194  (6), which contained hundreds of samples from three distinct human populations at ~1 million
195  sequences/sample (fig 3D). This effect is magnified in beta-diversity analysis, where the AGP
196  has saturated the configuration space, and new samples are not “distant” from existing samples
197  (fig 3E). To encourage community engagement with sOTUs found in the AGP, we adapted the

198 EMP “trading cards” for sOTUs (figs 3F, S2).
199

200 Temporal and spatial analyses. Longitudinal samples are required for understanding human
201  microbiome dynamics (22). We examined 565 individuals who contributed multiple samples and
202  observed an increasing trend of intrapersonal divergence with time. Still, over time individuals
203  resemble themselves more than others, even after one year (fig 4A).

204 We tested whether patterns in individual longitudinal sample sets could be better

205  explained when placed in the context of the AGP by integrating samples collected from: a) a
206 time series of 58 time points from one subject (described as “LS”), prior to and following a large

207  bowel resection, b) 2 time points from 121 patients in an intensive care unit (ICU) (23), c)
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208  samples from the “extreme” diet study from David et al. (24), and d) samples from the Hadza
209  hunter-gatherers for additional context (25). Through the longitudinal sampling of LS, dramatic
210  pre- and post-microbial configuration changes that exceeded the span of microbial diversity

211 associated with the AGP population were observed (fig 4E, animated in (26)). After surgery,
212 subject’s samples more closely resembled those of ICU patients (Kruskal Wallis H=79.774,

213 p=4.197x"?, fig S2A-C), and showed a persistent state change upon return to the AGP fecal

214  space. Remarkably, the UniFrac distance between the samples immediately prior to and

215  following the surgery was almost identical to the distance between a marine sediment sample and
216  aplant rhizosphere sample (unweighted UniFrac distance of 0.78). Furthermore, the observed
217  state change in LS is not systematically observed in the extreme diet study (fig S2D;

218 PERMANOVA n.s. when controlling for individual). Despite extensive dietary shifts, these

219  subjects do not deviate from the background AGP context.

220 Recent reports suggest that the microbes of bodies (8), like those of homes (27), are

221  influenced mostly by local phenomena rather than regional biogeography (28), and accordingly
222  we observed only weak geographic associations with sOTUs (fig 4B), no significant distance-
223  decay relationships (fig 4C), and, with Bray-Curtis distance, only a weak effect at neighborhood
224 sizes of ca. 100km (Mantel 7=0.036, Benjamini-Hochberg adjusted p=0.03) to 1,000km (Mantel
225 r=0.016, Benjamini-Hochberg adjusted p=0.03).

226

227  Dietary plant diversity. The self-reported dietary data suggested, unexpectedly, that the number
228  of unique plant species a subject consumes is associated microbial diversity, rather than self-
229  reported categories such as “vegan” or “omnivore” (fig 2D, E). Principal Components Analysis

230 of FFQ responses (fig SA) revealed clusters associated with diet types such as “vegan.”
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231  However, these dietary clusters did not significantly relate to microbiome configurations (fig 5B;
232 Procrustes fig 5A, M?=0.988). We therefore characterized the impact of dietary plant diversity on
233  the microbial community.

234 Using balances (10), we identified several putative short-chain fatty acid (SCFA)

235  fermenters associated with eating more than 30 types of plants, including sOTUs putatively of
236 the species Faecalibacterium prausnitzii and of the genus Oscillospira (29) (AUC=68.5%,

237  ANOVA p=8.9x10%, F=177.2) (fig 5E, table S3). These data suggest community-level changes
238  associated with microbial fermentation of undigested plant components. Because bacteria differ
239 in their carbohydrate-binding modules and enzymes that hydrolyze diverse substrates in the gut
240  (30), a diet containing various types of dietary fibers and resistant starches likely supports a more
241  diverse microbial community (31, 32).

242 To test these effects in the stool metabolome, we performed HPLC-MS annotation and
243  annotation propagation (33, 34) on a subset of fecal samples (n=219) preferentially selecting

244  individuals at the extremes of plant type consumption, i.e. eating <10 or >30 different types of
245  plants per week. Several fecal metabolites differed between the two groups, with one key

246  discriminating feature annotated as octadecadienoic acid (annotation level 2 according to the
247 2007 metabolomics initiative, (35)). Further investigation using authentic standards revealed that
248  the detected feature was comprised of multiple isomers, including linoleic acid (LA) and

249  conjugated linoleic acid (CLA). CLA abundance was significantly higher in individuals

250  consuming > 30 types of plants, and those consuming more fruits and vegetables generally, (fig
251 5D, 1-sided #-test; p < 107), but did not correlate with dietary CLA consumption as determined
252 by the FFQ (dietary fig 5C; Spearman r < 0.16; p > 0.15). CLA is a known end-product of LA

253  conversion by lactic acid bacteria in the gut, such as Lactobacillus plantarum (36) and

10
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254 Bifidobacterium spp. (37). FFQ-based dietary levels of LA and MS-detected LA did not differ
255  significantly between groups (fig S3), suggesting that their different microbiomes may

256  differentially convert LA to CLA. Several other putative octadecadienoic acid isomers were also
257  detected (fig 5F), some strongly correlated with plant consumption. Determining these

258  compounds’ identities as well as their origin and function may uncover new links between the

259  diet, microbiome, and health.
260

261  Molecular novelty in the human gut metabolome. Our untargeted HPLC-MS approach

262  allowed us to search for novel molecules in the human stool metabolome, parallel to our search
263  for novelty in microbes and microbiome configurations described above. Bacterial N-acyl

264  amides were recently shown to regulate host metabolism by interacting with G-protein-coupled
265  receptors (GPCRs) in the murine gastrointestinal tract, mimicking host-derived signaling

266  molecules (38). These agonistic molecules regulate metabolic hormones and glucose

267  homeostasis as efficiently as host ligands. Manipulating microbial genes that encode metabolites
268 eliciting host cellular responses could enable new drugs or treatment strategies for many major
269  diseases, including diabetes, obesity, and Alzheimer’s disease: roughly 34% of all marketed

270  drugs target GPCRs (39). We observed N-acyl amide molecules previously hypothesized but
271  unproven to be present in the gut (38) (fig 6, S4), as well as new N-acyl amides (fig 6).

272 Levels of two N-acyl amides, annotated as commendamide (m/z 330.2635, fig S4B) and
273  N-3-OH-palmitoyl ornithine (m/z 387.3220, fig S4C), positively correlated with a self-reported
274  medical diagnosis of thyroid disease (Kruskal-Wallis, FDR p=0.032, p=2.48x1073, y2=11.99; N-
275  3-OH-palmitoyl ornithine; Kruskal-Wallis, FDR p=0.048, p=5.63x107, 2=10.35). Conversely,
276  glycodeoxycholic acid (m/z 450.3187) was significantly higher in individuals not reporting

277  thyroid disease diagnosis (Kruskal-Wallis; FDR p=1.28x10*4, p=4.41x1077, x2=29.27). This

11
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278  cholic acid is produced through microbial dehydroxylation, again linking gut microbiota to

279  endocrine function (40, 41).

280 Finally, we compared metabolome diversity to 16S diversity in the samples selected for
281  dietary plant diversity and a second set of samples selected to explore antibiotic effects (=256
282  individuals who self-reported not having taken antibiotics in the past year (n=117), or having
283  taken antibiotics in the past month (n=139); participants were matched for age, BMI, and

284  country). By computing a collector’s curve of observed molecular features in both cohorts (fig
285 6K, 6M), we observe that, paradoxically, individuals who had taken antibiotics in the past month
286  (n=139) had significantly greater molecular diversity (Kruskal Wallis, H=255.240, p=1.87x1077)
287  than those who had not taken antibiotics in the past year (n=117), and differed in molecular beta-
288  diversity (fig 6K inset), suggesting that antibiotics promote unique metabolomes that result from
289  differing chemical and microbial environments in the gut. Notably, the diversity relationships of
290 this set are not reflected in 16S diversity (fig 6L, 6N), where antibiotic use shows decreased

291  diversity (Kruskal Wallis H=3983.839, p=0.0). Within the dietary plant diversity cohort, we

292  observed a significant increase (Kruskal Wallis, H=897.106, p=4.17x107'°7) in molecular alpha
293  diversity associated with a high diversity of plant consumption (#=42) compared to low plant
294  diversity (n=43), a relationship also observed in 16S diversity, where high dietary plant diversity

295  increased 168 alpha diversity (Kruskal Wallis, H=65.817, p=4.947x°).
296

297 A living dataset. The AGP is dynamic, with samples arriving from around the world daily. This

298 allows a living analysis, similar to continuous molecular identification and annotation revision in
299  the Global Natural Products Molecular Networking (GNPS) database (34). Although the analysis
300 presented here represents a single snapshot, samples continued to arrive during manuscript

301  preparation. For example, after we defined the core “healthy” sample set, an exploratory analysis

12
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302  using matched controls was performed by collaborators to test for correlations between mental
303 illness and microbiome composition (as reported in (42, 43)). By analyzing mental illness status
304  (depression, schizophrenia, post-traumatic stress disorder (PTSD) and bipolar disorder — four of
305 the most disabling illnesses per World Health Organization (44)) reported by AGP participants
306  (n=125) against matched 1:1 healthy controls (n=125), we observed a significant partitioning
307 using PERMANOVA in weighted UniFrac (p=0.05, pseudo-F=2.36). These findings were

308  reproducible within US residents (n=122, p=0.05, pseudo-F=2.58), UK residents (n=112,

309  p=0.05, pseudo-F=2.16), women (n=152, p=0.04, pseudo-F=2.35), and people 45 years of age or
310  younger (n=122, p=0.05, pseudo-F=2.45). We also reproduce some previously reported

311  differentially abundant taxa in Chinese populations using our UK subset (42, 45)(table S3). This
312 shows that multi-cohort replication is possible within the AGP (additional detail supplemental
313 text).

314

315  Discussion

316 The AGP provides an example of a successful crowdfunded citizen science project that
317  facilitates human microbiome hypothesis generation and testing on an unprecedented scale,

318  provides a free data resource derived from over 10,000 human-associated microbial samples, and
319  both recaptures known microbiome results and yields new ones. Ongoing living data efforts,
320  such as the AGP, will allow researchers to document and potentially mitigate the effects of a
321  slow but steady global homogenization driven by increased travel, lifespans, and access to

322  similar diets and therapies, including antibiotics. Because the AGP is a subproject of the EMP
323 (1), all samples were processed using the publicly available and widely used EMP protocols to

324 facilitate meta-analyses, as highlighted above. Further example applications include assessing the
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325  stability of AGP runs over time, comparing the AGP population to fecal samples collected from
326  a fecal transplant study (46) and an infant microbiome time series (47), the latter using different
327  DNA sequencing technology, to highlight how this context can provide insight (48).

328 A unique aspect of the AGP is the open community process of assembling the Research
329  Network and analyzing these data, which are released immediately on data generation. Analysis
330  details are shared through a public forum (GitHub, https://github.com/knightlab-

331  analyses/american-gut-analyses). Scientific contributions to the project were made through a
332  geographically diverse Research Network represented herein as the American Gut Consortium,
333  established prior to project launch and which has grown over time. This model allows a “living
334  analysis” approach, embracing new researchers and analytical tools on an ongoing basis (e.g.,
335  Qiita (Web:http://qiita.microbio.me) and GNPS (34)). Examples of users of the AGP as a

336  research platform include educators at several universities, UC San Diego Athletics, and the
337  American Gastroenterological Association (AGA). Details on projects using the AGP

338 infrastructure can be found in the supplement.

339 To promote public data engagement, we aimed to broaden the citizen science experience
340 obtained by participating in AGP by “gamifying” the data and separately by developing an

341  online forum for microbiome data discussion and discovery. The gamification introduces

342  concepts of beta-diversity and challenges users to identify clusters of data in principal

343  coordinates space (http://csb.cs.mcgill.ca/colonyb/). The forum, called Gut Instinct

344  (http://gutinstinct.ucsd.edu), enables participants to share lifestyle-based insights with one

345  another. Participants also have the option to share their AGP sample barcodes, which will help us
346  uncover novel contextual knowledge. Gut Instinct now has over 1,050 participants who have

347  collectively created over 250 questions. Participants will soon design and run their own
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348 investigations using controlled experiments to further understand their own lifestyle and the AGP
349  data.

350 The AGP therefore represents a unique citizen-science dataset and resource, providing a
351  rich characterization of microbiome and metabolome diversity at the population level. We

352  believe the community process for involving participants from sample collection through data
353  analysis and deposition will be adopted by many projects harnessing the power of citizen science
354  to understand the world around and within our own bodies.

355

356  Materials and methods

357  Participant Recruitment and Sample Processing. Participants signed up for the project

358  through Indiegogo (https://www.indiegogo.com/) and later, FundRazr (http://fundrazr.com/). A

359  contribution to the project was made to help offset the cost of sample processing and sequencing
360 (typically $99 per sample; no requirement to contribute if another party was covering the

361  contribution). All participants were consented under an approved Institutional Review Board
362  human research subjects protocol, either from the University of Colorado Boulder (protocol #12-
363  0582; December 2012 - March 2015) or the University of California, San Diego (protocol

364  #141853; February 2015 - present). The IRB-approved protocol specifically allows for public
365  deposition of all data that is not personally identifying and for return of results to participants
366  (fig. 1A).

367

368  Self-reported metadata were collected through a web portal

369  (http://www.microbio.me/americangut). Samples were collected using BBL Culture Swabs

370  (Becton, Dickinson and Company; Sparks, MD) and returned by mail. Samples were processed
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371 using the EMP protocols. Briefly, the V4 region of the 16S rRNA gene was amplified with

372  barcoded primers and sequenced as previously described (49). Sequencing prior to August 2014
373  was done using the 515f/806r primer pair with the barcode on the reverse primer (50);

374  subsequent rounds were sequenced with the updated 515f/806rB primer pair with the barcode on
375  the forward read (51). Sequencing batches 1-19 and 23-49 were sequenced using an Illumina
376  MiSeq; sequencing for 20 and 21 were performed with an Illumina HiSeq Rapid Run and round
377 22 was sequenced with an Illumina HiSeq High Output.

378

379  16S Data Processing. The 16S sequence data were processed using a sequence variant method,
380  Deblur v1.0.2 (52) trimming to 125nt (otherwise default parameters), to maximize the specificity
381  of 16S data; a trim of 125nt was used because one sequencing round in the American Gut used
382 125 cycles while the rest used 150. Following processing by Deblur, previously recognized

383  bloom sequences were removed (14). The Deblur sub Operational Taxonomic Units (sSOTUs)
384  were inserted into the Greengenes 138 (53) 99% reference tree using SEPP (54). Taxonomy
385  was assigned using an implementation of the RDP classifier (55) as implemented in QIIME2
386  (56). Multiple rarefactions were computed, with the minimum being 1250 sequences per sample
387  with the analyses using the 1250 set except where noted explicitly. Diversity calculations were
388  computed using scikit-bio 0.5.1 with the exception of UniFrac (57) which was computed using
389  an unpublished algorithmic variant, Striped UniFrac (https.//github.com/biocore/unifrac), which
390 scales to larger datasets and produces identical results to previously published UniFrac

391  algorithms.

392
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393 Metadata Curation. To address the self-reported nature of the AGP data and ongoing nature of
394  the project, basic filtering was performed on the age, height, weight, and body mass index

395 (BMI). Height and weight were gated to only consider heights between 48 cm and 210 cm, and
396  weight between 2.5 kg and 200 kg. BMI calculations using values outside this range were not
397  considered. We assumed age was misreported by any individual who reported a birth date after
398 their sample was collected. We also assumed age was misreported for participants who reported
399  an age of less than 4 years, but height over 105 cm, weight over 20 kg, or any alcohol

400  consumption. Values assumed to be incorrect were dropped from analyses (fig S1B).

401

402  Sample Selection. Analyses in the manuscript were performed on a subset of the total AGP

403  samples. A single fecal sample was selected for each participant with at least one fecal sample
404  that amplified to 1250 sequences per sample unless otherwise noted. Priority was given to

405  samples that were associated with VioScreen (http://www.viocare.com/vioscreen.html) metadata.
406

407  The samples used for analysis and subsets used in various analyses are described in table S2.
408  Briefly, we defined the healthy subset (n=3,942) as adults aged 20-69 years with a BMI between
409  18.5 and 30 kg/m? who reported no history of inflammatory bowel disease or diabetes and no
410  antibiotic use in the last year. There were 1,762 participants who provided results for the

411  VioScreen Food Frequency Questionnaire (FFQ); Attp://www.viocare.com/vioscreen.html). The
412  meta-analysis with non-Western samples (#=4,643) included children over the age of 3, adults
413  with a BMI of between 18.5 and 30 kg/m?, and no reported history of inflammatory bowel

414  disease, diabetes, or antibiotic use in the last year.

415
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Population Level Comparisons. Population level comparisons were calculated for all American
Gut participants living in the United States. BMI categorization was only considered for adults
over the age of twenty, since the description of BMI in children is based on their age and sex.
Education level was considered for adults over the age of 25. This threshold was used to match
the available data from the US Census Bureau
(https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20- 578.pdf). The
percentage of the American Gut participants was calculated as the fraction of individuals who
reported results for that variable. US population data is from the 2010 census
(https://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf), US Census bureau reports
(https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20- 578.pdf),
Centers for Disease Control reports on obesity
(https://www.cdc.gov/nchs/data/hus/2015/058.pdf), diabetes (57, 58), IBD
(http://www.cdc.gov/ibd/ibd-epidemiology. htm), smoking
(https://'www.cdc.gov/tobacco/data_statistics/fact_sheets/adult data/cig_smoking/index.ht

m), and a report from the Williams Institute (http://williamsinstitute.law.ucla.edu/wp-

content/uploads/How-Many-Adults-Identify-as-Transgender-in-the-United-States.pdf) (table S2).

Within American Gut Alpha- and Beta-Diversity Analyses. OTU tables generated in the
primary processing step were rarefied to 1,250 sequences per sample. Shannon, Observed OTU,
and PD whole tree diversity metrics were calculated as the mean of ten rarefactions using QIIME
(56, 59). Alpha-diversity for single metadata categories was compared with a Kruskal-Wallis
test. Unweighted UniFrac distance between samples was tested with PERMANOVA (60) and

permuted #-tests in QIIME.
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Balances. The goal of this analysis was to design two-way classifiers to classify samples and
sOTUs. This will allow us to identify sOTUs that are strongly associated with a given
environment. To do this while accounting for issues due to compositionality, we used balances

(61) constructed from Partial Least Squares (62).

First the sOTU table was centered log-ratio (CLR) transformed with a pseudocount of 1. Partial
least squares discriminant analysis (PLS-DA) was then performed on this sSOTU table using a
single PLS component, using a binary categorical variable as the response and the CLR
transformed sOTU table as the predictor. This PLS component represented an axis, which
assigns scores to each OTU according to how strongly associated they are to each class. An
sOTU with a strong negative score indicates an association for the one category, which we will
denote as the negative category. An sOTU with a strong positive score indicates that sOTU is

strongly associated with the other category, which we will denote as the positive category.

We assumed that PLS scores associated with each OTU were normally distributed. Specifically

(i
Score(xplo)s) ~ N(ﬂpos' 0-505)

i
score(xne)g ~ N(fineg, Oreg)

® 2
score(Xp,;) ~ N(Unun, Onun)

Where Upyy = 0, fineg < 0 and o > 0. To obtain estimates of these normal distributions,

Gaussian Mixture Models with three Gaussians were fitted from the PLS scores. Thresholds

were determined from the intersection of Gaussians. The OTUs with PLS scores less than the
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463  intersection N (tnyy, 02,y) and N (ipe gr o2, g) are classified to be associated with the negative
464  category. The OTUs with PLS scores greater than the intersection N (L, 02,;;) and
465  N(Upos, 050 s) are classified to be associated with the positive category.

466  The balance was constructed as follows

467

468 pros”xnegl g (g(xpos))
prosl + Ixnegl g(xneg)

469

470  From this balance, we calculated receiver operator characteristic (ROC) curves and AUC to

471  assess the classification accuracy, and ran ANOVA to assess the statistical significance. The
472  dimensionality was shrunk through some initial filtering (an sOTU must have at least 50 reads,
473  must exist in at least 20 samples except where noted, and have a variance over 10 to remove

474  sOTUs that do not appear to change), so that the number of samples is greater than the number of
475  sOTUs to reduce the likelihood of over-fitting. This technique was used to investigate

476  differences due to plant consumption, country of residence and western vs non-western and was
477  consistently applied with the exception that a filter of 5 samples was used for the western vs.
478  non-western analysis due to group sample sizes.

479

480  Balances on plant consumption were constructed using Partial Least Squares. Only samples

481  from people who consumed less than 10 types of plants a week or more than 30 types of plants a
482  week were considered.

483

484  Meta-analysis of samples from the American Gut and from individuals living agrarian and

485  hunter-gatherer lifestyles. A meta-analysis compared fecal samples collected from healthy
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486  individuals that were 3 years of age or older and included in the AGP data set to a previously
487  published 16S rRNA V4 region data set that included healthy people living an industrialized,
488  remote agrarian or hunter-gatherer lifestyle (63—65). The AGP subset of healthy individuals was
489  determined by filtering by the metadata columns “subset antibiotic”, “subset ibd”,

490  “subset diabetes”, and for individuals over the age of 16 years “subset bmi”. All datasets were
491  processed using the Deblur pipeline as noted above, with the exception that all reads in the meta-
492  analysis, including AGP data, were trimmed to 100nt to accommodate the read length in

493  Yatsunenko et al (63). Bloom reads as described above were removed from all samples. We used
494  Striped UniFrac as noted above to estimate beta-diversity (unweighted UniFrac) and EMPeror
495  software (66) version 0.9 to visualize principal coordinates. We used a non-parametric

496 PERMANOVA with 999 permutations to test for significant differences in fecal microbiomes
497  associated with industrialized, remote agrarian, and hunter-gatherer lifestyles. All AGP samples
498  were considered to be from people living an industrialized lifestyle. Balances were constructed
499  from Partial Least Squares to assess the differences between the hunter-gather vs. industrialized
500  populations and the remote farmers vs industrialized populations.

501

502  Spatial Autocorrelation. We sought to investigate distance-decay patterns — the relationship
503  between microbial community similarity and spatial proximity — among American Gut

504  participants, to determine the extent to which geographical distances could explain variation in
505  microbial community taxonomic compositions between participant pairs. The correlation

506  between community-level Bray-Curtis (67) distances and participants’ spatial proximities (i.e.,
507  great-circle distances, km) was assessed using a Mantel test (68) with 1000 matrix permutations.

508  Analyses were conducted using the subset of participants located in the continental United States
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509 that had not received antibiotics in the last year. Different neighborhood sizes were investigated
510 in order to detect the relevant spatial scale on which significant distance-decay patterns in

511  microbial community compositions emerged. To accomplish this, we computed distance-decay
512  relationships for a series of model adjacencies corresponding to neighborhood radiuses of 50,
513 100, 500, 1000, 2500, and 4500 km among participants, and adjusted p-values for multiple

514  comparisons using the Benjamini-Hochberg procedure (69). We also studied spatial correlations
515  in phylogenetic community dissimilarities, calculated as weighted normalized UniFrac distances,
516  using the procedure described above. Analyses were conducted in R statistical programming
517  environment.

518

519  The spatial autocorrelation of each individual taxon was assessed using Moran’s [ statistic (70).
520 Taxa present in less than 10 samples were filtered, since these would not be sufficiently

521  powered. Analyses were conducted using binary spatial weight matrices, with neighborhoods of
522 0 —50km, 50 — 100 km, and 100 — 250 km. The different neighborhoods were useful for

523  detecting spatial autocorrelation at different scales. All spatial weights matrices were row-

524  standardized. We checked for spatial autocorrelation at three taxonomic ranks: class, genus, and
525  OTU. We also considered whether there was autocorrelation within subsets of individuals who
526  were under 20 years old and between 20 and 70 years old; those having IBD, no IBD, diabetes,
527  and no diabetes; and those who had taken antibiotics within the past week, year, or not within the
528  past year. The results presented above did not qualitatively depend on the subset of individuals
529  considered. Statistical significance was assessed using permutation tests, which were

530 implemented using a Markov Chain Monte Carlo algorithm. To assess each p-value, 100 chains

531  were run each starting from a different random permutation. Each chain had 1000 iterations. We
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532  used Bonferroni corrections to correct for multiple comparisons, with an overall significance
533 level set to 0.05. Analyses were run using custom Java code, optimized for running many spatial
534  autocorrelation analyses on large data sets (71).

535

536  Metadata cross-correlation. To account for covariance among metadata for effect size and

537  variation analyses, we examined the correlation between individual metadata variables including
538  technical parameters. Groups in ordinal variables were combined if there were insufficient

539  sample size (e.g. people who reported sleeping less than 5 hours were combined with those who
540  reported sleeping 5 to 6 hours into a variable described as “Less than 6”). The same

541  transformations were used for effect size analysis. Any group with less than 25 total observations
542  was ignored during analysis; if this resulted in a metadata column having no groups, the column
543  was removed from analysis. The relationship between continuous and ordinal covariates was
544  calculated using Pearson’s correlation. Ordinal and categorical covariates were compared using a
545  modified Cramer’s V statistic (72). Continuous and categorical covariates were compared with a
546  Welch’s T test (73). We treated used /-R as a distance between the covariates. Traversing the
547  resulting binary, weighted cluster tree starting at tip level into the direction of the root, i.e.

548  bottom-up, we grouped tips together that are members of the same subtree after covering a

549  distance of approximately 0.5 (branch length 0.29). A representative variable from each cluster
550  was selected for analysis (table S2).

551

552  Effect Size Calculations. Effect size was calculated on 179 covariates (including technical

553  parameters), selected from the cross-correlation (table S2). Ordinal groups with small sample

554  sizes at the extreme were collapsed as noted above. Individuals who reported self-diagnosis or
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555  diagnosis from alternative practitioner for medical conditions were excluded from the analysis.
556  Any metadata variable with less than 50 observations per group or that made up less than 3% of
557  the total number of respondents was also excluded from the effect size analysis. Continuous

558  covariates were categorized into quartiles. For each one of the 179 variables, we applied the

559  mdFDR (74) methodology to test for the significance of each pairwise comparison among the
560  groups. For each significant pairwise comparison, we computed the effect size using Cohen’s d
561  (75), or the absolute difference between the mean of each group divided by the pooled standard
562  deviation. For analysis of diversity, we used Faith's Phylogenetic Diversity (alpha-diversity) and
563  weighted and unweighted UniFrac distances (beta-diversity).

564

565  Variation analysis. Using the methodology reported in the supplemental material for (76), we
566  computed Adonis (77) using 1000 permutations, over the sample sets used in the effect size

567  calculations as noted above, and applied Benjamini-Hochberg correction (FDR<O0.1) to assess
568 drivers of variation in beta-diversity.

569

570  Meta-analysis movie. American Gut samples from all body sites were combined with data from
571  an infant time series (78), a fecal transplant study (79), and recent work characterizing the

572  microbiome of patients in the intensive care unit (80). The combination of the datasets in movie
573  S2 required that all sequences were trimmed to an even length of 125 nucleotides. All projects
574  except for the infant time series were sequenced using an Illumina instrument. In order to

575  combine the data, we expressed the Illumina and non-Illumina data through a common reference
576  database. Specifically, the Deblur sOTUs from the Illumina data were mapped against the

577  Greengenes (53) database (13_8 release) using 99% similarity; the associations between the
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578  input sOTUs, and their cluster memberships, were used to construct an OTU table based on the
579  original sOTU per sample sequences counts (i.e., summing the counts for all sSOTUs in a

580 common OTU). The infant time series data were picked using a closed reference OTU picking
581  approach against the same reference at the same similarity. The infant time series dataset

582  followed a closed reference OTU picking approach using 99% similarity. The resulting two
583  tables (from Illumina-generated data and the ITS dataset) were merged and analyzed using the
584  Greengenes 99% tree. The table was rarefied to 1,250 sequences per sample. Principal

585  coordinates projections were calculated based on unweighted UniFrac distance (57). The

586  principal coordinates analysis was visualized and animated in EMPeror 1.0.0-beta8-dev (66, 81).
587  The movie was captured in QuickTime (Apple, Cupertino, CA), and edited with Premiere Pro
588 (Adobe, San Jose, CA).

589

590 Integration with the Earth Microbiome Project. A precomputed 100nt Deblur BIOM table
591  representing the data in (82) was obtained from

592  (ftp:/ftp.microbio.me/emp/releasel/otu_tables/deblur/). 100nt Deblur tables were also obtained

593  from Qiita for Hadza fecal samples (Qiita study ID 11358, (83)), ICU microbiome samples (Qiita
594  study ID 2136, (80)), and a longitudinal series which includes samples immediately prior to and
595 following a large bowel resection (Qiita study ID 10283, EBI accession ERP105968,

596  unpublished); all samples were processed using the EMP Illumina 16S V4 protocol. The EMP
597  dataset used a minimum sOTU count of 25; the same threshold was applied to the other datasets
598  included prior to merge. Blooms as identified by (84) were removed from all samples. This

599  collection of BIOM tables was then merged yielding an OTU table representing 40,600 samples.

600 sOTUs were restricted to those already present in the EMP 100nt fragment insertion tree, which
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601  represents 329,712 sOTUs. The table was then rarefied to 1000 sequences per sample, and

602  unweighted UniFrac computed using 768 processors with the aforementioned Striped algorithm.
603  Visualizations and animations were performed using EMPeror v1.0.0b12.dev0.

604

605 Extreme diet study state assessment. The sequence data from (85) were processed by Deblur to
606  assess 16S sOTUs in common with the AGP processing above. In order to assess a state

607  difference with PERMANOVA, we needed to control for sample independence within the

608 longitudinal sampling. To do so, we randomly selected one sample from each individual per diet,
609 computed PERMANOVA, and repeated the process 100 times. None of the trials produced a p-
610  value below 0.05.

611

612  Vioscreen PCA and diet type Procrustes analysis. Before performing Principal Component
613  Analysis (PCA) on the informal diet questions, Vioscreen variables that are categorical or

614  receive less than 90% response among the 1762 participants were excluded leaving 1596

615  participants. PCA was then performed using the Vioscreen information from these participants’
616  responses over 207 Vioscreen questions, and then colored by their types of diet as answered in
617  the AGP informal food survey. The coordinates from the PCA were extracted. For the same

618  samples, PCoA of unweighted UniFrac distances was computed on the 16S data subset from the
619  primary processing set. The coordinates from the PCA and the PCoA were assayed for a measure
620  of fitness using Procrustes as implemented in QIIME v1.9.1.

621

622  Beta-diversity added. To assess added beta-diversity, we applied the technique used in (86)

623  figure 3. Specifically, we randomly sampled N samples from the distance matrix 10 times, over
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624  an increasing value of N. For each set of sampled distances, we computed the minimum observed
625  distance.

626

627  sOTU novelty. To assess sOTU novelty, we randomly sampled N samples from an sOTU table
628 10 times, over an increasing value of N. At each sampling, we computed the number of sOTUs
629  observed with read counts within minimum thresholds. In other words, a minimum threshold of 1
630 is the number of singletons observed in the sampled set, a minimum threshold of 2 is the number
631  of singletons and doubletons, etc.

632

633  Within-individual beta-diversity. Many of the individuals in the American Gut Project

634  contributed multiple samples, but at uneven time intervals. In order to explore intrapersonal

635  variation, we replicated the analysis in Lloyd-Price et al. figure 3 (87). Specifically, we

636  determined all time deltas between a subjects samples, and gathered the distributions of beta-
637  diversity between any two samples binned by month. An individual is only represented a single
638  time in a given month, but may be represented in multiple months if they had, for instance,

639  contributed samples over the course of a year.

640

641  High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS) Analysis. A
642  total of 498 samples were selected for analysis via mass spectrometry. Specifically, two groups
643  were chosen. First, given the large body of primary literature describing the negative impact of
644  antibiotics on the gut microbiome, and the general interest in this topic from many American Gut
645  participants, we chose 279 samples from individuals (age, BMI, and country matched) who self-

646  reported not having taken antibiotics in the past year, or having taken antibiotics in the past

27


https://doi.org/10.1101/277970
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/277970; this version posted March 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

647  month or week. We chose a second group of 219 samples collected from individuals who

648  answered the question “In an average week, how many different plants do you eat? (e.g., if you
649  consume a can of soup that contains carrots, potatoes and onion, you can count this as 3 different
650 plants; If you consume multi-grain bread, each different grain counts as a plant. Include all fruits
651  in the total)” on the main American Gut Project main survey and who had also completed the
652  VioScreen Food Frequency Questionnaire. When American Gut participants collect samples,
653  they do so on a double headed swab; therefore, all samples chosen for this analysis had one

654  remaining swab head (the first had been used for DNA extraction and microbiome sequencing).
655

656  Cell cultures sample preparation for metabolomics analysis. The supernatant collected from cell

657  cultures (see “expanded bloom assessment” below) were processed to make them compatible
658  with HPLC-MS analysis. The solid phase extraction with wash was carried out to reduce impact
659  of cell culture media, which is highly detrimental for the ESI. The 30 mg sorbent Oasis HLB
660 (Waters, Waltham, MA) SPE cartridges were used to achieve broad metabolite coverage. The
661  cell samples were stored at -80°C and thawed at room temperature immediately prior to

662  extraction. The thawed samples were then centrifuged for 10 minutes at 1200 rpm and extracted.
663  For the SPE extraction, the Oasis HLB SPE cartridge was conditioned with 700pL of 100%

664  HPLC-grade methanol and equilibrated with 700uL of HPLC-grade DI water. The cell

665  supernatant (~350-400uL) was loaded into cartridge and allowed to slowly elute. The loaded
666  SPE wells were then washed with 800uL of 5% methanol in water and the absorbed material was
667  slowly eluted with 200 uL of 100% methanol. Vacuum up to ~ 20 psi was applied for the wells
668 that did not elute within an hour. The collected eluent was stored at -20°C until the HPLC-MS

669  analysis.
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670

671  Fecal sample preparation for metabolomics analysis. The swab tubes scheduled for analysis were

672  removed from the -80°C freezer and placed on dry ice for the duration of sample processing.

673  Each tube with swab was logged by reading the barcode with barcode scanned and the swab was
674 removed from tube and placed onto a ThermoFisher Scientific (ThermoFisher Scientific,

675  Waltham, MA) 2 ml deep well 96-well plate set on top of dry ice coolant. The top part of each
676  swab’s stick was snapped off and discarded. Immediately after filling all of the wells with swabs,
677 200 uL of HPLC-grade 90% v:v ethanol:water solvent was added to each well using

678  multichannel pipette. Four blanks of unused swabs and extraction solvent were included onto
679  each plate. Each plate was then sealed with 96-well plate lid, sonicated for 10 minutes and placed
680 into the refrigerator at 2 °C to extract samples overnight. After extraction, the swabs were

681 removed from wells and discarded, the plates were placed into a lyophilizer, and the entire

682  sample was dried down and then re-suspended in 200 puL 90% v:v ethanol:water. The plates were
683 resealed and centrifuged at 2000 rpm for 10 minutes. The 100 pL aliquots of sample were then
684 transferred onto a Falcon 96-well MS plate using a multichannel pipette, and each plate was

685 immediately sealed with sealing film. The MS plates were centrifuged at 2000 rpm for 10

686  minutes and stored at 2 °C until analysis.

687

688 HPLC-MS analysis. The metabolomics analysis of samples was conducted using reverse phase

689  (RP) high performance liquid chromatography mass spectrometry (HPLC-MS). The HPLC-MS
690 analysis was performed on a Dionex UltiMate 3000 ThermoFisher Scientific high-performance
691  liquid chromatography system (ThermoFisher Scientific, Waltham, MA) coupled to a Bruker

692  impact HD qTOF mass spectrometer. The chromatographic separation was carried out on a
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693  Kinetex C18 1.7 um, 100A UHPLC column (50 mm x 2.1 mm) (Phenomenex, Torrance, CA),
694  held at 40 °C during analysis. A total of 5 uL of each sample was injected. Mobile phase A was
695  water, mobile phase B was acetonitrile, both with added 0.1% v:v formic acid. The solvent

696  gradient table was set as follows: initial mobile phase composition was 5% B for 1 min,

697  increased to 40% B over 1 min, then to 100% B over 6 min, held at 100% B for 1 min, decreased
698  back to 5% B in 0.1 min, followed by a washout cycle and equilibration for a total analysis time
699  of 13 min. The scanned m/z range was 80-2000 Th, the capillary voltage was 4500 V, the

700  nebulizer gas pressure was 2 bar, the drying gas flow rate was 9 L/min, and the temperature was
701 200 °C. Each full MS scan was followed by MS/MS using collision-induced dissociation (CID)
702  fragmentation of the seven most abundant ions in the spectrum. For MS/MS, the collision cell
703  collision energy was set at 3 eV and the collision energy was stepped 50%, 75%, 150% and

704  200% to obtain optimal fragmentation for differentially sized ions of different sizes. The scan
705  rate was 3 Hz. A HP-921 lock mass compound was infused during the analysis to carry out post-
706  processing mass correction. All of the raw data are publicly available at the UCSD Center for

707  Computational Mass Spectrometry (//17) (dataset ID: MassIVE MSV000080179).
708

709  MS data analysis. The collected HPLC-MS raw data files were first converted from Bruker’s d to

710  mzXML format and then processed with the open source OpenMS 2.0 software (88) in order to
711 deconvolve and align each peak across different chromatograms (feature detection). The

712 alignment window was set at 0.5 minutes, the noise threshold at 1000 counts, the

713  chromatographic peak FWHM value at 20, and the mass error at 30 ppm. All of the peaks that
714  were present in any of the blanks with S/N below 10:1 were removed from the final feature table.

715  The number of features with corresponding MS/MS was as follows: Vioscreen study sample
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716  cohort: 5144 total MS2 features; antibiotics study samples cohort: 8288 total MS2 features. The
717  number of MS1 features is difficult to estimate exactly as it depends on feature detection settings
718  and the number of samples, but it is typically about 4-5 fold greater depending on the sample.
719  For all of the MS1 features detected across all samples, only ~1-5% are present in an individual

720  sample.

721

722 Chemical annotations were carried out by automatic matching fragmentation spectra to multiple
723  databases using Global Natural Product Social Molecular Networking (GNPS) (89) and then
724  examining the data at the MS/MS level by molecular networking (90). The goal is to retrieve
725  spectra with identical and similar fragmentation patterns and combine them into consensus nodes
726  and clusters, respectively. The consensus node spectra are then compared against public MS/MS
727  libraries to provide molecular annotations (91). Further annotations could be suggested by

728  examining the molecular network (90) (so called propagated annotations). Annotations obtained
729  with precursor and MS/MS matching are considered level two annotations according to the 2007
730  metabolomics standards initiative (92). All molecular networking analysis and annotations are
731  available here: antibiotic use subset (93); types of plants subset (94), cell cultures of isolates (95)
732  and fecal samples co-networked with the cell cultures (96). The raw data contain a significant
733  number of abundant features originating from swab polymers. Therefore, selective background
734  peak removal was carried out specifically for the polymer compounds originating from swabs
735  that were used for the sample collection. The m/z shifts that correspond to the polymer repeating
736  units (44.0262, 88.0524, 132.0786, 176.1049) were identified with GNPS m/z differences

737  frequency plot. The network clusters that contained nodes with the corresponding mass

738  differences were deemed to belong to polymers and all member nodes of the network clusters
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739  were removed from the feature table (a total of 1632 features/nodes). Principal Coordinates

740  Analysis (PCoA) using a Hellinger distance (97) matrix was used to confirm that the batch effect
741 corresponding to the batches of swabs was mitigated prior to further analysis. To confirm

742  putative annotations, authentic standards were purchased for the linoleic acid (LA; Spectrum
743  Laboratory Products, Inc., USA), conjugated linoleic acid (CLA; mixture of 4 isomers: 9,11 and
744 10,12 isomers, E and Z) (Sigma-Aldrich, USA), and selected antibiotics: tetracycline,

745  oxytetracycline, and doxycyclin (Abcam Inc., USA). For level one identifications, each authentic
746  compound was analyzed under identical experimental conditions and retention time and MS/MS
747  spectra were compared with putatively annotated compounds.

748

749  Selective feature detection. Selective feature extraction was performed with open source

750  MZmine2 software (98). To separate closely eluting LA and CLA isomers as well as separate
751  various N-acyl amides, crop filtering with RT range of 5.4-6.0 minutes and m/z range of 281.246
752 - 281.248 was applied to all chromatograms. Mass detection was performed with a signal

753  threshold of 1.0E2 and a 0.6 s minimum peak width. The mass tolerance was set to 20 ppm and
754  the maximum allowed retention time deviation was set to 5 s. For chromatographic

755  deconvolution, the baseline cutoff algorithm with a 5.0E1 signal threshold was used. The

756  maximum peak width was set to 0.5 min. Similarly, the MS feature for reference compound

757  stercobilin was extracted with a crop filter RT range of 2.0-4.0 minutes and m/z range of

758  595.345-595.355. The stercobilin reference compound was used to assess variability of

759  chromatographic retention times to ensure that the compounds of interest (LA and CLA in

760  particular) retention times were correctly identified. After isotope peak removal, the peak lists of

761 all samples were aligned within the corresponding retention time and mass tolerances. Gap
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762  filling was performed on the aligned peak list using the peak finder module with 1% intensity, 10
763  ppm m/z tolerance, and 0.05 min RT tolerance, respectively. After the creation and export of a
764  feature matrix containing the feature retention times, exact mass, and peak areas of the

765  corresponding extracted ion chromatograms, we added sample metadata to the feature matrix

766  metadata of the samples.

767

768  The selective feature extraction with the same settings has been performed for all of the detected
769  compounds listed on the Figure 6A-I ( the m/z range crop filter window was set for

770  corresponding m/z for each compound).

771

772 Molecular Networking. Raw data files were converted to the .mzXML format using Bruker Data

773  Analysis software and uploaded to the GNPS (https://gnps.ucsd.edu/) MassIVE mass

774  spectrometry database (https://massive.ucsd.edu/). Molecular networking was performed to

775  identify spectra shared between different sample types and to identify known molecules in the
776  data set. All annotations are at level 2 according to the proposed minimum standards in

777  metabolomics (92). The data were filtered by removing all MS/MS peaks within +/- 17 Da of the
778  precursor m/z. MS/MS spectra were window-filtered by choosing only the top 6 peaks in the +/-
779 50 Da window throughout the spectrum. The MS spectra were then clustered with MS-Cluster
780  algorithm with a parent mass tolerance of 0.02 Da and a MS/MS fragment ion tolerance of 0.02
781  Da to create consensus spectra (89). Further, consensus spectra that contained less than 4 spectra
782  were discarded. A network was then created where edges were filtered to have a cosine score

783  above 0.65 and more than 5 matched peaks. The edges between two nodes were kept in the
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784  network if and only if each of the nodes appeared in each other's respective top 10 most similar
785  nodes. The spectra in the network were then searched against GNPS spectral libraries. The
786  library spectra were filtered in the same manner as the input data. All library matches were
787  required to have a score above 0.7 and at least 6 matched peaks. Molecular networks were

788  visualized and mined using the Cytoscape software (www.cytoscape.org/).

789

790  Molecular networking-based propagation of annotations. The annotation of GPCR agonist

791 compounds was not possible via direct library matching, as their spectra are not present in any
792  MS libraries, but direct comparison with fragmentation patterns presented in (99) allowed us to
793  establish these compounds’ identity with level 3 identification (92). Consequently, manual

794  annotation of compounds was carried out in two steps. The exact mass of compounds and their
795  MS/MS fragmentation spectra were matched to the reference spectra found in supplementary
796  info of (99) (fig S4A). Compound m/z 611.5357 was identified in this fashion. In addition,

797  commendamide (330.2640) and its analogue (m/z 344.2799) were identified by matching exact
798  mass of the corresponding ion and by in silico prediction of the MS/MS fragmentation spectra
799  with the CSI:FingerID (100) (fig S4B). For novel molecules that were found within clusters of
800 compounds of interest, but were not described in the literature previously, the structure was
801  postulated using annotation propagation from adjacent annotated nodes in the cluster as

802  described in (89) by assessing differences in parent mass and fragmentation patterns. The key
803  structure, m/z 387.322 has been annotated as N-3-OH-palmitoyl ornithine based on the exact
804  mass and previous annotation (99) as well as analysis of fragmentation pattern to confirm

805  structural moieties of fragments (fig S4C). The rest of the structural assignments have been

806  propagated from that structure. The ornithine moiety has been determined to be present in each
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807  structure (due to presence of the signature ion with m/z 115.09), and acylation of the hydroxyl is
808  not possible due to insufficient mass of the structures; thus, the changing mass was postulated to

809  correspond to different length of the alkyl substituent (fig 6, in the main text).

810

811  Correlations of Metabolites with Metadata. We have investigated correlations between

812  metabolites (especially those of interest, such as N-Acyl amides) and all of the categories in the
813  metadata. The data were subsetted into the Vioscreen and Antibiotics cohorts and normalized
814  using probabilistic quotient normalization (101). In order to test the association of the

815  metabolites to the categorical metadata fields we performed the Kruskal-Wallis test followed by
816  Benjamini & Hochberg FDR correction to all metabolites. The significant metabolite-metadata
817  associations (p-value adjusted < 0.05) were further connected to GNPS spectral library matches
818  associating the MS1 feature to the MS2 precursor ion in a 10 ppm mass window and 20 seconds
819  retention time window. The results are summarized in table S5.

820

821  Data pretreatment for statistical analysis. A PCoA plot using Hellinger distance (distance matrix:

822  Hellinger; grouping: HCA) was built with all samples in the subset; one sample was found to be
823  an outlier and removed. The data were then filtered to remove features with near-constant, very
824  small values and values with low repeatability using the inter-quartile range estimate. Detailed
825  description of methodology is given in (102). The samples were normalized by sum total of peak
826 intensities, an important step due to large variability of the fecal material load on different swabs.
827  To reduce the effect of background signal and make the sum normalization appropriate, the

828  subtraction of blank and polymer peak features was conducted prior to analysis, as described
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829  above. The data were further scaled by mean centering and dividing by standard deviation for

830  each feature.

831

832  The data were split into two groups for downstream analysis. Group one contained samples from
833  individuals answering “More than 30” (n=41) and “Less that 10" (n=44) to the main American
834  Gut Project survey question “In an average week, how many different plants do you eat?” Group
835  two contained samples from individuals answering “antibiotic use within last week” (n=56) and
836  “I have not taken antibiotics in the past year” (n=115) to the main American Gut Project survey
837  question “I have taken antibiotics in the last  .” for the Antibiotic history study,

838  correspondingly.

839

840  The resultant features tables were used as input for the Metabonalist software (103). Partial least
841  squares Discriminant Analysis (PLS-DA) (62) was used to explore and visualize variance within
842  data and differences among experimental categories. Random forests (104) (RF) supervised

843  analysis was used to further verify validity of determined discriminating features.

844

845 Expanded bloom assessment. The American Gut Project dataset now spans multiple-omics

846  types, and include data that were unavailable during the analysis described in Amir et al. (14). To
847  better understand how the blooming organisms impacted the samples in the American Gut, we 1)
848  performed an additional set of 16S-based experiments; 2) cultured historical samples covering a
849  range of bloom fractions, characterized their metabolites and sequenced the isolates; 3)

850  performed shotgun metagenomics sequencing on the “high bloom” samples; 4) ran the set of
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samples previously run for HPLC-MS (e.g., the plants and antibiotics cohorts) for shotgun
metagenomics, and 5) ran the storage samples from (105) for shotgun metagenomics. The
additional sequencing effort was to provide a basis to assess whether functional potential driven
by the blooms was impacting any of the biological results discussed in the manuscript. The
additional HPLC-MS work was to characterize the metabolites specific to the blooms to remove
them from analysis. The additional sequence data generated from the American Gut samples
were deposited in EBI under the American Gut accession (ERP012803), and the storage sample

data under its accession (ERP015155).

16S-based bloom experiments. Effect size calculations were computed prior to and following the

removal of bloom reads using the procedure described by Amir et al., 2017 (84). The fraction of
reads recruiting to blooms was included as a covariate. Effect sizes were assessed over Faith’s
Phylogenetic Diversity (59), unweighted UniFrac (57) and weighted UniFrac (106). We then
computed Pearson and Spearman correlations of the effect sizes, per metric, between the bloom
and bloom-removed result (fig 2D, E). In addition to the effect size calculations, we also tested
whether the bloom fraction was correlated to any metadata category and did not observe

significant correlations.

We then tested the removal of blooms from other studies in which room temperature shipping
was not performed by retrieving a wide variety of human fecal studies from Qiita. UniFrac
distance matrices were computed prior to and following bloom removal, followed by Mantel

tests. The results of this procedure are outlined in table S4.
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874  Finally, we correlated the relative intensities of the HPLC-MS data associated with the

875  antibiotics and plants cohorts against the fraction of blooming reads. Critically, we observed a set
876  of spectra that are significantly correlated (table S5) to this fraction. On annotation using

877  molecular networking (discussed in detail the HPLC-MS section), we observed these metabolites
878  to putatively be LysoPE, lysophospholipid (LPL), which has previously been associated with the
879  release of colicin (107). These metabolites were removed from subsequent analyses.

880

881  Culturing. Primary specimens (n=214) were selected from three plates based off of the median
882  fraction of reads recruiting to the blooms across the plate, whether the primary specimen still
883  existed, and as to gather samples from at least the US (n=116) and UK (n=73); additional

884  countries were included in smaller sample sizes and include Australia (n=7), Germany (n=7),
885  C(Canada (n=3), Croatia (n=2), Belgium (n=2), France (n=1), Austria (n=1), Sweden (n=1), and
886  the Czech Republic (n=1). The bloom typically observed in these samples (and in the full AGP
887  dataset) is an E. coli (ID: 0419568612b70585790ec75320de0do6f from (84)), although a few of
888  the other bloom sequences were represented at high read fraction as well. Samples were retrieved
889  from -80°C and thawed on ice. The swab head was broken off into 500 pl sterile 1x Dulbecco's
890  Phosphate-Buffered Saline and vortexed vigorously for 30 seconds. Serial dilutions from this
891  initial stock were made including 1:10,000 and 1:1,000,000. 10ul of the 1:10,000 dilution were
892  inoculated into 1.5 ml sterile Tryptic Soy broth (TSB, BD cat#2253534) in sterile 96-deep-well
893  plates (community cultures, CC) and incubated overnight at 37°C on an orbital shaker at 500
894  rpm. OD600 values above 0.1 (TSB controls measured ~0.08) were counted as positive growth.
895  Samples with high bloom fraction tended to grow overnight in ambient conditions, samples with

896  alow bloom fraction tended to not grow in these conditions (fig 2A). Additionally, 100 pl of
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897  each dilution were plated onto Tryptic Soy agar using sterile glass beads and incubated overnight
898 at 37°C. The following morning, a picture of the best dilution was captured and the most

899  representative colony was selected from each plate and inoculated into 1.5 ml sterile TSB for
900 overnight incubation as above (isolates, IS). The following morning, OD600 measurements were
901 taken and the cultures were pelleted at 3,000 g for 5 min. The supernatant and cell pellets were
902  stored at -20°C for metabolomic analysis and DNA extraction, respectively.

903

904  Shotgun sequencing was performed on all isolates and community cultures using a 1:10

905 miniaturized Nextera library prep with 1 ng gDNA input or up to 1 pl and a 15 cycle PCR

906  amplification. Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng of each
907  library (or 4 pul maximum) was pooled. The library was size-selected for 200-700 bp using the
908  Sage Bioscience Pippin Prep and sequenced as a paired end 150 cycle run on an Illumina HiSeq
909 2500 v2 in Rapid Run mode at the UCSD IGM Genomics Center. Sequence processing including
910 assembly performed as in the metagenomic processing section below with the exception that “--
911  meta” was not used with SPAdes (108), and read binning against the resulting contigs was not
912  performed. For each isolate, contigs with abnormally high or low coverage as defined by the 1.5
913  x IQR rule were dropped. The characterization of the metabolites from the supernatant using
914  HPLC-MS is discussed in the HPLC-MS section above.

915

916  Following assembly of the draft genomes, taxonomic assessment by Kraken (109) revealed that
917  of the 119 successfully sequenced colony isolate cultures, 95 matched the bloom organisms

918 identified by Amir et al., 2017. Compellingly, 70 of these isolate genomes contained exact 16S
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sequence matches to a bloom organism identified by (84), including 65 of which matched the

dominant E. coli bloom in the American Gut (table S4).

The read data for the isolates were then assessed for predicted biosynthetic gene clusters (BGCs).
We used biosyntheticSPAdes (110) to analyze BGCs in the assembly graph of individual
genomes. Below we focus on the longest BGCs that are particularly difficult to reconstruct based
on ad hoc analysis of contigs and reveal their variations (that likely translate into variations of
their natural products). Some of the reconstructed long BGC are ubiquitous (shared by many
isolates, albeit with some variations), while others are unique, e.g., present in a single or small
number of isolates. We identified BGCs, representing in the alphabet of their domains (table S4),
and uncovered variations in their sequence across multiple isolates. Specifically, a ubiquitous
BGC similar to the elusive peptide-polyketide genotoxin colibactin and a unique surfactin-like
BGC. Colibactin triggers DNA double-strand breaks in eukaryotic cells (111, 112) and induces
cellular senescence and metabolic reprogramming in affected mammalian cells (113). Of the 11
samples containing the longest colibactin-like BGC, 10 of them contained the exact E. coli
bloom 16S sequence described above; the 11+ isolate was actually a canine fecal sample plated

alongside human (as the AGP allows participants to submit pet samples).

Although colibactin is frequently harbored by various E. coli strains, the variations of colibactin
BGCs across various isolates have not been studied before. Genomic analysis revealed wide
variations in colibactin-like BGCs suggesting that various strains produce related but not
identical variants of natural products (114). These variations may give rise to the suite of

LysoPE-associated spectra identified between the 16S and HPLC-MS datasets.
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942

943  Shotgun sequencing of the high bloom and storage samples. Previously extracted DNA from the

944  “high bloom” samples used for culturing was obtained, as was previously extracted DNA from
945  Song et al. (105). Shotgun sequencing libraries from a total of 5 ng (or 3.5 pl maximum) gDNA
946  was used in a 1:10 miniaturized KAPA HyperPlus protocol with a 15 cycle PCR amplification.
947  Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng (or 1 pl maximum) of
948  each library was pooled. The pool was size-selected for 300-700 bp and sequenced as a paired
949  end 150 cycle run on an Illumina HiSeq 2500 v2 in Rapid Run mode at the UCSD IGM

950 Genomics Center. Sequence processing including assembly was performed as in the

951  metagenomic processing section below.

952
953  Functional assessment of conjugated and non-conjugated linoleic acid. To investigate the

954  metabolic potential of gut microbiome for producing conjugated linoleic acid from linoleic acid,
955  we estimated the abundance of linoleic acid isomerase (LAI) in the fecal metagenome. We

956  focused this investigation on the “plants” cohort, which were samples selected to maximize the
957  difference between the number of types of plants metadata category as discussed in the main
958 text. First, we translated the assembled metagenomes to metaproteomes using Prodigal gene
959  prediction software. To map LAI to these metaproteomes, we used a representative LAI protein
960  sequence (UniProt: D2BQ64), which was matched against UniProtKB (via

961  https://www.ebi.ac.uk/Tools/hmmer/) for multiple sequence alignment (MSA). The resulting
962  MSA file in clustal format was then used to generate a hidden Markov model (HMM) profile for
963  LAI using hmmbuild in HMMER software (115). Subsequently, we mapped the resulting HMM
964  profile to sample metaproteomes using hmmsearch with an E-value threshold of 10E-5. We

965 calculated abundances of LAI per sample based on abundance (coverage x length) of LAI
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966  containing contigs in each sample, normalized to total sample biomass and performed linear
967  regression between LAI abundances and bloom fraction. We did not note any correlation

968  between metabolic potential of gut metagenome to produce LAI and the fraction of blooming
969  bacteria (samples with no LAI hits were removed from this analysis). Similarly, there was no
970  correlation between CLA abundances and bloom fraction in the samples. These results suggest
971  that our report on the differential abundance of CLA in subjects with different dietary practices
972  (with respect to the number of different types of plants consumed) is unlikely to be confounded
973 by the presence of blooming bacteria.

974

975
976  Storage sample assessment. Metagenomic reads from the storage samples were mapped to the

977 169 isolate assemblies. We then ran model comparison tests on each to determine which

978  mappings were significantly different between frozen samples and samples left out at ambient
979  temperatures for various periods of time. Using the ‘Ime’ package (116) in R (v3.3.3. R Core
980 Team 2017), linear mixed effects models were applied to the abundances, with individual treated
981  as the random effect. Mappings were considered to be significantly associated with temperature
982  if the model was significantly improved (ANOVA p<=0.05) by incorporating a fixed effect of
983 temperature. Seven mappings to isolates were found to be significantly increased in samples
984  stored in ambient temperatures compared to frozen samples in both storage studies, of which 3
985  contained the 16S of the dominant £. coli bloom in the AGP samples, and 2 contained the 16S
986  from other blooms recognized by (84).

987
988  Shotgun sequence processing. Raw FastQ files were processed using Atropos v1.1.5 (117) to

989 remove adapters and low-quality regions. Putative human genome contaminations were
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990 identified and removed by using Bowtie2 v2.3.0 (118) with the “--very-sensitive” option against
991  the human reference genome GRCh37/hgl9.

992
993  Sequences were assigned taxonomy using Kraken v1.0.0 (109) against the “standard” database

994  built following the Kraken manual, which contains all complete bacterial, archeal, and viral
995  genomes available from NCBI RefSeq as of Aug. 3, 2017. Results were processed using Bracken
996 v1.0.0 (119) to estimate the relative abundance of species-level taxa.

997
998  Metagenome sequencing data were assembled using SPAdes v3.11.1 (108) with the “——

999 meta” flag enabled. Contigs > 1 kb in length were retained and fed to the prokaryotic genome

1000  annotation pipeline Prokka v1.12 (120). putatively individual genomes were inferred using
1001  MaxBin2 v2.2.4 (121).

1002
1003  In parallel, contigs were sheared into 200-bp fragments and taxonomy was assigned using

1004  Kraken (see above). For each contig, the most assigned taxon at each taxonomic rank and the
1005  proportion of sequences assigned to it was inferred.

1006
1007 A total of 3725 genome bins were identified from 677 out of 780 AGP metagenomes, with 5.50

1008  +4.05 bins per sample, and a maximum bin number of 30. Bins with completeness < 50% were
1009  dropped, leaving 1029 bins from 464 samples (2.22 + 1.97 bins per sample, maximum bins =
1010 19).

1011

1012  Filtering Bacterial Blooms for Metabolomics Analysis. To assess and account for the impact
1013  of the metabolites contributed by these organisms, we have performed HPLC-MS analysis of

1014  cultures of blooming organisms to establish possible contributions, as described above. The raw
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1015  data are publicly available at the UCSD Center for Computational Mass Spectrometry

1016  (http://massive.ucsd.edu/, dataset ID: MassIVE MSV000081777). It was found that there is a
1017  negligible overlap of the bloom-associated metabolites with the compounds detected in AGP
1018  samples (fig 2B). Furthermore, we have verified that none of the compounds discussed in this
1019  work (LA, CLA, compounds on Fig 6A-I) are present in these bloom cultures. The main

1020  organism implicated in bloom was determined to be E. coli, as described earlier and MS data
1021  corroborate these findings (fig 2C).

1022

1023  Considering that the metabolites resulting from microbial activity in cultures can differ

1024  significantly from those in vivo (e.g. many of the metabolites could originate not from de novo
1025  synthesis, but rather from microbial modifications of external compounds that are not present in
1026  media, e.g. from the host), we also explored associations of metabolites in AGP metabolomics
1027  samples and blooms. Spearman rank correlation analysis of the fraction of 16S reads in a sample
1028  reporting as bloom to metabolites observed in the same samples revealed several features that
1029  correlate significantly (table S5). There exists a significant overlap between the Antibiotics and
1030  Vioscreen studies subsets, indicating potential common origin of these features. The strongest
1031  correlation was found for the feature m/z 480.3106 with multiple bloom organisms (p”*2 > 0.25
1032  for E. coli at p < 1e-40). This feature was found to also significantly correlate with the principle
1033  coordinates of the PCoA, with and without blooms in the UniFrac matrices for both subsets. The
1034 tentative annotation of this feature is lysoPE, a lysophospholipid (LPL). The LPLs production in
1035  vivo is a result of phospholipase A enzymatic activity associated with Gram-negative bacteria. It
1036 is known that lysoPE is essential for release of colicin (107). Colicin (by itself not detectable

1037  with the MS methodology in this study due to very high molecular mass) is a bacteriocin related
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to microbial warfare and is known to be produced by E. coli, the major bloomer in AGP. It can
be suggested that the blooming of an organism is related to attempting to kill competitors to
maximize nutrient availability. Importantly, removal of all of the features associated with bloom
does not alter the metabolomics results at all, which indicates that all of the observed biological

trends reported here are not related to blooms.

Mental health in the American Gut Project. From AGP cohort, we selected subjects who
endorsed a mental health disorder (depression, schizophrenia, PTSD, and/or bipolar disorder).
This resulted in 1,140 subjects. 636 subjects endorsed at least one of the exclusion criteria
(antibiotic use in the last year, IBD, C. difficile infection, pregnancy, Alzheimer’s, anorexia or
bulimia, history of substance use disorder, epilepsy or seizure disorder, kidney disease,
phenylketonuria). Out of the remaining 504 subjects, 319 did not provide information regarding
country of residence, hence forming a case cohort of 185 subjects. The remaining samples were
further filtered down to 125 samples to include only high quality fecal microbiome data (at least
1,250 sequences/sample) at a single time point per subject. For those cases, we created a 1:1
matched sample of patients and non-psychiatric comparison (NC) participants based on age (+5
years), BMI, history of diabetes, smoking frequency, country of residence, census region (if in
US), and sequencing plate. For each of the cohorts we calculated beta-diversity distance matrices
using Bray-Curtis dissimilarity and weighted UniFrac. On resulting matrices we ran pairwise
PERMANOVA with 999 permutations between “cases” (people who reported mental illness)
and NCs (out matched control dataset). Differential abundance testing was performed using
permutive mean difference test at 10,000 permutations, with discrete FDR (122) correction at

alpha=0.1.
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1556  Figure 1. Population characteristics. (A) Participants across the world have sent in samples to
1557  the American Gut, although the primary geographic regions of participation are in North

1558  America and the United Kingdom; the report a participant receives is depicted. (B) The primary
1559  sample breakdown for subsequent analyses. Red denotes reasons samples were removed. (C)
1560  Between the two largest populations, the US (n=6,634) and the UK (#n=2,071), we observe a
1561  significant difference in alpha diversity. (D) In a meta-analysis, the largely industrialized

1562  population that makes up the American Gut exhibits significant differential abundances to non-
1563  industrialized populations.

1564

1565  Figure 2. Blooms and effect sizes. (A) The fraction of 16S reads that recruit to bloom reads
1566  defined by Amir et al. 2017 is strongly associated with the likelihood for microbial growth under

1567  aerobic culture conditions on rich media. (B) Molecular network of the metabolites observed in
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1568  the supernatant from cultures (n=217) derived from fecal samples. The nodes in red (n=239) are
1569  metabolites associated with E. coli. (C) Overlap of metabolites between AGP samples and
1570  blooms. (D) Unweighted UniFrac effect sizes. The inset shows the correlation of effect sizes
1571  when including or excluding the bloom 16S reads (Pearson r=0.91, p=3.76x1077). (E) Weighted
1572  UniFrac effect sizes. The inset shows the correlation of the effect sizes when including or

1573  excluding bloom 168 reads (Pearson r=0.42, p=1.71x107%); the outlier is the 16S bloom fraction
1574  of the sample.

1575

1576  Figure 3. OTU and beta-diversity novelty. (A) The AGP data placed into the context of extant
1577  microbial diversity at a global scale. (B) A phylogenetic tree showing the diversity spanned by
1578  the AGP, and the HMP in the context of Greengenes and the EMP. (C) sOTU novelty over
1579  increasing numbers of samples in the AGP; the AGP appears to have begun to reach saturation
1580  and is contrasted with (D) Yatsunenko et al. 2012 which unlike the AGP had extremely deep
1581  sequencing per sample. (E) The minimum observed UniFrac distance between samples over
1582  increasing numbers of samples for the AGP and the HMP; inset is from 0-500 samples. (F) An
1583  AGP “trading card” of an sOTU of interest (shown in full in fig S2).

1584

1585  Figure 4. Temporal and spatial patterns. (A) 565 individuals had multiple samples. Distances
1586  between samples within an individual shown at 1 month, 2 months, etc out to over 1 year;

1587  between subject distances shown in “BSD.” Even at one year, the median distance between a
1588  participant’s samples is less than the median between participant distance. (B) Within the US,
1589  spatial processes of SOTUs appear driven by stochastic processes as few sOTUs exhibit spatial

1590  autocorrelation (Moran’s /) on the full dataset or partitions (e.g., participants older than 20). (C)
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1591  Distance-decay relationship for Bray-Curtis dissimilarities between subject pairs that are within
1592  100km (great-circle distance) radius of one another (Mantel test; 7=0.036, adjusted p=0.03). Inset
1593  shows the largest radius (i.e., the contiguous US). Darker colors indicate higher-frequency bins.
1594  Dashed lines represent fits from linear models to raw data. (D) Mantel correlogram of estimated
1595  r coefficients, significance of distance-decay relationships, and radius (x-axis). Red points

1596  represent neighborhood sizes that were significant (adjusted p-values < 0.05). (E) Characterizing
1597  alarge bowel resection using the AGP, the EMP, a hunter-gatherer population, and ICU patients
1598  in an unweighted UniFrac principal coordinates plot. A state change was observed in the

1599  resulting microbial community. The change in the microbial community immediately following
1600  surgery is the same as the distance between a marine sediment sample and a plant rhizosphere
1601  sample.

1602

1603  Figure 5. Diversity of plants in a diet. (A) Procrustes analysis of fecal samples from (n=1,596)
1604  individuals using Principal Components of the Vioscreen FFQ responses and Principal

1605  Coordinates of the unweighted UniFrac distances (M?=0.988) colored by diet; Procrustes tests
1606 the fit of one ordination space to another. PCA shows grouping by diets such as Vegan

1607  suggesting self-reported diet type is consistent with differences in micro and macro nutrients as
1608  recorded by the FFQ, however these dietary differences do not explain relationships between the
1609  samples in 16S space. (B) The full AGP dataset including skin and oral samples through

1610  unweighted UniFrac and Principal Coordinates Analysis highlighting a lack of apparent

1611  clustering by diet type. (C) Dietary conjugated linoleic acid levels as reported by the FFQ

1612  between the extremes of plant diversity consumption, and (D) the observed levels of CLA by

1613 HPLC-MS. (E) Differential abundances of sOTUs (showing the most specific taxon name per
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sOTU) between those who eat fewer than 10 plants per week vs. those who eat over 30 per week.
(F) The molecules, linoleic acid (LA) and conjugated linoleic acid (CLA) (only trans-, trans-
isomers are shown) were found to comprise the octadecadienoic acid found to be the key feature

in this difference in number of plants consumption.

Figure 6. Molecular novelty in the gut microbiome. (A-I) Molecular sub-network of N-acyl
amides. Cluster/nodes of microbially-derived G protein-coupled receptor agonistic molecules
detected in human fecal samples are shown. Molecules B, G and H have been described
(compounds 1, 2 & 4b (38) and commendamide (123)); molecules A, C, D, E and I are
previously not reported (proposed structures are shown). (J) Compound occurrence frequency
plot. Examples of compounds originating from food (piperine, black pepper alkaloid), host
(stercobilin, heme catabolism product), bacterial activity (lithocholic acid, microbially-modified
bile acid) or exogenous compounds such as antibiotics (rifaximin) or other drugs (lisinopril, high
blood pressure medication) are shown. (K-N) Alpha and beta-diversity assessments of antibiotic

and plants cohorts; insets depict minimum observed beta-diversity over increasing samples.
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Supplementary Figures:

Figure S1. Workflow and population scale analyses. (A) Heatmap of income levels from the US
Census and American Gut participant locations. (B) Sample flowchart for what sample sets
correspond to each analysis. (C) Using PLS-DA we observed separation between US (n=6,634)
and UK (n=2,071) fecal samples. (D) We performed a Principal Coordinates analysis comparing
children over the age of 3 and adults from industrialized (n=4,643 AGP samples, n=4,927

samples total), remote farming (n=131), and hunter-gatherer (n=30) lifestyles.

Figure S2. Trading cards and LS’s samples compared to ICU patients and AGP participants and
diet state change analysis. (A) Unweighted UniFrac distance distributions for the sample
immediate prior to surgery vs. all ICU fecal samples, and distances of the sample immediately
following surgery vs. all ICU fecal samples (Kruskal Wallis H=79.774, p=4.198x"'?). (B) Same
as panel (A) except comparing against all AGP fecal samples (Kruskal Wallis H=8117.734,
2=0.0). (C) The median distances of each sample in Larry’s longitudinal dataset compared to
both ICU and AGP. The last pre-surgery sample is on day 25 and the first post-surgery sample is
day 27. (D) A principal coordinates analysis of UniFrac distances of the American Gut Project,
samples from the “extreme” diet study by David et al. (85), and the Earth Microbiome Project.

No obvious state change by the diet of the participants in David et al. is observed.

Figure S3. Dietary levels of linoleic acid based on validated food frequency questionnaire

responses, and the detected linoleic acid by mass spectrometry did not differ significantly

between groups consuming few or many types of plants per week.
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Figure S4. Metabolomic identification and annotation. (A) Manual annotation via comparison of
experimental MS fragmentation patterns to those given in (99). Top panel: reference spectrum
for the “Compound 2” in (99); bottom panel: experimental MS/MS spectrum for the parent ion
m/z 611.5357. The compound is annotated as 3-(myristoyloxy)palmitoyl lysine. (B) In silico
annotation using CSI:FingerID (100) for the ion with m/z 330.2640. Top panel: experimental
fragmentation pattern explained by the putative fragmentation tree; bottom panel: the possible
candidate structures ranked by match %. The top structure with 71.02% match corresponds to
commendamide. (C) Manual annotation via comparison of experimental exact mass to that of
identified compound in (100), N-3-OH-palmitoyl ornithine. The peaks in experimental MS/MS
spectrum are examined and compared to theoretical fragments that would result from breaking
bonds in the proposed structure. The structure is deemed to be consistent with the N-3-OH-

palmitoyl ornithine annotation.

Supplemental Tables:
Table S1. Summary of sample numbers and type in the American Gut other studies, sample
distributions by country and territory, sample distributions by US state, US participant

demographics and per sequencing round sample accessions in EBI.

Table S2. American Gut data dictionary, proportion of responses per AG survey question that
are represented as a single question; multiselect responses were omitted as these are stored in the
metadata as per response type, informal dietary questions and correlations to the food frequency
questionnaire, effect size results without bloom sOTUs, variable mapping with Falony et al. 2016

Science.

72


https://doi.org/10.1101/277970
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/277970; this version posted March 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1683

1684  Table S3. sOTUs relevant to the balance analyses, and summary of differentially abundant taxa
1685 in UK cohort (negative effect size indicated the taxon is more prevalent in control (NC)

1686  subjects).

1687

1688  Table S4. Application of the filter for blooms to other human fecal studies which were not
1689  subjected to room temperature shipping, taxonomy of the draft isolate genomes, the specific
1690  bloom 16S sOTUs observed, and ubiquitous colibactin-like biosynthetic gene clusters (top) and a
1691  unique surfactin-like biosynthetic gene cluster observed in the bloom isolates.

1692

1693  Table SS. A set of molecular features which appeared to significantly correlate to the bloom
1694  fraction, and Kruskal-Wallis tests for metabolites in the Antibiotics and Vioscreen cohorts of
1695  samples.

1696

1697
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