

1 American Gut: an Open Platform for Citizen-Science Microbiome Research
2
3 Daniel McDonald^{a,%}, Embriette Hyde^{a,%}, Justine W. Debelius^a, James T. Morton^a, Antonio
4 Gonzalez^a, Gail Ackermann^a, Alexander A. Aksnenov^{b,c}, Bahar Behsaz^d, Caitriona Brennan^a,
5 Yingfeng Chen^e, Lindsay DeRight Goldasich^a, Pieter C. Dorrestein^{b,c}, Robert R. Dunn^f, Ashkaan
6 K. Fahimipour^g, James Gaffney^a, Jack A Gilbert^{h,i,j,k}, Grant Gogul^a, Jessica L. Green^g, Philip
7 Hugenholz^l, Greg Humphrey^a, Curtis Huttenhower^{m,n}, Matthew A. Jackson^o, Stefan Janssen^a,
8 Dilip V. Jeste^{p,q}, Lingjing Jiang^a, Scott T. Kelley¹⁴, Dan Knights^{r,s}, Tomasz Kosciolek^a, Joshua
9 Ladau^t, Jeff Leach^u, Clarisse Marotz^a, Dmitry Meleshko^v, Alexey V. Melnik^{b,c}, Jessica L.
10 Metcalf^w, Hosein Mohimani^x, Emmanuel Montassier^{r,y}, Jose Navas-Molina^a, Tanya T.
11 Nguyen^{p,q}, Shyamal Peddada^z, Pavel Pevzner^{b,d,aa}, Katherine S. Pollard^t, Gholamali
12 Rahnavard^{m,n}, Adam Robbins-Pianka^{bb}, Naseer Sangwan^j, Joshua Shorenstein^a, Larry Smarr^{d,aa,cc},
13 Se Jin Song^a, Timothy Spector^o, Austin D. Swafford^{aa}, Varykina G. Thackray^{dd}, Luke R.
14 Thompson^{ee}, Anupriya Tripathi^a, Yoshiki Vazquez-Baeza^a, Alison Vrbanac^a, Paul
15 Wischmeyer^{ff,gg}, Elaine Wolfe^a, Qiyun Zhu^a, The American Gut Consortium, Rob Knight^{a,d,aa,#}
16
17 ^a Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
18 ^b Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La
19 Jolla, CA, USA
20 ^c Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego,
21 La Jolla, CA, USA
22 ^d Department of Computer Science and Engineering, University of California, San Diego, La
23 Jolla, CA, USA

24 ^e Department of Biology, San Diego State University, San Diego, CA, USA

25 ^f Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA

26 ^g Biology and the Built Environment Center; University of Oregon, Eugene, OR, USA

27 ^h Department of Surgery, University of Chicago, Chicago, IL, USA

28 ⁱ Institute for Genomic and Systems Biology, University of Chicago, Chicago, IL, USA

29 ^j Department of Biosciences, Argonne National Laboratory, Chicago, IL, USA

30 ^k Marine Biology Laboratory, University of Chicago, Chicago, IL, USA

31 ^l Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The

32 University of Queensland, Brisbane, QLD, Australia

33 ^m Harvard T. H. Chan School of Public Health, Boston, MA, USA

34 ⁿ The Broad Institute of MIT and Harvard, Boston, MA, USA

35 ^o Department of Twin Research and Genetic Epidemiology, King's College London, London,

36 UK

37 ^p Departments of Psychiatry and Neurosciences, University of California San Diego, La Jolla,

38 CA, USA

39 ^q Sam and Rose Stein Institute for Research on Aging, and Center for Healthy Aging, University

40 of California San Diego, La Jolla, CA, USA

41 ^r Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN,

42 USA

43 ^s Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA

44 ^t The Gladstone Institutes, University of California, San Francisco, CA, USA

45 ^u Human Food Project, Terlingua, TX, USA

46 ^v St. Petersburg State University, Center for Algorithmic Biotechnology, Saint Petersburg,
47 Russia

48 ^w Department of Animal Science, Colorado State University, Fort Collins, CO, USA

49 ^x Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA

50 ^y Université de Nantes, Microbiotas Hosts Antibiotics and Bacterial Resistances (MiHAR),
51 Nantes, France

52 ^z Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.

53 ^{aa} Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA

54 ^{bb} Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA

55 ^{cc} California Institute for Telecommunications and Information Technology (Calit2), University
56 of California San Diego, La Jolla, CA, USA

57 ^{dd} Department of Reproductive Medicine, University of California San Diego, La Jolla, CA,
58 USA

59 ^{ee} Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, La
60 Jolla, CA, USA

61 ^{ff} Department of Anesthesiology and Surgery, Duke University School of Medicine, Durham,
62 NC, USA

63 ^{gg} Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA

64

65 Running Title (max 54c): American Gut: an Open Platform for Microbiome Research

66 # Address correspondence to Rob Knight, robknight@ucsd.edu

67 % D.M. and E.H. contributed equally to this work.

68 Abstract word count: 203

69 Main text word count: 3280

70

71 **Abstract:** Although much work has linked the human microbiome to specific phenotypes and
72 lifestyle variables, data from different projects have been challenging to integrate and the extent
73 of microbial and molecular diversity in human stool remains unknown. Using standardized
74 protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-
75 scientists, together with an open research network, we compare human microbiome specimens
76 primarily from the USA, UK, and Australia to one another and to environmental samples. Our
77 results show an unexpected range of beta-diversity in human stool microbiomes as compared to
78 environmental samples, demonstrate the utility of procedures for removing the effects of
79 overgrowth during room-temperature shipping for revealing phenotype correlations, uncover
80 new molecules and kinds of molecular communities in the human stool metabolome, and
81 examine emergent associations among the microbiome, metabolome, and the diversity of plants
82 that are consumed (rather than relying on reductive categorical variables such as veganism,
83 which have little or no explanatory power). We also demonstrate the utility of the living data
84 resource and cross-cohort comparison to confirm existing associations between the microbiome
85 and psychiatric illness, and to reveal the extent of microbiome change within one individual
86 during surgery, providing a paradigm for open microbiome research and education.

87

88 **Importance:** We show that a citizen-science, self-selected cohort shipping samples through the
89 mail at room temperature recaptures many known microbiome results from clinically collected
90 cohorts and reveals new ones. Of particular interest is integrating n=1 study data with the
91 population data, showing that the extent of microbiome change after events such as surgery can

92 exceed differences between distinct environmental biomes, and the effect of diverse plants in the
93 diet which we confirm with untargeted metabolomics on hundreds of samples.

94

95 **Introduction**

96 The human microbiome plays a fundamental role in human health and disease. While
97 many studies link microbiome composition to phenotypes, we lack understanding of the
98 boundaries of bacterial diversity within the human population, and the relative importance of
99 lifestyle, health conditions, and diet, to underpin precision medicine or to educate the broader
100 community about this key aspect of human health.

101 We launched the American Gut Project (AGP; <http://americanagut.org>) in November of
102 2012 as a collaboration between the Earth Microbiome Project (EMP) (1) and the Human Food
103 Project (HFP; <http://humanfoodproject.com/>) to discover the kinds of microbes and microbiomes
104 "in the wild" via a self-selected citizen-scientist cohort. The EMP is tasked with characterizing
105 the global microbial taxonomic and functional diversity, and the HFP is focused on
106 understanding microbial diversity across human populations. As of May 2017, the AGP included
107 microbial sequence data from 15,096 samples from 11,336 human participants, totaling over 467
108 million (48,599 unique) 16S rRNA V4 gene fragments ("16S"). Our project informs citizen-
109 scientist participants about their own microbiomes by providing a standard report (fig 1A) and
110 resources to support human microbiome research, including an online course (Gut Check:
111 Exploring Your Microbiome; <https://www.coursera.org/learn/microbiome>). AGP deposits all de-
112 identified data into the public domain on an ongoing basis without access restrictions (table S1).
113 This reference database characterizes the diversity of the industrialized human gut microbiome
114 on an unprecedented scale, reveals novel relationships with health, lifestyle, and dietary factors,
115 and establishes the AGP resource and infrastructure as a living platform for discovery.

116

117 **Results**

118 **Cohort characteristics.** AGP participants primarily reside in the United States (n=7,860).
119 However, interest in the AGP rapidly expanded beyond the US to United Kingdom (n=2,518),
120 and Australia (n=321), with 42 other countries or territories also represented (fig 1A; table S1).
121 Participants in the US inhabit urban (n=7,317), rural (n=29), and mixed (n=98) communities
122 (2010 US Census data based on participant zip codes), and span greater ranges of age, race, and
123 ethnicity than other large-scale microbiome projects (2–6). Because the AGP is crowdsourced
124 and self-selected, and subjects generally support the cost of sample processing, the population is
125 unrepresentative in several important respects, including having lower prevalence of smoking
126 and obesity, higher education and income (fig S1A), and underrepresentation of Hispanic and
127 African American communities (table S1); generalization of the results is cautioned. Targeted
128 and population-based studies will be crucial for filling these cohort gaps (Supplemental text).

129 Using a survey modified from (7, 8), participants reported general health status, disease
130 history, and lifestyle data (table S2, supplemental text). In accordance with our IRB, all survey
131 questions were optional (median per-question response 70.9%; table S2). Additionally, 14.8% of
132 participants completed a validated picture-based food frequency questionnaire (FFQ)
133 (VioScreen; <http://www.viocare.com/vioscreen.html>), and responses correlated well with primary
134 survey diet responses (table S2).

135 We sought to minimize errors and misclassifications well-known to occur in self-reported
136 data (9). Survey responses relied on controlled vocabularies. For analyses, we trimmed numeric
137 entries at extremes (e.g., weight over 200kg or below 2.5kg) and excluded obviously incorrect
138 answers (e.g., infants drinking alcohol) and samples for which necessary data were not supplied

139 (e.g., missing zip code data for spatial analyses); see supplement for details. We focused our
140 primary investigative efforts on a “healthy adult” subset ($n=3,942$) of individuals aged 20-69
141 with BMIs ranging between 18.5–30 kg/m², no self-reported history of inflammatory bowel
142 disease, diabetes, or antibiotic use in the past year, and at least 1,250 16S sequences/sample (fig
143 1B, S1B).

144 The two largest populations in the dataset (US and UK) differed significantly in alpha-
145 diversity, with Faith’s phylogenetic diversity (PD) higher in UK samples (13) (Mann Whitney
146 $p<1\times 10^{-15}$; fig 1C). One balance (10) (a log-ratio compositional transform) explained most of the
147 taxonomic separation between US and UK samples (AUC=77.7% ANOVA $p=1.01\times 10^{-78}$,
148 $F=386.85$) (fig S1C, table S3). To understand how these two populations differed from others,
149 we compared adult AGP samples (predominantly from industrialized regions) to samples from
150 adults living traditional lifestyles (6, 11, 12). As previously observed (6), samples from industrial
151 and traditional populations separated in Principal Coordinates Analysis (PCoA) space of
152 unweighted UniFrac distances (13) (fig S1D). They show greater variation within industrial
153 populations than within traditional populations (2) and facile separation based on microbial
154 taxonomy (industrial vs. non-industrial agrarian: AUC=98.9%, ANOVA $p=1.52\times 10^{-260}$,
155 $F=1265.8$; industrial vs. hunter-gatherer: AUC=99.5%, ANOVA $p=4.48\times 10^{-227}$, $F=1092.35$) (fig
156 1D, table S3).

157

158 **Removal of bacterial blooms.** An important practical question is whether self-collected
159 microbiome samples can match those from better-controlled studies. Most AGP samples are
160 stools collected on dry swabs and shipped without preservative to minimize costs and avoid
161 exposure to toxic preservatives. *E. coli* and a few other taxa grow in transit, so based on data

162 from controlled storage studies as previously described (14) we removed sOTUs (sub-OTUs
163 (15); median of 7.9% of sequences removed per sample) shown to bloom.

164 We further characterized the impact of these organisms through culturing, HPLC-MS
165 analysis of cultured isolates, and shotgun metagenomics of the primary samples and storage
166 controls (16). Culturing primary specimens stored at -80°C (US: $n=116$; UK: $n=73$; other: $n=25$)
167 showed a strong correlation between the fraction of sequences reported as blooms in 16S
168 sequencing and positive microbial growth following overnight incubation in aerobic conditions
169 (fig 2A). Culture supernatants were characterized using HPLC-MS; most metabolites in these
170 supernatants were absent from the primary specimens (fig 2B, C, method details in SI). We
171 sequenced draft genomes of 169 isolates; of these, 65 contained the exact *E. coli* 16S sequence in
172 the published bloom filter (14). To characterize the impact of the 16S bloom filter, we computed
173 effect sizes over the participant covariates and technical parameters for 9,511 individual
174 participant samples, including and excluding blooms (complete list table S2; comparisons to (17,
175 18) in supplementary text), and observed tight correlations for both unweighted (fig 2D, Pearson
176 $r=0.91$, $p=3.76 \times 10^{-57}$; Spearman $r=0.90$, $p=9.45 \times 10^{-55}$) and weighted UniFrac (fig 2E, Pearson
177 $r=0.42$, $p=1.71 \times 10^{-6}$; Spearman $r=0.58$, $p=1.03 \times 10^{-9}$). An outlier on the quantitative metric
178 (weighted UniFrac) is present and corresponds to a variable representing the fraction of bloom
179 reads in a sample.

180

181 **Novel taxa and microbiome configurations.** To understand human microbiome diversity, we
182 placed AGP samples in the context of the EMP (1). Building on earlier work revealing a striking
183 difference between host-associated and environmental microbiomes (19), we found that the

184 diversity of microbiomes associated with the human gut (just one vertebrate) occupies a vast
185 extent of the microbiome diversity of the planet (fig 3A).

186 Inserting the sOTU fragments of AGP and EMP samples into a Greengenes (20)
187 reference phylogenetic tree using SEPP (21) (fig 3B) showed that the AGP population harbored
188 much broader microbial diversity than the Human Microbiome Project (5). Both datasets are
189 dwarfed by the breadth of bacterial and archaeal phylogenetic diversity in environmental
190 samples. Examining sOTUs over increasing numbers of samples, we observed a reduction in the
191 discovery rate of novel sOTUs starting around 3,000 samples, emphasizing the need for focused
192 sampling efforts outside the present AGP population (fig 3C). The importance of sample size for
193 detecting novel microbes and microbiomes is apparent when contrasted against Yatsunenko et al.
194 (6), which contained hundreds of samples from three distinct human populations at ~1 million
195 sequences/sample (fig 3D). This effect is magnified in beta-diversity analysis, where the AGP
196 has saturated the configuration space, and new samples are not “distant” from existing samples
197 (fig 3E). To encourage community engagement with sOTUs found in the AGP, we adapted the
198 EMP “trading cards” for sOTUs (figs 3F, S2).

199
200 **Temporal and spatial analyses.** Longitudinal samples are required for understanding human
201 microbiome dynamics (22). We examined 565 individuals who contributed multiple samples and
202 observed an increasing trend of intrapersonal divergence with time. Still, over time individuals
203 resemble themselves more than others, even after one year (fig 4A).

204 We tested whether patterns in individual longitudinal sample sets could be better
205 explained when placed in the context of the AGP by integrating samples collected from: a) a
206 time series of 58 time points from one subject (described as “LS”), prior to and following a large
207 bowel resection, b) 2 time points from 121 patients in an intensive care unit (ICU) (23), c)

208 samples from the “extreme” diet study from David et al. (24), and d) samples from the Hadza
209 hunter-gatherers for additional context (25). Through the longitudinal sampling of LS, dramatic
210 pre- and post-microbial configuration changes that exceeded the span of microbial diversity
211 associated with the AGP population were observed (fig 4E, animated in (26)). After surgery,
212 subject’s samples more closely resembled those of ICU patients (Kruskal Wallis $H=79.774$,
213 $p=4.197x^{-19}$, fig S2A-C), and showed a persistent state change upon return to the AGP fecal
214 space. Remarkably, the UniFrac distance between the samples immediately prior to and
215 following the surgery was almost identical to the distance between a marine sediment sample and
216 a plant rhizosphere sample (unweighted UniFrac distance of 0.78). Furthermore, the observed
217 state change in LS is not systematically observed in the extreme diet study (fig S2D;
218 PERMANOVA n.s. when controlling for individual). Despite extensive dietary shifts, these
219 subjects do not deviate from the background AGP context.

220 Recent reports suggest that the microbes of bodies (8), like those of homes (27), are
221 influenced mostly by local phenomena rather than regional biogeography (28), and accordingly
222 we observed only weak geographic associations with sOTUs (fig 4B), no significant distance-
223 decay relationships (fig 4C), and, with Bray-Curtis distance, only a weak effect at neighborhood
224 sizes of ca. 100km (Mantel $r=0.036$, Benjamini-Hochberg adjusted $p=0.03$) to 1,000km (Mantel
225 $r=0.016$, Benjamini-Hochberg adjusted $p=0.03$).

226
227 **Dietary plant diversity.** The self-reported dietary data suggested, unexpectedly, that the number
228 of unique plant species a subject consumes is associated microbial diversity, rather than self-
229 reported categories such as “vegan” or “omnivore” (fig 2D, E). Principal Components Analysis
230 of FFQ responses (fig 5A) revealed clusters associated with diet types such as “vegan.”

231 However, these dietary clusters did not significantly relate to microbiome configurations (fig 5B;
232 Procrustes fig 5A, $M^2=0.988$). We therefore characterized the impact of dietary plant diversity on
233 the microbial community.

234 Using balances (10), we identified several putative short-chain fatty acid (SCFA)
235 fermenters associated with eating more than 30 types of plants, including sOTUs putatively of
236 the species *Faecalibacterium prausnitzii* and of the genus *Oscillospira* (29) (AUC=68.5%,
237 ANOVA $p=8.9 \times 10^{-39}$, $F=177.2$) (fig 5E, table S3). These data suggest community-level changes
238 associated with microbial fermentation of undigested plant components. Because bacteria differ
239 in their carbohydrate-binding modules and enzymes that hydrolyze diverse substrates in the gut
240 (30), a diet containing various types of dietary fibers and resistant starches likely supports a more
241 diverse microbial community (31, 32).

242 To test these effects in the stool metabolome, we performed HPLC-MS annotation and
243 annotation propagation (33, 34) on a subset of fecal samples ($n=219$) preferentially selecting
244 individuals at the extremes of plant type consumption, i.e. eating <10 or >30 different types of
245 plants per week. Several fecal metabolites differed between the two groups, with one key
246 discriminating feature annotated as octadecadienoic acid (annotation level 2 according to the
247 2007 metabolomics initiative, (35)). Further investigation using authentic standards revealed that
248 the detected feature was comprised of multiple isomers, including linoleic acid (LA) and
249 conjugated linoleic acid (CLA). CLA abundance was significantly higher in individuals
250 consuming > 30 types of plants, and those consuming more fruits and vegetables generally, (fig
251 5D, 1-sided t -test; $p < 10^{-5}$), but did not correlate with dietary CLA consumption as determined
252 by the FFQ (dietary fig 5C; Spearman $r < 0.16$; $p > 0.15$). CLA is a known end-product of LA
253 conversion by lactic acid bacteria in the gut, such as *Lactobacillus plantarum* (36) and

254 *Bifidobacterium* spp. (37). FFQ-based dietary levels of LA and MS-detected LA did not differ
255 significantly between groups (fig S3), suggesting that their different microbiomes may
256 differentially convert LA to CLA. Several other putative octadecadienoic acid isomers were also
257 detected (fig 5F), some strongly correlated with plant consumption. Determining these
258 compounds' identities as well as their origin and function may uncover new links between the
259 diet, microbiome, and health.

260

261 **Molecular novelty in the human gut metabolome.** Our untargeted HPLC-MS approach
262 allowed us to search for novel molecules in the human stool metabolome, parallel to our search
263 for novelty in microbes and microbiome configurations described above. Bacterial N-acyl
264 amides were recently shown to regulate host metabolism by interacting with G-protein-coupled
265 receptors (GPCRs) in the murine gastrointestinal tract, mimicking host-derived signaling
266 molecules (38). These agonistic molecules regulate metabolic hormones and glucose
267 homeostasis as efficiently as host ligands. Manipulating microbial genes that encode metabolites
268 eliciting host cellular responses could enable new drugs or treatment strategies for many major
269 diseases, including diabetes, obesity, and Alzheimer's disease: roughly 34% of all marketed
270 drugs target GPCRs (39). We observed N-acyl amide molecules previously hypothesized but
271 unproven to be present in the gut (38) (fig 6, S4), as well as new N-acyl amides (fig 6).

272 Levels of two N-acyl amides, annotated as commendamide (*m/z* 330.2635, fig S4B) and
273 N-3-OH-palmitoyl ornithine (*m/z* 387.3220, fig S4C), positively correlated with a self-reported
274 medical diagnosis of thyroid disease (Kruskal-Wallis, FDR $p=0.032$, $p=2.48\times10^{-3}$, $\chi^2=11.99$; N-
275 3-OH-palmitoyl ornithine; Kruskal-Wallis, FDR $p=0.048$, $p=5.63\times10^{-3}$, $\chi^2=10.35$). Conversely,
276 glycodeoxycholic acid (*m/z* 450.3187) was significantly higher in individuals not reporting
277 thyroid disease diagnosis (Kruskal-Wallis; FDR $p=1.28\times10^{-4}$, $p=4.41\times10^{-7}$, $\chi^2=29.27$). This

278 cholic acid is produced through microbial dehydroxylation, again linking gut microbiota to
279 endocrine function (40, 41).

280 Finally, we compared metabolome diversity to 16S diversity in the samples selected for
281 dietary plant diversity and a second set of samples selected to explore antibiotic effects ($n=256$
282 individuals who self-reported not having taken antibiotics in the past year ($n=117$), or having
283 taken antibiotics in the past month ($n=139$); participants were matched for age, BMI, and
284 country). By computing a collector's curve of observed molecular features in both cohorts (fig
285 6K, 6M), we observe that, paradoxically, individuals who had taken antibiotics in the past month
286 ($n=139$) had significantly greater molecular diversity (Kruskal Wallis, $H=255.240$, $p=1.87\times 10^{-57}$)
287 than those who had not taken antibiotics in the past year ($n=117$), and differed in molecular beta-
288 diversity (fig 6K inset), suggesting that antibiotics promote unique metabolomes that result from
289 differing chemical and microbial environments in the gut. Notably, the diversity relationships of
290 this set are not reflected in 16S diversity (fig 6L, 6N), where antibiotic use shows decreased
291 diversity (Kruskal Wallis $H=3983.839$, $p=0.0$). Within the dietary plant diversity cohort, we
292 observed a significant increase (Kruskal Wallis, $H=897.106$, $p=4.17\times 10^{-197}$) in molecular alpha
293 diversity associated with a high diversity of plant consumption ($n=42$) compared to low plant
294 diversity ($n=43$), a relationship also observed in 16S diversity, where high dietary plant diversity
295 increased 16S alpha diversity (Kruskal Wallis, $H=65.817$, $p=4.947\times 10^{-16}$).

296

297 **A living dataset.** The AGP is dynamic, with samples arriving from around the world daily. This
298 allows a living analysis, similar to continuous molecular identification and annotation revision in
299 the Global Natural Products Molecular Networking (GNPS) database (34). Although the analysis
300 presented here represents a single snapshot, samples continued to arrive during manuscript
301 preparation. For example, after we defined the core “healthy” sample set, an exploratory analysis

302 using matched controls was performed by collaborators to test for correlations between mental
303 illness and microbiome composition (as reported in (42, 43)). By analyzing mental illness status
304 (depression, schizophrenia, post-traumatic stress disorder (PTSD) and bipolar disorder – four of
305 the most disabling illnesses per World Health Organization (44)) reported by AGP participants
306 ($n=125$) against matched 1:1 healthy controls ($n=125$), we observed a significant partitioning
307 using PERMANOVA in weighted UniFrac ($p=0.05$, $pseudo-F=2.36$). These findings were
308 reproducible within US residents ($n=122$, $p=0.05$, $pseudo-F=2.58$), UK residents ($n=112$,
309 $p=0.05$, $pseudo-F=2.16$), women ($n=152$, $p=0.04$, $pseudo-F=2.35$), and people 45 years of age or
310 younger ($n=122$, $p=0.05$, $pseudo-F=2.45$). We also reproduce some previously reported
311 differentially abundant taxa in Chinese populations using our UK subset (42, 45)(table S3). This
312 shows that multi-cohort replication is possible within the AGP (additional detail supplemental
313 text).

314

315 **Discussion**

316 The AGP provides an example of a successful crowdfunded citizen science project that
317 facilitates human microbiome hypothesis generation and testing on an unprecedented scale,
318 provides a free data resource derived from over 10,000 human-associated microbial samples, and
319 both recaptures known microbiome results and yields new ones. Ongoing living data efforts,
320 such as the AGP, will allow researchers to document and potentially mitigate the effects of a
321 slow but steady global homogenization driven by increased travel, lifespans, and access to
322 similar diets and therapies, including antibiotics. Because the AGP is a subproject of the EMP
323 (1), all samples were processed using the publicly available and widely used EMP protocols to
324 facilitate meta-analyses, as highlighted above. Further example applications include assessing the

325 stability of AGP runs over time, comparing the AGP population to fecal samples collected from
326 a fecal transplant study (46) and an infant microbiome time series (47), the latter using different
327 DNA sequencing technology, to highlight how this context can provide insight (48).

328 A unique aspect of the AGP is the open community process of assembling the Research
329 Network and analyzing these data, which are released immediately on data generation. Analysis
330 details are shared through a public forum (GitHub, <https://github.com/knightlab->
331 analyses/american-gut-analyses). Scientific contributions to the project were made through a
332 geographically diverse Research Network represented herein as the American Gut Consortium,
333 established prior to project launch and which has grown over time. This model allows a “living
334 analysis” approach, embracing new researchers and analytical tools on an ongoing basis (e.g.,
335 Qiita (*Web: <http://qiita.microbio.me>*) and GNPS (34)). Examples of users of the AGP as a
336 research platform include educators at several universities, UC San Diego Athletics, and the
337 American Gastroenterological Association (AGA). Details on projects using the AGP
338 infrastructure can be found in the supplement.

339 To promote public data engagement, we aimed to broaden the citizen science experience
340 obtained by participating in AGP by “gamifying” the data and separately by developing an
341 online forum for microbiome data discussion and discovery. The gamification introduces
342 concepts of beta-diversity and challenges users to identify clusters of data in principal
343 coordinates space (<http://csb.cs.mcgill.ca/colonyb/>). The forum, called Gut Instinct
344 (<http://gutinstinct.ucsd.edu>), enables participants to share lifestyle-based insights with one
345 another. Participants also have the option to share their AGP sample barcodes, which will help us
346 uncover novel contextual knowledge. Gut Instinct now has over 1,050 participants who have
347 collectively created over 250 questions. Participants will soon design and run their own

348 investigations using controlled experiments to further understand their own lifestyle and the AGP
349 data.

350 The AGP therefore represents a unique citizen-science dataset and resource, providing a
351 rich characterization of microbiome and metabolome diversity at the population level. We
352 believe the community process for involving participants from sample collection through data
353 analysis and deposition will be adopted by many projects harnessing the power of citizen science
354 to understand the world around and within our own bodies.

355

356 **Materials and methods**

357 **Participant Recruitment and Sample Processing.** Participants signed up for the project
358 through Indiegogo (<https://www.indiegogo.com/>) and later, FundRazr (<http://fundrazr.com/>). A
359 contribution to the project was made to help offset the cost of sample processing and sequencing
360 (typically \$99 per sample; no requirement to contribute if another party was covering the
361 contribution). All participants were consented under an approved Institutional Review Board
362 human research subjects protocol, either from the University of Colorado Boulder (protocol #12-
363 0582; December 2012 - March 2015) or the University of California, San Diego (protocol
364 #141853; February 2015 - present). The IRB-approved protocol specifically allows for public
365 deposition of all data that is not personally identifying and for return of results to participants
366 (fig. 1A).

367

368 Self-reported metadata were collected through a web portal
369 (<http://www.microbio.me/americanagut>). Samples were collected using BBL Culture Swabs
370 (Becton, Dickinson and Company; Sparks, MD) and returned by mail. Samples were processed

371 using the EMP protocols. Briefly, the V4 region of the 16S rRNA gene was amplified with
372 barcoded primers and sequenced as previously described (49). Sequencing prior to August 2014
373 was done using the 515f/806r primer pair with the barcode on the reverse primer (50);
374 subsequent rounds were sequenced with the updated 515f/806rB primer pair with the barcode on
375 the forward read (51). Sequencing batches 1-19 and 23-49 were sequenced using an Illumina
376 MiSeq; sequencing for 20 and 21 were performed with an Illumina HiSeq Rapid Run and round
377 22 was sequenced with an Illumina HiSeq High Output.

378

379 **16S Data Processing.** The 16S sequence data were processed using a sequence variant method,
380 Deblur v1.0.2 (52) trimming to 125nt (otherwise default parameters), to maximize the specificity
381 of 16S data; a trim of 125nt was used because one sequencing round in the American Gut used
382 125 cycles while the rest used 150. Following processing by Deblur, previously recognized
383 bloom sequences were removed (14). The Deblur sub Operational Taxonomic Units (sOTUs)
384 were inserted into the Greengenes 13_8 (53) 99% reference tree using SEPP (54). Taxonomy
385 was assigned using an implementation of the RDP classifier (55) as implemented in QIIME2
386 (56). Multiple rarefactions were computed, with the minimum being 1250 sequences per sample
387 with the analyses using the 1250 set except where noted explicitly. Diversity calculations were
388 computed using scikit-bio 0.5.1 with the exception of UniFrac (57) which was computed using
389 an unpublished algorithmic variant, Striped UniFrac (<https://github.com/biocore/unifrac>), which
390 scales to larger datasets and produces identical results to previously published UniFrac
391 algorithms.

392

393 **Metadata Curation.** To address the self-reported nature of the AGP data and ongoing nature of
394 the project, basic filtering was performed on the age, height, weight, and body mass index
395 (BMI). Height and weight were gated to only consider heights between 48 cm and 210 cm, and
396 weight between 2.5 kg and 200 kg. BMI calculations using values outside this range were not
397 considered. We assumed age was misreported by any individual who reported a birth date after
398 their sample was collected. We also assumed age was misreported for participants who reported
399 an age of less than 4 years, but height over 105 cm, weight over 20 kg, or any alcohol
400 consumption. Values assumed to be incorrect were dropped from analyses (fig S1B).

401

402 **Sample Selection.** Analyses in the manuscript were performed on a subset of the total AGP
403 samples. A single fecal sample was selected for each participant with at least one fecal sample
404 that amplified to 1250 sequences per sample unless otherwise noted. Priority was given to
405 samples that were associated with VioScreen (<http://www.viocare.com/vioscreen.html>) metadata.

406

407 The samples used for analysis and subsets used in various analyses are described in table S2.
408 Briefly, we defined the healthy subset ($n=3,942$) as adults aged 20-69 years with a BMI between
409 18.5 and 30 kg/m^2 who reported no history of inflammatory bowel disease or diabetes and no
410 antibiotic use in the last year. There were 1,762 participants who provided results for the
411 VioScreen Food Frequency Questionnaire (FFQ; <http://www.viocare.com/vioscreen.html>). The
412 meta-analysis with non-Western samples ($n=4,643$) included children over the age of 3, adults
413 with a BMI of between 18.5 and 30 kg/m^2 , and no reported history of inflammatory bowel
414 disease, diabetes, or antibiotic use in the last year.

415

416 **Population Level Comparisons.** Population level comparisons were calculated for all American
417 Gut participants living in the United States. BMI categorization was only considered for adults
418 over the age of twenty, since the description of BMI in children is based on their age and sex.
419 Education level was considered for adults over the age of 25. This threshold was used to match
420 the available data from the US Census Bureau

421 (<https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20-578.pdf>). The
422 percentage of the American Gut participants was calculated as the fraction of individuals who
423 reported results for that variable. US population data is from the 2010 census

424 (<https://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf>), US Census bureau reports

425 (<https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20-578.pdf>),
426 Centers for Disease Control reports on obesity

427 (<https://www.cdc.gov/nchs/data/hus/2015/058.pdf>), diabetes (57, 58), IBD

428 (<http://www.cdc.gov/ibd/ibd-epidemiology.htm>), smoking

429 (https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm), and a report from the Williams Institute (<http://williamsinstitute.law.ucla.edu/wp-content/uploads/How-Many-Adults-Identify-as-Transgender-in-the-United-States.pdf>) (table S2).

432

433 **Within American Gut Alpha- and Beta-Diversity Analyses.** OTU tables generated in the
434 primary processing step were rarefied to 1,250 sequences per sample. Shannon, Observed OTU,
435 and PD whole tree diversity metrics were calculated as the mean of ten rarefactions using QIIME
436 (56, 59). Alpha-diversity for single metadata categories was compared with a Kruskal-Wallis
437 test. Unweighted UniFrac distance between samples was tested with PERMANOVA (60) and
438 permuted *t*-tests in QIIME.

439

440 **Balances.** The goal of this analysis was to design two-way classifiers to classify samples and
441 sOTUs. This will allow us to identify sOTUs that are strongly associated with a given
442 environment. To do this while accounting for issues due to compositionality, we used balances
443 (61) constructed from Partial Least Squares (62).

444

445 First the sOTU table was centered log-ratio (CLR) transformed with a pseudocount of 1. Partial
446 least squares discriminant analysis (PLS-DA) was then performed on this sOTU table using a
447 single PLS component, using a binary categorical variable as the response and the CLR
448 transformed sOTU table as the predictor. This PLS component represented an axis, which
449 assigns scores to each OTU according to how strongly associated they are to each class. An
450 sOTU with a strong negative score indicates an association for the one category, which we will
451 denote as the negative category. An sOTU with a strong positive score indicates that sOTU is
452 strongly associated with the other category, which we will denote as the positive category.

453

454 We assumed that PLS scores associated with each OTU were normally distributed. Specifically
455

456 $score(x_{pos}^{(i)}) \sim N(\mu_{pos}, \sigma_{pos}^2)$

457 $score(x_{neg}^{(i)}) \sim N(\mu_{neg}, \sigma_{neg}^2)$

458 $score(x_{null}^{(i)}) \sim N(\mu_{null}, \sigma_{null}^2)$

459

460 Where $\mu_{null} \approx 0$, $\mu_{neg} < 0$ and $\mu_{pos} > 0$. To obtain estimates of these normal distributions,
461 Gaussian Mixture Models with three Gaussians were fitted from the PLS scores. Thresholds
462 were determined from the intersection of Gaussians. The OTUs with PLS scores less than the

463 intersection $N(\mu_{null}, \sigma_{null}^2)$ and $N(\mu_{neg}, \sigma_{neg}^2)$ are classified to be associated with the negative
464 category. The OTUs with PLS scores greater than the intersection $N(\mu_{null}, \sigma_{null}^2)$ and
465 $N(\mu_{pos}, \sigma_{pos}^2)$ are classified to be associated with the positive category.

466 The balance was constructed as follows

467

468
$$b = \sqrt{\frac{|x_{pos}| |x_{neg}|}{|x_{pos}| + |x_{neg}|}} \log \left(\frac{g(x_{pos})}{g(x_{neg})} \right)$$

469

470 From this balance, we calculated receiver operator characteristic (ROC) curves and AUC to
471 assess the classification accuracy, and ran ANOVA to assess the statistical significance. The
472 dimensionality was shrunk through some initial filtering (an sOTU must have at least 50 reads,
473 must exist in at least 20 samples except where noted, and have a variance over 10 to remove
474 sOTUs that do not appear to change), so that the number of samples is greater than the number of
475 sOTUs to reduce the likelihood of over-fitting. This technique was used to investigate
476 differences due to plant consumption, country of residence and western vs non-western and was
477 consistently applied with the exception that a filter of 5 samples was used for the western vs.
478 non-western analysis due to group sample sizes.

479

480 Balances on plant consumption were constructed using Partial Least Squares. Only samples
481 from people who consumed less than 10 types of plants a week or more than 30 types of plants a
482 week were considered.

483

484 **Meta-analysis of samples from the American Gut and from individuals living agrarian and**
485 **hunter-gatherer lifestyles.** A meta-analysis compared fecal samples collected from healthy

486 individuals that were 3 years of age or older and included in the AGP data set to a previously
487 published 16S rRNA V4 region data set that included healthy people living an industrialized,
488 remote agrarian or hunter-gatherer lifestyle (63–65). The AGP subset of healthy individuals was
489 determined by filtering by the metadata columns “subset_antibiotic”, “subset_ibd”,
490 “subset_diabetes”, and for individuals over the age of 16 years “subset_bmi”. All datasets were
491 processed using the Deblur pipeline as noted above, with the exception that all reads in the meta-
492 analysis, including AGP data, were trimmed to 100nt to accommodate the read length in
493 Yatsunenko et al (63). Bloom reads as described above were removed from all samples. We used
494 Striped UniFrac as noted above to estimate beta-diversity (unweighted UniFrac) and EMPeror
495 software (66) version 0.9 to visualize principal coordinates. We used a non-parametric
496 PERMANOVA with 999 permutations to test for significant differences in fecal microbiomes
497 associated with industrialized, remote agrarian, and hunter-gatherer lifestyles. All AGP samples
498 were considered to be from people living an industrialized lifestyle. Balances were constructed
499 from Partial Least Squares to assess the differences between the hunter-gather vs. industrialized
500 populations and the remote farmers vs industrialized populations.

501
502 **Spatial Autocorrelation.** We sought to investigate distance-decay patterns – the relationship
503 between microbial community similarity and spatial proximity – among American Gut
504 participants, to determine the extent to which geographical distances could explain variation in
505 microbial community taxonomic compositions between participant pairs. The correlation
506 between community-level Bray-Curtis (67) distances and participants’ spatial proximities (i.e.,
507 great-circle distances, km) was assessed using a Mantel test (68) with 1000 matrix permutations.
508 Analyses were conducted using the subset of participants located in the continental United States

509 that had not received antibiotics in the last year. Different neighborhood sizes were investigated
510 in order to detect the relevant spatial scale on which significant distance-decay patterns in
511 microbial community compositions emerged. To accomplish this, we computed distance-decay
512 relationships for a series of model adjacencies corresponding to neighborhood radiiuses of 50,
513 100, 500, 1000, 2500, and 4500 km among participants, and adjusted *p*-values for multiple
514 comparisons using the Benjamini-Hochberg procedure (69). We also studied spatial correlations
515 in phylogenetic community dissimilarities, calculated as weighted normalized UniFrac distances,
516 using the procedure described above. Analyses were conducted in R statistical programming
517 environment.

518

519 The spatial autocorrelation of each individual taxon was assessed using Moran's *I* statistic (70).
520 Taxa present in less than 10 samples were filtered, since these would not be sufficiently
521 powered. Analyses were conducted using binary spatial weight matrices, with neighborhoods of
522 0 – 50 km, 50 – 100 km, and 100 – 250 km. The different neighborhoods were useful for
523 detecting spatial autocorrelation at different scales. All spatial weights matrices were row-
524 standardized. We checked for spatial autocorrelation at three taxonomic ranks: class, genus, and
525 OTU. We also considered whether there was autocorrelation within subsets of individuals who
526 were under 20 years old and between 20 and 70 years old; those having IBD, no IBD, diabetes,
527 and no diabetes; and those who had taken antibiotics within the past week, year, or not within the
528 past year. The results presented above did not qualitatively depend on the subset of individuals
529 considered. Statistical significance was assessed using permutation tests, which were
530 implemented using a Markov Chain Monte Carlo algorithm. To assess each *p*-value, 100 chains
531 were run each starting from a different random permutation. Each chain had 1000 iterations. We

532 used Bonferroni corrections to correct for multiple comparisons, with an overall significance
533 level set to 0.05. Analyses were run using custom Java code, optimized for running many spatial
534 autocorrelation analyses on large data sets (71).

535

536 **Metadata cross-correlation.** To account for covariance among metadata for effect size and
537 variation analyses, we examined the correlation between individual metadata variables including
538 technical parameters. Groups in ordinal variables were combined if there were insufficient
539 sample size (e.g. people who reported sleeping less than 5 hours were combined with those who
540 reported sleeping 5 to 6 hours into a variable described as “Less than 6”). The same
541 transformations were used for effect size analysis. Any group with less than 25 total observations
542 was ignored during analysis; if this resulted in a metadata column having no groups, the column
543 was removed from analysis. The relationship between continuous and ordinal covariates was
544 calculated using Pearson’s correlation. Ordinal and categorical covariates were compared using a
545 modified Cramer’s V statistic (72). Continuous and categorical covariates were compared with a
546 Welch’s T test (73). We treated used $I-R$ as a distance between the covariates. Traversing the
547 resulting binary, weighted cluster tree starting at tip level into the direction of the root, i.e.
548 bottom-up, we grouped tips together that are members of the same subtree after covering a
549 distance of approximately 0.5 (branch length 0.29). A representative variable from each cluster
550 was selected for analysis (table S2).

551

552 **Effect Size Calculations.** Effect size was calculated on 179 covariates (including technical
553 parameters), selected from the cross-correlation (table S2). Ordinal groups with small sample
554 sizes at the extreme were collapsed as noted above. Individuals who reported self-diagnosis or

555 diagnosis from alternative practitioner for medical conditions were excluded from the analysis.
556 Any metadata variable with less than 50 observations per group or that made up less than 3% of
557 the total number of respondents was also excluded from the effect size analysis. Continuous
558 covariates were categorized into quartiles. For each one of the 179 variables, we applied the
559 mdFDR (74) methodology to test for the significance of each pairwise comparison among the
560 groups. For each significant pairwise comparison, we computed the effect size using Cohen's d
561 (75), or the absolute difference between the mean of each group divided by the pooled standard
562 deviation. For analysis of diversity, we used Faith's Phylogenetic Diversity (alpha-diversity) and
563 weighted and unweighted UniFrac distances (beta-diversity).

564

565 **Variation analysis.** Using the methodology reported in the supplemental material for (76), we
566 computed Adonis (77) using 1000 permutations, over the sample sets used in the effect size
567 calculations as noted above, and applied Benjamini-Hochberg correction (FDR<0.1) to assess
568 drivers of variation in beta-diversity.

569

570 **Meta-analysis movie.** American Gut samples from all body sites were combined with data from
571 an infant time series (78), a fecal transplant study (79), and recent work characterizing the
572 microbiome of patients in the intensive care unit (80). The combination of the datasets in movie
573 S2 required that all sequences were trimmed to an even length of 125 nucleotides. All projects
574 except for the infant time series were sequenced using an Illumina instrument. In order to
575 combine the data, we expressed the Illumina and non-Illumina data through a common reference
576 database. Specifically, the Deblur sOTUs from the Illumina data were mapped against the
577 Greengenes (53) database (13_8 release) using 99% similarity; the associations between the

578 input sOTUs, and their cluster memberships, were used to construct an OTU table based on the
579 original sOTU per sample sequences counts (i.e., summing the counts for all sOTUs in a
580 common OTU). The infant time series data were picked using a closed reference OTU picking
581 approach against the same reference at the same similarity. The infant time series dataset
582 followed a closed reference OTU picking approach using 99% similarity. The resulting two
583 tables (from Illumina-generated data and the ITS dataset) were merged and analyzed using the
584 Greengenes 99% tree. The table was rarefied to 1,250 sequences per sample. Principal
585 coordinates projections were calculated based on unweighted UniFrac distance (57). The
586 principal coordinates analysis was visualized and animated in EMPor 1.0.0-beta8-dev (66, 81).
587 The movie was captured in QuickTime (Apple, Cupertino, CA), and edited with Premiere Pro
588 (Adobe, San Jose, CA).

589
590 **Integration with the Earth Microbiome Project.** A precomputed 100nt Deblur BIOM table
591 representing the data in (82) was obtained from
592 (ftp://ftp.microbio.me/emp/release1/otu_tables/deblur/). 100nt Deblur tables were also obtained
593 from Qiita for Hadza fecal samples (Qiita study ID 11358, (83)), ICU microbiome samples (Qiita
594 study ID 2136, (80)), and a longitudinal series which includes samples immediately prior to and
595 following a large bowel resection (Qiita study ID 10283, EBI accession ERP105968,
596 unpublished); all samples were processed using the EMP Illumina 16S V4 protocol. The EMP
597 dataset used a minimum sOTU count of 25; the same threshold was applied to the other datasets
598 included prior to merge. Blooms as identified by (84) were removed from all samples. This
599 collection of BIOM tables was then merged yielding an OTU table representing 40,600 samples.
600 sOTUs were restricted to those already present in the EMP 100nt fragment insertion tree, which

601 represents 329,712 sOTUs. The table was then rarefied to 1000 sequences per sample, and
602 unweighted UniFrac computed using 768 processors with the aforementioned Striped algorithm.
603 Visualizations and animations were performed using EMPERor v1.0.0b12.dev0.

604

605 **Extreme diet study state assessment.** The sequence data from (85) were processed by Deblur to
606 assess 16S sOTUs in common with the AGP processing above. In order to assess a state
607 difference with PERMANOVA, we needed to control for sample independence within the
608 longitudinal sampling. To do so, we randomly selected one sample from each individual per diet,
609 computed PERMANOVA, and repeated the process 100 times. None of the trials produced a *p*-
610 value below 0.05.

611

612 **Vioscreen PCA and diet type Procrustes analysis.** Before performing Principal Component
613 Analysis (PCA) on the informal diet questions, Vioscreen variables that are categorical or
614 receive less than 90% response among the 1762 participants were excluded leaving 1596
615 participants. PCA was then performed using the Vioscreen information from these participants'
616 responses over 207 Vioscreen questions, and then colored by their types of diet as answered in
617 the AGP informal food survey. The coordinates from the PCA were extracted. For the same
618 samples, PCoA of unweighted UniFrac distances was computed on the 16S data subset from the
619 primary processing set. The coordinates from the PCA and the PCoA were assayed for a measure
620 of fitness using Procrustes as implemented in QIIME v1.9.1.

621

622 **Beta-diversity added.** To assess added beta-diversity, we applied the technique used in (86)
623 figure 3. Specifically, we randomly sampled *N* samples from the distance matrix 10 times, over

624 an increasing value of N . For each set of sampled distances, we computed the minimum observed
625 distance.

626

627 **sOTU novelty.** To assess sOTU novelty, we randomly sampled N samples from an sOTU table
628 10 times, over an increasing value of N . At each sampling, we computed the number of sOTUs
629 observed with read counts within minimum thresholds. In other words, a minimum threshold of 1
630 is the number of singletons observed in the sampled set, a minimum threshold of 2 is the number
631 of singletons and doubletons, etc.

632

633 **Within-individual beta-diversity.** Many of the individuals in the American Gut Project
634 contributed multiple samples, but at uneven time intervals. In order to explore intrapersonal
635 variation, we replicated the analysis in Lloyd-Price et al. figure 3 (87). Specifically, we
636 determined all time deltas between a subjects samples, and gathered the distributions of beta-
637 diversity between any two samples binned by month. An individual is only represented a single
638 time in a given month, but may be represented in multiple months if they had, for instance,
639 contributed samples over the course of a year.

640

641 **High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS) Analysis.** A
642 total of 498 samples were selected for analysis via mass spectrometry. Specifically, two groups
643 were chosen. First, given the large body of primary literature describing the negative impact of
644 antibiotics on the gut microbiome, and the general interest in this topic from many American Gut
645 participants, we chose 279 samples from individuals (age, BMI, and country matched) who self-
646 reported not having taken antibiotics in the past year, or having taken antibiotics in the past

647 month or week. We chose a second group of 219 samples collected from individuals who
648 answered the question “In an average week, how many different plants do you eat? (e.g., if you
649 consume a can of soup that contains carrots, potatoes and onion, you can count this as 3 different
650 plants; If you consume multi-grain bread, each different grain counts as a plant. Include all fruits
651 in the total)” on the main American Gut Project main survey and who had also completed the
652 VioScreen Food Frequency Questionnaire. When American Gut participants collect samples,
653 they do so on a double headed swab; therefore, all samples chosen for this analysis had one
654 remaining swab head (the first had been used for DNA extraction and microbiome sequencing).

655

656 Cell cultures sample preparation for metabolomics analysis. The supernatant collected from cell
657 cultures (see “expanded bloom assessment” below) were processed to make them compatible
658 with HPLC-MS analysis. The solid phase extraction with wash was carried out to reduce impact
659 of cell culture media, which is highly detrimental for the ESI. The 30 mg sorbent Oasis HLB
660 (Waters, Waltham, MA) SPE cartridges were used to achieve broad metabolite coverage. The
661 cell samples were stored at -80°C and thawed at room temperature immediately prior to
662 extraction. The thawed samples were then centrifuged for 10 minutes at 1200 rpm and extracted.
663 For the SPE extraction, the Oasis HLB SPE cartridge was conditioned with 700µL of 100%
664 HPLC-grade methanol and equilibrated with 700µL of HPLC-grade DI water. The cell
665 supernatant (~350-400µL) was loaded into cartridge and allowed to slowly elute. The loaded
666 SPE wells were then washed with 800µL of 5% methanol in water and the absorbed material was
667 slowly eluted with 200 µL of 100% methanol. Vacuum up to ~ 20 psi was applied for the wells
668 that did not elute within an hour. The collected eluent was stored at -20°C until the HPLC-MS
669 analysis.

670

671 Fecal sample preparation for metabolomics analysis. The swab tubes scheduled for analysis were
672 removed from the -80°C freezer and placed on dry ice for the duration of sample processing.
673 Each tube with swab was logged by reading the barcode with barcode scanned and the swab was
674 removed from tube and placed onto a ThermoFisher Scientific (ThermoFisher Scientific,
675 Waltham, MA) 2 ml deep well 96-well plate set on top of dry ice coolant. The top part of each
676 swab's stick was snapped off and discarded. Immediately after filling all of the wells with swabs,
677 200 µL of HPLC-grade 90% v:v ethanol:water solvent was added to each well using
678 multichannel pipette. Four blanks of unused swabs and extraction solvent were included onto
679 each plate. Each plate was then sealed with 96-well plate lid, sonicated for 10 minutes and placed
680 into the refrigerator at 2 °C to extract samples overnight. After extraction, the swabs were
681 removed from wells and discarded, the plates were placed into a lyophilizer, and the entire
682 sample was dried down and then re-suspended in 200 µL 90% v:v ethanol:water. The plates were
683 resealed and centrifuged at 2000 rpm for 10 minutes. The 100 µL aliquots of sample were then
684 transferred onto a Falcon 96-well MS plate using a multichannel pipette, and each plate was
685 immediately sealed with sealing film. The MS plates were centrifuged at 2000 rpm for 10
686 minutes and stored at 2 °C until analysis.

687

688 HPLC-MS analysis. The metabolomics analysis of samples was conducted using reverse phase
689 (RP) high performance liquid chromatography mass spectrometry (HPLC-MS). The HPLC-MS
690 analysis was performed on a Dionex UltiMate 3000 ThermoFisher Scientific high-performance
691 liquid chromatography system (ThermoFisher Scientific, Waltham, MA) coupled to a Bruker
692 impact HD qTOF mass spectrometer. The chromatographic separation was carried out on a

693 Kinetex C18 1.7 μ m, 100 \AA UHPLC column (50 mm x 2.1 mm) (Phenomenex, Torrance, CA),
694 held at 40 $^{\circ}$ C during analysis. A total of 5 μ L of each sample was injected. Mobile phase A was
695 water, mobile phase B was acetonitrile, both with added 0.1% v:v formic acid. The solvent
696 gradient table was set as follows: initial mobile phase composition was 5% B for 1 min,
697 increased to 40% B over 1 min, then to 100% B over 6 min, held at 100% B for 1 min, decreased
698 back to 5% B in 0.1 min, followed by a washout cycle and equilibration for a total analysis time
699 of 13 min. The scanned m/z range was 80-2000 Th, the capillary voltage was 4500 V, the
700 nebulizer gas pressure was 2 bar, the drying gas flow rate was 9 L/min, and the temperature was
701 200 $^{\circ}$ C. Each full MS scan was followed by MS/MS using collision-induced dissociation (CID)
702 fragmentation of the seven most abundant ions in the spectrum. For MS/MS, the collision cell
703 collision energy was set at 3 eV and the collision energy was stepped 50%, 75%, 150% and
704 200% to obtain optimal fragmentation for differentially sized ions of different sizes. The scan
705 rate was 3 Hz. A HP-921 lock mass compound was infused during the analysis to carry out post-
706 processing mass correction. All of the raw data are publicly available at the UCSD Center for
707 Computational Mass Spectrometry (111) (dataset ID: MassIVE MSV000080179).

708

709 MS data analysis. The collected HPLC-MS raw data files were first converted from Bruker's *d* to
710 mzXML format and then processed with the open source OpenMS 2.0 software (88) in order to
711 deconvolve and align each peak across different chromatograms (feature detection). The
712 alignment window was set at 0.5 minutes, the noise threshold at 1000 counts, the
713 chromatographic peak FWHM value at 20, and the mass error at 30 ppm. All of the peaks that
714 were present in any of the blanks with S/N below 10:1 were removed from the final feature table.
715 The number of features with corresponding MS/MS was as follows: Vioscreen study sample

716 cohort: 5144 total MS2 features; antibiotics study samples cohort: 8288 total MS2 features. The
717 number of MS1 features is difficult to estimate exactly as it depends on feature detection settings
718 and the number of samples, but it is typically about 4-5 fold greater depending on the sample.
719 For all of the MS1 features detected across all samples, only ~1-5% are present in an individual
720 sample.

721
722 Chemical annotations were carried out by automatic matching fragmentation spectra to multiple
723 databases using Global Natural Product Social Molecular Networking (GNPS) (89) and then
724 examining the data at the MS/MS level by molecular networking (90). The goal is to retrieve
725 spectra with identical and similar fragmentation patterns and combine them into consensus nodes
726 and clusters, respectively. The consensus node spectra are then compared against public MS/MS
727 libraries to provide molecular annotations (91). Further annotations could be suggested by
728 examining the molecular network (90) (so called propagated annotations). Annotations obtained
729 with precursor and MS/MS matching are considered level two annotations according to the 2007
730 metabolomics standards initiative (92). All molecular networking analysis and annotations are
731 available here: antibiotic use subset (93); types of plants subset (94), cell cultures of isolates (95)
732 and fecal samples co-networked with the cell cultures (96). The raw data contain a significant
733 number of abundant features originating from swab polymers. Therefore, selective background
734 peak removal was carried out specifically for the polymer compounds originating from swabs
735 that were used for the sample collection. The m/z shifts that correspond to the polymer repeating
736 units (44.0262, 88.0524, 132.0786, 176.1049) were identified with GNPS m/z differences
737 frequency plot. The network clusters that contained nodes with the corresponding mass
738 differences were deemed to belong to polymers and all member nodes of the network clusters

739 were removed from the feature table (a total of 1632 features/nodes). Principal Coordinates
740 Analysis (PCoA) using a Hellinger distance (97) matrix was used to confirm that the batch effect
741 corresponding to the batches of swabs was mitigated prior to further analysis. To confirm
742 putative annotations, authentic standards were purchased for the linoleic acid (LA; Spectrum
743 Laboratory Products, Inc., USA), conjugated linoleic acid (CLA; mixture of 4 isomers: 9,11 and
744 10,12 isomers, E and Z) (Sigma-Aldrich, USA), and selected antibiotics: tetracycline,
745 oxytetracycline, and doxycyclin (Abcam Inc., USA). For level one identifications, each authentic
746 compound was analyzed under identical experimental conditions and retention time and MS/MS
747 spectra were compared with putatively annotated compounds.

748

749 Selective feature detection. Selective feature extraction was performed with open source
750 MZmine2 software (98). To separate closely eluting LA and CLA isomers as well as separate
751 various N-acyl amides, crop filtering with RT range of 5.4-6.0 minutes and m/z range of 281.246
752 - 281.248 was applied to all chromatograms. Mass detection was performed with a signal
753 threshold of 1.0E2 and a 0.6 s minimum peak width. The mass tolerance was set to 20 ppm and
754 the maximum allowed retention time deviation was set to 5 s. For chromatographic
755 deconvolution, the baseline cutoff algorithm with a 5.0E1 signal threshold was used. The
756 maximum peak width was set to 0.5 min. Similarly, the MS feature for reference compound
757 stercobilin was extracted with a crop filter RT range of 2.0-4.0 minutes and m/z range of
758 595.345-595.355. The stercobilin reference compound was used to assess variability of
759 chromatographic retention times to ensure that the compounds of interest (LA and CLA in
760 particular) retention times were correctly identified. After isotope peak removal, the peak lists of
761 all samples were aligned within the corresponding retention time and mass tolerances. Gap

762 filling was performed on the aligned peak list using the peak finder module with 1% intensity, 10
763 ppm m/z tolerance, and 0.05 min RT tolerance, respectively. After the creation and export of a
764 feature matrix containing the feature retention times, exact mass, and peak areas of the
765 corresponding extracted ion chromatograms, we added sample metadata to the feature matrix
766 metadata of the samples.

767

768 The selective feature extraction with the same settings has been performed for all of the detected
769 compounds listed on the Figure 6A-I (the m/z range crop filter window was set for
770 corresponding m/z for each compound).

771

772 Molecular Networking. Raw data files were converted to the .mzXML format using Bruker Data
773 Analysis software and uploaded to the GNPS (<https://gnps.ucsd.edu/>) MassIVE mass
774 spectrometry database (<https://massive.ucsd.edu/>). Molecular networking was performed to
775 identify spectra shared between different sample types and to identify known molecules in the
776 data set. All annotations are at level 2 according to the proposed minimum standards in
777 metabolomics (92). The data were filtered by removing all MS/MS peaks within +/- 17 Da of the
778 precursor m/z. MS/MS spectra were window-filtered by choosing only the top 6 peaks in the +/-
779 50 Da window throughout the spectrum. The MS spectra were then clustered with MS-Cluster
780 algorithm with a parent mass tolerance of 0.02 Da and a MS/MS fragment ion tolerance of 0.02
781 Da to create consensus spectra (89). Further, consensus spectra that contained less than 4 spectra
782 were discarded. A network was then created where edges were filtered to have a cosine score
783 above 0.65 and more than 5 matched peaks. The edges between two nodes were kept in the

784 network if and only if each of the nodes appeared in each other's respective top 10 most similar
785 nodes. The spectra in the network were then searched against GNPS spectral libraries. The
786 library spectra were filtered in the same manner as the input data. All library matches were
787 required to have a score above 0.7 and at least 6 matched peaks. Molecular networks were
788 visualized and mined using the Cytoscape software (www.cytoscape.org/).

789

790 Molecular networking-based propagation of annotations. The annotation of GPCR agonist
791 compounds was not possible via direct library matching, as their spectra are not present in any
792 MS libraries, but direct comparison with fragmentation patterns presented in (99) allowed us to
793 establish these compounds' identity with level 3 identification (92). Consequently, manual
794 annotation of compounds was carried out in two steps. The exact mass of compounds and their
795 MS/MS fragmentation spectra were matched to the reference spectra found in supplementary
796 info of (99) (fig S4A). Compound m/z 611.5357 was identified in this fashion. In addition,
797 commendamide (330.2640) and its analogue (m/z 344.2799) were identified by matching exact
798 mass of the corresponding ion and by in silico prediction of the MS/MS fragmentation spectra
799 with the CSI:FingerID (100) (fig S4B). For novel molecules that were found within clusters of
800 compounds of interest, but were not described in the literature previously, the structure was
801 postulated using annotation propagation from adjacent annotated nodes in the cluster as
802 described in (89) by assessing differences in parent mass and fragmentation patterns. The key
803 structure, m/z 387.322 has been annotated as N-3-OH-palmitoyl ornithine based on the exact
804 mass and previous annotation (99) as well as analysis of fragmentation pattern to confirm
805 structural moieties of fragments (fig S4C). The rest of the structural assignments have been
806 propagated from that structure. The ornithine moiety has been determined to be present in each

807 structure (due to presence of the signature ion with m/z 115.09), and acylation of the hydroxyl is
808 not possible due to insufficient mass of the structures; thus, the changing mass was postulated to
809 correspond to different length of the alkyl substituent (fig 6, in the main text).

810

811 Correlations of Metabolites with Metadata. We have investigated correlations between
812 metabolites (especially those of interest, such as N-Acyl amides) and all of the categories in the
813 metadata. The data were subsetted into the Vioscreen and Antibiotics cohorts and normalized
814 using probabilistic quotient normalization (101). In order to test the association of the
815 metabolites to the categorical metadata fields we performed the Kruskal–Wallis test followed by
816 Benjamini & Hochberg FDR correction to all metabolites. The significant metabolite-metadata
817 associations (p -value adjusted < 0.05) were further connected to GNPS spectral library matches
818 associating the MS1 feature to the MS2 precursor ion in a 10 ppm mass window and 20 seconds
819 retention time window. The results are summarized in table S5.

820

821 Data pretreatment for statistical analysis. A PCoA plot using Hellinger distance (distance matrix:
822 Hellinger; grouping: HCA) was built with all samples in the subset; one sample was found to be
823 an outlier and removed. The data were then filtered to remove features with near-constant, very
824 small values and values with low repeatability using the inter-quartile range estimate. Detailed
825 description of methodology is given in (102). The samples were normalized by sum total of peak
826 intensities, an important step due to large variability of the fecal material load on different swabs.
827 To reduce the effect of background signal and make the sum normalization appropriate, the
828 subtraction of blank and polymer peak features was conducted prior to analysis, as described

829 above. The data were further scaled by mean centering and dividing by standard deviation for
830 each feature.

831

832 The data were split into two groups for downstream analysis. Group one contained samples from
833 individuals answering “More than 30” ($n=41$) and “Less than 10” ($n=44$) to the main American
834 Gut Project survey question “In an average week, how many different plants do you eat?” Group
835 two contained samples from individuals answering “antibiotic use within last week” ($n=56$) and
836 “I have not taken antibiotics in the past year” ($n=115$) to the main American Gut Project survey
837 question “I have taken antibiotics in the last ____.” for the Antibiotic history study,
838 correspondingly.

839

840 The resultant features tables were used as input for the Metabonalist software (103). Partial least
841 squares Discriminant Analysis (PLS-DA) (62) was used to explore and visualize variance within
842 data and differences among experimental categories. Random forests (104) (RF) supervised
843 analysis was used to further verify validity of determined discriminating features.

844

845 **Expanded bloom assessment.** The American Gut Project dataset now spans multiple-omics
846 types, and include data that were unavailable during the analysis described in Amir et al. (14). To
847 better understand how the blooming organisms impacted the samples in the American Gut, we 1)
848 performed an additional set of 16S-based experiments; 2) cultured historical samples covering a
849 range of bloom fractions, characterized their metabolites and sequenced the isolates; 3)
850 performed shotgun metagenomics sequencing on the “high bloom” samples; 4) ran the set of

851 samples previously run for HPLC-MS (e.g., the plants and antibiotics cohorts) for shotgun
852 metagenomics, and 5) ran the storage samples from (105) for shotgun metagenomics. The
853 additional sequencing effort was to provide a basis to assess whether functional potential driven
854 by the blooms was impacting any of the biological results discussed in the manuscript. The
855 additional HPLC-MS work was to characterize the metabolites specific to the blooms to remove
856 them from analysis. The additional sequence data generated from the American Gut samples
857 were deposited in EBI under the American Gut accession (ERP012803), and the storage sample
858 data under its accession (ERP015155).

859

860 16S-based bloom experiments. Effect size calculations were computed prior to and following the
861 removal of bloom reads using the procedure described by Amir et al., 2017 (84). The fraction of
862 reads recruiting to blooms was included as a covariate. Effect sizes were assessed over Faith's
863 Phylogenetic Diversity (59), unweighted UniFrac (57) and weighted UniFrac (106). We then
864 computed Pearson and Spearman correlations of the effect sizes, per metric, between the bloom
865 and bloom-removed result (fig 2D, E). In addition to the effect size calculations, we also tested
866 whether the bloom fraction was correlated to any metadata category and did not observe
867 significant correlations.

868

869 We then tested the removal of blooms from other studies in which room temperature shipping
870 was not performed by retrieving a wide variety of human fecal studies from Qiita. UniFrac
871 distance matrices were computed prior to and following bloom removal, followed by Mantel
872 tests. The results of this procedure are outlined in table S4.

873

874 Finally, we correlated the relative intensities of the HPLC-MS data associated with the
875 antibiotics and plants cohorts against the fraction of blooming reads. Critically, we observed a set
876 of spectra that are significantly correlated (table S5) to this fraction. On annotation using
877 molecular networking (discussed in detail the HPLC-MS section), we observed these metabolites
878 to putatively be LysoPE, lysophospholipid (LPL), which has previously been associated with the
879 release of colicin (107). These metabolites were removed from subsequent analyses.

880

881 Culturing. Primary specimens ($n=214$) were selected from three plates based off of the median
882 fraction of reads recruiting to the blooms across the plate, whether the primary specimen still
883 existed, and as to gather samples from at least the US ($n=116$) and UK ($n=73$); additional
884 countries were included in smaller sample sizes and include Australia ($n=7$), Germany ($n=7$),
885 Canada ($n=3$), Croatia ($n=2$), Belgium ($n=2$), France ($n=1$), Austria ($n=1$), Sweden ($n=1$), and
886 the Czech Republic ($n=1$). The bloom typically observed in these samples (and in the full AGP
887 dataset) is an *E. coli* (ID: 04195686f2b70585790ec75320de0d6f from (84)), although a few of
888 the other bloom sequences were represented at high read fraction as well. Samples were retrieved
889 from -80°C and thawed on ice. The swab head was broken off into 500 μ l sterile 1x Dulbecco's
890 Phosphate-Buffered Saline and vortexed vigorously for 30 seconds. Serial dilutions from this
891 initial stock were made including 1:10,000 and 1:1,000,000. 10 μ l of the 1:10,000 dilution were
892 inoculated into 1.5 ml sterile Tryptic Soy broth (TSB, BD cat#2253534) in sterile 96-deep-well
893 plates (community cultures, CC) and incubated overnight at 37°C on an orbital shaker at 500
894 rpm. OD600 values above 0.1 (TSB controls measured ~0.08) were counted as positive growth.
895 Samples with high bloom fraction tended to grow overnight in ambient conditions, samples with
896 a low bloom fraction tended to not grow in these conditions (fig 2A). Additionally, 100 μ l of

897 each dilution were plated onto Tryptic Soy agar using sterile glass beads and incubated overnight
898 at 37°C. The following morning, a picture of the best dilution was captured and the most
899 representative colony was selected from each plate and inoculated into 1.5 ml sterile TSB for
900 overnight incubation as above (isolates, IS). The following morning, OD600 measurements were
901 taken and the cultures were pelleted at 3,000 g for 5 min. The supernatant and cell pellets were
902 stored at -20°C for metabolomic analysis and DNA extraction, respectively.

903

904 Shotgun sequencing was performed on all isolates and community cultures using a 1:10
905 miniaturized Nextera library prep with 1 ng gDNA input or up to 1 μ l and a 15 cycle PCR
906 amplification. Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng of each
907 library (or 4 μ l maximum) was pooled. The library was size-selected for 200-700 bp using the
908 Sage Bioscience Pippin Prep and sequenced as a paired end 150 cycle run on an Illumina HiSeq
909 2500 v2 in Rapid Run mode at the UCSD IGM Genomics Center. Sequence processing including
910 assembly performed as in the metagenomic processing section below with the exception that “--
911 meta” was not used with SPAdes (108), and read binning against the resulting contigs was not
912 performed. For each isolate, contigs with abnormally high or low coverage as defined by the 1.5
913 \times IQR rule were dropped. The characterization of the metabolites from the supernatant using
914 HPLC-MS is discussed in the HPLC-MS section above.

915

916 Following assembly of the draft genomes, taxonomic assessment by Kraken (109) revealed that
917 of the 119 successfully sequenced colony isolate cultures, 95 matched the bloom organisms
918 identified by Amir et al., 2017. Compellingly, 70 of these isolate genomes contained exact 16S

919 sequence matches to a bloom organism identified by (84), including 65 of which matched the
920 dominant *E. coli* bloom in the American Gut (table S4).

921

922 The read data for the isolates were then assessed for predicted biosynthetic gene clusters (BGCs).

923 We used biosyntheticSPAdes (110) to analyze BGCs in the assembly graph of individual
924 genomes. Below we focus on the longest BGCs that are particularly difficult to reconstruct based
925 on ad hoc analysis of contigs and reveal their variations (that likely translate into variations of
926 their natural products). Some of the reconstructed long BGC are ubiquitous (shared by many
927 isolates, albeit with some variations), while others are unique, e.g., present in a single or small
928 number of isolates. We identified BGCs, representing in the alphabet of their domains (table S4),
929 and uncovered variations in their sequence across multiple isolates. Specifically, a ubiquitous
930 BGC similar to the elusive peptide-polyketide genotoxin colibactin and a unique surfactin-like
931 BGC. Colibactin triggers DNA double-strand breaks in eukaryotic cells (111, 112) and induces
932 cellular senescence and metabolic reprogramming in affected mammalian cells (113). Of the 11
933 samples containing the longest colibactin-like BGC, 10 of them contained the exact *E. coli*
934 bloom 16S sequence described above; the 11th isolate was actually a canine fecal sample plated
935 alongside human (as the AGP allows participants to submit pet samples).

936

937 Although colibactin is frequently harbored by various *E. coli* strains, the variations of colibactin
938 BGCs across various isolates have not been studied before. Genomic analysis revealed wide
939 variations in colibactin-like BGCs suggesting that various strains produce related but not
940 identical variants of natural products (114). These variations may give rise to the suite of
941 LysoPE-associated spectra identified between the 16S and HPLC-MS datasets.

942

943 Shotgun sequencing of the high bloom and storage samples. Previously extracted DNA from the
944 “high bloom” samples used for culturing was obtained, as was previously extracted DNA from
945 Song et al. (105). Shotgun sequencing libraries from a total of 5 ng (or 3.5 μ l maximum) gDNA
946 was used in a 1:10 miniaturized KAPA HyperPlus protocol with a 15 cycle PCR amplification.
947 Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng (or 1 μ l maximum) of
948 each library was pooled. The pool was size-selected for 300-700 bp and sequenced as a paired
949 end 150 cycle run on an Illumina HiSeq 2500 v2 in Rapid Run mode at the UCSD IGM
950 Genomics Center. Sequence processing including assembly was performed as in the
951 metagenomic processing section below.

952
953 Functional assessment of conjugated and non-conjugated linoleic acid. To investigate the
954 metabolic potential of gut microbiome for producing conjugated linoleic acid from linoleic acid,
955 we estimated the abundance of linoleic acid isomerase (LAI) in the fecal metagenome. We
956 focused this investigation on the “plants” cohort, which were samples selected to maximize the
957 difference between the number of types of plants metadata category as discussed in the main
958 text. First, we translated the assembled metagenomes to metaproteomes using Prodigal gene
959 prediction software. To map LAI to these metaproteomes, we used a representative LAI protein
960 sequence (UniProt: D2BQ64), which was matched against UniProtKB (via
961 <https://www.ebi.ac.uk/Tools/hmmer/>) for multiple sequence alignment (MSA). The resulting
962 MSA file in clustal format was then used to generate a hidden Markov model (HMM) profile for
963 LAI using hmmbuild in HMMER software (115). Subsequently, we mapped the resulting HMM
964 profile to sample metaproteomes using hmmsearch with an E-value threshold of 10E-5. We
965 calculated abundances of LAI per sample based on abundance (coverage x length) of LAI

966 containing contigs in each sample, normalized to total sample biomass and performed linear
967 regression between LAI abundances and bloom fraction. We did not note any correlation
968 between metabolic potential of gut metagenome to produce LAI and the fraction of blooming
969 bacteria (samples with no LAI hits were removed from this analysis). Similarly, there was no
970 correlation between CLA abundances and bloom fraction in the samples. These results suggest
971 that our report on the differential abundance of CLA in subjects with different dietary practices
972 (with respect to the number of different types of plants consumed) is unlikely to be confounded
973 by the presence of blooming bacteria.

974

975
976 Storage sample assessment. Metagenomic reads from the storage samples were mapped to the
977 169 isolate assemblies. We then ran model comparison tests on each to determine which
978 mappings were significantly different between frozen samples and samples left out at ambient
979 temperatures for various periods of time. Using the ‘lme’ package (116) in R (v3.3.3. R Core
980 Team 2017), linear mixed effects models were applied to the abundances, with individual treated
981 as the random effect. Mappings were considered to be significantly associated with temperature
982 if the model was significantly improved (ANOVA $p \leq 0.05$) by incorporating a fixed effect of
983 temperature. Seven mappings to isolates were found to be significantly increased in samples
984 stored in ambient temperatures compared to frozen samples in both storage studies, of which 3
985 contained the 16S of the dominant *E. coli* bloom in the AGP samples, and 2 contained the 16S
986 from other blooms recognized by (84).

987

988 Shotgun sequence processing. Raw FastQ files were processed using Atropos v1.1.5 (117) to
989 remove adapters and low-quality regions. Putative human genome contaminations were

990 identified and removed by using Bowtie2 v2.3.0 (118) with the “--very-sensitive” option against
991 the human reference genome GRCh37/hg19.

992
993 Sequences were assigned taxonomy using Kraken v1.0.0 (109) against the “standard” database
994 built following the Kraken manual, which contains all complete bacterial, archeal, and viral
995 genomes available from NCBI RefSeq as of Aug. 3, 2017. Results were processed using Bracken
996 v1.0.0 (119) to estimate the relative abundance of species-level taxa.

997
998 Metagenome sequencing data were assembled using SPAdes v3.11.1 (108) with the “--
999 meta” flag enabled. Contigs \geq 1 kb in length were retained and fed to the prokaryotic genome
1000 annotation pipeline Prokka v1.12 (120). putatively individual genomes were inferred using
1001 MaxBin2 v2.2.4 (121).

1002
1003 In parallel, contigs were sheared into 200-bp fragments and taxonomy was assigned using
1004 Kraken (see above). For each contig, the most assigned taxon at each taxonomic rank and the
1005 proportion of sequences assigned to it was inferred.

1006
1007 A total of 3725 genome bins were identified from 677 out of 780 AGP metagenomes, with 5.50 ± 4.05 bins per sample, and a maximum bin number of 30. Bins with completeness $< 50\%$ were
1008 dropped, leaving 1029 bins from 464 samples (2.22 ± 1.97 bins per sample, maximum bins =
1009 19).

1011

1012 **Filtering Bacterial Blooms for Metabolomics Analysis.** To assess and account for the impact
1013 of the metabolites contributed by these organisms, we have performed HPLC-MS analysis of
1014 cultures of blooming organisms to establish possible contributions, as described above. The raw

1015 data are publicly available at the UCSD Center for Computational Mass Spectrometry
1016 (<http://massive.ucsd.edu/>, dataset ID: MassIVE MSV000081777). It was found that there is a
1017 negligible overlap of the bloom-associated metabolites with the compounds detected in AGP
1018 samples (fig 2B). Furthermore, we have verified that none of the compounds discussed in this
1019 work (LA, CLA, compounds on Fig 6A-I) are present in these bloom cultures. The main
1020 organism implicated in bloom was determined to be *E. coli*, as described earlier and MS data
1021 corroborate these findings (fig 2C).

1022

1023 Considering that the metabolites resulting from microbial activity in cultures can differ
1024 significantly from those in vivo (e.g. many of the metabolites could originate not from de novo
1025 synthesis, but rather from microbial modifications of external compounds that are not present in
1026 media, e.g. from the host), we also explored associations of metabolites in AGP metabolomics
1027 samples and blooms. Spearman rank correlation analysis of the fraction of 16S reads in a sample
1028 reporting as bloom to metabolites observed in the same samples revealed several features that
1029 correlate significantly (table S5). There exists a significant overlap between the Antibiotics and
1030 Vioscreen studies subsets, indicating potential common origin of these features. The strongest
1031 correlation was found for the feature m/z 480.3106 with multiple bloom organisms ($\rho^2 > 0.25$
1032 for *E. coli* at $p < 1e-40$). This feature was found to also significantly correlate with the principle
1033 coordinates of the PCoA, with and without blooms in the UniFrac matrices for both subsets. The
1034 tentative annotation of this feature is lysoPE, a lysophospholipid (LPL). The LPLs production in
1035 vivo is a result of phospholipase A enzymatic activity associated with Gram-negative bacteria. It
1036 is known that lysoPE is essential for release of colicin (107). Colicin (by itself not detectable
1037 with the MS methodology in this study due to very high molecular mass) is a bacteriocin related

1038 to microbial warfare and is known to be produced by *E. coli*, the major bloomer in AGP. It can
1039 be suggested that the blooming of an organism is related to attempting to kill competitors to
1040 maximize nutrient availability. Importantly, removal of all of the features associated with bloom
1041 does not alter the metabolomics results at all, which indicates that all of the observed biological
1042 trends reported here are not related to blooms.

1043

1044 **Mental health in the American Gut Project.** From AGP cohort, we selected subjects who
1045 endorsed a mental health disorder (depression, schizophrenia, PTSD, and/or bipolar disorder).
1046 This resulted in 1,140 subjects. 636 subjects endorsed at least one of the exclusion criteria
1047 (antibiotic use in the last year, IBD, *C. difficile* infection, pregnancy, Alzheimer's, anorexia or
1048 bulimia, history of substance use disorder, epilepsy or seizure disorder, kidney disease,
1049 phenylketonuria). Out of the remaining 504 subjects, 319 did not provide information regarding
1050 country of residence, hence forming a case cohort of 185 subjects. The remaining samples were
1051 further filtered down to 125 samples to include only high quality fecal microbiome data (at least
1052 1,250 sequences/sample) at a single time point per subject. For those cases, we created a 1:1
1053 matched sample of patients and non-psychiatric comparison (NC) participants based on age (± 5
1054 years), BMI, history of diabetes, smoking frequency, country of residence, census region (if in
1055 US), and sequencing plate. For each of the cohorts we calculated beta-diversity distance matrices
1056 using Bray-Curtis dissimilarity and weighted UniFrac. On resulting matrices we ran pairwise
1057 PERMANOVA with 999 permutations between "cases" (people who reported mental illness)
1058 and NCs (out matched control dataset). Differential abundance testing was performed using
1059 permutive mean difference test at 10,000 permutations, with discrete FDR (122) correction at
1060 alpha=0.1.

1061

1062 **Acknowledgments:** The authors would like to thank first all the citizen science volunteers
1063 around the world. We also thank Katherine Amato, Margaret K. Butler, Gabriela Surdulescu,
1064 Luke Ursell, Jeff DeReus, Evguenia Kopylova, John Graham, Victoria Vazquez, Jai Ram
1065 Rideout, Merete Eggesbo, Steve Green, Kathy Holt, Jim Huntley, Zehra Esra Ilhan, Daniel
1066 Mayer, Catherine Nicholas, Laura Parfrey, Juanma Peralta, Dorota Porazinska, Jennifer
1067 Smilowitz, Matt Gebert, Se Jin Song, Kumar Thurimella, Sam Way, Tony Walters, Sophie
1068 Weiss, Ulla Westermann, Shawnelle White, Doug Woodhams, Jerry Kennedy, Scott Handley,
1069 Chandni Desai, Carolina Carpenter, Gabriella Fanelli, Deborah L. Bright and Xochitl C. Morgan
1070 for their contributions to the American Gut Project. Some sequencing was conducted by
1071 Mahdieh Khosroheidari and Clifford L. Green at the IGM Genomics Center, University of
1072 California, San Diego, La Jolla, CA. The de-identified participant and sequence data for the
1073 American Gut are available from the European Bioinformatics Institute under accession number
1074 ERP012803; the HPLC-MS data are available in MassIVE under accession MSV000080179. Per
1075 sample accession numbers are included in the supplemental information (table S1). The EBI
1076 accession includes more samples than presented here as some samples were consented after the
1077 analysis was completed. Crowdfunding support was provided through Indiegogo and FundRazr.
1078 Some consortium members were supported by NSF IGERT award 1144807, the Sloan
1079 Foundation Microbiology of the Built Environment Program, the Wyss Institute, the Howard
1080 Hughes Medical Institute, the U.S. Dept. of Energy under Contract DE-AC02-06CH11357.NS,
1081 the ERC Starting Grant 2013 (European Research Council, Starting grant 336452-ENIGMO),
1082 WELBIO WELBIO-CR-2012S-02R and Robert Tournut award (Société Nationale Française de
1083 Gastro-Entérologie). The British Gut collection was carried out by the Department of Twin

1084 Research at KCL funded by the Wellcome Trust, MRC, JPI Dinamic grant and the National
1085 Institute for Health Research (NIHR) Clinical Research Facility at Guy's & St Thomas' NHS
1086 Foundation Trust and NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS
1087 Foundation Trust and King's College London. Tim Spector is an NIHR senior Investigator. This
1088 research was performed in accordance with the University of Colorado Boulder's Institutional
1089 Review Board protocol #12-0582 and the University of California San Diego's Human Research
1090 Protection Program protocol #141853. Parts of the computations were performed using the San
1091 Diego Supercomputer Center (SDSC) through XSEDE allocations, which is supported by the
1092 NSF grant ACI-1053575. We thank the BioFrontiers Institute for their administrative support for
1093 the project while it was based at the University of Colorado Boulder.

1094

1095 **References**

- 1096 1. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A,
1097 Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y,
1098 González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin
1099 Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM,
1100 Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens
1101 RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, Earth
1102 Microbiome Project Consortium. 2017. A communal catalogue reveals Earth's multiscale
1103 microbial diversity. *Nature* 551:457–463.
- 1104 2. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ,
1105 Valles-Colomer M, Vandepitte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De
1106 Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF,
1107 Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-

1108 level analysis of gut microbiome variation. *Science* 352:560–564.

1109 3. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez
1110 F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y,
1111 Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB,
1112 Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li
1113 Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K,
1114 Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J.
1115 2010. A human gut microbial gene catalogue established by metagenomic sequencing.
1116 *Nature* 464:59–65.

1117 4. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic
1118 Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA,
1119 Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK,
1120 Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C,
1121 Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. 2016. Population-based metagenomics
1122 analysis reveals markers for gut microbiome composition and diversity. *Science* 352:565–
1123 569.

1124 5. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the
1125 healthy human microbiome. *Nature* 486:207–214.

1126 6. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris
1127 M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J,
1128 Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI.
1129 2012. Human gut microbiome viewed across age and geography. *Nature* 486:222–227.

1130 7. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, Leff JW,

1131 Vázquez-Baeza Y, Gonzalez A, Knight R, Dunn RR, Fierer N. 2014. Temporal variability is
1132 a personalized feature of the human microbiome. *Genome Biol* 15:531.

1133 8. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG,
1134 Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R. 2013. Cohabiting family
1135 members share microbiota with one another and with their dogs. *Elife* 2:e00458.

1136 9. Smith B, Chu LK, Smith TC, Amoroso PJ, Boyko EJ, Hooper TI, Gackstetter GD, Ryan
1137 MAK, Millennium Cohort Study Team. 2008. Challenges of self-reported medical conditions
1138 and electronic medical records among members of a large military cohort. *BMC Med Res
1139 Methodol* 8:37.

1140 10. Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baeza Y, Navas-
1141 Molina JA, Song SJ, Metcalf JL, Hyde ER, Lladser M, Dorrestein PC, Knight R. 2017.
1142 Balance Trees Reveal Microbial Niche Differentiation. *mSystems* 2.

1143 11. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G,
1144 Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF,
1145 Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG.
1146 2015. The microbiome of uncontacted Amerindians. *Sci Adv* 1.

1147 12. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, Zech
1148 Xu Z, Van Treuren W, Knight R, Gaffney PM, Spicer P, Lawson P, Marin-Reyes L, Trujillo-
1149 Villarroel O, Foster M, Guija-Poma E, Troncoso-Corzo L, Warinner C, Ozga AT, Lewis CM.
1150 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. *Nat
1151 Commun* 6:6505.

1152 13. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial
1153 communities. *Appl Environ Microbiol* 71:8228–8235.

1154 14. Amir A, McDonald D, Navas-Molina JA, Debelius J, Morton JT, Hyde E, Robbins-Pianka A,
1155 Knight R. 2017. Correcting for Microbial Blooms in Fecal Samples during Room-
1156 Temperature Shipping. *mSystems* 2.

1157 15. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP,
1158 Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017. Deblur Rapidly Resolves Single-
1159 Nucleotide Community Sequence Patterns. *mSystems* 2.

1160 16. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016. Preservation
1161 Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.
1162 *mSystems* 1.

1163 17. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ,
1164 Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De
1165 Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF,
1166 Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-
1167 level analysis of gut microbiome variation. *Science* 352:560–564.

1168 18. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic
1169 Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA,
1170 Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK,
1171 Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C,
1172 Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. 2016. Population-based metagenomics
1173 analysis reveals markers for gut microbiome composition and diversity. *Science* 352:565–
1174 569.

1175 19. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds within worlds:
1176 evolution of the vertebrate gut microbiota. *Nat Rev Microbiol* 6:776–788.

1177 20. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL,
1178 Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for
1179 ecological and evolutionary analyses of bacteria and archaea. *ISME J* 6:610–618.

1180 21. Mirarab S, Nguyen N, Warnow T. 2012. SEPP: SATé-enabled phylogenetic placement. *Pac
1181 Symp Biocomput* 247–258.

1182 22. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM,
1183 D'Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight
1184 R, Jansson JK. 2017. Dynamics of the human gut microbiome in inflammatory bowel
1185 disease. *Nat Microbiol* 2:17004.

1186 23. McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, Lemieux M,
1187 Derenski K, King J, Vis-Kampen C, Knight R, Wischmeyer PE. 2016. Extreme Dysbiosis of
1188 the Microbiome in Critical Illness. *mSphere* 1.

1189 24. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV,
1190 Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet
1191 rapidly and reproducibly alters the human gut microbiome. *Nature* 505:559–563.

1192 25. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R,
1193 Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL. 2017.
1194 Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania.
1195 *Science* 357:802–806.

1196 26. McDonald D, Robbins-Pianka A, Mann AE, Vrbanac A, Amir A, Frazier A, Gonzalez A,
1197 Tripathi A, Fahimipour AK, Brennen C, Martino C, Lebrilla C, Lozupone C, M. Lewis C Jr,
1198 Raison C, Zhang C, L. Lauber C, Warinner C, A. Lowry C, Callewaert C, Bloss C,
1199 Huttenhower C, Knights D, Willner D, Galzerani DD, Gonzalez DJ, Mills DA, Chopra D,

1200 Gevers D, Berg-Lyons D, D. Sears D, Wendel D, Wolfe E, Lovelace E, R. Hyde E, Pierce
1201 E, TerAvest E, Montassier E, Bolyen E, Bushman FD, Ackermann G, D. Wu G, Church GM,
1202 Rahnavard G, Saxe G, Gogul G, Humphrey G, D. Holscher H, Ugrina I, German JB,
1203 Gregory Caporaso J, Gilbert J, Wozniak JM, Kerr J, Ravel J, Gaffney J, D. Lewis J, Morton
1204 JT, Suchodolski JS, Jansson JK, Hampton-Marcell JT, Bobe J, Leach J, Raes J, L. Green
1205 J, Metcalf JL, H. Chase J, A. Eisen J, Monk J, Navas-Molina JA, C. Clemente J, Petrosino
1206 J, Ladau J, Shorenstein J, Goodrich J, Gauglitz J, Jacobs J, W. Debelius J, Zengler K, S.
1207 Pollard K, Swanson KS, Lewis K, Mayer K, Bittinger K, Goldasich LD, Dillon L, S. Zaramela
1208 L, R. Thompson L, M. Schriml L, Dominguez-Bello MG, Jankowska MM, Blaser M, Jackson
1209 MA, Pirrung M, Minson M, Kurisu M, Ajami N, Sangwan N, Gottel NR, Chia N, Fierer N,
1210 White O, D. Cani P, Wischmeyer P, Gajer P, Strandwitz P, Hugenholz P, Dorrestein PC,
1211 Kashyap P, Dutton R, Park RS, Xavier RJ, Knight R, R. Dunn R, Mills RH, Krajmalnik-
1212 Brown R, Ley R, M. Owens S, T. Kelley S, Klemmer S, Matamoros S, Peddada S, Mirarab
1213 S, Janssen S, Moorman S, Holmes S, Schwartz T, Eshoo-Anton TW, Vigers T, Spector T,
1214 Kosciolka T, G. Thackray V, Pandey V, Van Treuren W, Fang X, Chen Y, Vázquez-Baeza
1215 Y, Zech Xu Z, Aksenov AA, Melnik AV, Jarmusch A, Geier J, Pevzner P, Meleshko D,
1216 Behsaz B, Reeve N, Silva R, Zhu Q, Kopylova E, Marotz C, Smarr L, Nguyen T, Mohimani
1217 H, Jiang L, Swafford A, Nguyen D, Song SJ, Sanders K, Benitez RAS, Heale AC, V. Jeste
1218 D, Nguyen TT, Brennan C, Abramson M. 2018. movie_s1.mp4. figshare.

1219 27. Barberán A, Dunn RR, Reich BJ, Pacifici K, Laber EB, Menninger HL, Morton JM, Henley
1220 JB, Leff JW, Miller SL, Fierer N. 2015. The ecology of microscopic life in household dust.
1221 Proc Biol Sci 282.

1222 28. Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'Dwyer J, Koeppel AF,
1223 Green JL, Pollard KS. 2013. Global marine bacterial diversity peaks at high latitudes in
1224 winter. ISME J 7:1669–1677.

1225 29. Gophna U, Konikoff T, Nielsen HB. 2017. Oscillospira and related bacteria - From
1226 metagenomic species to metabolic features. *Environ Microbiol* 19:835–841.

1227 30. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The
1228 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 42:D490–5.

1229 31. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and
1230 variety of carbohydrate-active enzymes in the human gut microbiota. *Nat Rev Microbiol*
1231 11:497–504.

1232 32. Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial
1233 fermentation in the human colon. *J Appl Bacteriol* 70:443–459.

1234 33. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M,
1235 Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC.
1236 2012. Mass spectral molecular networking of living microbial colonies. *Proc Natl Acad Sci U*
1237 S A 109:E1743–52.

1238 34. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J,
1239 Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T,
1240 Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA,
1241 Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton
1242 RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P,
1243 Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U,
1244 Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A,
1245 Larson CB, P CAB, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque
1246 DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F,
1247 Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail

1248 KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R,
1249 Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams
1250 PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan
1251 BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-
1252 L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Müller R,
1253 Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K,
1254 Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N.
1255 2016. Sharing and community curation of mass spectrometry data with Global Natural
1256 Products Social Molecular Networking. *Nat Biotechnol* 34:828–837.

1257 35. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O,
1258 Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN,
1259 Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. 2007. Proposed
1260 minimum reporting standards for chemical analysis Chemical Analysis Working Group
1261 (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics* 3:211–221.

1262 36. Kishino S, Takeuchi M, Park S-B, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R,
1263 Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J.
1264 2013. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid
1265 composition. *Proc Natl Acad Sci U S A* 110:17808–17813.

1266 37. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C. 2003. Conjugated
1267 linoleic acid biosynthesis by human-derived *Bifidobacterium* species. *J Appl Microbiol*
1268 94:138–145.

1269 38. Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross
1270 JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C,
1271 Bitok JK, Brady SF. 2017. Commensal bacteria make GPCR ligands that mimic human

1272 signalling molecules. *Nature* 549:48–53.

1273 39. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. 2017. Trends in
1274 GPCR drug discovery: new agents, targets and indications. *Nat Rev Drug Discov* 16:829–
1275 842.

1276 40. Cani PD, Knauf C. 2016. How gut microbes talk to organs: The role of endocrine and
1277 nervous routes. *Mol Metab* 5:743–752.

1278 41. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. 2014. Minireview: Gut
1279 microbiota: the neglected endocrine organ. *Mol Endocrinol* 28:1221–1238.

1280 42. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan
1281 B. 2015. Altered fecal microbiota composition in patients with major depressive disorder.
1282 *Brain Behav Immun* 48:186–194.

1283 43. Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, Lv H, Guo X, Dong K, Zhu Y, Li Q. 2017.
1284 Prevotella and Klebsiella proportions in fecal microbial communities are potential
1285 characteristic parameters for patients with major depressive disorder. *J Affect Disord*
1286 207:300–304.

1287 44. Saraceno B. 2002. The WHO World Health Report 2001 on mental health. *Epidemiol*
1288 *Psichiatri Soc* 11:83–87.

1289 45. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X,
1290 Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P. 2016. Gut microbiome
1291 remodeling induces depressive-like behaviors through a pathway mediated by the host's
1292 metabolism. *Mol Psychiatry* 21:786–796.

1293 46. Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D,

1294 Knights D, Unno T, Bobr A, Kang J, Khoruts A, Knight R, Sadowsky MJ. 2015. Dynamic
1295 changes in short- and long-term bacterial composition following fecal microbiota
1296 transplantation for recurrent *Clostridium difficile* infection. *Microbiome* 3:10.

1297 47. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE.
1298 2011. Succession of microbial consortia in the developing infant gut microbiome. *Proc Natl
1299 Acad Sci U S A* 108 Suppl 1:4578–4585.

1300 48. McDonald D, Robbins-Pianka A, Mann AE, Vrbanac A, Amir A, Frazier A, Gonzalez A,
1301 Tripathi A, Fahimipour AK, Brennen C, Martino C, Lebrilla C, Lozupone C, M. Lewis C Jr,
1302 Raison C, Zhang C, L. Lauber C, Warinner C, A. Lowry C, Callewaert C, Bloss C,
1303 Huttenhower C, Knights D, Willner D, Galzerani DD, Gonzalez DJ, Mills DA, Chopra D,
1304 Gevers D, Berg-Lyons D, D. Sears D, Wendel D, Wolfe E, Lovelace E, R. Hyde E, Pierce
1305 E, TerAvest E, Montassier E, Bolyen E, Bushman FD, Ackermann G, D. Wu G, Church GM,
1306 Rahnavard G, Saxe G, Gogul G, Humphrey G, D. Holscher H, Ugrina I, German JB,
1307 Gregory Caporaso J, Gilbert J, Wozniak JM, Kerr J, Ravel J, Gaffney J, D. Lewis J, Morton
1308 JT, Suchodolski JS, Jansson JK, Hampton-Marcell JT, Bobe J, Leach J, Raes J, L. Green
1309 J, Metcalf JL, H. Chase J, A. Eisen J, Monk J, Navas-Molina JA, C. Clemente J, Petrosino
1310 J, Ladau J, Shorenstein J, Goodrich J, Gauglitz J, Jacobs J, W. Debelius J, Zengler K, S.
1311 Pollard K, Swanson KS, Lewis K, Mayer K, Bittinger K, Goldasich LD, Dillon L, S. Zaramela
1312 L, R. Thompson L, M. Schriml L, Dominguez-Bello MG, Jankowska MM, Blaser M, Jackson
1313 MA, Pirrung M, Minson M, Kurisu M, Ajami N, Sangwan N, Gottel NR, Chia N, Fierer N,
1314 White O, D. Cani P, Wischmeyer P, Gajer P, Strandwitz P, Hugenholtz P, Dorrestein PC,
1315 Kashyap P, Dutton R, Park RS, Xavier RJ, Knight R, R. Dunn R, Mills RH, Krajmalnik-
1316 Brown R, Ley R, M. Owens S, T. Kelley S, Klemmer S, Matamoros S, Peddada S, Mirarab
1317 S, Janssen S, Moorman S, Holmes S, Schwartz T, Eshoo-Anton TW, Vigers T, Spector T,
1318 Kosciolek T, G. Thackray V, Pandey V, Van Treuren W, Fang X, Chen Y, Vázquez-Baeza

1319 Y, Zech Xu Z, Aksakov AA, Melnik AV, Jarmusch A, Geier J, Pevzner P, Meleshko D,
1320 Behsaz B, Reeve N, Silva R, Zhu Q, Kopylova E, Marotz C, Smarr L, Nguyen T, Mohimani
1321 H, Jiang L, Swafford A, Nguyen D, Song SJ, Sanders K, Benitez RAS, Heale AC, V. Jeste
1322 D, Nguyen TT, Brennan C, Abramson M. 2018. movie_s2.mp4. figshare.

1323 49. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
1324 Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-
1325 throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME
1326 J 6:1621–1624.

1327 50. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer
1328 N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of
1329 sequences per sample. Proc Natl Acad Sci U S A 108 Suppl 1:4516–4522.

1330 51. Apprill A, McNally S, Parsons R, Weber L. 2015. Minor revision to V4 region SSU rRNA
1331 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb
1332 Ecol 75:129–137.

1333 52. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP,
1334 Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017. Deblur Rapidly Resolves Single-
1335 Nucleotide Community Sequence Patterns. mSystems 2.

1336 53. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL,
1337 Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for
1338 ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618.

1339 54. Mirarab S, Nguyen N, Warnow T. 2012. SEPP: SATé-enabled phylogenetic placement. Pac
1340 Symp Biocomput 247–258.

1341 55. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid

1342 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol*
1343 73:5261–5267.

1344 56. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
1345 Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,
1346 Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh
1347 PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows
1348 analysis of high-throughput community sequencing data. *Nat Methods* 7:335–336.

1349 57. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial
1350 communities. *Appl Environ Microbiol* 71:8228–8235.

1351 58. Gao HX, Regier EE, Close KL. 2016. Prevalence of and trends in diabetes among adults in
1352 the United States, 1988-2012. *J Diabetes* 8:8–9.

1353 59. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. *Biol Conserv* 61:1–10.

1354 60. Anderson MJ. 2008. A new method for non-parametric multivariate analysis of variance.
1355 *Austral Ecol* 26:32–46.

1356 61. Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baeza Y, Navas-
1357 Molina JA, Song SJ, Metcalf JL, Hyde ER, Lladser M, Dorrestein PC, Knight R. 2017.
1358 Balance Trees Reveal Microbial Niche Differentiation. *mSystems* 2.

1359 62. Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics.
1360 *Chemometrics Intellig Lab Syst* 58:109–130.

1361 63. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris
1362 M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J,
1363 Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI.

1364 2012. Human gut microbiome viewed across age and geography. *Nature* 486:222–227.

1365 64. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G,
1366 Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF,
1367 Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG.

1368 2015. The microbiome of uncontacted Amerindians. *Sci Adv* 1.

1369 65. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, Zech
1370 Xu Z, Van Treuren W, Knight R, Gaffney PM, Spicer P, Lawson P, Marin-Reyes L, Trujillo-
1371 Villarroel O, Foster M, Guija-Poma E, Troncoso-Corzo L, Warinner C, Ozga AT, Lewis CM.
1372 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. *Nat
1373 Commun* 6:6505.

1374 66. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 2013. EMPeror: a tool for visualizing
1375 high-throughput microbial community data. *Gigascience* 2:16.

1376 67. Bray JR, Curtis JT. 1957. An Ordination of the Upland Forest Communities of Southern
1377 Wisconsin. *Ecol Monogr* 27:325–349.

1378 68. Mantel N. 1967. The detection of disease clustering and a generalized regression
1379 approach. *Cancer Res* 27:209–220.

1380 69. Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
1381 Powerful Approach to Multiple Testing. *J R Stat Soc* 57:289–300.

1382 70. Moran PAP. 1950. Notes on continuous stochastic phenomena. *Biometrika* 37:17–23.

1383 71. Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ.
1384 2015. Marked seasonal variation in the wild mouse gut microbiota. *ISME J* 9:2423–2434.

1385 72. Cramér H. 1946. Mathematical Methods of Statistics (PMS-9).

1386 73. Welch BL. 1947. The generalisation of student's problems when several different
1387 population variances are involved. *Biometrika* 34:28–35.

1388 74. Guo W, Sarkar SK, Peddada SD. 2010. Controlling false discoveries in multidimensional
1389 directional decisions, with applications to gene expression data on ordered categories.
1390 *Biometrics* 66:485–492.

1391 75. Cohen J. 1992. A power primer. *Psychol Bull* 112:155–159.

1392 76. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic
1393 Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA,
1394 Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK,
1395 Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C,
1396 Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. 2016. Population-based metagenomics
1397 analysis reveals markers for gut microbiome composition and diversity. *Science* 352:565–
1398 569.

1399 77. Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance:
1400 NON-PARAMETRIC MANOVA FOR ECOLOGY. *Austral Ecol* 26:32–46.

1401 78. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE.
1402 2011. Succession of microbial consortia in the developing infant gut microbiome. *Proc Natl
1403 Acad Sci U S A* 108 Suppl 1:4578–4585.

1404 79. Weingarten A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D,
1405 Knights D, Unno T, Bobr A, Kang J, Khoruts A, Knight R, Sadowsky MJ. 2015. Dynamic
1406 changes in short- and long-term bacterial composition following fecal microbiota
1407 transplantation for recurrent *Clostridium difficile* infection. *Microbiome* 3:10.

1408 80. McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, Lemieux M,

1409 Derenski K, King J, Vis-Kampen C, Knight R, Wischmeyer PE. 2016. Extreme Dysbiosis of
1410 the Microbiome in Critical Illness. *mSphere* 1.

1411 81. Vázquez-Baeza Y, Gonzalez A, Smarr L, McDonald D, Morton JT, Navas-Molina JA, Knight
1412 R. 2017. Bringing the Dynamic Microbiome to Life with Animations. *Cell Host Microbe* 21:7–
1413 10.

1414 82. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A,
1415 Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y,
1416 González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin
1417 Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM,
1418 Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens
1419 RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, Earth
1420 Microbiome Project Consortium. 2017. A communal catalogue reveals Earth's multiscale
1421 microbial diversity. *Nature* 551:457–463.

1422 83. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R,
1423 Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL. 2017.
1424 Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania.
1425 *Science* 357:802–806.

1426 84. Amir A, McDonald D, Navas-Molina JA, Debelius J, Morton JT, Hyde E, Robbins-Pianka A,
1427 Knight R. 2017. Correcting for Microbial Blooms in Fecal Samples during Room-
1428 Temperature Shipping. *mSystems* 2.

1429 85. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV,
1430 Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet
1431 rapidly and reproducibly alters the human gut microbiome. *Nature* 505:559–563.

1432 86. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the
1433 healthy human microbiome. *Nature* 486:207–214.

1434 87. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy
1435 HH, McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight R, White O, Huttenhower
1436 C. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project.
1437 *Nature* 550:61–66.

1438 88. Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-
1439 C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G,
1440 Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS,
1441 Malmström L, Aebersold R, Reinert K, Kohlbacher O. 2016. OpenMS: a flexible open-
1442 source software platform for mass spectrometry data analysis. *Nat Methods* 13:741–748.

1443 89. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J,
1444 Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T,
1445 Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA,
1446 Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton
1447 RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P,
1448 Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U,
1449 Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A,
1450 Larson CB, P CAB, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque
1451 DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F,
1452 Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail
1453 KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R,
1454 Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams
1455 PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan

1456 BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-
1457 L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Müller R,
1458 Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K,
1459 Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N.
1460 2016. Sharing and community curation of mass spectrometry data with Global Natural
1461 Products Social Molecular Networking. *Nat Biotechnol* 34:828–837.

1462 90. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M,
1463 Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC.
1464 2012. Mass spectral molecular networking of living microbial colonies. *Proc Natl Acad Sci U
1465 S A* 109:E1743–52.

1466 91. Nguyen DD, Melnik AV, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL Jr,
1467 Ghequire MGK, Carrion VJ, Cheng TL, Duggan BM, Malone JG, Mauchline TH, Sanchez
1468 LM, Kilpatrick AM, Raaijmakers JM, Mot RD, Moore BS, Medema MH, Dorrestein PC.
1469 2016. Indexing the *Pseudomonas* specialized metabolome enabled the discovery of
1470 poaeamide B and the bananamides. *Nat Microbiol* 2:16197.

1471 92. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O,
1472 Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN,
1473 Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. 2007. Proposed
1474 minimum reporting standards for chemical analysis Chemical Analysis Working Group
1475 (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics* 3:211–221.

1476 93. GNPS antibiotic use subset.
1477 <https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9bd16822c8d448f59a03e6cc8f017f43>

1478 94. GNPS plants subset.

1479 https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d26ae082b1154f73ac050796fcaa6bda

1480 95. GNPS isolate supernatant.
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=23f0f5e5c70f4163b445de71d086d186

1482 96. GNPS fecal samples co-networked.
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=adcfbba9b4ca448f8b2133559b16d954

1484 97. 1909. Neue Begründung der Theorie quadratischer Formen von unendlichvielen
Veränderlichen. J Reine Angew Math 1909.

1486 98. Pluskal T, Castillo S, Villar-Briones A, Oresic M. 2010. MZmine 2: modular framework for
processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
BMC Bioinformatics 11:395.

1489 99. Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross
JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C,
Bitok JK, Brady SF. 2017. Commensal bacteria make GPCR ligands that mimic human
signalling molecules. Nature 549:48–53.

1493 100. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. 2015. Searching molecular structure
databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A
112:12580–12585.

1496 101. Ejigu BA, Valkenborg D, Baggerman G, Vanaerschot M, Witters E, Dujardin J-C,
Burzykowski T, Berg M. 2013. Evaluation of normalization methods to pave the way
towards large-scale LC-MS-based metabolomics profiling experiments. OMICS 17:473–
485.

1500 102. Hackstadt AJ, Hess AM. 2009. Filtering for increased power for microarray data

1501 analysis. *BMC Bioinformatics* 10:11.

1502 103. Xia J, Wishart DS. 2016. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics

1503 Data Analysis. *Curr Protoc Bioinformatics* 55:14.10.1–14.10.91.

1504 104. Breiman L. 2001. 10.1023/A:1010933404324. *Machine Learning*.

1505 105. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016.

1506 Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field

1507 Studies. *mSystems* 1.

1508 106. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative beta

1509 diversity measures lead to different insights into factors that structure microbial

1510 communities. *Appl Environ Microbiol* 73:1576–1585.

1511 107. Pugsley AP, Goldzahl N, Barker RM. 1985. Colicin E2 production and release by

1512 Escherichia coli K12 and other Enterobacteriaceae. *J Gen Microbiol* 131:2673–2686.

1513 108. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,

1514 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G,

1515 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its

1516 applications to single-cell sequencing. *J Comput Biol* 19:455–477.

1517 109. Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification

1518 using exact alignments. *Genome Biol* 15:R46.

1519 110. Meleshko D, Mohimani H, Hajirasouliha I, Medema MH, Korobeynikov A, Pevzner P.

1520 BiosyntheticSPAdes: Reconstructing Biosynthetic Gene Clusters From Assembly Graphs.

1521 submitted.

1522 111. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G,

1523 Buchrieser C, Hacker J, Dobrindt U, Oswald E. 2006. *Escherichia coli* induces DNA double-
1524 strand breaks in eukaryotic cells. *Science* 313:848–851.

1525 112. Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S, Karch H, Bringer M-A,
1526 Fayolle C, Carniel E, Rabsch W, Oelschlaeger TA, Oswald E, Forestier C, Hacker J,
1527 Dobrindt U. 2009. Genetic structure and distribution of the colibactin genomic island among
1528 members of the family Enterobacteriaceae. *Infect Immun* 77:4696–4703.

1529 113. Secher T, Samba-Louaka A, Oswald E, Nougayrède J-P. 2013. *Escherichia coli*
1530 producing colibactin triggers premature and transmissible senescence in mammalian cells.
1531 PLoS One 8:e77157.

1532 114. Gurevich A, Mikheenko A, Shlemov A, Korobeynikov A, Mohimani H, Pevzner P. 2018.
1533 Modification-tolerant database search reveals surprising diversity of peptidic natural
1534 products. *Nature Microbiology*.

1535 115. Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence
1536 similarity searching. *Nucleic Acids Res* 39:W29–37.

1537 116. Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models
1538 Using lme4. *J Stat Softw* 67.

1539 117. Didion JP, Martin M, Collins FS. 2017. Atropos: specific, sensitive, and speedy trimming
1540 of sequencing reads. *PeerJ* 5:e3720.

1541 118. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat
1542 Methods* 9:357–359.

1543 119. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating species
1544 abundance in metagenomics data.

1545 120. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics
1546 30:2068–2069.

1547 121. Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm
1548 to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607.

1549 122. Jiang L, Amir A, Morton JT, Heller R, Arias-Castro E, Knight R. 2017. Discrete False-
1550 Discovery Rate Improves Identification of Differentially Abundant Microbes. mSystems 2.

1551 123. Cohen LJ, Kang H-S, Chu J, Huang Y-H, Gordon EA, Reddy BVB, Ternei MA, Craig JW,
1552 Brady SF. 2015. Functional metagenomic discovery of bacterial effectors in the human
1553 microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc Natl Acad Sci
1554 U S A 112:E4825–34.

1555

1556 **Figure 1.** Population characteristics. **(A)** Participants across the world have sent in samples to
1557 the American Gut, although the primary geographic regions of participation are in North
1558 America and the United Kingdom; the report a participant receives is depicted. **(B)** The primary
1559 sample breakdown for subsequent analyses. Red denotes reasons samples were removed. **(C)**
1560 Between the two largest populations, the US ($n=6,634$) and the UK ($n=2,071$), we observe a
1561 significant difference in alpha diversity. **(D)** In a meta-analysis, the largely industrialized
1562 population that makes up the American Gut exhibits significant differential abundances to non-
1563 industrialized populations.

1564

1565 **Figure 2.** Blooms and effect sizes. **(A)** The fraction of 16S reads that recruit to bloom reads
1566 defined by Amir et al. 2017 is strongly associated with the likelihood for microbial growth under
1567 aerobic culture conditions on rich media. **(B)** Molecular network of the metabolites observed in

1568 the supernatant from cultures ($n=217$) derived from fecal samples. The nodes in red ($n=239$) are
1569 metabolites associated with *E. coli*. **(C)** Overlap of metabolites between AGP samples and
1570 blooms. **(D)** Unweighted UniFrac effect sizes. The inset shows the correlation of effect sizes
1571 when including or excluding the bloom 16S reads (Pearson $r=0.91, p=3.76 \times 10^{-57}$). **(E)** Weighted
1572 UniFrac effect sizes. The inset shows the correlation of the effect sizes when including or
1573 excluding bloom 16S reads (Pearson $r=0.42, p=1.71 \times 10^{-6}$); the outlier is the 16S bloom fraction
1574 of the sample.

1575

1576 **Figure 3.** OTU and beta-diversity novelty. **(A)** The AGP data placed into the context of extant
1577 microbial diversity at a global scale. **(B)** A phylogenetic tree showing the diversity spanned by
1578 the AGP, and the HMP in the context of Greengenes and the EMP. **(C)** sOTU novelty over
1579 increasing numbers of samples in the AGP; the AGP appears to have begun to reach saturation
1580 and is contrasted with **(D)** Yatsunenko et al. 2012 which unlike the AGP had extremely deep
1581 sequencing per sample. **(E)** The minimum observed UniFrac distance between samples over
1582 increasing numbers of samples for the AGP and the HMP; inset is from 0-500 samples. **(F)** An
1583 AGP “trading card” of an sOTU of interest (shown in full in fig S2).

1584

1585 **Figure 4.** Temporal and spatial patterns. **(A)** 565 individuals had multiple samples. Distances
1586 between samples within an individual shown at 1 month, 2 months, etc out to over 1 year;
1587 between subject distances shown in “BSD.” Even at one year, the median distance between a
1588 participant’s samples is less than the median between participant distance. **(B)** Within the US,
1589 spatial processes of sOTUs appear driven by stochastic processes as few sOTUs exhibit spatial
1590 autocorrelation (Moran’s I) on the full dataset or partitions (e.g., participants older than 20). **(C)**

1591 Distance-decay relationship for Bray-Curtis dissimilarities between subject pairs that are within
1592 100km (great-circle distance) radius of one another (Mantel test; $r=0.036$, adjusted $p=0.03$). Inset
1593 shows the largest radius (i.e., the contiguous US). Darker colors indicate higher-frequency bins.
1594 Dashed lines represent fits from linear models to raw data. **(D)** Mantel correlogram of estimated
1595 r coefficients, significance of distance-decay relationships, and radius (x-axis). Red points
1596 represent neighborhood sizes that were significant (adjusted p -values < 0.05). **(E)** Characterizing
1597 a large bowel resection using the AGP, the EMP, a hunter-gatherer population, and ICU patients
1598 in an unweighted UniFrac principal coordinates plot. A state change was observed in the
1599 resulting microbial community. The change in the microbial community immediately following
1600 surgery is the same as the distance between a marine sediment sample and a plant rhizosphere
1601 sample.

1602

1603 **Figure 5.** Diversity of plants in a diet. **(A)** Procrustes analysis of fecal samples from ($n=1,596$)
1604 individuals using Principal Components of the Vioscreen FFQ responses and Principal
1605 Coordinates of the unweighted UniFrac distances ($M^2=0.988$) colored by diet; Procrustes tests
1606 the fit of one ordination space to another. PCA shows grouping by diets such as Vegan
1607 suggesting self-reported diet type is consistent with differences in micro and macro nutrients as
1608 recorded by the FFQ, however these dietary differences do not explain relationships between the
1609 samples in 16S space. **(B)** The full AGP dataset including skin and oral samples through
1610 unweighted UniFrac and Principal Coordinates Analysis highlighting a lack of apparent
1611 clustering by diet type. **(C)** Dietary conjugated linoleic acid levels as reported by the FFQ
1612 between the extremes of plant diversity consumption, and **(D)** the observed levels of CLA by
1613 HPLC-MS. **(E)** Differential abundances of sOTUs (showing the most specific taxon name per

1614 sOTU) between those who eat fewer than 10 plants per week vs. those who eat over 30 per week.

1615 **(F)** The molecules, linoleic acid (LA) and conjugated linoleic acid (CLA) (only trans-, trans-

1616 isomers are shown) were found to comprise the octadecadienoic acid found to be the key feature

1617 in this difference in number of plants consumption.

1618

1619 **Figure 6.** Molecular novelty in the gut microbiome. **(A-I)** Molecular sub-network of N-acyl

1620 amides. Cluster/nodes of microbially-derived G protein-coupled receptor agonistic molecules

1621 detected in human fecal samples are shown. Molecules B, G and H have been described

1622 (compounds 1, 2 & 4b (38) and commendamide (123)); molecules A, C, D, E and I are

1623 previously not reported (proposed structures are shown). **(J)** Compound occurrence frequency

1624 plot. Examples of compounds originating from food (piperine, black pepper alkaloid), host

1625 (stercobilin, heme catabolism product), bacterial activity (lithocholic acid, microbially-modified

1626 bile acid) or exogenous compounds such as antibiotics (rifaximin) or other drugs (lisinopril, high

1627 blood pressure medication) are shown. **(K-N)** Alpha and beta-diversity assessments of antibiotic

1628 and plants cohorts; insets depict minimum observed beta-diversity over increasing samples.

1629

1630 **Supplementary Text:**

1631 **Effect size comparisons**

1632 **Multi-cohort replication detail**

1633 **Projects using the American Gut infrastructure**

1634 **American Gut Survey**

1635 **Supplemental references**

1636

1637 **Supplementary Figures:**

1638 **Figure S1.** Workflow and population scale analyses. **(A)** Heatmap of income levels from the US
1639 Census and American Gut participant locations. **(B)** Sample flowchart for what sample sets
1640 correspond to each analysis. **(C)** Using PLS-DA we observed separation between US ($n=6,634$)
1641 and UK ($n=2,071$) fecal samples. **(D)** We performed a Principal Coordinates analysis comparing
1642 children over the age of 3 and adults from industrialized ($n=4,643$ AGP samples, $n=4,927$
1643 samples total), remote farming ($n=131$), and hunter-gatherer ($n=30$) lifestyles.

1644

1645 **Figure S2.** Trading cards and LS's samples compared to ICU patients and AGP participants and
1646 diet state change analysis. **(A)** Unweighted UniFrac distance distributions for the sample
1647 immediate prior to surgery vs. all ICU fecal samples, and distances of the sample immediately
1648 following surgery vs. all ICU fecal samples (Kruskal Wallis $H=79.774$, $p=4.198x^{-19}$). **(B)** Same
1649 as panel **(A)** except comparing against all AGP fecal samples (Kruskal Wallis $H=8117.734$,
1650 $p=0.0$). **(C)** The median distances of each sample in Larry's longitudinal dataset compared to
1651 both ICU and AGP. The last pre-surgery sample is on day 25 and the first post-surgery sample is
1652 day 27. **(D)** A principal coordinates analysis of UniFrac distances of the American Gut Project,
1653 samples from the “extreme” diet study by David et al. (85), and the Earth Microbiome Project.
1654 No obvious state change by the diet of the participants in David et al. is observed.

1655

1656 **Figure S3.** Dietary levels of linoleic acid based on validated food frequency questionnaire
1657 responses, and the detected linoleic acid by mass spectrometry did not differ significantly
1658 between groups consuming few or many types of plants per week.

1659

1660 **Figure S4.** Metabolomic identification and annotation. **(A)** Manual annotation via comparison of
1661 experimental MS fragmentation patterns to those given in (99). Top panel: reference spectrum
1662 for the “Compound 2” in (99); bottom panel: experimental MS/MS spectrum for the parent ion
1663 m/z 611.5357. The compound is annotated as 3-(myristoyloxy)palmitoyl lysine. **(B)** *In silico*
1664 annotation using CSI:FingerID (100) for the ion with m/z 330.2640. Top panel: experimental
1665 fragmentation pattern explained by the putative fragmentation tree; bottom panel: the possible
1666 candidate structures ranked by match %. The top structure with 71.02% match corresponds to
1667 commendamide. **(C)** Manual annotation via comparison of experimental exact mass to that of
1668 identified compound in (100), N-3-OH-palmitoyl ornithine. The peaks in experimental MS/MS
1669 spectrum are examined and compared to theoretical fragments that would result from breaking
1670 bonds in the proposed structure. The structure is deemed to be consistent with the N-3-OH-
1671 palmitoyl ornithine annotation.

1672

1673 **Supplemental Tables:**

1674 **Table S1.** Summary of sample numbers and type in the American Gut other studies, sample
1675 distributions by country and territory, sample distributions by US state, US participant
1676 demographics and per sequencing round sample accessions in EBI.

1677

1678 **Table S2.** American Gut data dictionary, proportion of responses per AG survey question that
1679 are represented as a single question; multiselect responses were omitted as these are stored in the
1680 metadata as per response type, informal dietary questions and correlations to the food frequency
1681 questionnaire, effect size results without bloom sOTUs, variable mapping with Falony et al. 2016
1682 Science.

1683

1684 **Table S3.** sOTUs relevant to the balance analyses, and summary of differentially abundant taxa
1685 in UK cohort (negative effect size indicated the taxon is more prevalent in control (NC)
1686 subjects).

1687

1688 **Table S4.** Application of the filter for blooms to other human fecal studies which were not
1689 subjected to room temperature shipping, taxonomy of the draft isolate genomes, the specific
1690 bloom 16S sOTUs observed, and ubiquitous colibactin-like biosynthetic gene clusters (top) and a
1691 unique surfactin-like biosynthetic gene cluster observed in the bloom isolates.

1692

1693 **Table S5.** A set of molecular features which appeared to significantly correlate to the bloom
1694 fraction, and Kruskal–Wallis tests for metabolites in the Antibiotics and Vioscreen cohorts of
1695 samples.

1696

1697











