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 70 

Abstract: Although much work has linked the human microbiome to specific phenotypes and 71 

lifestyle variables, data from different projects have been challenging to integrate and the extent 72 

of microbial and molecular diversity in human stool remains unknown. Using standardized 73 

protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-74 

scientists, together with an open research network, we compare human microbiome specimens 75 

primarily from the USA, UK, and Australia to one another and to environmental samples. Our 76 

results show an unexpected range of beta-diversity in human stool microbiomes as compared to 77 

environmental samples, demonstrate the utility of procedures for removing the effects of 78 

overgrowth during room-temperature shipping for revealing phenotype correlations, uncover 79 

new molecules and kinds of molecular communities in the human stool metabolome, and 80 

examine emergent associations among the microbiome, metabolome, and the diversity of plants 81 

that are consumed (rather than relying on reductive categorical variables such as veganism, 82 

which have little or no explanatory power). We also demonstrate the utility of the living data 83 

resource and cross-cohort comparison to confirm existing associations between the microbiome 84 

and psychiatric illness, and to reveal the extent of microbiome change within one individual 85 

during surgery, providing a paradigm for open microbiome research and education.  86 

 87 

Importance: We show that a citizen-science, self-selected cohort shipping samples through the 88 

mail at room temperature recaptures many known microbiome results from clinically collected 89 

cohorts and reveals new ones. Of particular interest is integrating n=1 study data with the 90 

population data, showing that the extent of microbiome change after events such as surgery can 91 
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exceed differences between distinct environmental biomes, and the effect of diverse plants in the 92 

diet which we confirm with untargeted metabolomics on hundreds of samples. 93 

 94 

Introduction 95 

The human microbiome plays a fundamental role in human health and disease. While 96 

many studies link microbiome composition to phenotypes, we lack understanding of the 97 

boundaries of bacterial diversity within the human population, and the relative importance of 98 

lifestyle, health conditions, and diet, to underpin precision medicine or to educate the broader 99 

community about this key aspect of human health. 100 

We launched the American Gut Project (AGP; http://americangut.org) in November of 101 

2012 as a collaboration between the Earth Microbiome Project (EMP) (1) and the Human Food 102 

Project (HFP; http://humanfoodproject.com/) to discover the kinds of microbes and microbiomes 103 

"in the wild” via a self-selected citizen-scientist cohort. The EMP is tasked with characterizing 104 

the global microbial taxonomic and functional diversity, and the HFP is focused on 105 

understanding microbial diversity across human populations. As of May 2017, the AGP included 106 

microbial sequence data from 15,096 samples from 11,336 human participants, totaling over 467 107 

million (48,599 unique) 16S rRNA V4 gene fragments (“16S”). Our project informs citizen-108 

scientist participants about their own microbiomes by providing a standard report (fig 1A) and 109 

resources to support human microbiome research, including an online course (Gut Check: 110 

Exploring Your Microbiome; https://www.coursera.org/learn/microbiome). AGP deposits all de-111 

identified data into the public domain on an ongoing basis without access restrictions (table S1). 112 

This reference database characterizes the diversity of the industrialized human gut microbiome 113 

on an unprecedented scale, reveals novel relationships with health, lifestyle, and dietary factors, 114 

and establishes the AGP resource and infrastructure as a living platform for discovery. 115 
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 116 

Results  117 

Cohort characteristics. AGP participants primarily reside in the United States (n=7,860). 118 

However, interest in the AGP rapidly expanded beyond the US to United Kingdom (n=2,518), 119 

and Australia (n=321), with 42 other countries or territories also represented (fig 1A; table S1). 120 

Participants in the US inhabit urban (n=7,317), rural (n=29), and mixed (n=98) communities 121 

(2010 US Census data based on participant zip codes), and span greater ranges of age, race, and 122 

ethnicity than other large-scale microbiome projects (2–6). Because the AGP is crowdsourced 123 

and self-selected, and subjects generally support the cost of sample processing, the population is 124 

unrepresentative in several important respects, including having lower prevalence of smoking 125 

and obesity, higher education and income (fig S1A), and underrepresentation of Hispanic and 126 

African American communities (table S1); generalization of the results is cautioned. Targeted 127 

and population-based studies will be crucial for filling these cohort gaps (Supplemental text). 128 

Using a survey modified from (7, 8), participants reported general health status, disease 129 

history, and lifestyle data (table S2, supplemental text). In accordance with our IRB, all survey 130 

questions were optional (median per-question response 70.9%; table S2). Additionally, 14.8% of 131 

participants completed a validated picture-based food frequency questionnaire (FFQ) 132 

(VioScreen; http://www.viocare.com/vioscreen.html), and responses correlated well with primary 133 

survey diet responses (table S2). 134 

We sought to minimize errors and misclassifications well-known to occur in self-reported 135 

data (9). Survey responses relied on controlled vocabularies. For analyses, we trimmed numeric 136 

entries at extremes (e.g., weight over 200kg or below 2.5kg) and excluded obviously incorrect 137 

answers (e.g., infants drinking alcohol) and samples for which necessary data were not supplied 138 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277970doi: bioRxiv preprint 

https://doi.org/10.1101/277970
http://creativecommons.org/licenses/by/4.0/


6 

(e.g., missing zip code data for spatial analyses); see supplement for details. We focused our 139 

primary investigative efforts on a “healthy adult” subset (n=3,942) of individuals aged 20-69 140 

with BMIs ranging between 18.5–30 kg/m2, no self-reported history of inflammatory bowel 141 

disease, diabetes, or antibiotic use in the past year, and at least 1,250 16S sequences/sample (fig 142 

1B, S1B). 143 

The two largest populations in the dataset (US and UK) differed significantly in alpha-144 

diversity, with Faith’s phylogenetic diversity (PD) higher in UK samples (13) (Mann Whitney 145 

p<1x10-15; fig 1C). One balance (10) (a log-ratio compositional transform) explained most of the 146 

taxonomic separation between US and UK samples (AUC=77.7% ANOVA p=1.01x10-78, 147 

F=386.85) (fig S1C, table S3). To understand how these two populations differed from others, 148 

we compared adult AGP samples (predominantly from industrialized regions) to samples from 149 

adults living traditional lifestyles (6, 11, 12). As previously observed (6), samples from industrial 150 

and traditional populations separated in Principal Coordinates Analysis (PCoA) space of 151 

unweighted UniFrac distances (13) (fig S1D). They show greater variation within industrial 152 

populations than within traditional populations (2) and facile separation based on microbial 153 

taxonomy (industrial vs. non-industrial agrarian: AUC=98.9%, ANOVA p=1.52x10-260, 154 

F=1265.8; industrial vs. hunter-gatherer: AUC=99.5%, ANOVA p=4.48x10-227, F=1092.35) (fig 155 

1D, table S3). 156 

 157 

Removal of bacterial blooms. An important practical question is whether self-collected 158 

microbiome samples can match those from better-controlled studies. Most AGP samples are 159 

stools collected on dry swabs and shipped without preservative to minimize costs and avoid 160 

exposure to toxic preservatives. E. coli and a few other taxa grow in transit, so based on data 161 
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from controlled storage studies as previously described (14) we removed sOTUs (sub-OTUs 162 

(15); median of 7.9% of sequences removed per sample) shown to bloom. 163 

We further characterized the impact of these organisms through culturing, HPLC-MS 164 

analysis of cultured isolates, and shotgun metagenomics of the primary samples and storage 165 

controls (16). Culturing primary specimens stored at -80°C (US: n=116; UK: n=73; other: n=25) 166 

showed a strong correlation between the fraction of sequences reported as blooms in 16S 167 

sequencing and positive microbial growth following overnight incubation in aerobic conditions 168 

(fig 2A). Culture supernatants were characterized using HPLC-MS; most metabolites in these 169 

supernatants were absent from the primary specimens (fig 2B, C, method details in SI). We 170 

sequenced draft genomes of 169 isolates; of these, 65 contained the exact E. coli 16S sequence in 171 

the published bloom filter (14). To characterize the impact of the 16S bloom filter, we computed 172 

effect sizes over the participant covariates and technical parameters for 9,511 individual 173 

participant samples, including and excluding blooms (complete list table S2; comparisons to (17, 174 

18) in supplementary text), and observed tight correlations for both unweighted (fig 2D, Pearson 175 

r=0.91, p=3.76x10-57; Spearman r=0.90, p=9.45x10-55) and weighted UniFrac (fig 2E, Pearson 176 

r=0.42, p=1.71x10-6; Spearman r=0.58, p=1.03x10-9). An outlier on the quantitative metric 177 

(weighted UniFrac) is present and corresponds to a variable representing the fraction of bloom 178 

reads in a sample.   179 

 180 

Novel taxa and microbiome configurations. To understand human microbiome diversity, we 181 

placed AGP samples in the context of the EMP (1). Building on earlier work revealing a striking 182 

difference between host-associated and environmental microbiomes (19), we found that the 183 
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diversity of microbiomes associated with the human gut (just one vertebrate) occupies a vast 184 

extent of the microbiome diversity of the planet (fig 3A). 185 

Inserting the sOTU fragments of AGP and EMP samples into a Greengenes (20) 186 

reference phylogenetic tree using SEPP (21) (fig 3B) showed that the AGP population harbored 187 

much broader microbial diversity than the Human Microbiome Project (5). Both datasets are 188 

dwarfed by the breadth of bacterial and archaeal phylogenetic diversity in environmental 189 

samples. Examining sOTUs over increasing numbers of samples, we observed a reduction in the 190 

discovery rate of novel sOTUs starting around 3,000 samples, emphasizing the need for focused 191 

sampling efforts outside the present AGP population (fig 3C). The importance of sample size for 192 

detecting novel microbes and microbiomes is apparent when contrasted against Yatsunenko et al. 193 

(6), which contained hundreds of samples from three distinct human populations at ~1 million 194 

sequences/sample (fig 3D). This effect is magnified in beta-diversity analysis, where the AGP 195 

has saturated the configuration space, and new samples are not “distant” from existing samples 196 

(fig 3E). To encourage community engagement with sOTUs found in the AGP, we adapted the 197 

EMP “trading cards” for sOTUs (figs 3F, S2). 198 

  199 

Temporal and spatial analyses. Longitudinal samples are required for understanding human 200 

microbiome dynamics (22). We examined 565 individuals who contributed multiple samples and 201 

observed an increasing trend of intrapersonal divergence with time. Still, over time individuals 202 

resemble themselves more than others, even after one year (fig 4A). 203 

We tested whether patterns in individual longitudinal sample sets could be better 204 

explained when placed in the context of the AGP by integrating samples collected from: a) a 205 

time series of 58 time points from one subject (described as “LS”), prior to and following a large 206 

bowel resection, b) 2 time points from 121 patients in an intensive care unit (ICU) (23),  c) 207 
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samples from the “extreme” diet study from David et al. (24), and d) samples from the Hadza 208 

hunter-gatherers for additional context (25). Through the longitudinal sampling of LS, dramatic 209 

pre- and post-microbial configuration changes that exceeded the span of microbial diversity 210 

associated with the AGP population were observed (fig 4E, animated in (26)). After surgery, 211 

subject’s samples more closely resembled those of ICU patients (Kruskal Wallis H=79.774, 212 

p=4.197x-19, fig S2A-C), and showed a persistent state change upon return to the AGP fecal 213 

space. Remarkably, the UniFrac distance between the samples immediately prior to and 214 

following the surgery was almost identical to the distance between a marine sediment sample and 215 

a plant rhizosphere sample (unweighted UniFrac distance of 0.78). Furthermore, the observed 216 

state change in LS is not systematically observed in the extreme diet study (fig S2D; 217 

PERMANOVA n.s. when controlling for individual). Despite extensive dietary shifts, these 218 

subjects do not deviate from the background AGP context. 219 

Recent reports suggest that the microbes of bodies (8), like those of homes (27), are 220 

influenced mostly by local phenomena rather than regional biogeography (28), and accordingly 221 

we observed only weak geographic associations with sOTUs (fig 4B), no significant distance-222 

decay relationships (fig 4C), and, with Bray-Curtis distance, only a weak effect at neighborhood 223 

sizes of ca. 100km (Mantel r=0.036, Benjamini-Hochberg adjusted p=0.03) to 1,000km (Mantel 224 

r=0.016, Benjamini-Hochberg adjusted p=0.03).   225 

 226 

Dietary plant diversity. The self-reported dietary data suggested, unexpectedly, that the number 227 

of unique plant species a subject consumes is associated microbial diversity, rather than self-228 

reported categories such as “vegan” or “omnivore” (fig 2D, E). Principal Components Analysis 229 

of FFQ responses (fig 5A) revealed clusters associated with diet types such as “vegan.” 230 
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However, these dietary clusters did not significantly relate to microbiome configurations (fig 5B; 231 

Procrustes fig 5A, M2=0.988). We therefore characterized the impact of dietary plant diversity on 232 

the microbial community. 233 

Using balances (10), we identified several putative short-chain fatty acid (SCFA) 234 

fermenters associated with eating more than 30 types of plants, including sOTUs putatively of 235 

the species Faecalibacterium prausnitzii and of the genus Oscillospira (29) (AUC=68.5%, 236 

ANOVA p=8.9x10-39, F=177.2) (fig 5E, table S3). These data suggest community-level changes 237 

associated with microbial fermentation of undigested plant components. Because bacteria differ 238 

in their carbohydrate-binding modules and enzymes that hydrolyze diverse substrates in the gut 239 

(30), a diet containing various types of dietary fibers and resistant starches likely supports a more 240 

diverse microbial community (31, 32). 241 

To test these effects in the stool metabolome, we performed HPLC-MS annotation and 242 

annotation propagation (33, 34) on a subset of fecal samples (n=219) preferentially selecting 243 

individuals at the extremes of plant type consumption, i.e. eating <10 or >30 different types of 244 

plants per week. Several fecal metabolites differed between the two groups, with one key 245 

discriminating feature annotated as octadecadienoic acid (annotation level 2 according to the 246 

2007 metabolomics initiative, (35)). Further investigation using authentic standards revealed that 247 

the detected feature was comprised of multiple isomers, including linoleic acid (LA) and 248 

conjugated linoleic acid (CLA). CLA abundance was significantly higher in individuals 249 

consuming > 30 types of plants, and those consuming more fruits and vegetables generally, (fig 250 

5D, 1-sided t-test; p < 10-5), but did not correlate with dietary CLA consumption as determined 251 

by the FFQ (dietary fig 5C; Spearman r < 0.16; p > 0.15). CLA is a known end-product of LA 252 

conversion by lactic acid bacteria in the gut, such as Lactobacillus plantarum (36) and 253 
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Bifidobacterium spp. (37). FFQ-based dietary levels of LA and MS-detected LA did not differ 254 

significantly between groups (fig S3), suggesting that their different microbiomes may 255 

differentially convert LA to CLA. Several other putative octadecadienoic acid isomers were also 256 

detected (fig 5F), some strongly correlated with plant consumption. Determining these 257 

compounds’ identities as well as their origin and function may uncover new links between the 258 

diet, microbiome, and health. 259 

  260 

Molecular novelty in the human gut metabolome. Our untargeted HPLC-MS approach 261 

allowed us to search for novel molecules in the human stool metabolome, parallel to our search 262 

for novelty in microbes and microbiome configurations described above. Bacterial N-acyl 263 

amides were recently shown to regulate host metabolism by interacting with G-protein-coupled 264 

receptors (GPCRs) in the murine gastrointestinal tract, mimicking host-derived signaling 265 

molecules (38). These agonistic molecules regulate metabolic hormones and glucose 266 

homeostasis as efficiently as host ligands. Manipulating microbial genes that encode metabolites 267 

eliciting host cellular responses could enable new drugs or treatment strategies for many major 268 

diseases, including diabetes, obesity, and Alzheimer’s disease: roughly 34% of all marketed 269 

drugs target GPCRs (39). We observed N-acyl amide molecules previously hypothesized but 270 

unproven to be present in the gut (38) (fig 6, S4), as well as new N-acyl amides (fig 6). 271 

Levels of two N-acyl amides, annotated as commendamide (m/z 330.2635, fig S4B) and  272 

N-3-OH-palmitoyl ornithine (m/z 387.3220, fig S4C), positively correlated with a self-reported 273 

medical diagnosis of thyroid disease (Kruskal–Wallis, FDR p=0.032, p=2.48x10-3, χ2=11.99; N-274 

3-OH-palmitoyl ornithine; Kruskal–Wallis, FDR p=0.048, p=5.63x10-3, χ2=10.35). Conversely, 275 

glycodeoxycholic acid (m/z 450.3187) was significantly higher in individuals not reporting 276 

thyroid disease diagnosis (Kruskal–Wallis; FDR p=1.28x10-4, p= 4.41x10-7, χ2=29.27). This 277 
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cholic acid is produced through microbial dehydroxylation, again linking gut microbiota to 278 

endocrine function (40, 41).    279 

Finally, we compared metabolome diversity to 16S diversity in the samples selected for 280 

dietary plant diversity and a second set of samples selected to explore antibiotic effects (n=256 281 

individuals who self-reported not having taken antibiotics in the past year (n=117), or having 282 

taken antibiotics in the past month (n=139); participants were matched for age, BMI, and 283 

country). By computing a collector’s curve of observed molecular features in both cohorts (fig 284 

6K, 6M), we observe that, paradoxically, individuals who had taken antibiotics in the past month 285 

(n=139) had significantly greater molecular diversity (Kruskal Wallis, H=255.240, p=1.87x10-57) 286 

than those who had not taken antibiotics in the past year (n=117), and differed in molecular beta-287 

diversity (fig 6K inset), suggesting that antibiotics promote unique metabolomes that result from 288 

differing chemical and microbial environments in the gut. Notably, the diversity relationships of 289 

this set are not reflected in 16S diversity (fig 6L, 6N), where antibiotic use shows decreased 290 

diversity (Kruskal Wallis H=3983.839, p=0.0). Within the dietary plant diversity cohort, we 291 

observed a significant increase (Kruskal Wallis, H=897.106, p=4.17x10-197) in molecular alpha 292 

diversity associated with a high diversity of plant consumption (n=42) compared to low plant 293 

diversity (n=43), a relationship also observed in 16S diversity, where high dietary plant diversity 294 

increased 16S alpha diversity (Kruskal Wallis, H=65.817, p=4.947x-16).  295 

  296 

A living dataset. The AGP is dynamic, with samples arriving from around the world daily. This 297 

allows a living analysis, similar to continuous molecular identification and annotation revision in 298 

the Global Natural Products Molecular Networking (GNPS) database (34). Although the analysis 299 

presented here represents a single snapshot, samples continued to arrive during manuscript 300 

preparation. For example, after we defined the core “healthy” sample set, an exploratory analysis 301 
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using matched controls was performed by collaborators to test for correlations between mental 302 

illness and microbiome composition (as reported in (42, 43)). By analyzing mental illness status 303 

(depression, schizophrenia, post-traumatic stress disorder (PTSD) and bipolar disorder – four of 304 

the most disabling illnesses per World Health Organization (44)) reported by AGP participants 305 

(n=125) against matched 1:1 healthy controls (n=125), we observed a significant partitioning 306 

using PERMANOVA in weighted UniFrac (p=0.05, pseudo-F=2.36). These findings were 307 

reproducible within US residents (n=122, p=0.05, pseudo-F=2.58), UK residents (n=112, 308 

p=0.05, pseudo-F=2.16), women (n=152, p=0.04, pseudo-F=2.35), and people 45 years of age or 309 

younger (n=122, p=0.05, pseudo-F=2.45). We also reproduce some previously reported 310 

differentially abundant taxa in Chinese populations using our UK subset (42, 45)(table S3). This 311 

shows that multi-cohort replication is possible within the AGP (additional detail supplemental 312 

text). 313 

 314 

Discussion 315 

The AGP provides an example of a successful crowdfunded citizen science project that 316 

facilitates human microbiome hypothesis generation and testing on an unprecedented scale, 317 

provides a free data resource derived from over 10,000 human-associated microbial samples, and 318 

both recaptures known microbiome results and yields new ones. Ongoing living data efforts, 319 

such as the AGP, will allow researchers to document and potentially mitigate the effects of a 320 

slow but steady global homogenization driven by increased travel, lifespans, and access to 321 

similar diets and therapies, including antibiotics. Because the AGP is a subproject of the EMP 322 

(1), all samples were processed using the publicly available and widely used EMP protocols to 323 

facilitate meta-analyses, as highlighted above. Further example applications include assessing the 324 
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stability of AGP runs over time, comparing the AGP population to fecal samples collected from 325 

a fecal transplant study (46) and an infant microbiome time series (47), the latter using different 326 

DNA sequencing technology, to highlight how this context can provide insight (48). 327 

A unique aspect of the AGP is the open community process of assembling the Research 328 

Network and analyzing these data, which are released immediately on data generation. Analysis 329 

details are shared through a public forum (GitHub, https://github.com/knightlab-330 

analyses/american-gut-analyses). Scientific contributions to the project were made through a 331 

geographically diverse Research Network represented herein as the American Gut Consortium, 332 

established prior to project launch and which has grown over time. This model allows a “living 333 

analysis” approach, embracing new researchers and analytical tools on an ongoing basis (e.g., 334 

Qiita (Web:http://qiita.microbio.me) and GNPS (34)). Examples of users of the AGP as a 335 

research platform include educators at several universities, UC San Diego Athletics, and the 336 

American Gastroenterological Association (AGA). Details on projects using the AGP 337 

infrastructure can be found in the supplement. 338 

To promote public data engagement, we aimed to broaden the citizen science experience 339 

obtained by participating in AGP by “gamifying” the data and separately by developing an 340 

online forum for microbiome data discussion and discovery. The gamification introduces 341 

concepts of beta-diversity and challenges users to identify clusters of data in principal 342 

coordinates space (http://csb.cs.mcgill.ca/colonyb/). The forum, called Gut Instinct 343 

(http://gutinstinct.ucsd.edu), enables participants to share lifestyle-based insights with one 344 

another. Participants also have the option to share their AGP sample barcodes, which will help us 345 

uncover novel contextual knowledge. Gut Instinct now has over 1,050 participants who have 346 

collectively created over 250 questions. Participants will soon design and run their own 347 
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investigations using controlled experiments to further understand their own lifestyle and the AGP 348 

data. 349 

The AGP therefore represents a unique citizen-science dataset and resource, providing a 350 

rich characterization of microbiome and metabolome diversity at the population level. We 351 

believe the community process for involving participants from sample collection through data 352 

analysis and deposition will be adopted by many projects harnessing the power of citizen science 353 

to understand the world around and within our own bodies. 354 

 355 

Materials and methods 356 

Participant Recruitment and Sample Processing. Participants signed up for the project 357 

through Indiegogo (https://www.indiegogo.com/) and later, FundRazr (http://fundrazr.com/). A 358 

contribution to the project was made to help offset the cost of sample processing and sequencing 359 

(typically $99 per sample; no requirement to contribute if another party was covering the 360 

contribution). All participants were consented under an approved Institutional Review Board 361 

human research subjects protocol, either from the University of Colorado Boulder (protocol #12-362 

0582; December 2012 - March 2015) or the University of California, San Diego (protocol 363 

#141853; February 2015 - present). The IRB-approved protocol specifically allows for public 364 

deposition of all data that is not personally identifying and for return of results to participants 365 

(fig. 1A). 366 

 367 

Self-reported metadata were collected through a web portal 368 

(http://www.microbio.me/americangut). Samples were collected using BBL Culture Swabs 369 

(Becton, Dickinson and Company; Sparks, MD) and returned by mail. Samples were processed 370 
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using the EMP protocols. Briefly, the V4 region of the 16S rRNA gene was amplified with 371 

barcoded primers and sequenced as previously described (49). Sequencing prior to August 2014 372 

was done using the 515f/806r primer pair with the barcode on the reverse primer (50); 373 

subsequent rounds were sequenced with the updated 515f/806rB primer pair with the barcode on 374 

the forward read (51). Sequencing batches 1-19 and 23-49 were sequenced using an Illumina 375 

MiSeq; sequencing for 20 and 21 were performed with an Illumina HiSeq Rapid Run and round 376 

22 was sequenced with an Illumina HiSeq High Output. 377 

 378 

16S Data Processing. The 16S sequence data were processed using a sequence variant method, 379 

Deblur v1.0.2 (52) trimming to 125nt (otherwise default parameters), to maximize the specificity 380 

of 16S data; a trim of 125nt was used because one sequencing round in the American Gut used 381 

125 cycles while the rest used 150. Following processing by Deblur, previously recognized 382 

bloom sequences were removed (14). The Deblur sub Operational Taxonomic Units (sOTUs) 383 

were inserted into the Greengenes 13_8 (53) 99% reference tree using SEPP (54). Taxonomy 384 

was assigned using an implementation of the RDP classifier (55) as implemented in QIIME2 385 

(56). Multiple rarefactions were computed, with the minimum being 1250 sequences per sample 386 

with the analyses using the 1250 set except where noted explicitly. Diversity calculations were 387 

computed using scikit-bio 0.5.1 with the exception of UniFrac (57) which was computed using 388 

an unpublished algorithmic variant, Striped UniFrac (https://github.com/biocore/unifrac), which 389 

scales to larger datasets and produces identical results to previously published UniFrac 390 

algorithms. 391 

 392 
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Metadata Curation. To address the self-reported nature of the AGP data and ongoing nature of 393 

the project, basic filtering was performed on the age, height, weight, and body mass index 394 

(BMI). Height and weight were gated to only consider heights between 48 cm and 210 cm, and 395 

weight between 2.5 kg and 200 kg. BMI calculations using values outside this range were not 396 

considered. We assumed age was misreported by any individual who reported a birth date after 397 

their sample was collected. We also assumed age was misreported for participants who reported 398 

an age of less than 4 years, but height over 105 cm, weight over 20 kg, or any alcohol 399 

consumption. Values assumed to be incorrect were dropped from analyses (fig S1B). 400 

  401 

Sample Selection. Analyses in the manuscript were performed on a subset of the total AGP 402 

samples. A single fecal sample was selected for each participant with at least one fecal sample 403 

that amplified to 1250 sequences per sample unless otherwise noted. Priority was given to 404 

samples that were associated with VioScreen (http://www.viocare.com/vioscreen.html) metadata.  405 

 406 

The samples used for analysis and subsets used in various analyses are described in table S2. 407 

Briefly, we defined the healthy subset (n=3,942) as adults aged 20-69 years with a BMI between 408 

18.5 and 30 kg/m2 who reported no history of inflammatory bowel disease or diabetes and no 409 

antibiotic use in the last year. There were 1,762 participants who provided results for the 410 

VioScreen Food Frequency Questionnaire (FFQ; http://www.viocare.com/vioscreen.html). The 411 

meta-analysis with non-Western samples (n=4,643) included children over the age of 3, adults 412 

with a BMI of between 18.5 and 30 kg/m2, and no reported history of inflammatory bowel 413 

disease, diabetes, or antibiotic use in the last year.  414 

 415 
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Population Level Comparisons. Population level comparisons were calculated for all American 416 

Gut participants living in the United States. BMI categorization was only considered for adults 417 

over the age of twenty, since the description of BMI in children is based on their age and sex. 418 

Education level was considered for adults over the age of 25. This threshold was used to match 419 

the available data from the US Census Bureau 420 

(https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20- 578.pdf). The 421 

percentage of the American Gut participants was calculated as the fraction of individuals who 422 

reported results for that variable. US population data is from the 2010 census 423 

(https://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf), US Census bureau reports 424 

(https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20- 578.pdf), 425 

Centers for Disease Control reports on obesity 426 

(https://www.cdc.gov/nchs/data/hus/2015/058.pdf), diabetes (57, 58), IBD 427 

(http://www.cdc.gov/ibd/ibd-epidemiology.htm), smoking 428 

(https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.ht 429 

m), and a report from the Williams Institute (http://williamsinstitute.law.ucla.edu/wp- 430 

content/uploads/How-Many-Adults-Identify-as-Transgender-in-the-United-States.pdf) (table S2). 431 

 432 

Within American Gut Alpha- and Beta-Diversity Analyses. OTU tables generated in the 433 

primary processing step were rarefied to 1,250 sequences per sample. Shannon, Observed OTU, 434 

and PD whole tree diversity metrics were calculated as the mean of ten rarefactions using QIIME 435 

(56, 59). Alpha-diversity for single metadata categories was compared with a Kruskal-Wallis 436 

test. Unweighted UniFrac distance between samples was tested with PERMANOVA (60) and 437 

permuted t-tests in QIIME.  438 
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 439 

Balances. The goal of this analysis was to design two-way classifiers to classify samples and 440 

sOTUs. This will allow us to identify sOTUs that are strongly associated with a given 441 

environment. To do this while accounting for issues due to compositionality, we used balances 442 

(61) constructed from Partial Least Squares (62).   443 

 444 

First the sOTU table was centered log-ratio (CLR) transformed with a pseudocount of 1. Partial 445 

least squares discriminant analysis (PLS-DA) was then performed on this sOTU table using a 446 

single PLS component, using a binary categorical variable as the response and the CLR 447 

transformed sOTU table as the predictor. This PLS component represented an axis, which 448 

assigns scores to each OTU according to how strongly associated they are to each class. An 449 

sOTU with a strong negative score indicates an association for the one category, which we will 450 

denote as the negative category. An sOTU with a strong positive score indicates that sOTU is 451 

strongly associated with the other category, which we will denote as the positive category.   452 

 453 

We assumed that PLS scores associated with each OTU were normally distributed.  Specifically 454 

 455 

𝑠𝑐𝑜𝑟𝑒(𝑥()*
(+) ) ∼ 	𝑁(𝜇()*, 𝜎()*2 )	456 

𝑠𝑐𝑜𝑟𝑒(𝑥345
(+) ) ∼ 𝑁(𝜇345, 𝜎3452 )	457 

𝑠𝑐𝑜𝑟𝑒(𝑥3677
(+) ) ∼ 𝑁(𝜇3677, 𝜎36772 )	458 

 459 

Where 𝜇3677 ≈ 0, 𝜇345 < 0 and 𝜇()* > 0.  To obtain estimates of these normal distributions, 460 

Gaussian Mixture Models with three Gaussians were fitted from the PLS scores.  Thresholds 461 

were determined from the intersection of Gaussians. The OTUs with PLS scores less than the 462 
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intersection 𝑁(𝜇3677, 𝜎36772 )	and 𝑁(𝜇345, 𝜎3452 ) are classified to be associated with the negative 463 

category.   The OTUs with PLS scores greater than the intersection 𝑁(𝜇3677, 𝜎36772 )	and 464 

𝑁(𝜇()*, 𝜎()*2 ) are classified to be associated with the positive category.    465 

The balance was constructed as follows 466 

 467 

𝑏 = =
|𝑥()*||𝑥345|
|𝑥()*| + |𝑥345|

𝑙𝑜𝑔	(
𝑔(𝑥()*)
𝑔(𝑥345)

)	 468 

 469 

From this balance, we calculated receiver operator characteristic (ROC) curves and AUC to 470 

assess the classification accuracy, and ran ANOVA to assess the statistical significance. The 471 

dimensionality was shrunk through some initial filtering (an sOTU must have at least 50 reads, 472 

must exist in at least 20 samples except where noted, and have a variance over 10 to remove 473 

sOTUs that do not appear to change), so that the number of samples is greater than the number of 474 

sOTUs to reduce the likelihood of over-fitting. This technique was used to investigate 475 

differences due to plant consumption, country of residence and western vs non-western and was 476 

consistently applied with the exception that a filter of 5 samples was used for the western vs. 477 

non-western analysis due to group sample sizes. 478 

 479 

Balances on plant consumption were constructed using Partial Least Squares.  Only samples 480 

from people who consumed less than 10 types of plants a week or more than 30 types of plants a 481 

week were considered. 482 

 483 

Meta-analysis of samples from the American Gut and from individuals living agrarian and 484 

hunter-gatherer lifestyles. A meta-analysis compared fecal samples collected from healthy 485 
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individuals that were 3 years of age or older and included in the AGP data set to a previously 486 

published 16S rRNA V4 region data set that included healthy people living an industrialized, 487 

remote agrarian or hunter-gatherer lifestyle (63–65). The AGP subset of healthy individuals was 488 

determined by filtering by the metadata columns “subset_antibiotic”, “subset_ibd”, 489 

“subset_diabetes”, and for individuals over the age of 16 years “subset_bmi”. All datasets were 490 

processed using the Deblur pipeline as noted above, with the exception that all reads in the meta-491 

analysis, including AGP data, were trimmed to 100nt to accommodate the read length in 492 

Yatsunenko et al (63). Bloom reads as described above were removed from all samples. We used 493 

Striped UniFrac as noted above to estimate beta-diversity (unweighted UniFrac) and EMPeror 494 

software (66) version 0.9 to visualize principal coordinates. We used a non-parametric 495 

PERMANOVA with 999 permutations to test for significant differences in fecal microbiomes 496 

associated with industrialized, remote agrarian, and hunter-gatherer lifestyles. All AGP samples 497 

were considered to be from people living an industrialized lifestyle. Balances were constructed 498 

from Partial Least Squares to assess the differences between the hunter-gather vs. industrialized 499 

populations and the remote farmers vs industrialized populations. 500 

 501 

Spatial Autocorrelation. We sought to investigate distance-decay patterns – the relationship 502 

between microbial community similarity and spatial proximity – among American Gut 503 

participants, to determine the extent to which geographical distances could explain variation in 504 

microbial community taxonomic compositions between participant pairs. The correlation 505 

between community-level Bray-Curtis (67) distances and participants’ spatial proximities (i.e., 506 

great-circle distances, km) was assessed using a Mantel test (68) with 1000 matrix permutations. 507 

Analyses were conducted using the subset of participants located in the continental United States 508 
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that had not received antibiotics in the last year. Different neighborhood sizes were investigated 509 

in order to detect the relevant spatial scale on which significant distance-decay patterns in 510 

microbial community compositions emerged. To accomplish this, we computed distance-decay 511 

relationships for a series of model adjacencies corresponding to neighborhood radiuses of 50, 512 

100, 500, 1000, 2500, and 4500 km among participants, and adjusted p-values for multiple 513 

comparisons using the Benjamini-Hochberg procedure (69). We also studied spatial correlations 514 

in phylogenetic community dissimilarities, calculated as weighted normalized UniFrac distances, 515 

using the procedure described above. Analyses were conducted in R statistical programming 516 

environment. 517 

 518 

The spatial autocorrelation of each individual taxon was assessed using Moran’s I statistic (70). 519 

Taxa present in less than 10 samples were filtered, since these would not be sufficiently 520 

powered. Analyses were conducted using binary spatial weight matrices, with neighborhoods of 521 

0 – 50 km, 50 – 100 km, and 100 – 250 km. The different neighborhoods were useful for 522 

detecting spatial autocorrelation at different scales. All spatial weights matrices were row-523 

standardized. We checked for spatial autocorrelation at three taxonomic ranks: class, genus, and 524 

OTU. We also considered whether there was autocorrelation within subsets of individuals who 525 

were under 20 years old and between 20 and 70 years old; those having IBD, no IBD, diabetes, 526 

and no diabetes; and those who had taken antibiotics within the past week, year, or not within the 527 

past year. The results presented above did not qualitatively depend on the subset of individuals 528 

considered. Statistical significance was assessed using permutation tests, which were 529 

implemented using a Markov Chain Monte Carlo algorithm. To assess each p-value, 100 chains 530 

were run each starting from a different random permutation. Each chain had 1000 iterations. We 531 
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used Bonferroni corrections to correct for multiple comparisons, with an overall significance 532 

level set to 0.05. Analyses were run using custom Java code, optimized for running many spatial 533 

autocorrelation analyses on large data sets (71).  534 

 535 

Metadata cross-correlation. To account for covariance among metadata for effect size and 536 

variation analyses, we examined the correlation between individual metadata variables including 537 

technical parameters. Groups in ordinal variables were combined if there were insufficient 538 

sample size (e.g. people who reported sleeping less than 5 hours were combined with those who 539 

reported sleeping 5 to 6 hours into a variable described as “Less than 6”). The same 540 

transformations were used for effect size analysis. Any group with less than 25 total observations 541 

was ignored during analysis; if this resulted in a metadata column having no groups, the column 542 

was removed from analysis. The relationship between continuous and ordinal covariates was 543 

calculated using Pearson’s correlation. Ordinal and categorical covariates were compared using a 544 

modified Cramer’s V statistic (72). Continuous and categorical covariates were compared with a 545 

Welch’s T test (73). We treated used 1-R as a distance between the covariates. Traversing the 546 

resulting binary, weighted cluster tree starting at tip level into the direction of the root, i.e. 547 

bottom-up, we grouped tips together that are members of the same subtree after covering a 548 

distance of approximately 0.5 (branch length 0.29). A representative variable from each cluster 549 

was selected for analysis (table S2). 550 

 551 

Effect Size Calculations. Effect size was calculated on 179 covariates (including technical 552 

parameters), selected from the cross-correlation (table S2). Ordinal groups with small sample 553 

sizes at the extreme were collapsed as noted above. Individuals who reported self-diagnosis or 554 
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diagnosis from alternative practitioner for medical conditions were excluded from the analysis. 555 

Any metadata variable with less than 50 observations per group or that made up less than 3% of 556 

the total number of respondents was also excluded from the effect size analysis. Continuous 557 

covariates were categorized into quartiles. For each one of the 179 variables, we applied the 558 

mdFDR (74) methodology to test for the significance of each pairwise comparison among the 559 

groups.  For each significant pairwise comparison, we computed the effect size using Cohen’s d 560 

(75), or the absolute difference between the mean of each group divided by the pooled standard 561 

deviation. For analysis of diversity, we used Faith's Phylogenetic Diversity (alpha-diversity) and 562 

weighted and unweighted UniFrac distances (beta-diversity).  563 

 564 

Variation analysis. Using the methodology reported in the supplemental material for (76), we 565 

computed Adonis (77) using 1000 permutations, over the sample sets used in the effect size 566 

calculations as noted above, and applied Benjamini-Hochberg correction (FDR<0.1) to assess 567 

drivers of variation in beta-diversity.  568 

 569 

Meta-analysis movie. American Gut samples from all body sites were combined with data from 570 

an infant time series (78), a fecal transplant study (79), and recent work characterizing the 571 

microbiome of patients in the intensive care unit (80). The combination of the datasets in movie 572 

S2 required that all sequences were trimmed to an even length of 125 nucleotides. All projects 573 

except for the infant time series were sequenced using an Illumina instrument. In order to 574 

combine the data, we expressed the Illumina and non-Illumina data through a common reference 575 

database. Specifically, the Deblur sOTUs from the Illumina data were mapped against the 576 

Greengenes (53) database (13_8 release) using 99% similarity; the associations between the 577 
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input sOTUs, and their cluster memberships, were used to construct an OTU table based on the 578 

original sOTU per sample sequences counts (i.e., summing the counts for all sOTUs in a 579 

common OTU). The infant time series data were picked using a closed reference OTU picking 580 

approach against the same reference at the same similarity. The infant time series dataset 581 

followed a closed reference OTU picking approach using 99% similarity. The resulting two 582 

tables (from Illumina-generated data and the ITS dataset) were merged and analyzed using the 583 

Greengenes 99% tree. The table was rarefied to 1,250 sequences per sample. Principal 584 

coordinates projections were calculated based on unweighted UniFrac distance (57). The 585 

principal coordinates analysis was visualized and animated in EMPeror 1.0.0-beta8-dev (66, 81). 586 

The movie was captured in QuickTime (Apple, Cupertino, CA), and edited with Premiere Pro 587 

(Adobe, San Jose, CA).  588 

 589 

Integration with the Earth Microbiome Project. A precomputed 100nt Deblur BIOM table 590 

representing the data in (82) was obtained from 591 

(ftp://ftp.microbio.me/emp/release1/otu_tables/deblur/). 100nt Deblur tables were also obtained 592 

from Qiita for Hadza fecal samples (Qiita study ID 11358, (83)), ICU microbiome samples (Qiita 593 

study ID 2136, (80)), and a longitudinal series which includes samples immediately prior to and 594 

following a large bowel resection (Qiita study ID 10283, EBI accession ERP105968, 595 

unpublished); all samples were processed using the EMP Illumina 16S V4 protocol. The EMP 596 

dataset used a minimum sOTU count of 25; the same threshold was applied to the other datasets 597 

included prior to merge. Blooms as identified by (84) were removed from all samples. This 598 

collection of BIOM tables was then merged yielding an OTU table representing 40,600 samples. 599 

sOTUs were restricted to those already present in the EMP 100nt fragment insertion tree, which 600 
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represents 329,712 sOTUs. The table was then rarefied to 1000 sequences per sample, and 601 

unweighted UniFrac computed using 768 processors with the aforementioned Striped algorithm. 602 

Visualizations and animations were performed using EMPeror v1.0.0b12.dev0.  603 

 604 

Extreme diet study state assessment. The sequence data from (85) were processed by Deblur to 605 

assess 16S sOTUs in common with the AGP processing above. In order to assess a state 606 

difference with PERMANOVA, we needed to control for sample independence within the 607 

longitudinal sampling. To do so, we randomly selected one sample from each individual per diet, 608 

computed PERMANOVA, and repeated the process 100 times. None of the trials produced a p-609 

value below 0.05. 610 

 611 

Vioscreen PCA and diet type Procrustes analysis. Before performing Principal Component 612 

Analysis (PCA) on the informal diet questions, Vioscreen variables that are categorical or 613 

receive less than 90% response among the 1762 participants were excluded leaving 1596 614 

participants. PCA was then performed using the Vioscreen information from these participants’ 615 

responses over 207 Vioscreen questions, and then colored by their types of diet as answered in 616 

the AGP informal food survey. The coordinates from the PCA were extracted. For the same 617 

samples, PCoA of unweighted UniFrac distances was computed on the 16S data subset from the 618 

primary processing set. The coordinates from the PCA and the PCoA were assayed for a measure 619 

of fitness using Procrustes as implemented in QIIME v1.9.1.  620 

 621 

Beta-diversity added. To assess added beta-diversity, we applied the technique used in (86) 622 

figure 3. Specifically, we randomly sampled N samples from the distance matrix 10 times, over 623 
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an increasing value of N. For each set of sampled distances, we computed the minimum observed 624 

distance.     625 

 626 

sOTU novelty. To assess sOTU novelty, we randomly sampled N samples from an sOTU table 627 

10 times, over an increasing value of N. At each sampling, we computed the number of sOTUs 628 

observed with read counts within minimum thresholds. In other words, a minimum threshold of 1 629 

is the number of singletons observed in the sampled set, a minimum threshold of 2 is the number 630 

of singletons and doubletons, etc.  631 

 632 

Within-individual beta-diversity. Many of the individuals in the American Gut Project 633 

contributed multiple samples, but at uneven time intervals. In order to explore intrapersonal 634 

variation, we replicated the analysis in Lloyd-Price et al. figure 3 (87). Specifically, we 635 

determined all time deltas between a subjects samples, and gathered the distributions of beta-636 

diversity between any two samples binned by month. An individual is only represented a single 637 

time in a given month, but may be represented in multiple months if they had, for instance, 638 

contributed samples over the course of a year.  639 

 640 

High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS) Analysis. A 641 

total of 498 samples were selected for analysis via mass spectrometry. Specifically, two groups 642 

were chosen. First, given the large body of primary literature describing the negative impact of 643 

antibiotics on the gut microbiome, and the general interest in this topic from many American Gut 644 

participants, we chose 279 samples from individuals (age, BMI, and country matched) who self-645 

reported not having taken antibiotics in the past year, or having taken antibiotics in the past 646 
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month or week. We chose a second group of 219 samples collected from individuals who 647 

answered the question “In an average week, how many different plants do you eat? (e.g., if you 648 

consume a can of soup that contains carrots, potatoes and onion, you can count this as 3 different 649 

plants; If you consume multi-grain bread, each different grain counts as a plant. Include all fruits 650 

in the total)” on the main American Gut Project main survey and who had also completed the 651 

VioScreen Food Frequency Questionnaire. When American Gut participants collect samples, 652 

they do so on a double headed swab; therefore, all samples chosen for this analysis had one 653 

remaining swab head (the first had been used for DNA extraction and microbiome sequencing). 654 

 655 

Cell cultures sample preparation for metabolomics analysis. The supernatant collected from cell 656 

cultures (see “expanded bloom assessment” below) were processed to make them compatible 657 

with HPLC-MS analysis. The solid phase extraction with wash was carried out to reduce impact 658 

of cell culture media, which is highly detrimental for the ESI. The 30 mg sorbent Oasis HLB 659 

(Waters, Waltham, MA) SPE cartridges were used to achieve broad metabolite coverage. The 660 

cell samples were stored at -80℃ and thawed at room temperature immediately prior to 661 

extraction. The thawed samples were then centrifuged for 10 minutes at 1200 rpm and extracted.  662 

For the SPE extraction, the Oasis HLB SPE cartridge was conditioned with 700µL of 100% 663 

HPLC-grade methanol and equilibrated with 700µL of HPLC-grade DI water. The cell 664 

supernatant (~350-400µL) was loaded into cartridge and allowed to slowly elute. The loaded 665 

SPE wells were then washed with 800µL of 5% methanol in water and the absorbed material was 666 

slowly eluted with 200 µL of 100% methanol. Vacuum up to ~ 20 psi was applied for the wells 667 

that did not elute within an hour. The collected eluent was stored at -20°C until the HPLC-MS 668 

analysis.  669 
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 670 

Fecal sample preparation for metabolomics analysis. The swab tubes scheduled for analysis were 671 

removed from the -80°C freezer and placed on dry ice for the duration of sample processing. 672 

Each tube with swab was logged by reading the barcode with barcode scanned and the swab was 673 

removed from tube and placed onto a ThermoFisher Scientific (ThermoFisher Scientific, 674 

Waltham, MA) 2 ml deep well 96-well plate set on top of dry ice coolant. The top part of each 675 

swab’s stick was snapped off and discarded. Immediately after filling all of the wells with swabs, 676 

200 µL of HPLC-grade 90% v:v ethanol:water solvent was added to each well using 677 

multichannel pipette. Four blanks of unused swabs and extraction solvent were included onto 678 

each plate. Each plate was then sealed with 96-well plate lid, sonicated for 10 minutes and placed 679 

into the refrigerator at 2 °C to extract samples overnight. After extraction, the swabs were 680 

removed from wells and discarded, the plates were placed into a lyophilizer, and the entire 681 

sample was dried down and then re-suspended in 200 µL 90% v:v ethanol:water. The plates were 682 

resealed and centrifuged at 2000 rpm for 10 minutes. The 100 µL aliquots of sample were then 683 

transferred onto a Falcon 96-well MS plate using a multichannel pipette, and each plate was 684 

immediately sealed with sealing film. The MS plates were centrifuged at 2000 rpm for 10 685 

minutes and stored at 2 °C until analysis.  686 

 687 

HPLC-MS analysis. The metabolomics analysis of samples was conducted using reverse phase 688 

(RP) high performance liquid chromatography mass spectrometry (HPLC-MS). The HPLC-MS 689 

analysis was performed on a Dionex UltiMate 3000 ThermoFisher Scientific high-performance 690 

liquid chromatography system (ThermoFisher Scientific, Waltham, MA) coupled to a Bruker 691 

impact HD qTOF mass spectrometer. The chromatographic separation was carried out on a 692 
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Kinetex C18 1.7 µm, 100Å UHPLC column (50 mm x 2.1 mm) (Phenomenex, Torrance, CA), 693 

held at 40 ºC during analysis. A total of 5 µL of each sample was injected. Mobile phase A was 694 

water, mobile phase B was acetonitrile, both with added 0.1% v:v formic acid. The solvent 695 

gradient table was set as follows: initial mobile phase composition was 5% B for 1 min, 696 

increased to 40% B over 1 min, then to 100% B over 6 min, held at 100% B for 1 min, decreased 697 

back to 5% B in 0.1 min, followed by a washout cycle and equilibration for a total analysis time 698 

of 13 min. The scanned m/z range was 80-2000 Th, the capillary voltage was 4500 V, the 699 

nebulizer gas pressure was 2 bar, the drying gas flow rate was 9 L/min, and the temperature was 700 

200 °C. Each full MS scan was followed by MS/MS using collision-induced dissociation (CID) 701 

fragmentation of the seven most abundant ions in the spectrum. For MS/MS, the collision cell 702 

collision energy was set at 3 eV and the collision energy was stepped 50%, 75%, 150% and 703 

200% to obtain optimal fragmentation for differentially sized ions of different sizes. The scan 704 

rate was 3 Hz. A HP-921 lock mass compound was infused during the analysis to carry out post-705 

processing mass correction. All of the raw data are publicly available at the UCSD Center for 706 

Computational Mass Spectrometry (111) (dataset ID: MassIVE MSV000080179).  707 

 708 

MS data analysis. The collected HPLC-MS raw data files were first converted from Bruker’s d to 709 

mzXML format and then processed with the open source OpenMS 2.0 software (88) in order to 710 

deconvolve and align each peak across different chromatograms (feature detection). The 711 

alignment window was set at 0.5 minutes, the noise threshold at 1000 counts, the 712 

chromatographic peak FWHM value at 20, and the mass error at 30 ppm. All of the peaks that 713 

were present in any of the blanks with S/N below 10:1 were removed from the final feature table. 714 

The number of features with corresponding MS/MS was as follows: Vioscreen study sample 715 
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cohort: 5144 total MS2 features; antibiotics study samples cohort: 8288 total MS2 features. The 716 

number of MS1 features is difficult to estimate exactly as it depends on feature detection settings 717 

and the number of samples, but it is typically about 4-5 fold greater depending on the sample. 718 

For all of the MS1 features detected across all samples, only ~1-5% are present in an individual 719 

sample. 720 

 721 

Chemical annotations were carried out by automatic matching fragmentation spectra to multiple 722 

databases using Global Natural Product Social Molecular Networking (GNPS) (89) and then 723 

examining the data at the MS/MS level by molecular networking (90). The goal is to retrieve 724 

spectra with identical and similar fragmentation patterns and combine them into consensus nodes 725 

and clusters, respectively. The consensus node spectra are then compared against public MS/MS 726 

libraries to provide molecular annotations (91). Further annotations could be suggested by 727 

examining the molecular network (90) (so called propagated annotations). Annotations obtained 728 

with precursor and MS/MS matching are considered level two annotations according to the 2007 729 

metabolomics standards initiative (92). All molecular networking analysis and annotations are 730 

available here: antibiotic use subset (93); types of plants subset (94), cell cultures of isolates (95) 731 

and fecal samples co-networked with the cell cultures (96). The raw data contain a significant 732 

number of abundant features originating from swab polymers. Therefore, selective background 733 

peak removal was carried out specifically for the polymer compounds originating from swabs 734 

that were used for the sample collection. The m/z shifts that correspond to the polymer repeating 735 

units (44.0262, 88.0524, 132.0786, 176.1049) were identified with GNPS m/z differences 736 

frequency plot. The network clusters that contained nodes with the corresponding mass 737 

differences were deemed to belong to polymers and all member nodes of the network clusters 738 
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were removed from the feature table (a total of 1632 features/nodes). Principal Coordinates 739 

Analysis (PCoA) using a Hellinger distance (97) matrix was used to confirm that the batch effect 740 

corresponding to the batches of swabs was mitigated prior to further analysis. To confirm 741 

putative annotations, authentic standards were purchased for the linoleic acid (LA; Spectrum 742 

Laboratory Products, Inc., USA), conjugated linoleic acid (CLA; mixture of 4 isomers: 9,11 and 743 

10,12 isomers, E and Z) (Sigma-Aldrich, USA), and selected antibiotics: tetracycline, 744 

oxytetracycline, and doxycyclin (Abcam Inc., USA). For level one identifications, each authentic 745 

compound was analyzed under identical experimental conditions and retention time and MS/MS 746 

spectra were compared with putatively annotated compounds. 747 

 748 

Selective feature detection. Selective feature extraction was performed with open source 749 

MZmine2 software (98). To separate closely eluting LA and CLA isomers as well as separate 750 

various N-acyl amides, crop filtering with RT range of 5.4-6.0 minutes and m/z range of 281.246 751 

- 281.248 was applied to all chromatograms. Mass detection was performed with a signal 752 

threshold of 1.0E2 and a 0.6 s minimum peak width. The mass tolerance was set to 20 ppm and 753 

the maximum allowed retention time deviation was set to 5 s. For chromatographic 754 

deconvolution, the baseline cutoff algorithm with a 5.0E1 signal threshold was used. The 755 

maximum peak width was set to 0.5 min. Similarly, the MS feature for reference compound 756 

stercobilin was extracted with a crop filter RT range of 2.0-4.0 minutes and m/z range of 757 

595.345-595.355. The stercobilin reference compound was used to assess variability of 758 

chromatographic retention times to ensure that the compounds of interest (LA and CLA in 759 

particular) retention times were correctly identified. After isotope peak removal, the peak lists of 760 

all samples were aligned within the corresponding retention time and mass tolerances. Gap 761 
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filling was performed on the aligned peak list using the peak finder module with 1% intensity, 10 762 

ppm m/z tolerance, and 0.05 min RT tolerance, respectively. After the creation and export of a 763 

feature matrix containing the feature retention times, exact mass, and peak areas of the 764 

corresponding extracted ion chromatograms, we added sample metadata to the feature matrix 765 

metadata of the samples.  766 

 767 

The selective feature extraction with the same settings has been performed for all of the detected 768 

compounds listed on the Figure 6A-I ( the m/z range crop filter window was set for 769 

corresponding m/z for each compound). 770 

 771 

Molecular Networking. Raw data files were converted to the .mzXML format using Bruker Data 772 

Analysis software and uploaded to the GNPS (https://gnps.ucsd.edu/) MassIVE mass 773 

spectrometry database (https://massive.ucsd.edu/). Molecular networking was performed to 774 

identify spectra shared between different sample types and to identify known molecules in the 775 

data set. All annotations are at level 2 according to the proposed minimum standards in 776 

metabolomics (92). The data were filtered by removing all MS/MS peaks within +/- 17 Da of the 777 

precursor m/z. MS/MS spectra were window-filtered by choosing only the top 6 peaks in the +/- 778 

50 Da window throughout the spectrum. The MS spectra were then clustered with MS-Cluster 779 

algorithm with a parent mass tolerance of 0.02 Da and a MS/MS fragment ion tolerance of 0.02 780 

Da to create consensus spectra (89). Further, consensus spectra that contained less than 4 spectra 781 

were discarded. A network was then created where edges were filtered to have a cosine score 782 

above 0.65 and more than 5 matched peaks. The edges between two nodes were kept in the 783 
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network if and only if each of the nodes appeared in each other's respective top 10 most similar 784 

nodes. The spectra in the network were then searched against GNPS spectral libraries. The 785 

library spectra were filtered in the same manner as the input data. All library matches were 786 

required to have a score above 0.7 and at least 6 matched peaks. Molecular networks were 787 

visualized and mined using the Cytoscape software (www.cytoscape.org/). 788 

 789 

Molecular networking-based propagation of annotations. The annotation of GPCR agonist  790 

compounds was not possible via direct library matching, as their spectra are not present in any 791 

MS libraries, but direct comparison with fragmentation patterns presented in (99) allowed us to 792 

establish these compounds’ identity with level 3 identification (92). Consequently, manual 793 

annotation of compounds was carried out in two steps. The exact mass of compounds and their 794 

MS/MS fragmentation spectra were matched to the reference spectra found in supplementary 795 

info of (99) (fig S4A). Compound m/z 611.5357 was identified in this fashion. In addition, 796 

commendamide (330.2640) and its analogue (m/z 344.2799) were identified by matching exact 797 

mass of the corresponding ion and by in silico prediction of the MS/MS fragmentation spectra 798 

with the CSI:FingerID (100) (fig S4B). For novel molecules that were found within clusters of 799 

compounds of interest, but were not described in the literature previously, the structure was 800 

postulated using annotation propagation from adjacent annotated nodes in the cluster as 801 

described in (89) by assessing differences in parent mass and fragmentation patterns. The key 802 

structure, m/z 387.322 has been annotated as N-3-OH-palmitoyl ornithine based on the exact 803 

mass and previous annotation (99) as well as analysis of fragmentation pattern to confirm 804 

structural moieties of fragments (fig S4C). The rest of the structural assignments have been 805 

propagated from that structure. The ornithine moiety has been determined to be present in each 806 
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structure (due to presence of the signature ion with m/z 115.09), and acylation of the hydroxyl is 807 

not possible due to insufficient mass of the structures; thus, the changing mass was postulated to 808 

correspond to different length of the alkyl substituent (fig 6, in the main text). 809 

 810 

Correlations of Metabolites with Metadata. We have investigated correlations between 811 

metabolites (especially those of interest, such as N-Acyl amides) and all of the categories in the 812 

metadata. The data were subsetted into the Vioscreen and Antibiotics cohorts and normalized 813 

using probabilistic quotient normalization (101).  In order to test the association of the 814 

metabolites to the categorical metadata fields we performed the Kruskal–Wallis test followed by 815 

Benjamini & Hochberg FDR correction to all metabolites. The significant metabolite-metadata 816 

associations (p-value adjusted < 0.05) were further connected to GNPS spectral library matches 817 

associating the MS1 feature to the MS2 precursor ion in a 10 ppm mass window and 20 seconds 818 

retention time window. The results are summarized in table S5. 819 

 820 

Data pretreatment for statistical analysis. A PCoA plot using Hellinger distance (distance matrix: 821 

Hellinger; grouping: HCA) was built with all samples in the subset; one sample was found to be 822 

an outlier and removed. The data were then filtered to remove features with near-constant, very 823 

small values and values with low repeatability using the inter-quartile range estimate. Detailed 824 

description of methodology is given in (102). The samples were normalized by sum total of peak 825 

intensities, an important step due to large variability of the fecal material load on different swabs. 826 

To reduce the effect of background signal and make the sum normalization appropriate, the 827 

subtraction of blank and polymer peak features was conducted prior to analysis, as described 828 
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above. The data were further scaled by mean centering and dividing by standard deviation for 829 

each feature. 830 

 831 

The data were split into two groups for downstream analysis.  Group one contained samples from 832 

individuals answering “More than 30” (n=41) and “Less that 10” (n=44) to the main American 833 

Gut Project survey question “In an average week, how many different plants do you eat?” Group 834 

two contained samples from individuals answering “antibiotic use within last week” (n=56) and 835 

“I have not taken antibiotics in the past year” (n=115) to the main American Gut Project survey 836 

question “I have taken antibiotics in the last ____.” for the Antibiotic history study, 837 

correspondingly.  838 

 839 

The resultant features tables were used as input for the Metabonalist software (103). Partial least 840 

squares Discriminant Analysis (PLS-DA) (62) was used to explore and visualize variance within 841 

data and differences among experimental categories. Random forests (104) (RF) supervised 842 

analysis was used to further verify validity of determined discriminating features.  843 

 844 

Expanded bloom assessment. The American Gut Project dataset now spans multiple-omics 845 

types, and include data that were unavailable during the analysis described in Amir et al. (14). To 846 

better understand how the blooming organisms impacted the samples in the American Gut, we 1) 847 

performed an additional set of 16S-based experiments; 2) cultured historical samples covering a 848 

range of bloom fractions, characterized their metabolites and sequenced the isolates; 3) 849 

performed shotgun metagenomics sequencing on the “high bloom” samples; 4) ran the set of 850 
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samples previously run for HPLC-MS (e.g., the plants and antibiotics cohorts) for shotgun 851 

metagenomics, and 5) ran the storage samples from (105) for shotgun metagenomics. The 852 

additional sequencing effort was to provide a basis to assess whether functional potential driven 853 

by the blooms was impacting any of the biological results discussed in the manuscript. The 854 

additional HPLC-MS work was to characterize the metabolites specific to the blooms to remove 855 

them from analysis. The additional sequence data generated from the American Gut samples 856 

were deposited in EBI under the American Gut accession (ERP012803), and the storage sample 857 

data under its accession (ERP015155).  858 

  859 

16S-based bloom experiments. Effect size calculations were computed prior to and following the 860 

removal of bloom reads using the procedure described by Amir et al., 2017 (84). The fraction of 861 

reads recruiting to blooms was included as a covariate. Effect sizes were assessed over Faith’s 862 

Phylogenetic Diversity (59), unweighted UniFrac (57) and weighted UniFrac (106). We then 863 

computed Pearson and Spearman correlations of the effect sizes, per metric, between the bloom 864 

and bloom-removed result (fig 2D, E). In addition to the effect size calculations, we also tested 865 

whether the bloom fraction was correlated to any metadata category and did not observe 866 

significant correlations. 867 

  868 

We then tested the removal of blooms from other studies in which room temperature shipping 869 

was not performed by retrieving a wide variety of human fecal studies from Qiita. UniFrac 870 

distance matrices were computed prior to and following bloom removal, followed by Mantel 871 

tests. The results of this procedure are outlined in table S4. 872 

  873 
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Finally, we correlated the relative intensities of the HPLC-MS data associated with the 874 

antibiotics and plants cohorts against the fraction of blooming reads. Critically, we observed a set 875 

of spectra that are significantly correlated (table S5) to this fraction. On annotation using 876 

molecular networking (discussed in detail the HPLC-MS section), we observed these metabolites 877 

to putatively be LysoPE, lysophospholipid (LPL), which has previously been associated with the 878 

release of colicin (107). These metabolites were removed from subsequent analyses. 879 

  880 

Culturing. Primary specimens (n=214) were selected from three plates based off of the median 881 

fraction of reads recruiting to the blooms across the plate, whether the primary specimen still 882 

existed, and as to gather samples from at least the US (n=116) and UK (n=73); additional 883 

countries were included in smaller sample sizes and include Australia (n=7), Germany (n=7), 884 

Canada (n=3), Croatia (n=2), Belgium (n=2), France (n=1), Austria (n=1), Sweden (n=1), and 885 

the Czech Republic (n=1). The bloom typically observed in these samples (and in the full AGP 886 

dataset) is an E. coli (ID: 04195686f2b70585790ec75320de0d6f from (84)), although a few of 887 

the other bloom sequences were represented at high read fraction as well. Samples were retrieved 888 

from -80°C and thawed on ice. The swab head was broken off into 500 µl sterile 1x Dulbecco's 889 

Phosphate-Buffered Saline and vortexed vigorously for 30 seconds. Serial dilutions from this 890 

initial stock were made including 1:10,000 and 1:1,000,000. 10µl of the 1:10,000 dilution were 891 

inoculated into 1.5 ml sterile Tryptic Soy broth (TSB, BD cat#2253534) in sterile 96-deep-well 892 

plates (community cultures, CC) and incubated overnight at 37°C on an orbital shaker at 500 893 

rpm. OD600 values above 0.1 (TSB controls measured ~0.08) were counted as positive growth. 894 

Samples with high bloom fraction tended to grow overnight in ambient conditions, samples with 895 

a low bloom fraction tended to not grow in these conditions (fig 2A). Additionally, 100 µl of 896 
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each dilution were plated onto Tryptic Soy agar using sterile glass beads and incubated overnight 897 

at 37°C. The following morning, a picture of the best dilution was captured and the most 898 

representative colony was selected from each plate and inoculated into 1.5 ml sterile TSB for 899 

overnight incubation as above (isolates, IS). The following morning, OD600 measurements were 900 

taken and the cultures were pelleted at 3,000 g for 5 min. The supernatant and cell pellets were 901 

stored at -20°C for metabolomic analysis and DNA extraction, respectively.  902 

  903 

Shotgun sequencing was performed on all isolates and community cultures using a 1:10 904 

miniaturized Nextera library prep with 1 ng gDNA input or up to 1 µl and a 15 cycle PCR 905 

amplification. Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng of each 906 

library (or 4 µl maximum) was pooled. The library was size-selected for 200-700 bp using the 907 

Sage Bioscience Pippin Prep and sequenced as a paired end 150 cycle run on an Illumina HiSeq 908 

2500 v2 in Rapid Run mode at the UCSD IGM Genomics Center. Sequence processing including 909 

assembly performed as in the metagenomic processing section below with the exception that “--910 

meta” was not used with SPAdes (108), and read binning against the resulting contigs was not 911 

performed. For each isolate, contigs with abnormally high or low coverage as defined by the 1.5 912 

× IQR rule were dropped. The characterization of the metabolites from the supernatant using 913 

HPLC-MS is discussed in the HPLC-MS section above. 914 

  915 

Following assembly of the draft genomes, taxonomic assessment by Kraken (109) revealed that 916 

of the 119 successfully sequenced colony isolate cultures, 95 matched the bloom organisms 917 

identified by Amir et al., 2017. Compellingly, 70 of these isolate genomes contained exact 16S 918 
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sequence matches to a bloom organism identified by (84), including 65 of which matched the 919 

dominant E. coli bloom in the American Gut (table S4).   920 

  921 

The read data for the isolates were then assessed for predicted biosynthetic gene clusters (BGCs). 922 

We used biosyntheticSPAdes (110) to analyze BGCs in the assembly graph of individual 923 

genomes. Below we focus on the longest BGCs that are particularly difficult to reconstruct based 924 

on ad hoc analysis of contigs and reveal their variations (that likely translate into variations of 925 

their natural products). Some of the reconstructed long BGC are ubiquitous (shared by many 926 

isolates, albeit with some variations), while others are unique, e.g., present in a single or small 927 

number of isolates. We identified BGCs, representing in the alphabet of their domains (table S4), 928 

and uncovered variations in their sequence across multiple isolates. Specifically, a ubiquitous 929 

BGC similar to the elusive peptide-polyketide genotoxin colibactin and a unique surfactin-like 930 

BGC. Colibactin triggers DNA double-strand breaks in eukaryotic cells (111, 112) and induces 931 

cellular senescence and metabolic reprogramming in affected mammalian cells (113). Of the 11 932 

samples containing the longest colibactin-like BGC, 10 of them contained the exact E. coli 933 

bloom 16S sequence described above; the 11th isolate was actually a canine fecal sample plated 934 

alongside human (as the AGP allows participants to submit pet samples). 935 

  936 

Although colibactin is frequently harbored by various E. coli strains, the variations of colibactin 937 

BGCs across various isolates have not been studied before. Genomic analysis revealed wide 938 

variations in colibactin-like BGCs suggesting that various strains produce related but not 939 

identical variants of natural products (114). These variations may give rise to the suite of 940 

LysoPE-associated spectra identified between the 16S and HPLC-MS datasets. 941 
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  942 

Shotgun sequencing of the high bloom and storage samples. Previously extracted DNA from the 943 

“high bloom” samples used for culturing was obtained, as was previously extracted DNA from 944 

Song et al. (105). Shotgun sequencing libraries from a total of 5 ng (or 3.5 µl maximum) gDNA 945 

was used in a 1:10 miniaturized KAPA HyperPlus protocol with a 15 cycle PCR amplification. 946 

Libraries were quantified with PicoGreen™ dsDNA Assay Kit and 50 ng (or 1 µl maximum) of 947 

each library was pooled. The pool was size-selected for 300-700 bp and sequenced as a paired 948 

end 150 cycle run on an Illumina HiSeq 2500 v2 in Rapid Run mode at the UCSD IGM 949 

Genomics Center. Sequence processing including assembly was performed as in the 950 

metagenomic processing section below. 951 

 952 
Functional assessment of conjugated and non-conjugated linoleic acid. To investigate the 953 

metabolic potential of gut microbiome for producing conjugated linoleic acid from linoleic acid, 954 

we estimated the abundance of linoleic acid isomerase (LAI) in the fecal metagenome. We 955 

focused this investigation on the “plants” cohort, which were samples selected to maximize the 956 

difference between the number of types of plants metadata category as discussed in the main 957 

text. First, we translated the assembled metagenomes to metaproteomes using Prodigal gene 958 

prediction software. To map LAI to these metaproteomes, we used a representative LAI protein 959 

sequence (UniProt: D2BQ64), which was matched against UniProtKB (via 960 

https://www.ebi.ac.uk/Tools/hmmer/) for multiple sequence alignment (MSA). The resulting 961 

MSA file in clustal format was then used to generate a hidden Markov model (HMM) profile for 962 

LAI using hmmbuild in HMMER software (115). Subsequently, we mapped the resulting HMM 963 

profile to sample metaproteomes using hmmsearch with an E-value threshold of 10E-5. We 964 

calculated abundances of LAI per sample based on abundance (coverage x length) of LAI 965 
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containing contigs in each sample, normalized to total sample biomass and performed linear 966 

regression between LAI abundances and bloom fraction. We did not note any correlation 967 

between metabolic potential of gut metagenome to produce LAI and the fraction of blooming 968 

bacteria (samples with no LAI hits were removed from this analysis). Similarly, there was no 969 

correlation between CLA abundances and bloom fraction in the samples. These results suggest 970 

that our report on the differential abundance of CLA in subjects with different dietary practices 971 

(with respect to the number of different types of plants consumed) is unlikely to be confounded 972 

by the presence of blooming bacteria.  973 

 974 

 975 
Storage sample assessment. Metagenomic reads from the storage samples were mapped to the 976 

169 isolate assemblies. We then ran model comparison tests on each to determine which 977 

mappings were significantly different between frozen samples and samples left out at ambient 978 

temperatures for various periods of time.  Using the ‘lme’ package (116) in R (v3.3.3. R Core 979 

Team 2017), linear mixed effects models were applied to the abundances, with individual treated 980 

as the random effect.  Mappings were considered to be significantly associated with temperature 981 

if the model was significantly improved (ANOVA p<=0.05) by incorporating a fixed effect of 982 

temperature.  Seven mappings to isolates were found to be significantly increased in samples 983 

stored in ambient temperatures compared to frozen samples in both storage studies, of which 3 984 

contained the 16S of the dominant E. coli bloom in the AGP samples, and 2 contained the 16S 985 

from other blooms recognized by (84). 986 

 987 
Shotgun sequence processing. Raw FastQ files were processed using Atropos v1.1.5 (117) to 988 

remove adapters and low-quality regions. Putative human genome contaminations were 989 
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identified and removed by using Bowtie2 v2.3.0 (118) with the “--very-sensitive” option against 990 

the human reference genome GRCh37/hg19. 991 

 992 
Sequences were assigned taxonomy using Kraken v1.0.0 (109) against the “standard” database 993 

built following the Kraken manual, which contains all complete bacterial, archeal, and viral 994 

genomes available from NCBI RefSeq as of Aug. 3, 2017. Results were processed using Bracken 995 

v1.0.0 (119) to estimate the relative abundance of species-level taxa.  996 

 997 
Metagenome sequencing data were assembled using SPAdes v3.11.1 (108) with the “--998 

meta” flag enabled. Contigs ≥ 1 kb in length were retained and fed to the prokaryotic genome 999 

annotation pipeline Prokka v1.12 (120). putatively individual genomes were inferred using 1000 

MaxBin2 v2.2.4 (121). 1001 

 1002 
In parallel, contigs were sheared into 200-bp fragments and taxonomy was assigned using 1003 

Kraken (see above). For each contig, the most assigned taxon at each taxonomic rank and the 1004 

proportion of sequences assigned to it was inferred. 1005 

 1006 
A total of 3725 genome bins were identified from 677 out of 780 AGP metagenomes, with 5.50 1007 

± 4.05 bins per sample, and a maximum bin number of 30. Bins with completeness < 50% were 1008 

dropped, leaving 1029 bins from 464 samples (2.22 ± 1.97 bins per sample, maximum bins = 1009 

19). 1010 

 1011 

Filtering Bacterial Blooms for Metabolomics Analysis. To assess and account for the impact 1012 

of the metabolites contributed by these organisms, we have performed HPLC-MS analysis of 1013 

cultures of blooming organisms to establish possible contributions, as described above. The raw 1014 
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data are publicly available at the UCSD Center for Computational Mass Spectrometry 1015 

(http://massive.ucsd.edu/, dataset ID: MassIVE MSV000081777). It was found that there is a 1016 

negligible overlap of the bloom-associated metabolites with the compounds detected in AGP 1017 

samples (fig 2B). Furthermore, we have verified that none of the compounds discussed in this 1018 

work (LA, CLA, compounds on Fig 6A-I) are present in these bloom cultures. The main 1019 

organism implicated in bloom was determined to be E. coli, as described earlier and MS data 1020 

corroborate these findings (fig 2C). 1021 

 1022 

Considering that the metabolites resulting from microbial activity in cultures can differ 1023 

significantly from those in vivo (e.g. many of the metabolites could originate not from de novo 1024 

synthesis, but rather from microbial modifications of external compounds that are not present in 1025 

media, e.g. from the host), we also explored associations of metabolites in AGP metabolomics 1026 

samples and blooms. Spearman rank correlation analysis of the fraction of 16S reads in a sample 1027 

reporting as bloom to metabolites observed in the same samples revealed several features that 1028 

correlate significantly (table S5). There exists a significant overlap between the Antibiotics and 1029 

Vioscreen studies subsets, indicating potential common origin of these features.  The strongest 1030 

correlation was found for the feature m/z 480.3106 with multiple bloom organisms (𝝆^2 > 0.25 1031 

for E. coli at p < 1e-40). This feature was found to also significantly correlate with the principle 1032 

coordinates of the PCoA, with and without blooms in the UniFrac matrices for both subsets. The 1033 

tentative annotation of this feature is lysoPE, a lysophospholipid (LPL). The LPLs production in 1034 

vivo is a result of phospholipase A enzymatic activity associated with Gram-negative bacteria. It 1035 

is known that lysoPE is essential for release of colicin (107). Colicin (by itself not detectable 1036 

with the MS methodology in this study due to very high molecular mass) is a bacteriocin related 1037 
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to microbial warfare and is known to be produced by E. coli, the major bloomer in AGP. It can 1038 

be suggested that the blooming of an organism is related to attempting to kill competitors to 1039 

maximize nutrient availability. Importantly, removal of all of the features associated with bloom 1040 

does not alter the metabolomics results at all, which indicates that all of the observed biological 1041 

trends reported here are not related to blooms.   1042 

 1043 

Mental health in the American Gut Project. From AGP cohort, we selected subjects who 1044 

endorsed a mental health disorder (depression, schizophrenia, PTSD, and/or bipolar disorder). 1045 

This resulted in 1,140 subjects. 636 subjects endorsed at least one of the exclusion criteria 1046 

(antibiotic use in the last year, IBD, C. difficile infection, pregnancy, Alzheimer’s, anorexia or 1047 

bulimia, history of substance use disorder, epilepsy or seizure disorder, kidney disease, 1048 

phenylketonuria). Out of the remaining 504 subjects, 319 did not provide information regarding 1049 

country of residence, hence forming a case cohort of 185 subjects. The remaining samples were 1050 

further filtered down to 125 samples to include only high quality fecal microbiome data (at least 1051 

1,250 sequences/sample) at a single time point per subject. For those cases, we created a 1:1 1052 

matched sample of patients and non-psychiatric comparison (NC) participants based on age (±5 1053 

years), BMI, history of diabetes, smoking frequency, country of residence, census region (if in 1054 

US), and sequencing plate. For each of the cohorts we calculated beta-diversity distance matrices 1055 

using Bray-Curtis dissimilarity and weighted UniFrac. On resulting matrices we ran pairwise 1056 

PERMANOVA with 999 permutations between “cases” (people who reported mental illness) 1057 

and NCs (out matched control dataset). Differential abundance testing was performed using 1058 

permutive mean difference test at 10,000 permutations, with discrete FDR (122) correction at 1059 

alpha=0.1. 1060 
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Figure 1. Population characteristics. (A) Participants across the world have sent in samples to 1556 

the American Gut, although the primary geographic regions of participation are in North 1557 

America and the United Kingdom; the report a participant receives is depicted. (B) The primary 1558 

sample breakdown for subsequent analyses. Red denotes reasons samples were removed. (C) 1559 

Between the two largest populations, the US (n=6,634) and the UK (n=2,071), we observe a 1560 

significant difference in alpha diversity. (D) In a meta-analysis, the largely industrialized 1561 

population that makes up the American Gut exhibits significant differential abundances to non-1562 

industrialized populations.  1563 

 1564 

Figure 2. Blooms and effect sizes. (A) The fraction of 16S reads that recruit to bloom reads 1565 

defined by Amir et al. 2017 is strongly associated with the likelihood for microbial growth under 1566 

aerobic culture conditions on rich media. (B) Molecular network of the metabolites observed in 1567 
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the supernatant from cultures (n=217) derived from fecal samples. The nodes in red (n=239) are 1568 

metabolites associated with E. coli. (C) Overlap of metabolites between AGP samples and 1569 

blooms.  (D) Unweighted UniFrac effect sizes. The inset shows the correlation of effect sizes 1570 

when including or excluding the bloom 16S reads (Pearson r=0.91, p=3.76x10-57). (E) Weighted 1571 

UniFrac effect sizes. The inset shows the correlation of the effect sizes when including or 1572 

excluding bloom 16S reads (Pearson r=0.42, p=1.71x10-6); the outlier is the 16S bloom fraction 1573 

of the sample. 1574 

  1575 

Figure 3. OTU and beta-diversity novelty. (A) The AGP data placed into the context of extant 1576 

microbial diversity at a global scale. (B) A phylogenetic tree showing the diversity spanned by 1577 

the AGP, and the HMP in the context of Greengenes and the EMP. (C) sOTU novelty over 1578 

increasing numbers of samples in the AGP; the AGP appears to have begun to reach saturation 1579 

and is contrasted with (D) Yatsunenko et al. 2012 which unlike the AGP had extremely deep 1580 

sequencing per sample. (E) The minimum observed UniFrac distance between samples over 1581 

increasing numbers of samples for the AGP and the HMP; inset is from 0-500 samples. (F) An 1582 

AGP “trading card” of an sOTU of interest (shown in full in fig S2). 1583 

 1584 

Figure 4. Temporal and spatial patterns. (A) 565 individuals had multiple samples. Distances 1585 

between samples within an individual shown at 1 month, 2 months, etc out to over 1 year; 1586 

between subject distances shown in “BSD.” Even at one year, the median distance between a 1587 

participant’s samples is less than the median between participant distance. (B) Within the US, 1588 

spatial processes of sOTUs appear driven by stochastic processes as few sOTUs exhibit spatial 1589 

autocorrelation (Moran’s I) on the full dataset or partitions (e.g., participants older than 20). (C) 1590 
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Distance-decay relationship for Bray-Curtis dissimilarities between subject pairs that are within 1591 

100km (great-circle distance) radius of one another (Mantel test; r=0.036, adjusted p=0.03). Inset 1592 

shows the largest radius (i.e., the contiguous US). Darker colors indicate higher-frequency bins. 1593 

Dashed lines represent fits from linear models to raw data. (D) Mantel correlogram of estimated 1594 

r coefficients, significance of distance-decay relationships, and radius (x-axis). Red points 1595 

represent neighborhood sizes that were significant (adjusted p-values < 0.05). (E) Characterizing 1596 

a large bowel resection using the AGP, the EMP, a hunter-gatherer population, and ICU patients 1597 

in an unweighted UniFrac principal coordinates plot. A state change was observed in the 1598 

resulting microbial community. The change in the microbial community immediately following 1599 

surgery is the same as the distance between a marine sediment sample and a plant rhizosphere 1600 

sample.  1601 

 1602 

Figure 5. Diversity of plants in a diet. (A) Procrustes analysis of fecal samples from (n=1,596) 1603 

individuals using Principal Components of the Vioscreen FFQ responses and Principal 1604 

Coordinates of the unweighted UniFrac distances (M2=0.988) colored by diet; Procrustes tests 1605 

the fit of one ordination space to another. PCA shows grouping by diets such as Vegan 1606 

suggesting self-reported diet type is consistent with differences in micro and macro nutrients as 1607 

recorded by the FFQ, however these dietary differences do not explain relationships between the 1608 

samples in 16S space. (B) The full AGP dataset including skin and oral samples through 1609 

unweighted UniFrac and Principal Coordinates Analysis highlighting a lack of apparent 1610 

clustering by diet type. (C) Dietary conjugated linoleic acid levels as reported by the FFQ 1611 

between the extremes of plant diversity consumption, and (D) the observed levels of CLA by 1612 

HPLC-MS. (E) Differential abundances of sOTUs (showing the most specific taxon name per 1613 
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sOTU) between those who eat fewer than 10 plants per week vs. those who eat over 30 per week. 1614 

(F) The molecules, linoleic acid (LA) and conjugated linoleic acid (CLA) (only trans-, trans- 1615 

isomers are shown) were found to comprise the octadecadienoic acid found to be the key feature 1616 

in this difference in number of plants consumption. 1617 

 1618 

Figure 6. Molecular novelty in the gut microbiome. (A-I) Molecular sub-network of N-acyl 1619 

amides. Cluster/nodes of microbially-derived G protein-coupled receptor agonistic molecules 1620 

detected in human fecal samples are shown. Molecules B, G and H have been described 1621 

(compounds 1, 2 & 4b (38) and commendamide (123)); molecules A, C, D, E and I are 1622 

previously not reported (proposed structures are shown). (J) Compound occurrence frequency 1623 

plot. Examples of compounds originating from food (piperine, black pepper alkaloid), host 1624 

(stercobilin, heme catabolism product), bacterial activity (lithocholic acid, microbially-modified 1625 

bile acid) or exogenous compounds such as antibiotics (rifaximin) or other drugs (lisinopril, high 1626 

blood pressure medication) are shown. (K-N) Alpha and beta-diversity assessments of antibiotic 1627 

and plants cohorts; insets depict minimum observed beta-diversity over increasing samples.  1628 

 1629 
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Supplementary Figures: 1637 

Figure S1. Workflow and population scale analyses. (A) Heatmap of income levels from the US 1638 

Census and American Gut participant locations. (B) Sample flowchart for what sample sets 1639 

correspond to each analysis. (C) Using PLS-DA we observed separation between US (n=6,634) 1640 

and UK (n=2,071) fecal samples. (D) We performed a Principal Coordinates analysis comparing 1641 

children over the age of 3 and adults from industrialized (n=4,643 AGP samples, n=4,927 1642 

samples total), remote farming (n=131), and hunter-gatherer (n=30) lifestyles.  1643 

 1644 

Figure S2. Trading cards and LS’s samples compared to ICU patients and AGP participants and 1645 

diet state change analysis. (A) Unweighted UniFrac distance distributions for the sample 1646 

immediate prior to surgery vs. all ICU fecal samples, and distances of the sample immediately 1647 

following surgery vs. all ICU fecal samples (Kruskal Wallis H=79.774, p=4.198x-19). (B) Same 1648 

as panel (A) except comparing against all AGP fecal samples (Kruskal Wallis H=8117.734, 1649 

p=0.0). (C) The median distances of each sample in Larry’s longitudinal dataset compared to 1650 

both ICU and AGP. The last pre-surgery sample is on day 25 and the first post-surgery sample is 1651 

day 27. (D) A principal coordinates analysis of UniFrac distances of the American Gut Project, 1652 

samples from the “extreme” diet study by David et al. (85), and the Earth Microbiome Project. 1653 

No obvious state change by the diet of the participants in David et al. is observed. 1654 

 1655 

Figure S3. Dietary levels of linoleic acid based on validated food frequency questionnaire 1656 

responses, and the detected linoleic acid by mass spectrometry did not differ significantly 1657 

between groups consuming few or many types of plants per week.  1658 

 1659 
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Figure S4. Metabolomic identification and annotation. (A) Manual annotation via comparison of 1660 

experimental MS fragmentation patterns to those given in (99). Top panel: reference spectrum 1661 

for the “Compound 2” in (99); bottom panel: experimental MS/MS spectrum for the parent ion 1662 

m/z 611.5357. The compound is annotated as 3-(myristoyloxy)palmitoyl lysine. (B) In silico 1663 

annotation using CSI:FingerID (100) for the ion with m/z 330.2640. Top panel: experimental 1664 

fragmentation pattern explained by the putative fragmentation tree; bottom panel: the possible 1665 

candidate structures ranked by match %. The top structure with 71.02% match corresponds to 1666 

commendamide. (C) Manual annotation via comparison of experimental exact mass to that of 1667 

identified compound in (100), N-3-OH-palmitoyl ornithine. The peaks in experimental MS/MS 1668 

spectrum are examined and compared to theoretical fragments that would result from breaking 1669 

bonds in the proposed structure. The structure is deemed to be consistent with the N-3-OH-1670 

palmitoyl ornithine annotation. 1671 

 1672 

Supplemental Tables: 1673 

Table S1. Summary of sample numbers and type in the American Gut other studies, sample 1674 

distributions by country and territory, sample distributions by US state, US participant 1675 

demographics and per sequencing round sample accessions in EBI. 1676 

 1677 

Table S2. American Gut data dictionary, proportion of responses per AG survey question that 1678 

are represented as a single question; multiselect responses were omitted as these are stored in the 1679 

metadata as per response type, informal dietary questions and correlations to the food frequency 1680 

questionnaire, effect size results without bloom sOTUs, variable mapping with Falony et al. 2016 1681 

Science. 1682 
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 1683 

Table S3. sOTUs relevant to the balance analyses, and summary of differentially abundant taxa 1684 

in UK cohort (negative effect size indicated the taxon is more prevalent in control (NC) 1685 

subjects). 1686 

 1687 

Table S4. Application of the filter for blooms to other human fecal studies which were not 1688 

subjected to room temperature shipping, taxonomy of the draft isolate genomes, the specific 1689 

bloom 16S sOTUs observed, and ubiquitous colibactin-like biosynthetic gene clusters (top) and a 1690 

unique surfactin-like biosynthetic gene cluster observed in the bloom isolates. 1691 

 1692 

Table S5. A set of molecular features which appeared to significantly correlate to the bloom 1693 

fraction, and Kruskal–Wallis tests for metabolites in the Antibiotics and Vioscreen cohorts of 1694 

samples. 1695 

 1696 

 1697 
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