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Introduction

A long-standing question in evolutionary biology is whether phenotypic plasticity influences
adaptive evolutionary change (e.g. Waddington 1961; Price et al. 2003; Ghalambor et al. 2007;
Lande 2009; Wund 2012). The same genotype can produce different phenotypes in response to
different environments, but whether such plasticity constrains or facilitates evolutionary change
remains an unresolved and controversial problem (Ghalambor et al. 2007). Theoretical models to
date have made diverse predictions on the role of plasticity in evolutionary divergence (e.g.
Ancel 2000; Paenke et al. 2007; Thibert-Plante and Hendry 2011), and empirical studies have
largely been limited to retrospective approaches that infer the role of plasticity long-after
populations and species have diverged (e.g. Losos et al. 2000; Wund et al. 2007; Scoville and
Pfrender 2010). Field and lab studies that combine transcriptomic methods with recently
diverged population comparisons provide a potentially powerful framework for quantifying
patterns of plasticity for large numbers of molecular phenotypes within a generation, and how
these phenotypes evolve across generations in response to either natural or artificial selection
(e.g. Yampolsky et al. 2012; Ghalambor et al. 2015; Huang and Agrawal 2016). However, the
high dimensionality of transcriptomic data imposes some computational challenges when
attempting to infer the role of various evolutionary processes.

In Ghalambor et al. (2015) we reported rapid evolution of gene expression following
colonization of a novel environment, and argued that non-adaptive plasticity resulted in stronger
directional selection on a subset of genes. Specifically, we compared population differences in
the brain transcriptomes of guppies (Poecilia reticulata) reared in a common garden one year
after experimentally translocating guppies from streams with predators to replicate novel streams
lacking predators. We focused on a subset of transcripts that were concordantly differentially
expressed (CDE), in that they exhibited parallel divergence in the introduction populations and
became more like a natural population lacking predators. We argued that these genes most likely
evolved in response to selection, rather than by chance alone. We then examined the direction of
plastic changes in this subset of genes when the source population was reared in the absence of
predator cues and compared it to the direction of evolutionary change in the introduction
populations. We found that the direction of plastic changes was largely in the opposite direction
to the parallel evolved changes observed between the source and introduction populations. Such
results suggested that genes exhibiting non-adaptive plasticity in a novel environment would be
under stronger directional selection, whereas those exhibiting adaptive plasticity would be under
weaker directional selection. In support of these conclusions, we designed custom permutation
tests to generate null distributions against which to compare the observed data because chance
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fluctuations also would create negative relationships between plasticity and divergence. We
based our conclusions on four lines of evidence or criteria: (1) the experimental data had a
greater number of CDE transcripts than the permuted datasets; (2) the number of transcripts that
diverged in opposite directions in the introduction populations (non-CDE) were not greater in the
experimental data than in permuted datasets; (3) the correlation between divergence and
plasticity was more negative in the experimental data than in permuted datasets; and (4) the
number of CDE transcripts with plasticity and divergence in opposite directions was larger than
in permuted datasets. Based on these criteria, we concluded the observed patterns were unlikely
to have arisen by chance alone.

Two manuscripts have postulated alternative simple models that partially replicate these
results without invoking a role for natural selection. If these results matched our experimental
data, such models would cast doubt on our interpretation that natural selection produced the
observed patterns. Specifically, Mallard et al. (2018) simulated transcriptional changes based on
chance fluctuations, and van Gestel and Weissing (2018) posited a single regulatory change
underlying population divergence of the set of CDE transcripts. Here, we expand on the analyses
reported in Ghalambor et al (2018) in response to these manuscripts. Specifically, by exploring
the details of these proposed alternatives, we argue that neither of these simple models replicates
key features of the experimental data. In doing so, we bolster our original argument that natural
selection against non-adaptive plasticity characterized the earliest stages of evolutionary
divergence in the novel environments.

Genetic drift model does not reproduce observed distributions

Mallard et al. (2018) claim their simulations can reproduce the results of Ghalambor et al
(2015), however, as they acknowledge and we demonstrate, their claims fall short of meeting all
four key criteria upon which the Ghalambor et al. (2015) results are based. Specifically, the
simulations presented in the main text of Mallard et al (2018) do not account for criteria (1), and
hence are irrelevant to consider. The simulations in their supplemental material require that
parameter sets only meet criteria (1), (3), and (4) to be considered ‘significant’ — which forms the
basis of their Supplemental Figure S3 — yet still do not consider criterion (2). We adapted their
code to identify parameter sets that also meet criterion (2), (i.e. parameter sets that do not have
more transcripts that diverged in opposite directions from each other in the two introduction
populations (non-CDE transcripts) than in the permuted datasets). Many combinations of
between-population and within-population variation yield simulated datasets in which both CDE
and non-CDE transcripts exceeded the number in permuted datasets. Had our original dataset
shown more non-CDE diverging transcripts than expected by chance, we would have concluded
that random processes such as genetic drift had enabled extensive divergence in our introductory
populations. Because only CDE genes were over-represented compared to the permuted datasets,
we concluded that selection (both indirect and direct) was likely responsible for much of the
divergence in our dataset. Ghalambor et al. (2018) report that only 26/400 parameter sets meet
all four criteria, a small fraction of the parameter sets plotted in the comparable figure in Mallard
et al (2018) that ignores essential criteria.

We next address Mallard et al.’s (2018) claim that the experimental data from Ghalambor
et al. (2015) match their simulated distributions (Figure S4 in Mallard et al.). As above, we
modified their code to represent the 26 parameter sets that met all four criteria. We compared
two aspects of the distributions: (a) the total number of CDE genes (Figure 1A), and (b) the
distribution of the between-population divergence to within-population divergence. In contrast to
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Mallard et al.’s (2018) assertion, very few parameter sets that meet all four criteria (Figure 1B,
real data in green vs. simulated data in blue) have distributions consistent with the real data. In
contrast, a large number of the parameter sets that do not meet all four criteria show substantial
overlap (Figure 1c-real data in green vs. simulated data in blue).

In summary, only a tiny subset of the simulations outlined in Mallard et al. (2018)
replicate the results from Ghalambor et al. (2015), but these cases are rare enough to be
consistent with the permuted datasets that we used to draw all of our inferences. Thus, we
conclude that the simulated datasets presented by Mallard et al. (2018) actually support, rather
than refute, our conclusions that chance fluctuations are unlikely to have generated the observed
patterns. For these reasons, we stand by our original analyses. We also strongly advocate for
permutation-based approaches as in Ghalambor et al. (2015) rather than simulations for
transcriptome analyses because permutations preserve the true distributions and covariances in
the data.

One regulatory change does not reproduce correlation structure observed in data

van Gestel and Weissing (2018) claim the results in Ghalambor et al. (2015) could be
alternatively explained by a single potentially random regulatory change that mediated all the
differential expression patterns in the CDE genes. To empirically test this assertion, we
performed additional analyses to estimate the minimum number of changes and dimensionality
within our data. If CDE genes diverged due a single regulatory change, we predicted all 94 CDE
genes from Ghalambor et al. (2015) would be highly correlated with each other. Visualizing the
correlations in our experimental data shows that many of our CDE transcripts are uncorrelated
(Figure 2), although a few small sets of correlated genes are evident. We further examined
correlations among all transcripts in our dataset (differentially expressed and not) using a
weighted gene co-expression network analysis (Langfelder and Horvath 2008). This data-driven
approach demarcated modules of highly correlated genes, and we assessed the distribution of
CDE genes across these modules. If multiple regulatory changes were involved, we predicted
CDE genes would be distributed across modules, whereas CDE genes would be confined to a
single module if a single regulatory change caused the population differences. We found CDE
genes were in fact distributed across modules, roughly in proportion to module size (Figure 3).
Although these results do not identify the exact number of regulatory changes in these rapidly
diverging populations, they do implicate multiple regulatory changes.

To further corroborate our findings, we used simulations to estimate the lowest pairwise
correlation between genes consistent with van Gestel and Weissing’s (2018) proposal that CDE
population differences were, in fact, due to a single shared modulator. We based our simulations
on the proposed model (depicted in Figure 4) in which the mRNA levels of transcripts A and B
both depend on the same hormonal regulator. In this model, all population differences in the
transcripts are due to the population differences in the hormone. Importantly, these transcripts
have other regulators (and noise) that do not vary among population; these other sources of
regulation will decrease the pairwise correlations between transcripts. For our simulated datasets,
we posited the parameter w, indicating how extensive the impact of the shared hormonal
regulator is on abundance of transcripts, within the range 0.05 to 0.75, and varied the parameter /
between 0.75 and 0.95 to indicate how closely hormone levels tracked group. We matched our
experimental design as far as number of individuals in each group (population-rearing condition
combination). We randomly selected group differences calculated from each of our CDE
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transcripts to set the mean for each group, multiplying the mRNA differences by factors ranging
from 1 to 3 to account for decay in group differences due to noise and unexplained variance.

We sampled 600 (w > 0.5) or 6000 (w < 0.5) transcripts that shared the same hormonal
regulator from a normal distribution, with means determined by the model and standard
deviations determined by sqrt(1-42) for the hormone levels or sqrt(1-w?) for the transcripts (i.e.
the unexplained variances for each parameter represented by the curved arrows in Fig. 4). We
first assessed whether the simulated transcripts each showed concordant differential expression,
accepting transcripts as CDE if t-tests for individuals from contrasting populations HP(source)-
LP(natural low predation), HP(source)-Introl(introduction 1), and HP(source)-
Intro2(introduction 2) raised in non-predator conditions were each significant at p = 0.05 level.
For the first 94 of those simulated transcripts that met the CDE criteria, we calculated the
pairwise Pearson correlation matrix of all transcripts across all individuals. The results of these
simulations are shown in Figure 5, and highlight the discrepancy between the results of the
simulations with the observed distribution of correlation strength (i.e. the absolute values of the
pairwise correlations among CDE transcripts- shown as a green line in Figure 5).

In summary, our complementary correlation analyses demonstrate that numerous
regulatory changes give rise to the 94 CDE genes in Ghalambor et al. (2015). Our data are not
consistent with the proposal by van Gestel & Weissing (2018) that one or a very small number of
changes underlie the broad patterns in the dataset. Thus, in combination with statistical tests
comparing the divergence in gene expression compared to putative neutral markers (see
Extended Data Table 1 in Ghalambor et al. 2015), strong evidence suggests that selection, rather
than random processes like drift, were responsible for generating rapid and adaptive changes in
gene expression.
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Figure 1: The distribution of the data from Ghalambor et al. (2015) matches only a fraction of the
Mallard et al. (2018) simulations that meet all four criteria and matches a much larger number of
parameter sets that do not replicate all four criteria. (A) Each dot represents the number of CDE
genes predicted from simulations with a single set of parameters. Many of the simulations
predicted much larger numbers of CDE transcripts than the 94 found in Ghalambor et al. (2015),
marked by the green horizontal line, suggesting that the observed data do not come from a
similar distribution. Not shown are the many simulations with non-matching parameters that
predicted CDE numbers greater than 600. (B) We replot the distributions presented in Mallard et
al. (2018) figure S4 to accurately depict the distributions of all simulations that met the four
criteria (shown in blue) and (C) those that failed to meet at least one criterion (shown in red).
Each curve represents the >30,000 genes from one simulation, summarizing the ratios calculated
for each gene of the average group difference to the average variation around the mean within
each group. Although all genes within any simulation share model-based average between- and
within-population standard deviations, some genes will by chance have higher or lower values of
this ratio, producing the spread in these curves. Note, the Mallard et al. (2018) figure appears
very different because they plotted distributions from Y4 of the simulations, they overlaid red and
blue curves, and they color-coded curves blue that failed criterion 2. The green curves represent
observed values for the HP population and the two Introduction populations, as calculated by
Mallard et al (2018). Note that a small subset of the 26 simulated curves plotted in panel B
(simulations that met all four criteria, blue) have a reasonable match to the distribution of the
original data (green). In contrast, a large number of curves that failed to recreate one or more
criteria (panel C, red) overlap with the distributions from the original data (green).
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Figure 2: Correlation structure of CDE transcripts indicates numerous sets of strongly co-
regulated transcripts. Each box represents a pairwise Pearson correlation, color-coded by
strength as in the legend on the right. Transcript order was determined by hierarchical clustering
to best visualize sets of likely co-regulated transcripts. Blocks of transcripts that are strongly
correlated are visible along the diagonal. We suggest that these blocks likely share regulatory
elements, and that some of these transcripts might have evolved due to indirect selection on
correlated transcripts. The large number of very low correlations argue against a single causal
modulator underlying divergence in all CDE transcripts.
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Figure 3: Frequency histogram showing WGCNA results. The thirteen modules calculated from
the dataset using WGCNA are arranged by size (i.e. the total number of genes within each
module, listed on the x-axis). The y-axis depicts the number of CDE genes within each module.
Note that the CDE genes are spread across 8 well-defined modules, and nearly half the genes are
not strongly associated with any module.
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Figure 4: Simplified model used for simulating the relationship posited by van Gestel &
Weissing (2018). The model postulates that group differences in all CDE genes (here, two are
depicted, named DE1 and DE2, but simulations included up to 6000 transcripts) are due to
shared reliance on an underlying regulator, here named ‘hormone’ for simplicity. The model
predicts hormone levels in each of the 34 individuals in the dataset based on the group means
from the original CDE transcripts for each population and rearing condition. We then estimate
transcript abundance of all the dependent transcripts based on those hormone levels and
transcript-specific noise (or unexplained variance due to other regulators that are not group-
dependent). We determined which subset of the simulated transcripts would meet the differential
expression criteria, then estimated the pairwise correlations among the simulated transcripts.
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Figure 5: Results of simulations from a wide range of parameters demonstrate substantially
higher distributions of correlations than are found in the original data. Black curves represent the
distribution of pairwise correlations in simulated CDEs derived from a single parameter
combination (only simulations with at least 94 CDE genes are included). Even for parameter
values positing very low correlations between the hormone levels and dependent transcripts,
nearly all simulated genes that met the criteria to be called CDE had correlation values above
0.4. In contrast, the green curve represents the distribution of correlations among CDE genes in
the original dataset, a distribution that does not match any of the simulated data.
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