bioRxiv preprint doi: https://doi.org/10.1101/277590; this version posted April 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1

Subject-specificity of the correlation between large-scale structural and functional

connectivity

Zimmermann, J., *Griffiths, J., >*Schirner, M., ?° Ritter, P., "MclIntosh, A.R.

! Baycrest Health Sciences, Rotman Research Institute, 3560 Bathurst &, Toronto,
Ontario, M6A 2E1, Canada

“Charité — Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin,
Humboldt-Universitat zu Berlin, and Berlin Ingtitute of Health, Dept. of Neurology
®Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational
Neuroscience, Berlin, Germany

*Minerva Research Group BrainModes, Max Planck Ingtitute for Human Cognitive and
Brain Sciences, Leipzig, Germany

*Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University,
Berlin, Germany

®Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str 2, 10178 Berlin, Germany


https://doi.org/10.1101/277590
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/277590; this version posted April 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2

Abstract

Structural connectivity (SC), the physical pathways connecting regions in the brain, and
functional connectivity (FC), the temporal co-activations, are known to betightly linked.
However, the nature of thisrelationship is still not understood. In the present study, we
examined this relation more closely in six separate human neuroimaging datasets with
different acquisition and preprocessing methods. We show that using simple linear
associations, the relation between an individual’s SC and FC is not subject-specific for
five of the datasets. Subject-specificity of SC-FC fit is achieved only for one of the six
datasets, the multi-modal Glasser HCP parcellated dataset. We show that subject-
specificity of SC-FC correspondence is limited across datasets due to relatively small

variability between subjectsin SC compared to the larger variability in FC.
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I ntroduction

It has been shown that there is a relationship between structural connectivity (SC), the physical
white-matter tracts between regions, and resting state functional connectivity (FC), the temporal
coactivations between regions (Greicius, Supekar, Menon, & Dougherty, 2009; Hermundstad et
al., 2013; Honey, Kotter, Breakspear, & Sporns, 2007; Honey et al., 2009; Koch, Norris, &
Hund-Georgiadis, 2002; Misic et a., 2016; Ponce-Alvarez et al., 2015; Skudlarski et al., 2008;
van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; van den Heuvel & Sporns, 2013) using
both simple linear (Honey et al., 2009) as well as more complex metrics (Misic et al., 2016).
Most of this research, however, considers group-averaged matrices of SC and FC rather than
individual connectomes. Motivated by the recent interest in personalized medicine and precision
science, thereis a greater need to understand individual differences and unique relationships
between SC and FC. One important question is whether individual SC correlates with the
corresponding subject’s FC to a greater extent than between-subjects. Correlations between
whole-brain individual SC and FC have been associated with measures of behaviour or clinical
conditions (Caeyenberghs, Leemans, Leunissen, Michiels, & Swinnen, 2013; Cocchi et al., 2014;
Skudlarski et al., 2010; Zhang et al., 2011). Y et, there are very few studies that investigate the
subject-specificity of this SC-FC correspondence (Honey et al., 2009; Meier et al., 2016), and as
far as we know there are no studies that assert that individual SC maps best onto its
corresponding FC using linear measures of association. One preliminary investigation conducted
by Honey et al. (2009) examined this question, however, results were inconclusive due to the
limited sample size. Clearly, it isnot well understood whether there is a unique portion of

variance in SC accounting for unique individual differencesin FC.
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It has already been shown that individual structural and functional connectomes can be sensitive
to age (Zimmermann et al., 2016), personality traits (Markett et al., 2013), as well as cognition,
demographics and behaviour (Hearne, Mattingley, & Cocchi, 2016; Ponsoda et al., 2017; S.
Smith, 2016; S. M. Smith et al., 2015). Moreover, SC (Kumar, Desrosiers, Siddigi, Colliot, &
Toews, 2017; Munsell, 2017; Yeh et d., 2016) as well as FC (E. Amico, Gorii, J., 2017; Finn et
al., 2015) can be used to identify individual connectome fingerprints. Nonetheless, the extent of
thisindividual variability has been called into question (Marrelec, Messe, Giron, & Rudrauf,
2016; Waller et a., 2017), particularly for smaller sample sizes (Waller et al., 2017). For
instance, it has been shown that variability in FC can be explained by only one or two
dimensions, and that FC is highly degenerate in its ability to capture potential complexities and

variability in underlying dynamics (Marrelec et al., 2016).

Variance decomposition methods, such as principal components analysis (PCA), are helpful for
characterizing the strength of individual differences across connectomes (E. Amico, Gofii, J.,
2017; Marrelec et al., 2016). PCA provides a simplified representation of the data by reducing
the existing variance into a smaller number of components. In thisway, the portion of variance
that is common across subjects can be identified and separated from the unique aspects of

variance.

The aim of the present study was to investigate the subject-specificity of the SC-FC relationship.
The analyses were conducted on six datasets with variable acquisition schemes, preprocessing

methods, and sample sizes (N = 48, 626, 171, 766, 754, 754). Four of these were variations of
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Human Connectome Project (HCP) data (Van Essen et al., 2013). We used simple linear
measures of association with bootstrapping to quantify the correspondence of within-subject and
between-subject SC-FC, and decomposition to quantify the extent of common and unique

variability in SC and FC across subjects.

Methods

Data acquisition and preprocessing

The analyses were conducted on 6 MRI datasets of healthy subjects: the Berlin dataset (N = 48)
(Ritter, Schirner, Mclintosh, & Jirsa, 2013; Schirner, Rothmeler, Jirsa, Mcintosh, & Ritter, 2015;
Zimmermann et al., 2016), the Nathan Kline Institute (NK1) Rockland dataset from the UMCD
Multimodal connectivity database (N = 171) (Brown, Rudie, Bandrowski, Van Horn, &
Bookheimer, 2012), and four variations from the Human Connectome Project dataset (HCP)
(S900 release) (Van Essen et a., 2013) that differed in terms of processing methods as well as
parcellation schemes. These were: the HCP Lausanne dataset (N = 626), HCP Glasser dataset (N
= 766), HCP Destrieux dataset (N = 754), and HCP Desikan-Killiany (DK) dataset (N = 754).
Note that sample size differences between HCP datasets were due to removal of subjects with
problematic parcellations. The HCP Glasser dataset was parcellated via a high-resolution multi-
modal scheme based on an areal feature-based cross-subjects alignment method (Glasser et dl.,
2016). Theresearch was performed in compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written informed consent was provided by all subjects
with an understanding of the study prior to data collection, and was approved by the local ethics

committee in accordance with the ingtitutional guidelines at Charité Hospital, Berlin, UCLA, and
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HCP WU-Minn.
Table 1. Dataset details for 6 MRI diffusion and resting-state datasets, including sample sizes,
preprocessing methods, and parcellation schemes.
Berlin NKI HCP, HCP, Glasssr HCP, HCP, DK
Rockland Lausanne Destrieux
Processing Schirner et Brown et al. Glasser et al. Glasser et al. Glasser et al. Glasser et al.
reference al. 2015 2012 2013 2013 2013 2013
Sample size 48 171 626 766 754 754
Subject ages 18-80 5-85 22-36 22-37 22-37 22-37
M =41.90, (M =35.80, (M =2865 (M =2878, (M =28.78, (M =28.78,
SD=1847) SD=19.99) SD=23.66) SD =3.70) SD =3.70) SD =3.70)
Par cellation Desikan- Craddock Lausanne Glasser Destrieux Desikan-
(ROIs) Killiany (188) (83) (378) (164) Killiany
(68) (Daducci et (Glasser et al., (Destrieux, (84)
(Desikan et al., 2012) 2016) Fischl, Dale, & (Deskan et al.
al., 2006) Halgren, 2010) 2006)
Structural & diffusion processng
Software FreeSurfer FreeSurfer &  TrackVis HCP pipeline  HCP pipeline  HCP pipeline
method Dipy Diffusion (Glasser etal.,, (Glasseretal., (Glasseretal.,
Toolkit 2013) 2013) 2013)

Motion/eddy  yes yes yes yes yes yes

correction

I ntensity yes no yes yes yes yes

normalized

Tractography Probabilistic  Deterministic  Deterministic  Probabilistic Probabilistic Probabilistic
(MRTriX) (FACT) (EuDX) (MRTriX) (MRTrix) (MRTrix)

SC Metric Voxel pairs  Streamline Streamline Weighted Weighted Weighted
connected w  count count streamline streamline streamline
streamline, count (SIFT2)  count (SIFT2)  count (SIFT?2)
ROI volume by cross-
corrected sectional area

Functional processing

Software Schirneretal fMRIFEAT  Glassereta  Glasser et d Glasser et a Glasser et a

method 2015 2013 2013 2013 2013

Slice-timing  no yes no no no no

Motion MCFLIRT MCFLIRT FIX denoise 6 DOF FLIRT, 6DOFFLIRT, 6 DOFFLIRT.
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correction FIX denoise FIX denoise FIX denoise
Nuisance 6 motion, 24 motion, no no no no
regression mean WM, mean WM,

CSF CSF, volume
Smoothing no FWHM 5mm no Cortical Cortical Cortical
Gaussian surface, surface, surface,
subcortical subcortical subcortical
volume, volume, volume,
FWHM 2mm FWHM2mm FWHM 2 mm
Gaussian Gaussian Gaussian
I ntensity no yes no yes yes yes
normalization
Temporal High-pass Band-pass no no no no
filtering 100s 0.08-0.009Hz
Regidration  no MNI152 no MNI152 &
to standard surface-based
space multimodal
(MSMAII,
Robinson et
al., 2014)
Mation no yes no no no no
scrubbing

A detailed description of data acquisition proceduresis presented in Table S1. Subject sample

Size, age range, processing, and parcellation information are presented in Table 1, along with

references to previously published papers with these datasets. Quality control was described in

detail in those papers. For the Berlin and NKI Rockland dataset, noi se-correction was performed

via nuisance variable regression from the BOLD signal, including 6 motion parameters, mean

white matter, and CSF signals. For the HCP datasets, we used FIX-denoised data, atool that was

trained to effectively remove components of the white matter, CSF, physiological noise, and 24

high-pass filtered motion parameters from the signal (Glasser et al., 2013).

SC and FC was derived via diffusion-weighted magnetic resonance imaging (dwMRI) and

resting-state blood oxygen dependent functional magnetic resonance imaging (rsfsMRI BOLD),
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respectively. Structural and functional data were parcellated into predefined regions of interest
(ROIs) that varied in size across datasets (68-378 cortical regions). Fibre track estimation was
performed on the diffusion data, and weight and distance SCs were computed by aggregating
tractography-based estimations of white matter streamlines between ROIs. Each entry in the SC
weights matrix was an estimate of the connection strength between a pair of ROIs. SC distances
were the Euclidian distances (Brown et al., 2012; Glasser et al., 2013; Hagmann et al., 2008), or
average length of tracks (Schirner et a., 2015) in mm between pairs of ROIs. We corrected for
SC distance by regressing distances from weight SCs, and using residuals for analysis (as tract
length may have an effect on structure-function relations (Romero-Garcia, Atienza, & Cantero,
2014)). To account for age-related differencesin parcellation and ROI size in the Berlin dataset,
SCs were weighted by the mean gray-matter white-matter interface area of connected ROIs. FCs
were computed as the Pearson’ s correlation between each ROI pair of BOLD time series, and

were transformed to anormal distribution viaaFisher'sr to Z.

Subject-specificity of SC-FC predictions

We compared individual SC and FC within and between all subjects using Pearson’s correlations,
in order to determine whether individual SC correlates best with its own individual FC. We
constructed a matrix of Sze Nsc X Nec (N = the number of subjects, Nsc = Nic). The diagonal of
this matrix captures the intra-subject (within) SC-FC correlations; the off-diagonal represents the
inter-subject (between) SC-FC (See Figure 1 for avisualization of this SC-FC matrix). We
corrected the p-value of each correlation value in the resulting matrix for multiple comparisons

using FDR (Matlab function fdr_bky) (Benjamini, Krieger, & Y ekutieli, 2006). Note that
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associations between al individual SC and FC within and between all subjects was also
performed via eigenvector correlations, to complement the Pearson’s correlation method. This

method is described in the Supplementary Materials.

We conducted 1000 bootstrapped means of SC-SelfFC correlations and 1000 bootstrapped
means of SC-OtherFC correlations (Matlab function bootstrp), plotting the two bootstrapped
distributions against each other. In order to evaluate the statistical significance of the differences
between the distributions, we subtracted the SC-otherFC distribution from the SC-selfFC
distribution and constructed a 95% confidence interval on this difference distribution (Matlab
function prctile). To confirm our results, we conducted several secondary analysis. Firstly, we
conducted aglobal signal regression in order to minimize the effects of global signal differences
on individual SC-FC relationships. We also logarithmized SCs and transformed them to a
Gaussian digtribution by resampling (Honey et al., 2009) to correct for exponentially distributed
connection weights. Lastly, we used only SC present connections, as indirect connections may

have an unknown effect on FC (Honey et al., 2009).

correlation

subjects

correlation
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Figure 1. Individual subject SCs and FCs were stacked into a subjects x connections matrix.
Subject-wise SC and FC were then correlated for al pairs of SC and FC (within and between
subjects). On-diagonals of this matrix represent within-subject SC-FC (SC-SelfFC), off-

diagonals represent between-subject SC-FC (SC-OtherFC).

Subject variabilityin SCandin FC

We examined variability across subjectsin SC aswell asin FC via PCA. The objective was to
understand whether the lack of subject-specificity of SC-FC in the Berlin, HCP Lausanne and
NKI Rockland dataset was due to alarge portion of common variance in the connectomes across
subj ects over-powering existing individual differences. To this end, we decomposed the subject-
wise SC matrix (SC connections x subjects) and FC matrix (FC connections x subjects) viathe
Matlab princomp function (subjects as variables). The breakdown of variability in SC aswell as
FC across subjects was thus ascertained. From the PCA, we obtained for each PC: elgenvalues,
principal component loadings per subject, and principal component scores per each connection.
To determine the significance of the resulting elgenvalues, we generated null distributions of
eigenvalues for each PC by permuting the SC and the FC 100 times (scrambled across
connections and subjects) and performing PCA of the resulting matrices. A p-value for each PC
eigenvalue was obtained as the proportion of times that the permuted el genvalue exceeded the

obtained eigenvalue.

We also computed the age effect on connectome variability by calculating the correlation, via
Partial Least Squares, of age (age vector, size: subjects x 1) with the subjects’ principal

coefficient loadings of the significant PCs (size: subjects x number of significant PCs). Partial
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Least Squares is a multivariate method comparable to canonical correlation in that it computes
the relationship between two matrices via orthogonal latent variables (Krishnan, Williams,
Mclntosh, & Abdi, 2011; McIntosh & Lobaugh, 2004). The significance of the resulting
correlations was assessed via permutation testing (N = 1000) of the singular values from singular
value decomposition of the two matrices. Reliability of each principal component subject loading
to the latent variable was assessed via bootstrapping (N = 500). We thus were able to compute

how age corresponded to the significant variance across subjects.

Results

Subject-specificity of SC-FC predictions

We first quantified the SC-FC relationship at the group-average level. The correlation between
averaged SC and averaged FC was asfollows: r = 0.59, 0.47, 0.41, 0.34, 0.40, 0.47, p < 0.001,
for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK, respectively. At
theindividual subject level, all subjects SCswere significantly correlated with all subjects FCs
(between and within SC-FC) (Pearson’s correlations, p < 0.001, FDR multiple comparison
correction, p < 0.001). However, we found that SC-FC correlations were subject-specific only
for the HCP Glasser dataset, and not for the other datasets. This was assessed by comparing the
bootstrapped within-subject SC-FC correlation distribution (SC-SelfFC) with the bootstrapped
between-subject SC-FC correlation distribution (SC-OtherFC), as discussed in the Methods. See
Figure 2 for subject-specificity assessed using the smple bivariate correlation, and Figure S2 for

subject-specificity assessed using the eigenvector correlation approach. Mean and Cls on the
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difference distributions are shown in Table 2 below for simple correlations and Table S2 for

eigenvector correlations. The results were consistent using the two approaches.

Table 2. Mean and 95% Cls on the difference distribution, calculated as the difference between
the SC-SalfFC and SC-OtherFC distributions. The * indicates a significant subject-specificity,

whereby the distribution of intra-subject SC-FC was higher than the distribution of inter-subject

SC-FC.
Dataset Simple correlation

Mean Cl
Berlin M = 0.0013 [-0.0169, 0.0190]
HCP, Lausanne | M = 0.0016 [-0.0012, 0.0044]
NKI Rockland M = -5.8447e-04 [-0.0109, 0.0065]
HCP, Glasser M = 0.0032 [0.002, 0.0043] *
HCP, Destrieux M =-2.2348e-04 [-0.0019, 0.002]
HCP, DK M = 0.001 [-.0001, 0.0017]

In summary, we found that for all but the HCP Glasser dataset, a subject’s SC did not correlate
better with its own FC than with another subject’s FC. These results remained consi stent when
using distance corrected SCs, or only SC present connections. For the HCP Glasser dataset, the

within-subject SC-FC was significantly higher than the between-subject SC-FC.
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Figure 2. Bivariate Pearson’s correlations are shown for all combinations of SC and FC within
and between subjects in the first column. Distribution histograms of bootstrapped means of intra
(SC-SafFC) and inter (SC-OtherFC) correlations are shown in the second column. Each row isa
different dataset: A) Berlin B) HCP Lausanne C) Rockland D) HCP Glasser, E) HCP Destrieux

F) HCP DK.

Subject variability in SCandin FC

Figures 3 through 8 show PCA results for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP
Destrieux, and HCP DK data, respectively. For both SC and FC across our datasets, the first
component captured a very large portion of common variance across subject. All subjects loaded
heavily on this common PC1; these principal component subject loadings are visualized in the
bar plots on the right-hand-side of Panel B in Figures 3-8. The principal component scores (i.e.,
reconstructed matrix from PC1) for this common PC are visualized in the matrices on the | eft-
hand-side of Pandl B in Figures 3-8. These represent the features of the connectome that were
captured by PC1. The variance explained by thisfirst common PC was large in the SC (91%,
80%, 79%, 91%, 93% variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP
Destrieux, and HCP DK datasets respectively) and lower in the FC (57%, 70%, 33%, 74%, 80%
variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK
datasets respectively). Eigenvalues for the first 30 PCsfor all datasets are shown in
Supplementary Table S3. It is noteworthy that the HCP Glasser SC showed the largest number
of significant principal components (HCP Glasser N = 12, Berlin = 1, HCP Lausanne = 7, NKI

Rockland = 2, HCP Destrieux = 8, HCP DK = 7).
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A second pattern of results that we observed across all datasets was that SC was less variable
than FC across subjects. There were fewer significant eigenvalues for the SC compared to the FC
(See Table S3). From the figures (Panel A in Figures 3-8), the knee, or drop-off in the variance
explained by subsequent PCs (Cattell, 1966) was evidently sharper for the SC than the FC. Thus,
although the common component was dominant for both modalities, the second and later

components explained a larger portion of variance in the FC than in the SC.

Consistent with the above findings, we also noted differences between SC and FC in the strength
of the age-related differences. We found an age effect in the FC for all 6 datasets (Berlin: r =
0.79, p < 0.001, HCP Lausanne: r = 0.42, p < 0.001, NKI: r =0.63, p < 0.001, HCP Glasser: r =
0.43, p <0.001, HCP Destrieux: r = 0.40, p < 0.001, HCP DK: r = 0.38, p < 0.001). We found an
age effect in the SC for 2 of the 6 datasets (Berlin (non-significant): r = 0.06, p = 0.68, HCP
Lausanne (non-significant): r = 0.12, p = 0.48, NKI (significant): r = 0.50, p < 0.001, HCP
Glasser (significant): r = 0.14, p = 0.035, HCP Destrieux (non-significant): r = 0.13, p = 0.13,

and HCP DK (non-significant): r = 0.13, p = 0.05).

We compared brain volume across subjects to check for any age-related differences. For the
Berlin and the Rockland dataset, tissue segmentation was performed and partial volume maps
were derived using FSL FAST. Total brain volume was computed by summing the GM and WM
tissue volumes. Total brain volume across subjects was correlated with region-wise SC (Berlin: r
=0.22,p=0.14, Rockland: r = 0.18, p = 0.17) and FC (Berlin: r = 0.17, p = 0.31, Rockland: r =
0.09, p = 0.40); no effect was found. Volume differences in the HCP data were already

accounted for viathe FIX method.
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Finally, it is noteworthy that our results remained robust following a number of secondary
analyses. These are described in detail in the Methods, and include the following: global signal
regression, including only SC present connections in the analyses, and logarithmizing and
resampling SCsto a Gaussian distribution. Because results remained robust against these
corrections, the results shown are those based on the original matrices. Please see Supplementary

Table S2 for the PCA results on logarithmized SCs redistributed to Gaussian.
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Figure 3. PCA of SC (left column) and FC (right column) for the Berlin dataset. A) Thefirst
row depicts the percent of total variance explained for each principal component (PC) with
corresponding p-valuesin red. B) The second row shows the PC connectome scores as well as
the individual subject loadings on thefirst PC (all subjects positively loaded). C) Thethird row

shows the effect of age.
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Figure 4. PCA of SC (left column) and FC (right column) for the HCP Lausanne dataset. A) The
first row depicts the percent of total variance explained for each principal component (PC) with
corresponding p-valuesin red. B) The second row shows the PC connectome scores as well as
the individual subject loadings on thefirst PC (all subjects positively loaded). C) The third row

shows the effect of age.
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Figure 5. PCA of SC (left column) and FC (right column) for the Rockland dataset. A) Thefirst

row depicts the percent of total variance explained for each principal component (PC) with

corresponding p-valuesin red. B) The second row shows the PC connectome scores as well as

the individual subject loadings on thefirst PC (all subjects positively loaded). C) Thethird row

shows the effect of age.
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Figure 6. PCA of SC (left column) and FC (right column) for the HCP Glasser dataset. A) The
first row depictsthe percent of total variance explained for each principal component (PC) with
corresponding p-valuesin red. B) The second row shows the PC connectome scores as well as
the individual subject loadings on thefirst PC (all subjects positively loaded). C) Thethird row

shows the effect of age.
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Figure 7. PCA of SC (left column) and FC (right column) for the HCP Destrieux dataset. A) The
first row depictsthe percent of total variance explained for each principal component (PC) with
corresponding p-valuesin red. B) The second row shows the PC connectome scores as well as
the individual subject loadings on thefirst PC (all subjects positively loaded). C) Thethird row

shows the effect of age.
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the individual subject loadings on thefirst PC (all subjects positively loaded). C) Thethird row

shows the effect of age.
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Discussion

Subject-specificity in SC-FC

Initial studies of SC-FC correspondence (Greicius et al., 2009; Honey et al., 2007; Honey et al.,
2009; Koch et al., 2002) show that there is a relationship between these two entities via linear
(Honey et al., 2009) as well as more complex methods (Misic et a., 2016). However, there
remains a gap in our understanding of how the two measures are related at the individual level.
In the present study, we showcase how individual SC corresponds with individual FC using
simple linear metricsin six separate datasets (Berlin, HCP Lausanne, NKI Rockland, HCP
Glasser, HCP Destrieux, HCP DK). The datasets differed in sample size, acquisition and
processing methods as well as age spectrums. The question was whether the correspondence of

individual SC-FC matrices was greater than if two matrices were randomly paired.

Our results showed that, although there is a correlation between group-averaged SC and FC,
replicating previous findings (Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007;
Honey et al., 2009; Koch et al., 2002; Misic et a., 2016; Ponce-Alvarez et al., 2015; Skudlarski
et a., 2008; van den Heuve et al., 2009), the specificity of this SC-FC relationship was not
unique to an individual. Five of the datasets examined did not show subject-specificity of the SC-
FC correspondence, so that within-subject SC-FC did not exceed random pairings of SC-FC.
This would suggest that individual SC cannot predict individual FC beyond chance. However,
when the analysis was conducted on the HCP data with the Glasser parcellation, significant

subject-specificity was observed. Thiswould suggest that while subject-specificity assessed on
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standard datasets via standard parcellation and processing methods is difficult to ascertain, it may

be obvious only when higher resolution data as well as finer parcellations are used.

Our finding that intra-subject SC-FC correspondence exceeded inter-subject SC-FC
correspondence for the HCP Glasser dataset, but not for the remaining datasets, supports the
hypothesis by Honey et al. (2009). Honey et al. (2009) speculated that the individual SC-FC fit
would be significant if shown on alarge enough dataset of high fidelity. However, fidelity of the
data will depend on anumber of factors, including the quality and rigor of the data acquisition
procedures, the processing methods (e.g. tractography), and the parcellation used. The
acquisition procedures alone were unlikely to be the sole driving factor behind subject-specificity,
as these were consistent across the HCP data. We hypothesized that the superior subject-
specificity of the Glasser HCP data (compared to the HCP Lausanne) was due to the high-
precision parcellation used (Glasser et al., 2016). However, these two HCP datasets also differed
in the tractography method (probabilistic versus deterministic). Thus we endeavoured to re-
evaluate our findings post-hoc using two additional HCP datasets with probabilistic tractography
processed in the same way as the Glasser HCP, except with different parcellation methods. We
used the FreeSurfer convolution-based probabilistic Destrieux atlas (Destrieux et al., 2010) and
the Desikan-Killiany (DK) atlas (Desikan et al., 2006). We did not find subject-specificity with
the HCP Destrieux and the HCP DK, suggesting that the Glasser parcellation allows for afitting
of individual structure and function that could not otherwise be observed. The Glasser multi-
modal parcellation is based on functional properties with improved areal feature-based cross-
subject alignment, rather than solely geometric and morphological properties. Thus, the method

improves the neuroanatomical precision of individual parcellations. It isimportant to point out
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that despite the improvement, the HCP Glasser dataset was only dlightly better than the others,
and would not pass adirect head-to-head comparison since the presence of significancein one
dataset and the absence of significance in another does not mean the two datasets are themselves

significantly different.

Subject-specificity in SC-FC islimited by variability within modality

The second set of findings showed that the unique portion of variance that existsin either
modality aloneis limited. This may restrict the portion of SC that can reasonably be captured by
individual FC. We had hypothesized that the lack of subject-specificity in the Berlin, HCP
Lausanne, NKI Rockland, HCP Destrieux, and HCP DK dataset was due to a large portion of
common variance in the connectomes across subjects that over-powered any existing individual
differences. Indeed, our results conferred that there is alarge portion of common variance in SC
across subjects. Thiswas the case regardless of the sample size, data quality, or parcellation.
Interestingly, even in the Glasser dataset, where SC-FC subj ect-specificity was observed, the
common component was strikingly large. We did observe, however, that SC variability was
captured via agreater number of components in the Glasser dataset compared to the other
datasets, suggesting greater inter-individual differencesin the SC. Although the smaller datasets
(e.g. Berlin) generally had fewer SC components, the variability that was observed in the HCP
Glasser SC was not merely due to sample size, as the HCP Destrieux and HCP DK datasets were

comparable to the HCP Glasser dataset in terms of sample size.

We also observed a large common component in the FC across subjects. However, this

component accounted for asmaller portion of total variance than the SC common component.
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Moreover, a smaller number of significant variance components were found in the FC across
subjects compared to in the SC. Together, these results suggest that FC is more variable than SC
across subjects. This can also be observed in the striping of the SC-FC correspondence matrix,
where some FCs correlate strongly with all SCs, while others correlate very little with all SCs.
Note that this does not mean that individual differencesin SC were not observed, but rather that
the variance in SC that maps onto the corresponding variance in FC is weaker than one may

expect intuitively.

In the FC, asignificant portion of variance was related to age, particularly for the two datasets
with awide age range (Berlin, NKI: age = 20-80, 5-85). Thisis consistent with previous reports
of age effects on FC (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Ferreira & Busatto,
2013; Sala-Llonch et al., 2014). Interestingly, age did not account for a significant portion of
between-subjects variance in SC for four of the six datasets. We found an age effect in the SC
only for the HCP Glasser dataset and the NKI Rockland dataset. In the NKI Rockland dataset,
the large observed age effect in SC was likely a consequence of the wide age distribution and the
inclusion of child subjects. The grey-white matter boundary isill defined in children, and
incomplete myelination results in weaker tractography-based estimation of SC (Deoni, Dean,

Remer, Dirks, & O'Muircheartaigh, 2015; Thompson et al., 2005).

The limited amount of between-subjects variability in both SC and FC that we observed was
comparable to findings by Marellec et al. (2016), where a large portion of variance was
accounted for by an invariant core that was consistent across subjects (SC: ~86%, FC: ~59%).

There, it was shown that the invariant core of SC correlated with the invariant core of FC. Along
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the same lines, Waller et a. (2017) suggested that the specificity of connectome fingerprinting

using FC was limited by the large amount of common variance across subjects.

The decomposition approach we used here was helpful for separating common and unique
variance, and identifying aspects of the connectome that express each portion of variance. Data-
driven classification algorithms like clustering are an alternate approach that can be used to
express similarities and differences between subject connectomes (E. Amico et al., 2017; Irgji et
al., 2016) . Recently, a consensus clustering algorithm has been introduced that can be helpful
for identifying how aspects of the connectome are combined to express these inter-subject

similarities and differences (Rasero, 2017).

Limitations on the study of variability within modality

The study of variability within SC and FC each faces its unique limitations. Variationin
acquisition, processing and connectome metrics as well as statistical methods may impact the
extent of between-subjects variability observed. For instance, for SC, the diffusion method,
tractography (Bonilhaet al., 2015), SC metric (Buchanan, Pernet, Gorgolewski, Storkey, &
Bastin, 2014), or ROI size (Bonilhaet al., 2015), have been shown to affect variability and
reproducibility of SCs. FC variability across subjectsis affected by the choice of metric
(Marrelec et al., 2016). For example, the amount of common variance may be slightly higher
when using correlation compared to mutual information for the calculation of FC. On the other
hand, the common component of FC that isinvariant across subjects was comparable for
dynamic and static FC (Marrelec et al., 2016). Nonetheless, the correlation between SC and FC

may be limited by the dynamic fluctuation of FC on short time windows (Allen et al., 2014;
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Deco, Kringelbach, Jrsa, & Ritter, 2016; Hutchison et al., 2013). SCs may better correlate with
temporally stable rsFC (Honey et al., 2009). To this end, we considered only SC present
connections in a secondary analysis, as these have been shown to have more stable resting-state

FC (Shen et al., 2015).

One important question is whether increased between-subjects variation inthe FC isa
consequence of non-neural influences such as vascular variability or head motion (Geerligs,
Tsvetanov, Cam, & Henson, 2017) or reflects real, meaningful variability in neural activation. If
meaningless between-subjects variability in FC can be reduced, FC has the best chance to be able
to capture subtle individual differencesin SC. In addition to the corrections described in the
methods, FC between-subjects variability was minimized via a secondary global signal

regression (GSR) analysis (Berlin dataset, NK| Rockland dataset). Y et, lack of SC-FC subject-

specific correlation in five of the six persists despite these secondary analyses.

Futuredirections

Computational models that investigate how SC givesrise to FC may be particularly helpful for
furthering our understanding of how individual SC and FC are linked (Jirsa, Sporns, Breakspear,
Deco, & Mclintosh, 2010; Kringelbach, Mclntosh, Ritter, Jirsa, & Deco, 2015; Kunze, Hunold,
Haueisen, Jirsa, & Spiegler, 2016; Ritter et al., 2013; Roy et al., 2014). The mechanisms by
which individual FC comes about from individual SC may be the key to understanding subj ect-
specific differences. To this end, parameters from generative models combining individual
empirical SC and FC can be used (Schirner, Mclntosh, Jirsa, Deco, & Ritter, 2018). Variability

in these parameters have already been shown to be useful for revealing individual differences
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relevant for cognition (Falcon et al., 2016; Falcon et al., 2015; J. Zimmermann et al., 2018).
These parameters may even exceed the predictive capacity of individual connectomes

(Zimmermann et al., 2018).

Summary

We present evidence that, in most standard datasets, the subject variation in SC may be too weak
to be reflected in the FC variability. However, subject-specificity of SC-FC can be captured via
fine, multi-modally parcellated data, due to greater SC variability across subjects. Nonetheless,
SC and FC each show a large component that is common across subjects, which sets limitations
on the extent of SC-FC subject-specificity. Implications of these findings for personalized
medicine should be considered. Namdly, attention to the quality of processing and parcellation
methodsis critical for furthering our understanding of the relationship between individual SC

and FC.
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