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Abstract 

 

Structural connectivity (SC), the physical pathways connecting regions in the brain, and 

functional connectivity (FC), the temporal co-activations, are known to be tightly linked. 

However, the nature of this relationship is still not understood. In the present study, we 

examined this relation more closely in six separate human neuroimaging datasets with 

different acquisition and preprocessing methods. We show that using simple linear 

associations, the relation between an individual’s SC and FC is not subject-specific for 

five of the datasets. Subject-specificity of SC-FC fit is achieved only for one of the six 

datasets, the multi-modal Glasser HCP parcellated dataset. We show that subject-

specificity of SC-FC correspondence is limited across datasets due to relatively small 

variability between subjects in SC compared to the larger variability in FC. 
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Introduction 

 

It has been shown that there is a relationship between structural connectivity (SC), the physical 

white-matter tracts between regions, and resting state functional connectivity (FC), the temporal 

coactivations between regions (Greicius, Supekar, Menon, & Dougherty, 2009; Hermundstad et 

al., 2013; Honey, Kotter, Breakspear, & Sporns, 2007; Honey et al., 2009; Koch, Norris, & 

Hund-Georgiadis, 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015; Skudlarski et al., 2008; 

van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; van den Heuvel & Sporns, 2013) using 

both simple linear (Honey et al., 2009) as well as more complex metrics (Misic et al., 2016). 

Most of this research, however, considers group-averaged matrices of SC and FC rather than 

individual connectomes. Motivated by the recent interest in personalized medicine and precision 

science, there is a greater need to understand individual differences and unique relationships 

between SC and FC. One important question is whether individual SC correlates with the 

corresponding subject’s FC to a greater extent than between-subjects. Correlations between 

whole-brain individual SC and FC have been associated with measures of behaviour or clinical 

conditions (Caeyenberghs, Leemans, Leunissen, Michiels, & Swinnen, 2013; Cocchi et al., 2014; 

Skudlarski et al., 2010; Zhang et al., 2011). Yet, there are very few studies that investigate the 

subject-specificity of this SC-FC correspondence (Honey et al., 2009; Meier et al., 2016), and as 

far as we know there are no studies that assert that individual SC maps best onto its 

corresponding FC using linear measures of association. One preliminary investigation conducted 

by Honey et al. (2009) examined this question, however, results were inconclusive due to the 

limited sample size. Clearly, it is not well understood whether there is a unique portion of 

variance in SC accounting for unique individual differences in FC. 
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It has already been shown that individual structural and functional connectomes can be sensitive 

to age (Zimmermann et al., 2016), personality traits (Markett et al., 2013), as well as cognition, 

demographics and behaviour (Hearne, Mattingley, & Cocchi, 2016; Ponsoda et al., 2017; S. 

Smith, 2016; S. M. Smith et al., 2015). Moreover, SC (Kumar, Desrosiers, Siddiqi, Colliot, & 

Toews, 2017; Munsell, 2017; Yeh et al., 2016) as well as FC (E. Amico, Goñi, J., 2017; Finn et 

al., 2015) can be used to identify individual connectome fingerprints. Nonetheless, the extent of 

this individual variability has been called into question  (Marrelec, Messe, Giron, & Rudrauf, 

2016; Waller et al., 2017), particularly for smaller sample sizes (Waller et al., 2017). For 

instance, it has been shown that variability in FC can be explained by only one or two 

dimensions, and that FC is highly degenerate in its ability to capture potential complexities and 

variability in underlying dynamics (Marrelec et al., 2016).  

 

Variance decomposition methods, such as principal components analysis (PCA), are helpful for 

characterizing the strength of individual differences across connectomes (E. Amico, Goñi, J., 

2017; Marrelec et al., 2016). PCA provides a simplified representation of the data by reducing 

the existing variance into a smaller number of components. In this way, the portion of variance 

that is common across subjects can be identified and separated from the unique aspects of  

variance. 

 

The aim of the present study was to investigate the subject-specificity of the SC-FC relationship. 

The analyses were conducted on six datasets with variable acquisition schemes, preprocessing 

methods, and sample sizes (N = 48, 626, 171, 766, 754, 754). Four of these were variations of 
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Human Connectome Project (HCP) data (Van Essen et al., 2013). We used simple linear 

measures of association with bootstrapping to quantify the correspondence of within-subject and 

between-subject SC-FC, and decomposition to quantify the extent of common and unique 

variability in SC and FC across subjects.  

 

Methods 

 

Data acquisition and preprocessing 

The analyses were conducted on 6 MRI datasets of healthy subjects: the Berlin dataset (N = 48) 

(Ritter, Schirner, McIntosh, & Jirsa, 2013; Schirner, Rothmeier, Jirsa, McIntosh, & Ritter, 2015; 

Zimmermann et al., 2016), the Nathan Kline Institute (NKI) Rockland dataset from the UMCD 

Multimodal connectivity database (N = 171) (Brown, Rudie, Bandrowski, Van Horn, & 

Bookheimer, 2012), and four variations from the Human Connectome Project dataset (HCP) 

(S900 release) (Van Essen et al., 2013) that differed in terms of processing methods as well as 

parcellation schemes. These were: the HCP Lausanne dataset (N = 626), HCP Glasser dataset (N 

= 766), HCP Destrieux dataset (N = 754), and HCP Desikan-Killiany (DK) dataset (N = 754). 

Note that sample size differences between HCP datasets were due to removal of subjects with 

problematic parcellations. The HCP Glasser dataset was parcellated via a high-resolution multi-

modal scheme based on an areal feature-based cross-subjects alignment method (Glasser et al., 

2016).  The research was performed in compliance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki). Written informed consent was provided by all subjects 

with an understanding of the study prior to data collection, and was approved by the local ethics 

committee in accordance with the institutional guidelines at Charité Hospital, Berlin, UCLA, and 
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HCP WU-Minn.  

 

Table 1. Dataset details for 6 MRI diffusion and resting-state datasets, including sample sizes, 

preprocessing methods, and parcellation schemes.  

 

 

Berlin NKI 
Rockland 

HCP, 
Lausanne 

HCP, Glasser HCP, 
Destrieux 

HCP, DK 

Processing 
reference 

Schirner et 
al. 2015  

Brown et al. 
2012 

Glasser et al. 
2013 

Glasser et al. 
2013 

Glasser et al. 
2013 

Glasser et al. 
2013 

Sample size 48 171 626 766 754 754 
Subject ages 18-80  

M = 41.90, 
SD = 18.47) 

5-85  
(M = 35.80, 
SD = 19.99) 

22-36  
(M = 28.65, 
SD = 3.66) 

22-37  
(M = 28.78, 
SD = 3.70) 

22-37  
(M = 28.78, 
SD = 3.70) 

22-37  
(M = 28.78, 
SD = 3.70) 

Parcellation 
(ROIs) 

Desikan-
Killiany  
(68) 
(Desikan et 
al., 2006) 

Craddock 
(188) 
 

Lausanne 
(83) 
(Daducci et 
al., 2012) 

Glasser  
(378) 
(Glasser et al., 
2016) 

Destrieux 
(164) 
(Destrieux, 
Fischl, Dale, & 
Halgren, 2010) 

Desikan-
Killiany  
(84)  
(Desikan et al.,
2006) 

 
Structural & diffusion processing 

Software 
method 

FreeSurfer  
 

FreeSurfer & 
Dipy  

TrackVis 
Diffusion 
Toolkit  

HCP pipeline 
(Glasser et al., 
2013) 

HCP pipeline 
(Glasser et al., 
2013) 

HCP pipeline 
(Glasser et al., 
2013) 

Motion/eddy  
correction 

yes yes yes yes yes yes 

Intensity 
normalized 

yes no yes yes yes yes 

Tractography Probabilistic  
(MRTrix) 

Deterministic 
(FACT) 

Deterministic 
(EuDX) 

Probabilistic  
(MRTrix) 

Probabilistic  
(MRTrix) 

Probabilistic  
(MRTrix) 

SC Metric  Voxel pairs 
connected w  
streamline, 
ROI volume 
corrected  

Streamline 
count 

Streamline 
count 

Weighted 
streamline 
count (SIFT2) 
by cross-
sectional area 

Weighted 
streamline 
count (SIFT2)  

Weighted 
streamline 
count (SIFT2) 

 
Functional processing 

 
Software 
method 

Schirner et al 
2015 

fMRI FEAT Glasser et al 
2013 

Glasser et al 
2013 

Glasser et al 
2013 

Glasser et al 
2013 

Slice-timing no yes no no no no 
Motion MCFLIRT  MCFLIRT  FIX denoise 6 DOF FLIRT,  6 DOF FLIRT,  6 DOF FLIRT, 
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correction FIX denoise FIX denoise FIX denoise 
Nuisance 
regression 

6 motion, 
mean WM, 
CSF 

24 motion, 
mean WM, 
CSF, volume  

no no no no 

Smoothing no FWHM 5mm 
Gaussian 

no Cortical 
surface, 
subcortical 
volume, 
FWHM 2 mm 
Gaussian 

Cortical 
surface, 
subcortical 
volume, 
FWHM 2 mm 
Gaussian 

Cortical 
surface, 
subcortical 
volume, 
FWHM 2 mm 
Gaussian 

Intensity 
normalization 

no yes no yes yes yes 

Temporal 
filtering 

High-pass  
100s 

Band-pass 
0.08-0.009Hz 

no no no no 

Registration 
to standard 
space 

no MNI152 no MNI152 & 
surface-based 
multimodal 
(MSMAll, 
Robinson et 
al., 2014) 

  

Motion 
scrubbing 

no yes no no no no 

 

A detailed description of data acquisition procedures is presented in Table S1. Subject sample 

size, age range, processing, and parcellation information are presented in Table 1, along with 

references to previously published papers with these datasets. Quality control was described in 

detail in those papers. For the Berlin and NKI Rockland dataset, noise-correction was performed 

via nuisance variable regression from the BOLD signal, including 6 motion parameters, mean 

white matter, and CSF signals. For the HCP datasets, we used FIX-denoised data, a tool that was 

trained to effectively remove components of the white matter, CSF, physiological noise, and 24 

high-pass filtered motion parameters from the signal (Glasser et al., 2013).  

 

SC and FC was derived via diffusion-weighted magnetic resonance imaging (dwMRI) and 

resting-state blood oxygen dependent functional magnetic resonance imaging (rsfMRI BOLD), 
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respectively. Structural and functional data were parcellated into predefined regions of interest 

(ROIs) that varied in size across datasets (68-378 cortical regions). Fibre track estimation was 

performed on the diffusion data, and weight and distance SCs were computed by aggregating 

tractography-based estimations of white matter streamlines between ROIs. Each entry in the SC 

weights matrix was an estimate of the connection strength between a pair of ROIs. SC distances 

were the Euclidian distances (Brown et al., 2012; Glasser et al., 2013; Hagmann et al., 2008), or 

average length of tracks (Schirner et al., 2015) in mm between pairs of ROIs. We corrected for 

SC distance by regressing distances from weight SCs, and using residuals for analysis (as tract 

length may have an effect on structure-function relations (Romero-Garcia, Atienza, & Cantero, 

2014)). To account for age-related differences in parcellation and ROI size in the Berlin dataset, 

SCs were weighted by the mean gray-matter white-matter interface area of connected ROIs.  FCs 

were computed as the Pearson’s correlation between each ROI pair of BOLD time series, and 

were transformed to a normal distribution via a Fisher’s r to Z. 

 

Subject-specificity of SC-FC predictions 

 

We compared individual SC and FC within and between all subjects using Pearson’s correlations, 

in order to determine whether individual SC correlates best with its own individual FC. We 

constructed a matrix of size NSC x NFC (N = the number of subjects, NSC = NFC). The diagonal of 

this matrix captures the intra-subject (within) SC-FC correlations; the off-diagonal represents the 

inter-subject (between) SC-FC (See Figure 1 for a visualization of this SC-FC matrix). We  

corrected the p-value of each correlation value in the resulting matrix for multiple comparisons 

using FDR (Matlab function fdr_bky) (Benjamini, Krieger, & Yekutieli, 2006). Note that 
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associations between all individual SC and FC within and between all subjects was also 

performed via eigenvector correlations, to complement the Pearson’s correlation method. This 

method is described in the Supplementary Materials.  

 

We conducted 1000 bootstrapped means of SC-SelfFC correlations and 1000 bootstrapped 

means of SC-OtherFC correlations (Matlab function bootstrp), plotting the two bootstrapped 

distributions against each other. In order to evaluate the statistical significance of the differences 

between the distributions, we subtracted the SC-otherFC distribution from the SC-selfFC 

distribution and constructed a 95% confidence interval on this difference distribution (Matlab 

function prctile). To confirm our results, we conducted several secondary analysis. Firstly, we 

conducted a global signal regression in order to minimize the effects of global signal differences 

on individual SC-FC relationships. We also logarithmized SCs and transformed them to a 

Gaussian distribution by resampling (Honey et al., 2009) to correct for exponentially distributed 

connection weights. Lastly, we used only SC present connections, as indirect connections may 

have an unknown effect on FC (Honey et al., 2009).  

 

9

s 
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Figure 1. Individual subject SCs and FCs were stacked into a subjects x connections matrix. 

Subject-wise SC and FC were then correlated for all pairs of SC and FC (within and between 

subjects). On-diagonals of this matrix represent within-subject SC-FC (SC-SelfFC), off-

diagonals represent between-subject SC-FC (SC-OtherFC). 

 

Subject variability in SC and in FC 

We examined variability across subjects in SC as well as in FC via PCA. The objective was to 

understand whether the lack of subject-specificity of SC-FC in the Berlin, HCP Lausanne and 

NKI Rockland dataset was due to a large portion of common variance in the connectomes across 

subjects over-powering existing individual differences. To this end, we decomposed the subject-

wise SC matrix (SC connections x subjects) and FC matrix (FC connections x subjects) via the 

Matlab princomp function (subjects as variables). The breakdown of variability in SC as well as 

FC across subjects was thus ascertained. From the PCA, we obtained for each PC: eigenvalues, 

principal component loadings per subject, and principal component scores per each connection. 

To determine the significance of the resulting eigenvalues, we generated null distributions of 

eigenvalues for each PC by permuting the SC and the FC 100 times (scrambled across 

connections and subjects) and performing PCA of the resulting matrices. A p-value for each PC 

eigenvalue was obtained as the proportion of times that the permuted eigenvalue exceeded the 

obtained eigenvalue. 

 

We also computed the age effect on connectome variability by calculating the correlation, via 

Partial Least Squares, of age (age vector, size: subjects x 1) with the subjects’ principal 

coefficient loadings of the significant PCs (size: subjects x number of significant PCs). Partial 
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Least Squares is a multivariate method comparable to canonical correlation in that it computes 

the relationship between two matrices via orthogonal latent variables (Krishnan, Williams, 

McIntosh, & Abdi, 2011; McIntosh & Lobaugh, 2004). The significance of the resulting 

correlations was assessed via permutation testing (N = 1000) of the singular values from singular 

value decomposition of the two matrices. Reliability of each principal component subject loading 

to the latent variable was assessed via bootstrapping (N = 500). We thus were able to compute 

how age corresponded to the significant variance across subjects.  

 

Results 

 

Subject-specificity of SC-FC predictions 

We first quantified the SC-FC relationship at the group-average level. The correlation between 

averaged SC and averaged FC was as follows: r = 0.59, 0.47, 0.41, 0.34, 0.40, 0.47, p < 0.001, 

for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK, respectively. At 

the individual subject level, all subjects’ SCs were significantly correlated with all subjects’ FCs 

(between and within SC-FC) (Pearson’s correlations, p < 0.001, FDR multiple comparison 

correction, p < 0.001). However, we found that SC-FC correlations were subject-specific only 

for the HCP Glasser dataset, and not for the other datasets.  This was assessed by comparing the 

bootstrapped within-subject SC-FC correlation distribution (SC-SelfFC) with the bootstrapped 

between-subject SC-FC correlation distribution (SC-OtherFC), as discussed in the Methods. See 

Figure 2 for subject-specificity assessed using the simple bivariate correlation, and Figure S2 for 

subject-specificity assessed using the eigenvector correlation approach. Mean and CIs on the 
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difference distributions are shown in Table 2 below for simple correlations and Table S2 for 

eigenvector correlations. The results were consistent using the two approaches.  

 

Table 2. Mean and 95% CIs on the difference distribution, calculated as the difference between 

the SC-SelfFC and SC-OtherFC distributions. The * indicates a significant subject-specificity, 

whereby the distribution of intra-subject SC-FC was higher than the distribution of inter-subject 

SC-FC. 

Dataset Simple correlation 

Mean CI 

Berlin M = 0.0013  [-0.0169, 0.0190] 
HCP, Lausanne M =  0.0016  [-0.0012, 0.0044] 
NKI Rockland M = -5.8447e-04  [-0.0109, 0.0065] 
HCP, Glasser M = 0.0032  [0.002, 0.0043] * 
HCP, Destrieux M = -2.2348e-04 [-0.0019, 0.002] 
HCP, DK M = 0.001 [-.0001, 0.0017] 
 

In summary, we found that for all but the HCP Glasser dataset, a subject’s SC did not correlate 

better with its own FC than with another subject’s FC. These results remained consistent when 

using distance corrected SCs, or only SC present connections. For the HCP Glasser dataset, the 

within-subject SC-FC was significantly higher than the between-subject SC-FC. 
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Figure 2. Bivariate Pearson’s correlations are shown for all combinations of SC and FC within 

and between subjects in the first column. Distribution histograms of bootstrapped means of intra 

(SC-SelfFC) and inter (SC-OtherFC) correlations are shown in the second column. Each row is a 

different dataset: A) Berlin B) HCP Lausanne C) Rockland D) HCP Glasser, E) HCP Destrieux 

F) HCP DK. 

 

Subject variability in SC and in FC 

Figures 3 through 8 show PCA results for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP 

Destrieux, and HCP DK data, respectively. For both SC and FC across our datasets, the first 

component captured a very large portion of common variance across subject. All subjects loaded 

heavily on this common PC1; these principal component subject loadings are visualized in the 

bar plots on the right-hand-side of Panel B in Figures 3-8. The principal component scores (i.e., 

reconstructed matrix from PC1) for this common PC are visualized in the matrices on the left-

hand-side of Panel B in Figures 3-8. These represent the features of the connectome that were 

captured by PC1. The variance explained by this first common PC was large in the SC (91%, 

80%, 79%, 91%, 93% variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP 

Destrieux, and HCP DK datasets respectively) and lower in the FC (57%, 70%, 33%, 74%, 80% 

variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK 

datasets respectively). Eigenvalues for the first 30 PCs for all datasets are shown in 

Supplementary Table S3.  It is noteworthy that the HCP Glasser SC showed the largest number 

of significant principal components (HCP Glasser N = 12, Berlin = 1, HCP Lausanne = 7, NKI 

Rockland = 2, HCP Destrieux = 8, HCP DK = 7). 
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A second pattern of results that we observed across all datasets was that SC was less variable 

than FC across subjects. There were fewer significant eigenvalues for the SC compared to the FC 

(See Table S3).  From the figures (Panel A in Figures 3-8), the knee, or drop-off in the variance 

explained by subsequent PCs (Cattell, 1966) was evidently sharper for the SC than the FC. Thus, 

although the common component was dominant for both modalities, the second and later 

components explained a larger portion of variance in the FC than in the SC. 

 

Consistent with the above findings, we also noted differences between SC and FC in the strength 

of the age-related differences. We found an age effect in the FC for all 6 datasets (Berlin: r = 

0.79, p < 0.001, HCP Lausanne: r = 0.42, p < 0.001, NKI: r = 0.63, p < 0.001, HCP Glasser: r = 

0.43, p < 0.001, HCP Destrieux: r = 0.40, p < 0.001, HCP DK: r = 0.38, p < 0.001). We found an 

age effect in the SC for 2 of the 6 datasets (Berlin (non-significant): r = 0.06, p = 0.68, HCP 

Lausanne (non-significant): r = 0.12, p = 0.48, NKI (significant): r = 0.50, p < 0.001, HCP 

Glasser (significant): r = 0.14, p = 0.035, HCP Destrieux (non-significant): r = 0.13, p = 0.13, 

and HCP DK (non-significant): r = 0.13, p = 0.05).  

 

We compared brain volume across subjects to check for any age-related differences. For the 

Berlin and the Rockland dataset, tissue segmentation was performed and partial volume maps 

were derived using FSL FAST. Total brain volume was computed by summing the GM and WM 

tissue volumes. Total brain volume across subjects was correlated with region-wise SC (Berlin: r 

= 0.22, p = 0.14, Rockland: r = 0.18, p = 0.17) and FC (Berlin: r = 0.17, p = 0.31, Rockland: r = 

0.09, p = 0.40); no effect was found. Volume differences in the HCP data were already 

accounted for via the FIX method.  
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Finally, it is noteworthy that our results remained robust following a number of secondary 

analyses. These are described in detail in the Methods, and include the following: global signal 

regression, including only SC present connections in the analyses, and logarithmizing and 

resampling SCs to a Gaussian distribution. Because results remained robust against these 

corrections, the results shown are those based on the original matrices. Please see Supplementary 

Table S2 for the PCA results on logarithmized SCs redistributed to Gaussian.  
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Figure 3.  PCA of SC (left column) and FC (right column) for the Berlin dataset. A) The first 

row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Figure 4. PCA of SC (left column) and FC (right column) for the HCP Lausanne dataset. A) The 

first row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Figure 5. PCA of SC (left column) and FC (right column) for the Rockland dataset. A) The first 

row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Figure 6.  PCA of SC (left column) and FC (right column) for the HCP Glasser dataset. A) The 

first row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Figure 7. PCA of SC (left column) and FC (right column) for the HCP Destrieux dataset. A) The 

first row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Figure 8. PCA of SC (left column) and FC (right column) for the HCP DK dataset. A) The first 

row depicts the percent of total variance explained for each principal component (PC) with 

corresponding p-values in red. B) The second row shows the PC connectome scores as well as 

the individual subject loadings on the first PC (all subjects positively loaded). C) The third row 

shows the effect of age. 
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Discussion 

 

Subject-specificity in SC-FC 

Initial studies of SC-FC correspondence (Greicius et al., 2009; Honey et al., 2007; Honey et al., 

2009; Koch et al., 2002) show that there is a relationship between these two entities via linear 

(Honey et al., 2009) as well as more complex methods (Misic et al., 2016). However, there 

remains a gap in our understanding of how the two measures are related at the individual level. 

In the present study, we showcase how individual SC corresponds with individual FC using 

simple linear metrics in six separate datasets (Berlin, HCP Lausanne, NKI Rockland, HCP 

Glasser, HCP Destrieux, HCP DK). The datasets differed in sample size, acquisition and 

processing methods as well as age spectrums. The question was whether the correspondence of 

individual SC-FC matrices was greater than if two matrices were randomly paired.  

 

Our results showed that, although there is a correlation between group-averaged SC and FC, 

replicating previous findings (Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007; 

Honey et al., 2009; Koch et al., 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015; Skudlarski 

et al., 2008; van den Heuvel et al., 2009), the specificity of this SC-FC relationship was not 

unique to an individual. Five of the datasets examined did not show subject-specificity of the SC-

FC correspondence, so that within-subject SC-FC did not exceed random pairings of SC-FC. 

This would suggest that individual SC cannot predict individual FC beyond chance. However, 

when the analysis was conducted on the HCP data with the Glasser parcellation, significant 

subject-specificity was observed. This would suggest that while subject-specificity assessed on 
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standard datasets via standard parcellation and processing methods is difficult to ascertain, it may 

be obvious only when higher resolution data as well as finer parcellations are used. 

 

Our finding that intra-subject SC-FC correspondence exceeded inter-subject SC-FC 

correspondence for the HCP Glasser dataset, but not for the remaining datasets, supports the 

hypothesis by Honey et al. (2009). Honey et al. (2009) speculated that the individual SC-FC fit 

would be significant if shown on a large enough dataset of high fidelity. However, fidelity of the 

data will depend on a number of factors, including the quality and rigor of the data acquisition 

procedures, the processing methods (e.g. tractography), and the parcellation used. The 

acquisition procedures alone were unlikely to be the sole driving factor behind subject-specificity, 

as these were consistent across the HCP data. We hypothesized that the superior subject-

specificity of the Glasser HCP data (compared to the HCP Lausanne) was due to the high-

precision parcellation used (Glasser et al., 2016). However, these two HCP datasets also differed 

in the tractography method (probabilistic versus deterministic). Thus we endeavoured to re-

evaluate our findings post-hoc using two additional HCP datasets with probabilistic tractography 

processed in the same way as the Glasser HCP, except with different parcellation methods. We 

used the FreeSurfer convolution-based probabilistic Destrieux atlas (Destrieux et al., 2010) and 

the Desikan-Killiany (DK) atlas (Desikan et al., 2006). We did not find subject-specificity with 

the HCP Destrieux and the HCP DK, suggesting that the Glasser parcellation allows for a fitting 

of individual structure and function that could not otherwise be observed. The Glasser multi-

modal parcellation is based on functional properties with improved areal feature-based cross-

subject alignment, rather than solely geometric and morphological properties. Thus, the method 

improves the neuroanatomical precision of individual parcellations. It is important to point out 
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that despite the improvement, the HCP Glasser dataset was only slightly better than the others, 

and would not pass a direct head-to-head comparison since the presence of significance in one 

dataset and the absence of significance in another does not mean the two datasets are themselves 

significantly different. 

 

Subject-specificity in SC-FC is limited by variability within modality  

The second set of findings showed that the unique portion of variance that exists in either 

modality alone is limited. This may restrict the portion of SC that can reasonably be captured by 

individual FC. We had hypothesized that the lack of subject-specificity in the Berlin, HCP 

Lausanne, NKI Rockland, HCP Destrieux, and HCP DK dataset was due to a large portion of 

common variance in the connectomes across subjects that over-powered any existing individual 

differences. Indeed, our results conferred that there is a large portion of common variance in SC 

across subjects. This was the case regardless of the sample size, data quality, or parcellation. 

Interestingly, even in the Glasser dataset, where SC-FC subject-specificity was observed, the 

common component was strikingly large. We did observe, however, that SC variability was 

captured via a greater number of components in the Glasser dataset compared to the other 

datasets, suggesting greater inter-individual differences in the SC. Although the smaller datasets 

(e.g. Berlin) generally had fewer SC components, the variability that was observed in the HCP 

Glasser SC was not merely due to sample size, as the HCP Destrieux and HCP DK datasets were 

comparable to the HCP Glasser dataset in terms of sample size.  

 

We also observed a large common component in the FC across subjects. However, this 

component accounted for a smaller portion of total variance than the SC common component. 
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Moreover, a smaller number of significant variance components were found in the FC across 

subjects compared to in the SC. Together, these results suggest that FC is more variable than SC 

across subjects. This can also be observed in the striping of the SC-FC correspondence matrix, 

where some FCs correlate strongly with all SCs, while others correlate very little with all SCs. 

Note that this does not mean that individual differences in SC were not observed, but rather that 

the variance in SC that maps onto the corresponding variance in FC is weaker than one may 

expect intuitively.  

 

In the FC, a significant portion of variance was related to age, particularly for the two datasets 

with a wide age range (Berlin, NKI: age = 20-80, 5-85). This is consistent with previous reports 

of age effects on FC (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Ferreira & Busatto, 

2013; Sala-Llonch et al., 2014). Interestingly, age did not account for a significant portion of 

between-subjects variance in SC for four of the six datasets. We found an age effect in the SC 

only for the HCP Glasser dataset and the NKI Rockland dataset. In the NKI Rockland dataset, 

the large observed age effect in SC was likely a consequence of the wide age distribution and the 

inclusion of child subjects. The grey-white matter boundary is ill defined in children, and 

incomplete myelination results in weaker tractography-based estimation of SC (Deoni, Dean, 

Remer, Dirks, & O'Muircheartaigh, 2015; Thompson et al., 2005).  

 

The limited amount of between-subjects variability in both SC and FC that we observed was 

comparable to findings by Marellec et al. (2016), where a large portion of variance was 

accounted for by an invariant core that was consistent across subjects (SC: ~86%, FC: ~59%). 

There, it was shown that the invariant core of SC correlated with the invariant core of FC. Along 
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the same lines, Waller et al. (2017) suggested that the specificity of connectome fingerprinting 

using FC was limited by the large amount of common variance across subjects.  

 

The decomposition approach we used here was helpful for separating common and unique 

variance, and identifying aspects of the connectome that express each portion of variance. Data-

driven classification algorithms like clustering are an alternate approach that can be used to 

express similarities and differences between subject connectomes (E. Amico et al., 2017; Iraji et 

al., 2016) . Recently, a consensus clustering algorithm has been introduced that can be helpful 

for identifying how aspects of the connectome are combined to express these inter-subject 

similarities and differences (Rasero, 2017).  

 

Limitations on the study of variability within modality 

The study of variability within SC and FC each faces its unique limitations.  Variation in 

acquisition, processing and connectome metrics as well as statistical methods may impact the 

extent of between-subjects variability observed. For instance, for SC, the diffusion method,  

tractography (Bonilha et al., 2015), SC metric (Buchanan, Pernet, Gorgolewski, Storkey, & 

Bastin, 2014), or ROI size (Bonilha et al., 2015), have been shown to affect variability and 

reproducibility of SCs. FC variability across subjects is affected by the choice of metric 

(Marrelec et al., 2016).  For example, the amount of common variance may be slightly higher 

when using correlation compared to mutual information for the calculation of FC. On the other 

hand, the common component of FC that is invariant across subjects was comparable for 

dynamic and static FC (Marrelec et al., 2016).  Nonetheless, the  correlation between SC and FC 

may be limited by the dynamic fluctuation of FC on short time windows (Allen et al., 2014; 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/277590doi: bioRxiv preprint 

https://doi.org/10.1101/277590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

Deco, Kringelbach, Jirsa, & Ritter, 2016; Hutchison et al., 2013). SCs may better correlate with 

temporally stable rsFC (Honey et al., 2009). To this end, we considered only SC present 

connections in a secondary analysis, as these have been shown to have more stable resting-state 

FC (Shen et al., 2015).  

 

One important question is whether increased between-subjects variation in the FC is a 

consequence of non-neural influences such as vascular variability or head motion (Geerligs, 

Tsvetanov, Cam, & Henson, 2017) or reflects real, meaningful variability in neural activation. If 

meaningless between-subjects variability in FC can be reduced, FC has the best chance to be able 

to capture subtle individual differences in SC. In addition to the corrections described in the 

methods, FC between-subjects variability was minimized via a secondary global signal 

regression (GSR) analysis (Berlin dataset, NKI Rockland dataset). Yet, lack of SC-FC subject-

specific correlation in five of the six persists despite these secondary analyses.  

 

Future directions 

Computational models that investigate how SC gives rise to FC may be particularly helpful for 

furthering our understanding of how individual SC and FC are linked (Jirsa, Sporns, Breakspear, 

Deco, & McIntosh, 2010; Kringelbach, McIntosh, Ritter, Jirsa, & Deco, 2015; Kunze, Hunold, 

Haueisen, Jirsa, & Spiegler, 2016; Ritter et al., 2013; Roy et al., 2014). The mechanisms by 

which individual FC comes about from individual SC may be the key to understanding subject-

specific differences. To this end, parameters from generative models combining individual 

empirical SC and FC can be used (Schirner, McIntosh, Jirsa, Deco, & Ritter, 2018). Variability 

in these parameters have already been shown to be useful for revealing individual differences 
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relevant for cognition (Falcon et al., 2016; Falcon et al., 2015; J. Zimmermann et al., 2018). 

These parameters may even exceed the predictive capacity of individual connectomes 

(Zimmermann et al., 2018). 

 

Summary 

We present evidence that, in most standard datasets, the subject variation in SC may be too weak 

to be reflected in the FC variability. However, subject-specificity of SC-FC can be captured via 

fine, multi-modally parcellated data, due to greater SC variability across subjects.  Nonetheless, 

SC and FC each show a large component that is common across subjects, which sets limitations 

on the extent of SC-FC subject-specificity. Implications of these findings for personalized 

medicine should be considered. Namely, attention to the quality of processing and parcellation 

methods is critical for furthering our understanding of the relationship between individual SC 

and FC. 
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