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Abstract

Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation
of epigenetic biomarkers of aging were developed using chronological age as a surrogate for
biological age, we hypothesized that incorporation of composite clinical measures of phenotypic
age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the
development of a more powerful epigenetic biomarker of aging. Using a innovative two-step
process, we develop a new epigenetic biomarker of aging, DNAmM PhenoAge, that strongly
outperforms previous measures in regards to predictions for a variety of aging outcomes, including
all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this
biomarker was developed using data from whole blood, it correlates strongly with age in every
tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that
increased epigenetic, relative to chronological age, is associated increased activation of pro-
inflammatory and interferon pathways, and decreased activation of transcriptional/translational
machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic
biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues

and cells, and provide insight into important pathways in aging.

Keywords: aging; life expectancy; biological age; epigenetic clock; DNA methylation
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BACKGROUND

One of the major goals of geroscience research is to define ‘biomarkers of aging’[1, 2], which can
be thought of as individual-level measures of aging that capture between-person differences in the
timing of disease onset, functional decline, and death over the life course. While chronological age
is arguably the strongest risk factor for aging-related death and disease, it is important to
distinguish chronological time from biological aging. Individuals of the same chronological age
may exhibit greatly different susceptibilities to age-related diseases and death, which is likely
reflective of differences in their underlying biological aging processes. Such biomarkers of aging
will be crucial to enable evaluation of interventions aimed at promoting healthier aging, by
providing a measurable outcome, that unlike incidence of death and/or disease, does not require

extremely long follow-up observation.

One potential biomarker that has gained significant interest in recent years is DNA methylation
(DNAm). Chronological time has been shown to elicit predictable hypo- and hyper-methylation
changes at many regions across the genome [3-7], and as a result, the first generation of DNAmM
based biomarkers of aging were developed to predict chronological age [8-13]. The blood-based
algorithm by Hannum[10] and the multi-tissue algorithm by Horvath[14] produce age estimates
(DNAm age) that correlate with chronological age well above r=0.90 for full age range samples.
Nevertheless, while the current epigenetic age estimators exhibit statistically significant
associations with many age-related diseases and conditions [15-26], the effect sizes are typically
small to moderate. One explanation is that by using chronological age as the reference, by
definition, may exclude CpGs whose methylation patterns don’t display strong time-dependent
changes, but instead signal the departure of biological age from chronological age. Thus, it is

important to not only capture CpGs that display changes with chronological time, but also those
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88  that account for differences in risk and physiological status among individuals of the same

89  chronological age.

90 Previous work by us and others have shown that “phenotypic aging measures”, derived from
91  clinical biomarkers[27-31], strongly predict differences in the risk of all-cause mortality, cause-
92  specific mortality, physical functioning, cognitive performance measures, and facial aging among
93  same-aged individuals. What’s more, in representative population data, some of these measures
94  have been shown to be better indicators of remaining life expectancy than chronological age[27],
95  suggesting that they may be approximating individual-level differences in biological aging rates.
96  Asaresult, we hypothesize that a more powerful epigenetic biomarker of aging could be generated
97 by replacing prediction of chronological age with prediction of a surrogate measure of "phenotypic
98 aging" that, in and of itself, differentiates morbidity and mortality risk among same-age

99 individuals.
100 RESULTS
101  Overview of the statistical model and analysis

102  Our development of the new epigenetic biomarker of aging proceeded along three main steps (Fig.
103 1). Instep 1, a novel measure of ‘phenotypic age’ was developed using clinical data from the third
104  National Health and Nutrition Examination Survey (NHANES). In step 2, DNAm from whole

105 blood was used to predict phenotypic age, such that:
106 DNAm PhenoAge = CpGy X 1 + CpGy X By + -+ CpGsq3 X Ps13 + constant

107  Predicted estimates from this model represent a person’s epigenetic age, which we refer to as
108 ‘DNAm PhenoAge’. Using multiple independent datasets, we then tested whether DNAmM

109  PhenoAge was associated with a number of aging-related outcomes. We also tested whether it
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110 differed as a function of social, behavioral, and demographic characteristics, as whether it was
111  applicable to tissues other than whole blood. Finally, in step 3, we examine the underlying biology
112 of the 513 CpGs in the DNAmM PhenoAge measure by examining differential expression, GO and

113 pathway enrichment, chromosomal locations, and heritability.
114  Estimating phenotypic age from clinical biomarkers

115  For step 1, NHANES Il was used to generate a measure of phenotypic age. NHANES Il is a
116  nationally-representative sample, with over twenty-three years of mortality follow-up, from which
117  our analytical sample included 9,926 adults with complete biomarker data. A Cox penalized
118  regression model—where the hazard of mortality was regressed on forty-two clinical markers and
119  chronological age—was used to select variables for inclusion in our phenotypic age score. The
120  forty-two biomarkers considered represent those that were available in both NHANES 111 and 1V.
121  Based on 10-fold cross-validation, ten variables (including chronological age) were selected for
122 the phenotypic age predictor (Additional file 1: Table S1). These nine biomarkers and
123 chronological age were then combined in a phenotypic age estimate (in units of years) as detailed

124  in Methods.

125  Validation data for phenotypic age came from NHANES IV, and included up to 17 years of
126 mortality follow-up for n=6,209 national representative US adults. In this population, phenotypic
127  age is correlated with chronological age at r=0.94. Results from all-cause and cause-specific
128  (competing risk) mortality predictions, adjusting for chronological age (Table 1), show that a one
129  year increase in phenotypic age is associated with a 9% increase in the risk of all-cause mortality
130 (HR=1.09, p=3.8E-49), a 9% increase in the risk of mortality from aging-related diseases
131  (HR=1.09, p=4.5E-34), a 10% increase in the risk of CVD mortality (HR=1.10, p=5.1E-17), a 7%

132 increase in the risk of cancer mortality (HR=1.07, p=7.9E-10), a 20% increase in the risk of

6
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133  diabetes mortality (HR=1.20, p=1.9E-11), and a 9% increase in the risk of lung disease mortality
134 (HR=1.09, p=6.3E-4). Further, phenotypic age is highly associated with comorbidity count

135  (p=3.9E-21) and physical functioning measures (p=2.1E-10, Additional file 1: Fig. S1).
136  An epigenetic biomarker of aging (DNAmM PhenoAge)

137  For step 2 (Fig. 1), data from n=456 participants at two time-points in the Invecchiare in Chianti
138  (InCHIANTI) study was used to relate blood DNAm levels to phenotypic age. INCHIANTI was
139 used as training data for the new epigenetic biomarker because the study assessed all clinical
140  measures needed to estimate phenotypic age, contained data on DNAm, and had a large age range
141 population (21-100 years). A total of 20,169 CpGs were considered when generating the new
142 DNAm measure. They represented those CpGs available on all three chips (27k, 450k, EPIC), so
143  as to facilitate usability across platforms. Elastic net regression, with 10-fold cross-validation,
144 produced a model in which phenotypic age is predicted by DNAm levels at 513 of the 20,169
145  CpGs. The linear combination of the weighted 513 CpGs yields a DNAm based estimator of
146  phenotypic age that we refer to as ‘DNAm PhenoAge’ (mean=58.9, s.d.=18.2, range=9.1-106.1),

147  in contrast to the previously published Hannum and Horvath ‘DNAmM Age’ measures.

148  While our new clock was trained on cross-sectional data in INCHIANTI, we capitalized on the
149  repeated time-points to test whether changes in DNAmM PhenoAge are related to changes in
150  phenotypic age. As expected, between 1998 and 2007, mean change in DNAmM PhenoAge was
151  8.51 years, whereas mean change in phenotypic age was 8.88 years. Moreover, participants’
152  phenotypic age (adjusting for chronological age) at the two time-points was correlated at r=0.50,
153  whereas participants’ DNAmM PhenoAge (adjusting for chronological age) at the two time-points

154  was correlated at r=0.68 (Additional file 1: Fig. S2). Finally, we find that the change in phenotypic
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155  age between 1998 and 2007 is highly correlated with the change in DNAmM PhenoAge between

156  these two time-points (r=0.74, p=3.2E-80, Additional file 1: Fig. S2).
157 DNAm PhenoAge strongly relates to all-cause mortality

158 Instep 3 (Fig. 1), the epigenetic biomarker, DNAm PhenoAge, was calculated in five independent
159  large-scale samples—two samples from Women’s Health Initiative (WHI) (n=2,016; and
160 n=2,191), the Framingham Heart Study (FHS) (n=2,553), the Normative Aging Study (NAS)
161  (n=657), and the Jackson Heart Study (JHS) (n=1,747). The first four studies used the Illumina
162 450K array while the JHS employed the latest Illumina EPIC array platform. In these studies,
163 DNAm PhenoAge correlated with chronological age at r=0.66 in WHI (Sample 1), r=0.69 in WHI
164  (Sample 2), r=0.78 in FHS, r=0.62 in the NAS, and r=0.89 in JHS. The five validation samples
165  were then used to assess the effects of DNAmM PhenoAge on mortality in comparison to the Horvath
166 and Hannum DNAmM Age measures. DNAm PhenoAge was significantly associated with
167  subsequent mortality risk in all studies (independent of chronological age), such that, a one year
168 increase in DNAmM PhenoAge is associated with a 4.5% increase in the risk of all-cause mortality
169  (Meta(FE)=1.045, Meta p=7.9E-47, Fig. 2). To better conceptualize what this increase represents,
170  we compared the predicted life expectancy and mortality risk for person’s representing the top 5%
171  (fastest agers), the average, and the bottom 5% (slowest agers). Results suggest that those in the
172 top 5% of fastest agers have a mortality hazard of death that is about 1.62 times that of the average
173 person, i.e. your hazard of death is 62% higher than that of an average person. Further, contrasting
174  the 5% fastest agers with the 5% slowest agers, we find that the hazard of death of the fastest agers
175 is 2.58 times higher than that of the bottom 5% slowest agers (HR=1.045'10/1.04510%),

176  Additionally, both observed and predicted Kaplan-Meier survival estimates showed that faster
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177  agers had much lower life expectancy and survival rates compared to average and/or slow agers

178  (Fig. 2).

179  Asshown in Fig. 2, the DNAm age based measures from Hannum and Horvath also related to all-
180  cause mortality, consistent with what has been reported previously [16, 24, 32-34]. To directly
181  compare the three epigenetic measures, we contrasted their accuracy in predicting 10-year and 20-
182  year mortality risk, using receiver operating characteristics curves. DNAm PhenoAge (adjusted
183  for age) predicts both 10-year mortality and 20-year mortality significantly better than the other
184  two measures (Additional file 1: Table S2). Finally, when examining a model that includes all
185  three measures (Additional file 1: Table S3), we find that only DNAmM PhenoAge is positively
186  associated with mortality (HR=1.04, p=1.33E-8), whereas Horvath DNAm Age is now negatively
187  associated (HR=0.98, p=2.72E-2), and Hannum DNAm Age has no association (HR=1.01,

188  p=4.66E-1).
189 DNAm PhenoAge strongly relates to aging-related morbidity

190  Giventhat aging is believed to also influence diseases incidence/prevalence, we examined whether
191 DNAm PhenoAge relate to diverse ag-related morbidity outcomes. We observe strong associations
192  between DNAmM PhenoAge and a variety of other aging outcomes using the same five validation
193  samples (Table 2). For instance, independent of chronological age, higher DNAmM PhenoAge is
194  associated with an increase in a person’s number of coexisting morbidities ($=0.008 to 0.031,
195  Meta P-value=1.95E-20), a decrease in likelihood of being disease-free (3=-0.002 to -0.039; Meta
196  P-value=2.10E-10), an increase in physical functioning problems (f=-0.016 to -0.473; Meta P-

197  value=2.05E-13), an increase in the risk of CHD risk (3=0.016 to 0.073; Meta P-value=3.35E-11).

198 DNAm PhenoAge and smoking
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199  Cigarette exposure has been shown to have an epigenetic fingerprint[35-37], which has been
200  reflected in previous DNAm risk predictors[38]. Similarly, we find that DNAm PhenoAge
201  significantly differs between never (n=1,097), current (n=209), and former smokers (n=710)
202  (p=0.0033) (Additional file 1, Fig. S3A); however, conversely, we do not find a robust association
203  between pack-years and DNAm PhenoAge (Additional file 1, Fig. S3B-D). Given the association
204  between DNAmM PhenoAge and smoking, we re-evaluated the morbidity and mortality associations
205  (fully-adjusted) in our four samples, stratifying by smoking status (Additional file 1: Fig. S4 and
206  Table S4). We find that DNAm PhenoAge is associated with mortality among both smokers
207  (adjusted for pack-years) (Meta(FE)=1.050, Meta p=7.9E-31), and non-smokers
208  (Meta(FE)=1.033, Meta p=1.2E-10). DNAmM PhenoAge relates to the number of coexisting
209  morbidities, physical functioning status, disease free status, and CHD for both smokers and non-
210  smokers (Additional file 1: Table S4). Finally, in previous work we showed that Horvath DNAmM
211  age of blood predicts lung cancer risk in the first WHI sample[21]. Using the same data, we find
212  thataone year increase in DNAm PhenoAge (adjusting for chronological age, race/ethnicity, pack-
213  years, and smoking status) is associated with a 5% increase in the risk lung cancer incidence and/or
214 mortality (HR=1.05, p=0.031). Further, when restricting the model to current smokers only, we
215  find that the effect of DNAm PhenoAge on future lung cancer incidence and/or mortality is even

216  stronger (HR=1.10, p=0.014).
217

218 Inevaluating the relationship between DNAm PhenoAge and additional characteristics we observe
219  significant differences between racial/ethnic groups (p=5.1E-5), with non-Hispanic blacks having
220  the highest DNAm PhenoAge on average, and non-Hispanic whites having the lowest (Additional

221  file 1: Fig. S5). We also find evidence of social gradients in DNAm PhenoAge, such that those

10
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222  with higher education (p=6E-9) and higher income (p=9E-5) appear younger. DNAm PhenoAge
223  relates to exercise and dietary habits, such that increased exercise (p=7E-5) and markers of
224 fruit/vegetable consumption (such as carotenoids, p=2E-27) are associated with lower DNAmM
225 PhenoAge (Additional file 1: Fig. S6A & Additional file 1: Fig. S6B). Cross sectional studies in
226  the WHI also revealed that DNAmMPhenoAge acceleration is positively correlated with C-reactive
227  protein (r=0.18, p=5E-22, Additional file 1: Fig. S6B), insulin (r=0.15, p=2E-20), glucose (r=0.10,
228  p=2E-10), triglycerides (r=0.09, p=5E-9), waist to hip ratio (r=0.15, p=5E-22) but it is negatively

229  correlated with the "good" cholesterol HDL (r=-0.09, p=7E-9).
230 DNAmM PhenoAge in other tissues

231  One advantage of developing biological aging estimates based on molecular markers (like
232  DNAm), rather than clinical risk measures (e.g. those in the phenotypic age variable), is that they
233  may lend themselves to measuring tissue/cell specific aging. Although DNAmM PhenoAge was
234  developed using samples from whole blood, our empirical results show that it strongly correlates
235  with chronological age in a host of different tissues and cell types (Fig. 3). For instance, when
236  examining all tissues concurrently, the correlation between DNAmM PhenoAge and chronological
237  age was 0.71. Age correlations in brain tissue ranged from 0.54 to 0.92, while correlations were
238  also found in breast (r=0.47), buccal cells (r=0.88), dermal fibroblasts (r=0.87), epidermis (r=0.84),

239  colon (r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80), lung (r=055), and saliva (r=0.81).
240  Alzheimer's disease and brain samples

241  Based on the accuracy of the age prediction in other tissues/cells, we examined whether aging in
242  a given tissue was associated with tissue-associated outcomes. For instance, using data from
243  approximately 700 post-mortem samples from the Religious Order Study (ROS) and the Memory

244 and Aging Project (MAP)[39, 40] we tested the association between pathologically diagnosed
11
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245  Alzheimer’s disease and DNAm PhenoAge in dorsolateral prefrontal cortex (DLPFX). Results
246  suggest (Fig. 4) that those who are diagnosed with Alzheimer’s disease (AD), based on
247  postmortem autopsy, have DLPFX that appear more than one year older than same aged
248 individuals who are not diagnosed with AD postmortem (p=4.6E-4). Further, age adjusted DNAmM
249  PhenoAge was found to be positively associated with neuropathological hallmarks of Alzheimer’s
250 disease, such as amyloid load (r=0.094, p=0.012), neuritic plaques (r=0.11, p=0.0032), and

251  neurofibrillary tangles (r=0.10, p=0.0073).
252  Comparison with other DNAmM biomarkers of aging

253  Several additional DNAmM biomarkers have been described in the literature CpGs [12, 13]. A direct
254 comparison of 6 DNAmM biomarkers (including DNAmM PhenoAge) reveals that DNAmM PhenoAge
255  stands out in terms of its predictive accuracy for lifespan, its relationship with smoking status, its
256  relationship with leukocyte telomere length, naive CD8+ T cells and CD4+ T cells (Additional file

257  1:Table S5).
258 DNAmM PhenoAge and Immunosenescence

259  To test the hypothesis that DNAmM PhenoAge captures aspects of the age-related decline of the
260  immune system, we correlated DNAmM PhenoAge with estimated blood cell count (Additional file
261 1, Fig. S7). After adjusting for age, we find that DNAm PhenoAgeAccel is negatively correlated
262  with naive CD8+ T cells (r=-0.35, p=9.2E-65), naive CD4+ T cells (r=-0.29, p=4.2E-42), CD4+
263  helper T cells (r=-0.34, p=3.6E-58), and B cells (r=-0.18, p=8.4E-17). Further, DNAmM
264  PhenoAgeAccel is positively correlated with the proportion of granulocytes (r=0.32, p=2.3E-51),
265  exhausted CD8+ (defined as CD28-CD45RA-) T cells (r=0.20, p=1.9E-20), and plasma blast cells
266  (r=0.26, p=6.7E-34). These results are consistent with age related changes in blood cells [41] and

267  suggest that DNAmM PhenoAge may capture aspects of immunosenescence in blood. However,

12
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268  three lines of evidence suggest that DNAmM PhenoAge is not simply a measure of
269  immunosenescence. First, another measure of immunosenescence, leukocyte telomere length, is
270  only weakly correlated with DNAm PhenoAgeAccel (r=-0.13 p=0.00019 in the WHI and r=-0.087,
271  P=7.6E-3 in Framingham Heart study, Additional file 1, Fig. S8). Second, the strong association
272  between DNAm PhenoAge and mortality does not simply reflect changes in blood cell
273 composition, as can be seen from the fact that in Additional file 1, Fig. S9 the robust association
274  remains even after adjusting for estimates of seven blood cell count measures (Meta(FE)=1.036,

275  Meta p=5.6E-21).
276  DNA sequence characteristics of the 513 CpGs in DNAmM PhenoAge

277  Of the 513 CpGs in DNAmM PhenoAge, we find that, 41 CpGs were also in the Horvath DNAm
278  Age measure (Additional file 2: Table S6). This represents a 4.88-fold increase over what would
279  be expected by chance (p=8.97E-15). Of the 41 overlapping CpGs, the average absolute value for
280 their age correlations was r=0.40, and 31 had age correlations with absolute values in the top 20%
281  of what is found for among the 513 CpGs in the DNAm PhenoAge score. We also observed 6
282  CpGs that overlapped between the Hannum DNAm Age score and the DNAm PhenoAge score—
283  five of which were also found in the Horvath DNAmM Age measure. All six CpGs had extremely
284  high age correlations (half positive, half negative), with absolute values between r=0.49 and
285 r=0.76. The five CpGs that are found in all three epigenetic aging measures were: cg05442902
286  (P2RXL1), cg06493994 (SCGN), cg09809672 (EDARADD), cgl9722847 (IPO8), and

287 922736354 (NHLRC1).

288  Finally, we conducted a functional enrichment analysis of the chromosomal locations of the 513
289  CpGs, we found that 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG

290 islands (p=0.0045, Additional file 1: Fig. S10) and were significantly enriched with polycomb
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291  group protein targets (p=8.7E-5, Additional file 1: Fig. S10), which echoes results of epigenome

292  wide studies of aging effects [4, 42, 43].
293  Transcriptional and genetic studies of DNAmM PhenoAge

294  Using the genome-wide data from FHS and WHI, we estimated the heritability of DNAmM
295 PhenoAge. The heritability estimated by the SOLAR polygenic model for those of European
296  ancestry in the FHS was h?=0.33, while the heritability estimated for those of European ancestry

297  in WHI, using GCTA-GREML analysis[44, 45] was h?=0.51.

298  Using the monocyte data mentioned above, as well as PBMC expression data on 2,188 persons
299 from the FHS, we conducted a more thorough transcriptional analysis to identify differential
300 expression associated with DNAm PhenoAgeAccel (Additional file 3: Table S7). Overall, we find
301 that genes show similar associations to chronological age and DNAmM PhenoAgeAccel. DNAmM
302 PhenoAgeAccel represents aging differences among same-aged individuals and is adjusted so as
303 to exhibit a correlation of r=0.0 with chronological age. Thus, this observation can be taken to
304  suggest that genes whose transcription increases with age are upregulated among epigenetically
305 older compared to epigenetically younger persons of the same chronological age (Additional file
306 1. Fig. S11)—same applies for genes that show decreases with chronological age being

307  downregulated in epigenetically older versus younger persons of the same age.

308 Using the transcriptional data from monocytes described above (adjusting for array, sex,
309 race/ethnicity, age, and imputed cell counts), we tested for GO enrichment among genes that
310  positively associated with DNAm PhenoAge and those that negatively associated with DNAmM
311 PhenoAge (Additional file 4: Table S8). Among those with positive aging associations
312  (overexpression among epigenetically older individuals), we observed enrichment for a number of

313  pro-inflammatory signaling pathways. These pathways included, but were not limited to: multiple
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314  toll-like receptor signaling pathways (7,9,3,2), regulation of inflammatory response, JAK-STAT
315 cascade, response to lipopolysaccharide, tumor necrosis factor-mediated signaling pathway, and
316  positive regulation of NF-kappaB transcription factor activity. Additionally, positively associated
317  genes were also enriched for a number anti-viral response pathways—type | interferon signaling,
318  defense response to virus, interferon-gamma-mediated signaling pathway, cellular response to
319 interferon-alpha, etc. Finally, other interesting GO terms enriched among positively associated
320  genes included: response to nutrient, JAK-STAT cascade involved in growth hormone signaling

321  pathway, multicellular organism growth, and regulation of DNA methylation.

322  When testing for enrichment among genes that were negatively associated with DNAmM
323  PhenoAgeAccel (decreased expression among epigenetically older persons) we observed that
324 many were implicated in processes involving transcriptional and translational machinery, as well
325 as damage recognition and repair. These included: translational initiation; regulation of
326 translational initiation; ribosomal large subunit assembly; ribosomal small subunit assembly;
327  translational elongation; transcription initiation from RNA polymerase | promoter; transcription-
328  coupled nucleotide-excision repair; nucleotide-excision repair, DNA incision, 5'-to lesion;
329  nucleotide-excision repair, DNA damage recognition; DNA damage response, detection of DNA

330  damage; and regulation of DNA damage checkpoint.
331 DISCUSSION

332  Using a novel two-step method, we were successful in developing a DNAm based biomarker of
333  aging that is highly predictive of nearly every morbidity and mortality outcome we tested. Training
334 an epigenetic predictor of phenotypic age instead of chronological age led to substantial
335 improvement in mortality/healthspan predictions over the first generation of DNAm based

336  biomarkers of chronological age from Hannum[10], Horvath[14] and other published DNAmM
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337  biomarkers. In doing so, this is the first study to conclusively demonstrate that DNAm biomarkers
338 of aging are highly predictive of CVD and coronary heart disease. DNAmM PhenoAge also tracks
339 chronological age and relates to disease risk in samples other than whole blood. Finally, we find
340 that an individual’s DNAmM PhenoAge, relative to his/her chronological age, is moderately
341 heritable and is associated with activation of pro-inflammatory, interferon, DNAmM damage repair,
342  transcriptional/translational signaling, and various markers of immunosenescenc: a decline of

343 naive T cells and shortened leukocyte telomere length.

344  The ability of our measure to predict multifactorial aging conditions is consistent with the
345  fundamental underpinnings of Geroscience research [1, 46], which posits that aging mechanisms
346  give rise to multiple pathologies and thus, differences in the rate of aging will have implications
347  for awide array of diseases and conditions. Further, these results answer a fundamental biological
348  question of whether differences in multi-system dysregulation (estimated using clinical phenotypic
349  age measures), healthspan, and lifespan are reflected at the epigenetic level, in the form of

350 differential DNAmM at specific CpG sites.

351  The improvement over previous epigenetic biomarkers, likely comes down to the types of CpGs
352  selected for the various measures. Only 41 of the 513 CpGs in DNAm PhenoAge were shared with
353  the Horvath clock, while only five CpGs were shared between all three clocks (DNAmM PhenoAge,
354  Horvath, and Hannum). In general, these CpGs did not tend to be drivers of the DNAm PhenoAge
355  score, and instead represented those with large age correlations, but lower weights. This may
356  explain the improvements of DNAm PhenoAge over previous epigenetic biomarkers of aging.
357  While the previous DNAmM age estimators selected CpGs to optimize prediction of chronological
358 age, the CpGs in DNAmM PhenoAge were optimized to predict a multi-system proxy of

359  physiological dysregulation (phenotypic age). In doing so, we were able to not only capture CpGs
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360 that exhibited changes in DNAm with age, but also those that captured variations in risk of death
361 and disease among same aged individuals. In general, the CpGs with the highest weights in the
362  new clock did not correlate with chronological age (Additional file 1: Fig. S12), but instead were
363 related to the difference between phenotypic and chronological age—i.e. divergence in the rate of
364  aging. Interestingly, the CpGs that contributed the most to the DNAmM PhenoAge score, tended to

365  have low age correlations.

366 While DNAmM PhenoAge greatly outperformed all previous DNAm biomarkers of aging
367  (Additional file 1: Table S5), the utility of DNAmM PhenoAge for estimating risk does not imply
368 that it should replace clinical biomarkers when it comes to informing medical and health-related
369  decisions. In fact, but perhaps not surprisingly, the phenotypic age measure used to select CpGs is
370  abetter predictor of morbidity and mortality outcomes than DNAmM PhenoAge. While the addition
371  of error in performing a two-step process, rather than training a DNAm predictor directly on
372  mortality may contribute, we don’t believe this accounts for the difference in predictive
373  performance. In fact, a recent DNAmM measure by Zhang et al.[38] was trained to directly predict
374 mortality risk, yet it appears to be a weaker predictor than both our DNAm PhenoAge measure
375 and our clinical phenotypic age measure (Additional file 1: Table S9). The first generation of
376  DNAm age estimators only exhibit weak associations with clinical measures of physiological
377  dysregulation [47, 48]. Physiological dysregulation, which is more closely related to our clinical
378 age measure “phenotypic age” than to chronological age, is not only the result of
379  exogenous/endogenous stress factors (such as obesity, infections) but also a result of age related
380  molecular alterations, one example of which are modifications to the epigenome. Over time,
381  dysregulation within organ systems leads to pathogenesis of disease (age-related molecular

382 changes - physiological dysregulation = morbidity - mortality)[49]. However, stochasticity
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383 and variability exist at each of these transitions. Therefore, measures of physiological
384  dysregulation, will be better predictors of transition to the next stage in the aging trajectory (i.e.
385  morbidity and mortality) than will measures of age related molecular alterations, like DNAmM
386  PhenoAge. Similarly, quantification of disease pathogenesis (cancer stage, Alzheimer’s stage) is
387  likely a better predictor of mortality risk than clinical phenotypic aging measures. As a result,
388 clinical phenotypic aging measures may be preferable to epigenetic measures when the goal is risk

389  prediction, and all samples come from blood.

390  That being said, when the aim is to study the mechanisms of the aging process, DNAmM measures
391 have advantages over clinical measures. First, they may better capture “pre-clinical aging” and
392  thus may be more suited for differentiating aging in children, young adults, or extremely healthy
393  individuals, for whom measures like CRP, albumin, creatinine, glucose, etc. are still fairly
394  homogenous. Second, as demonstrated, these molecular measures can capture cell and/or tissue
395  specific aging rates and therefore may also lend themselves to in vitro studies of aging, studies for
396  which blood is not available, studies using postmortem samples, and/or studies comparing aging
397  rates between tissues/cells. While the fundamental drivers of aging are believed to be shared across
398  cells/tissues, that is not to say that all the cells and tissues within an individual will age at the same
399 rate. In fact, it is more likely that individuals will vary in their patterning of aging rates across
400  tissues, and that this will have implications for death and disease risk. Relatedly, it is not known
401  how predictions based on DNAm PhenoAge measures from non-blood samples will compare to
402  phenotypic age predictions. It may be the case that various outcomes will be more tightly related
403  to aging in specific cells/tissues, rather than blood. Finally, examination of DNAm based aging
404  rates facilitates the direct study of the proposed mechanisms of aging, of which “epigenetic

405  alterations” is one of the seven hypothesized “pillars of aging” [1].
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406  While more work needs to be done to model the biology linking DNAmM PhenoAge and aging
407  outcomes, we began to explore this using differential expression, functional enrichment,
408 heritability estimates, and network analysis. Overall, we found that CpGs that had larger increases
409  with aging tended to be located in CpG islands and enriched with polycomb group protein targets,
410  consistent with what has been reported in previous epigenome wide studies of aging effects [4, 6,
411 7, 42, 43]. While typically DNAm of CpG islands and/or polycomb recruitment is linked to
412  transcriptional silencing [50], for the most part, we did not observe associations between DNAmM
413  and expression for co-locating CpG-gene pairs—this was also true when only considering CpGs
414  located in islands. These findings may suggest that the genes annotated to the CpGs in our score
415  are not part of the link between changes in DNAm and aging. Nevertheless, we also recognize that
416  these null results could stem from the fact that 1) associations were only tested in monocytes, 2)
417  DNAm and expression represents what is present globally for each sample, rather than on a cell-
418  by-cell bases, and 3) stronger associations between DNAm and gene expression levels may only

419  existearly in life.

420  Nevertheless, we do identify potentially promising transcriptional pathways when considering
421  DNAm PhenoAge as a whole. For instance, we observe that higher DNAmM PhenoAge is associated
422  with increases in the activation of proinflammatory pathways, such as NF-kappaB; increased
423  interferon (IFN) signaling; decreases in ribosomal-related and translational machinery pathways;
424 and decreases in damage recognition and repair pathways. These findings are consistent with
425  previous work describing aging associated changes, comprising increases in dysregulated
426  inflammatory activation, increased DNA damage, and loss of translational fidelity. For instance,
427  there exists a large body of literature highlighting the importance of an increased low-grade pro-

428 inflammatory status as a driver of the aging process, termed inflamm-aging [41, 51, 52]. IFN
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429  signaling pathways have been shown to be markers of DNA damage and mediators of cellular
430 senescence[53]. Additionally, it has been shown that breakdown of the transcriptional and
431 translational machinery may play a central role in the aging process[54, 55]. For instance, the
432  ribosome is believed to be a key regulator of proteostasis, and in turn, aging[54, 56]. Relatedly,
433  loss of integrity in DNA damage repair pathways is considered another hallmark of the aging

434 process[57-59].

435 In general, many of these pathways will have implications for adaptation to exogenous and
436  endogenous stressors. Factors related to stress resistance and response have repeatedly been shown
437  to be drivers of differences in lifespan and aging[60-65]. This may partially account for our
438  findings related to smoking. In general, it is not surprising that a biomarker of aging and mortality
439  risk relates to smoking, given that life expectancies of smokers are on average ten years shorter
440  than never smokers, and smoking history is associated with a drastic increase in the risk of a
441  number of age-related conditions. However, perhaps more interestingly, we find that the effects of
442  DNAmM PhenoAge on mortality appear to be higher for smokers than non-smokers, which could
443  suggest that DNAm PhenoAge represent differences in innate resilience/vulnerability to pro-aging

444 stressors, such as cigarette smoke.

445  Interestingly, we observed moderately high heritability estimates for DNAm PhenoAge. For
446  instance, we estimated that genetic differences accounted for one-third to one-half of the variance
447  in DNAm PhenoAge, relative to chronological age. In moving forward, it will be useful to identify
448  the genetic architecture underlying differences in epigenetic aging. Finally, we reported that
449  individuals’ DNAm PhenoAges—relative to their chronological ages—remained fairly stable over
450 a nine-year period. However, it is unclear whether it is attributable to genetic influences, or the

451  fact that social and behavioral characteristics tend to also remain stable for most individuals.
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452 If the goal is to utilize accurate quantifiable measures of the rate of aging, such as DNAm
453  PhenoAge, to assess the efficacy of aging interventions, more work will be needed to evaluate the
454 dynamics of DNAmPhenoAge following various treatments. For instance, it remains to be seen
455  whether interventions can reverse DNAmMPhenoAge in the short term. Along these lines, it will be
456  essential to determine causality—does DNAmM drive the aging process, or is it simply a surrogate
457  marker of senescence? If the former is true, DNAm PhenoAge could provide insight into promising

458  targets for therapies aimed at lifespan, and more importantly, healthspan extension.
459  Conclusion

460 Overall, DNAmM PhenoAge is an attractive composite biomarker that captures organismal age and
461  the functional state of many organ systems and tissues, above and beyond what is explained by
462  chronological time. Our validation studies in multiple large and independent cohorts demonstrate
463  that DNAmM PhenoAge is a highly robust predictor of both morbidity and mortality outcomes, and
464  represents a promising biomarker of aging, which may prove to be beneficial to both basic science

465 and translational research.
466 METHODS

467  Using the NHANES training data, we applied a Cox penalized regression model—where the
468  hazard of aging-related mortality (mortality from diseases of the heart, malignant neoplasms,
469  chronic lower respiratory disease, cerebrovascular disease, Alzheimer’s disease, Diabetes mellitus,
470  nephritis, nephrotic syndrome, and nephrosis) was regressed on forty-two clinical markers and
471  chronological age to select variables for inclusion in our phenotypic age score. Ten-fold cross-
472  validation was employed to select the parameter value, lambda, for the penalized regression. In
473  order to develop a sparse phenotypic age estimator (the fewest biomarker variables needed to

474 produce robust results) we selected a lambda of 0.0192, which represented a one standard deviation
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475  increase over the lambda with minimum mean-squared error during cross-validation (Additional
476  file 1, Fig. S13). Of the forty-two biomarkers included in the penalized Cox regression model, this
477  resulted in ten variables (including chronological age) that were selected for the phenotypic age

478  predictor.

479  These nine biomarkers and chronological age were then included in a parametric proportional
480  hazards model based on the Gompertz distribution. Based on this model, we estimated the 10-year
481 (120 months) mortality risk of the j-the individual. Next, the mortality score was converted into
482  units of years (Additional file 1). The resulting phenotypic age estimate was regressed on DNA
483  methylation data using an elastic net regression analysis. The penalization parameter was chosen
484  to minimize the cross validated mean square error rate (Additional file 1, Fig. S14), which resulted

485 in 513 CpGs.
486  Estimation of blood cell counts based on DNAm levels

487  We estimate blood cell counts using two different software tools. First, Houseman's estimation
488  method [66] was used to estimate the proportions of CD8+ T cells, CD4+ T, natural Kkiller, B cells,
489  and granulocytes (mainly neutrophils). Second, the Horvath method, implemented in the advanced
490 analysis option of the epigenetic clock software [11, 18], was used to estimate the percentage of
491  exhausted CD8+ T cells (defined as CD28-CD45RA-), the number (count) of naive CD8+ T cells
492  (defined as CD45RA+CCR7+) and plasmablasts. We and others have shown that the estimated
493  blood cell counts have moderately high correlations with corresponding flow cytometric measures

494  [66, 67].
495  Additional descriptions of methods and materials can be found in Additional file 1.

496
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744  TABLES

745 Table 1: Mortality Validations for Phenotypic Age

Mortality Cause Cases HR P-Value
All-Cause 1052 1.09 3.8E-49
Aging-Related 661 1.09 4.5E-34
CVvD 272 1.10 5.1E-17
Cancer 265 1.07 7.9E-10
Alzheimer's 30 1.04 2.6E-1

Diabetes 41 1.20 1.9E-11
Lung 53 1.09 6.3E-4
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767
768
769
770
771  Table 2: Morbidity Validation for DNAmM PhenoAge
Comorbidity Disease Free CHD Risk Physical Functioning
Sample Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value
DNAm PhenoAge
WHI BA23 White 0.008 2.38E-01 -0.002 3.82E-01 0.016 5.36E-02 -0.396 1.04E-04
WHI BA23 Black 0.013 6.15E-02 -0.006 2.40E-02 0.021 2.02E-02 -0.423 4.50E-04
WHI BA23 Hispanic 0.024 1.64E-02 -0.004 3.67E-01 0.033 5.07E-02 -0.329 7.37E-02
WHI EMPC White 0.031 2.95E-07 -0.026 1.63E-02 0.023 1.89E-01 -0.361 3.81E-05
WHI EMPC Black 0.014 7.67E-02 -0.023 6.98E-02 0.048 2.27E-02 -0.473 3.75E-04
WHI EMPC Hispanic 0.003 7.83E-01 0.002 9.28E-01 0.073 1.98E-01 -0.377 6.54E-02
FHS 0.022 3.93E-07 -0.034 1.59E-03 0.028 5.47E-06 -0.016 4.60E-01
NAS 0.023 7.59E-06 -0.062 2.00E-04 0.030 2.27E-02 NA NA
JHS 0.018 1.86E-08 -0.039 5.92E-05 0.033 4.73E-02 NA NA
Meta P-value (Stouffer) 1.95E-20 2.14E-10 3.35E-11 2.05E-13
DNAmAge Hannum
WHI BA23 White 0.007 3.90E-01 -0.003 3.48E-01 0.013 2.36E-01 -0.399 2.90E-03
WHI BA23 Black 0.022 2.72E-02 -0.007 6.03E-02 0.015 2.67E-01 -0.345 4.29E-02
WHI BA23 Hispanic 0.010 4.33E-01 -0.010 6.24E-02 0.011 6.10E-01 -0.599 1.16E-02
WHI EMPC White 0.025 1.53E-03 -0.020 1.55E-01 0.022 3.30E-01 -0.284 1.43E-02
WHI EMPC Black 0.022 6.34E-02 -0.008 6.62E-01 0.055 6.12E-02 -0.323 9.56E-02
WHI EMPC Hispanic -0.012 4.17E-01 0.035 2.09E-01 -0.012 8.85E-01 -0.345 2.54E-01
FHS 0.019 5.94E-04 -0.030 2.55E-02 0.022 1.55E-02 0.040 1.32E-01
NAS 0.009 2.19E-01 -0.026 2.26E-01 0.025 1.83E-01 NA NA
JHS 0.020 2.09E-05 -0.036 9.91E-03 0.086 1.64E-04 NA NA
Meta P-value (Stouffer) 1.50E-08 1.64E-04 1.40E-05 2.03E-05
DNAmAge Horvath
WHI BA23 White 0.007 3.49E-01 -0.004 1.69E-01 0.001 9.12E-01 -0.440 5.10E-04
WHI BA23 Black 0.018 3.96E-02 -0.006 6.25E-02 0.009 4.07E-01 -0.305 4.52E-02
WHI BA23 Hispanic 0.012 3.65E-01 -0.007 1.86E-01 -0.001 9.78E-01 -0.204 4.12E-01
WHI EMPC White 0.031 1.99E-04 -0.043 5.56E-03 0.000 9.88E-01 -0.288 1.74E-02
WHI EMPC Black 0.016 1.93E-01 -0.003 8.56E-01 0.033 2.87E-01 -0.144 4.68E-01
WHI EMPC Hispanic -0.025 8.99E-02 -0.016 5.70E-01 -0.064 4.63E-01 -0.012 9.70E-01
FHS 0.011 5.82E-02 -0.021 8.34E-02 0.007 5.19E-01 0.027 3.16E-01
NAS 0.011 7.90E-02 -0.039 4.53E-02 0.006 7.14E-01 NA NA
JHS 0.014 2.03E-03 -0.040 1.78E-03 0.049 3.93E-02 NA NA
Meta P-value (Stouffer) 3.26E-06 6.36E-07 1.49E-01 1.43E-03
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776 FIG. LEGENDS

777  Fig. 1. Roadmap for developing DNAmM PhenoAge

778  The roadmap depicts our analytical procedures. In step 1, we developed an estimate of ‘Phenotypic
779  Age’ based on clinical measure. Phenotypic age was developed using the NHANES III as training
780 data, in which we employed a proportional hazard penalized regression model to narrow 42
781  biomarkers to 9 biomarkers and chronological age. This measure was then validated in NHANES
782 1V and shown to be a strong predictor of both morbidity and mortality risk. In step 2, we developed
783  an epigenetic biomarker of phenotypic age, which we call DNAmM PhenoAge, by regressing
784  phenotypic age (from step 1) on blood DNA methylation data, using the INCHIANTI data. This
785  produced an estimate of DNAmM PhenoAge based on 513 CpGs. We then validated our new
786  epigenetic biomarker of aging, DNAmM PhenoAge, using multiple cohorts, aging-related outcomes,
787  and tissues/cells. In step 3, we examined the underlying biology of the 513 CpGs and the composite
788 DNAmM PhenoAge measure, using a variety of complementary data (gene expression, blood cell
789  counts) and various genome annotation tools including chromatin state analysis and gene ontology

790  enrichment.
791  Fig. 2. Mortality Prediction by DNAmM PhenoAge

792  A:Using five samples from large epidemiological cohorts—two samples from the Women’s health
793 Initiative, the Framingham Heart Study, the Normative Aging Study, and the Jackson Heart
794  Study—we tested whether DNAmM PhenoAge was predictive of all-cause mortality. The Fig.
795  displays a forest plot for fixed-effect meta-analysis, based on Cox proportional hazard models, and
796  adjusting for chronological age. Results suggest that DNAmM PhenoAge is predictive of mortality
797 inall samples, and that overall, a one year increase in DNAmM PhenoAge is associated with a 4.5%

798 increase in the risk of death (p=9.9E-47). This is contrasted against the first generation of
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799  epigenetic biomarkers of aging by Hannum and Horvath, which exhibit less significant
800  associations with lifespan (p=1.7E-21 and p=4.5E-5, respectively). B & C: Using the WHI sample
801 1, we plotted Kaplan-Meier survival estimates using actual data from the fastest versus the slowest
802 agers (panel B). We also applied the equation from the proportional hazard model to predict
803  remaining life expectancy and plotted predicted survival assuming a chronological age of 50 and
804 aDNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (panel C). Median
805 life expectancy at age 50 was predicted to be approximately 81 years for the fastest agers, 83.5

806  years for average agers, and 86 years for the slowest agers.
807  Fig. 3. Chronological age versus DNAmM PhenoAge in a variety of tissues and cells

808  Although DNAm PhenoAge was developed using methylation data from whole blood, it also
809 tracks chronological age in a wide variety of tissues and cells. A) The correlation across all
810  tissues/cells we examined is r=0.71. B-ZJ) report results in different sources of DNA as indicated
811 in panel headings. The numbers correspond to the data sets from (Horvath 2013). Overall,

812  correlations range from r=0.35 (breast, panel O) to r=0.92 (temporal cortex in brain, panel L).

813  Fig. 4. DNAm PhenoAge measured in dorsolateral prefrontal cortex relates to Alzheimer’s

814  disease and related neuropathologies

815  Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project
816 (MAP), we find a moderate/high correlation between chronological age and DNAmM PhenoAge
817  (panl A), that is further increased after adjusting for the estimated proportion on neurons in each
818  sample (panel C). We also find that DNAmM PhenoAge is significantly higher (p=0.00046) among
819  those with Alzheimer’s disease versus controls (panel D), and that it positively correlates with
820 amyloid load (p=0.012, panel E), neuritic plaques (p=0.0032, panel F), diffuse plaques (p=0.036,

821  panel G), and neurofibrillary tangles (p=0.0073, panel H).
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