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Abstract 43 

Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation 44 

of epigenetic biomarkers of aging were developed using chronological age as a surrogate for 45 

biological age, we hypothesized that incorporation of composite clinical measures of phenotypic 46 

age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the 47 

development of a more powerful epigenetic biomarker of aging. Using a innovative two-step 48 

process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly 49 

outperforms previous measures in regards to predictions for a variety of aging outcomes, including 50 

all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this 51 

biomarker was developed using data from whole blood, it correlates strongly with age in every 52 

tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that 53 

increased epigenetic, relative to chronological age, is associated increased activation of pro-54 

inflammatory and interferon pathways, and decreased activation of transcriptional/translational 55 

machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic 56 

biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues 57 

and cells, and provide insight into important pathways in aging. 58 

Keywords: aging; life expectancy; biological age; epigenetic clock; DNA methylation 59 
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BACKGROUND 65 

One of the major goals of geroscience research is to define ‘biomarkers of aging’[1, 2], which can 66 

be thought of as individual-level measures of aging that capture between-person differences in the 67 

timing of disease onset, functional decline, and death over the life course. While chronological age 68 

is arguably the strongest risk factor for aging-related death and disease, it is important to 69 

distinguish chronological time from biological aging. Individuals of the same chronological age 70 

may exhibit greatly different susceptibilities to age-related diseases and death, which is likely 71 

reflective of differences in their underlying biological aging processes. Such biomarkers of aging 72 

will be crucial to enable evaluation of interventions aimed at promoting healthier aging, by 73 

providing a measurable outcome, that unlike incidence of death and/or disease, does not require 74 

extremely long follow-up observation.   75 

One potential biomarker that has gained significant interest in recent years is DNA methylation 76 

(DNAm). Chronological time has been shown to elicit predictable hypo- and hyper-methylation 77 

changes at many regions across the genome [3-7], and as a result, the first generation of DNAm 78 

based biomarkers of aging were developed to predict chronological age [8-13]. The blood-based 79 

algorithm by Hannum[10] and the multi-tissue algorithm by Horvath[14] produce age estimates 80 

(DNAm age) that correlate with chronological age well above r=0.90 for full age range samples. 81 

Nevertheless, while the current epigenetic age estimators exhibit statistically significant 82 

associations with many age-related diseases and conditions [15-26], the effect sizes are typically 83 

small to moderate. One explanation is that by using chronological age as the reference, by 84 

definition, may exclude CpGs whose methylation patterns don’t display strong time-dependent 85 

changes, but instead signal the departure of biological age from chronological age. Thus, it is 86 

important to not only capture CpGs that display changes with chronological time, but also those 87 
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that account for differences in risk and physiological status among individuals of the same 88 

chronological age. 89 

Previous work by us and others have shown that “phenotypic aging measures”, derived from 90 

clinical biomarkers[27-31], strongly predict differences in the risk of all-cause mortality, cause-91 

specific mortality, physical functioning, cognitive performance measures, and facial aging among 92 

same-aged individuals. What’s more, in representative population data, some of these measures 93 

have been shown to be better indicators of remaining life expectancy than chronological age[27], 94 

suggesting that they may be approximating individual-level differences in biological aging rates. 95 

As a result, we hypothesize that a more powerful epigenetic biomarker of aging could be generated 96 

by replacing prediction of chronological age with prediction of a surrogate measure of "phenotypic 97 

aging" that, in and of itself, differentiates morbidity and mortality risk among same-age 98 

individuals.  99 

RESULTS 100 

Overview of the statistical model and analysis 101 

Our development of the new epigenetic biomarker of aging proceeded along three main steps (Fig. 102 

1). In step 1, a novel measure of ‘phenotypic age’ was developed using clinical data from the third 103 

National Health and Nutrition Examination Survey (NHANES). In step 2, DNAm from whole 104 

blood was used to predict phenotypic age, such that:  105 

𝐷𝑁𝐴𝑚 𝑃ℎ𝑒𝑛𝑜𝐴𝑔𝑒 = 𝐶𝑝𝐺1 × 𝛽1 + 𝐶𝑝𝐺2 × 𝛽2 + ⋯ 𝐶𝑝𝐺513 × 𝛽513 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 106 

Predicted estimates from this model represent a person’s epigenetic age, which we refer to as 107 

‘DNAm PhenoAge’. Using multiple independent datasets, we then tested whether DNAm 108 

PhenoAge was associated with a number of aging-related outcomes. We also tested whether it 109 
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differed as a function of social, behavioral, and demographic characteristics, as whether it was 110 

applicable to tissues other than whole blood. Finally, in step 3, we examine the underlying biology 111 

of the 513 CpGs in the DNAm PhenoAge measure by examining differential expression, GO and 112 

pathway enrichment, chromosomal locations, and heritability. 113 

Estimating phenotypic age from clinical biomarkers 114 

For step 1, NHANES III was used to generate a measure of phenotypic age. NHANES III is a 115 

nationally-representative sample, with over twenty-three years of mortality follow-up, from which 116 

our analytical sample included 9,926 adults with complete biomarker data. A Cox penalized 117 

regression model—where the hazard of mortality was regressed on forty-two clinical markers and 118 

chronological age—was used to select variables for inclusion in our phenotypic age score. The 119 

forty-two biomarkers considered represent those that were available in both NHANES III and IV. 120 

Based on 10-fold cross-validation, ten variables (including chronological age) were selected for 121 

the phenotypic age predictor (Additional file 1: Table S1). These nine biomarkers and 122 

chronological age were then combined in a phenotypic age estimate (in units of years) as detailed 123 

in Methods. 124 

Validation data for phenotypic age came from NHANES IV, and included up to 17 years of 125 

mortality follow-up for n=6,209 national representative US adults. In this population, phenotypic 126 

age is correlated with chronological age at r=0.94. Results from all-cause and cause-specific 127 

(competing risk) mortality predictions, adjusting for chronological age (Table 1), show that a one 128 

year increase in phenotypic age is associated with a 9% increase in the risk of all-cause mortality 129 

(HR=1.09, p=3.8E-49), a 9% increase in the risk of mortality from aging-related diseases 130 

(HR=1.09, p=4.5E-34), a 10% increase in the risk of CVD mortality (HR=1.10, p=5.1E-17), a 7% 131 

increase in the risk of cancer mortality (HR=1.07, p=7.9E-10), a 20% increase in the risk of 132 
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diabetes mortality (HR=1.20, p=1.9E-11), and a 9% increase in the risk of lung disease mortality 133 

(HR=1.09, p=6.3E-4). Further, phenotypic age is highly associated with comorbidity count 134 

(p=3.9E-21) and physical functioning measures (p=2.1E-10, Additional file 1: Fig. S1). 135 

An epigenetic biomarker of aging (DNAm PhenoAge) 136 

For step 2 (Fig. 1), data from n=456 participants at two time-points in the Invecchiare in Chianti 137 

(InCHIANTI) study was used to relate blood DNAm levels to phenotypic age. InCHIANTI was 138 

used as training data for the new epigenetic biomarker because the study assessed all clinical 139 

measures needed to estimate phenotypic age, contained data on DNAm, and had a large age range 140 

population (21-100 years). A total of 20,169 CpGs were considered when generating the new 141 

DNAm measure. They represented those CpGs available on all three chips (27k, 450k, EPIC), so 142 

as to facilitate usability across platforms. Elastic net regression, with 10-fold cross-validation, 143 

produced a model in which phenotypic age is predicted by DNAm levels at 513 of the 20,169 144 

CpGs. The linear combination of the weighted 513 CpGs yields a DNAm based estimator of 145 

phenotypic age that we refer to as ‘DNAm PhenoAge’ (mean=58.9, s.d.=18.2, range=9.1-106.1), 146 

in contrast to the previously published Hannum and Horvath ‘DNAm Age’ measures. 147 

While our new clock was trained on cross-sectional data in InCHIANTI, we capitalized on the 148 

repeated time-points to test whether changes in DNAm PhenoAge are related to changes in 149 

phenotypic age. As expected, between 1998 and 2007, mean change in DNAm PhenoAge was 150 

8.51 years, whereas mean change in phenotypic age was 8.88 years. Moreover, participants’ 151 

phenotypic age (adjusting for chronological age) at the two time-points was correlated at r=0.50, 152 

whereas participants’ DNAm PhenoAge (adjusting for chronological age) at the two time-points 153 

was correlated at r=0.68 (Additional file 1: Fig. S2). Finally, we find that the change in phenotypic 154 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276162doi: bioRxiv preprint 

https://doi.org/10.1101/276162
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

age between 1998 and 2007 is highly correlated with the change in DNAm PhenoAge between 155 

these two time-points (r=0.74, p=3.2E-80, Additional file 1: Fig. S2). 156 

DNAm PhenoAge strongly relates to all-cause mortality 157 

In step 3 (Fig. 1), the epigenetic biomarker, DNAm PhenoAge, was calculated in five independent 158 

large-scale samples—two samples from Women’s Health Initiative (WHI) (n=2,016; and 159 

n=2,191), the Framingham Heart Study (FHS) (n=2,553), the Normative Aging Study (NAS) 160 

(n=657), and the Jackson Heart Study (JHS) (n=1,747). The first four studies used the Illumina 161 

450K array while the JHS employed the latest Illumina EPIC array platform. In these studies, 162 

DNAm PhenoAge correlated with chronological age at r=0.66 in WHI (Sample 1), r=0.69 in WHI 163 

(Sample 2), r=0.78 in FHS, r=0.62 in the NAS, and r=0.89 in JHS. The five validation samples 164 

were then used to assess the effects of DNAm PhenoAge on mortality in comparison to the Horvath 165 

and Hannum DNAm Age measures. DNAm PhenoAge was significantly associated with 166 

subsequent mortality risk in all studies (independent of chronological age), such that, a one year 167 

increase in DNAm PhenoAge is associated with a 4.5% increase in the risk of all-cause mortality 168 

(Meta(FE)=1.045, Meta p=7.9E-47, Fig. 2). To better conceptualize what this increase represents, 169 

we compared the predicted life expectancy and mortality risk for person’s representing the top 5% 170 

(fastest agers), the average, and the bottom 5% (slowest agers). Results suggest that those in the 171 

top 5% of fastest agers have a mortality hazard of death that is about 1.62 times that of the average 172 

person, i.e. your hazard of death is 62% higher than that of an average person. Further, contrasting 173 

the 5% fastest agers with the 5% slowest agers, we find that the hazard of death of the fastest agers 174 

is 2.58 times higher than that of the bottom 5% slowest agers (HR=1.04511.0/1.045-10.5). 175 

Additionally, both observed and predicted Kaplan-Meier survival estimates showed that faster 176 
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agers had much lower life expectancy and survival rates compared to average and/or slow agers 177 

(Fig. 2). 178 

As shown in Fig. 2, the DNAm age based measures from Hannum and Horvath also related to all-179 

cause mortality, consistent with what has been reported previously [16, 24, 32-34]. To directly 180 

compare the three epigenetic measures, we contrasted their accuracy in predicting 10-year and 20-181 

year mortality risk, using receiver operating characteristics curves. DNAm PhenoAge (adjusted 182 

for age) predicts both 10-year mortality and 20-year mortality significantly better than the other 183 

two measures (Additional file 1: Table S2). Finally, when examining a model that includes all 184 

three measures (Additional file 1: Table S3), we find that only DNAm PhenoAge is positively 185 

associated with mortality (HR=1.04, p=1.33E-8), whereas Horvath DNAm Age is now negatively 186 

associated (HR=0.98, p=2.72E-2), and Hannum DNAm Age has no association (HR=1.01, 187 

p=4.66E-1). 188 

DNAm PhenoAge strongly relates to aging-related morbidity 189 

Given that aging is believed to also influence diseases incidence/prevalence, we examined whether 190 

DNAm PhenoAge relate to diverse ag-related morbidity outcomes. We observe strong associations 191 

between DNAm PhenoAge and a variety of other aging outcomes using the same five validation 192 

samples (Table 2). For instance, independent of chronological age, higher DNAm PhenoAge is 193 

associated with an increase in a person’s number of coexisting morbidities (=0.008 to 0.031; 194 

Meta P-value=1.95E-20), a decrease in likelihood of being disease-free (=-0.002 to -0.039; Meta 195 

P-value=2.10E-10), an increase in physical functioning problems (=-0.016 to -0.473; Meta P-196 

value=2.05E-13), an increase in the risk of CHD risk (=0.016 to 0.073; Meta P-value=3.35E-11).  197 

DNAm PhenoAge and smoking 198 
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Cigarette exposure has been shown to have an epigenetic fingerprint[35-37], which has been 199 

reflected in previous DNAm risk predictors[38]. Similarly, we find that DNAm PhenoAge 200 

significantly differs between never (n=1,097), current (n=209), and former smokers (n=710) 201 

(p=0.0033) (Additional file 1, Fig. S3A); however, conversely, we do not find a robust association 202 

between pack-years and DNAm PhenoAge (Additional file 1, Fig. S3B-D). Given the association 203 

between DNAm PhenoAge and smoking, we re-evaluated the morbidity and mortality associations 204 

(fully-adjusted) in our four samples, stratifying by smoking status  (Additional file 1: Fig. S4 and 205 

Table S4). We find that DNAm PhenoAge is associated with mortality among both smokers 206 

(adjusted for pack-years) (Meta(FE)=1.050, Meta p=7.9E-31), and non-smokers 207 

(Meta(FE)=1.033, Meta p=1.2E-10). DNAm PhenoAge relates to the number of coexisting 208 

morbidities, physical functioning status, disease free status, and CHD for both smokers and non-209 

smokers (Additional file 1: Table S4). Finally, in previous work we showed that Horvath DNAm 210 

age of blood predicts lung cancer risk in the first WHI sample[21]. Using the same data, we find 211 

that a one year increase in DNAm PhenoAge (adjusting for chronological age, race/ethnicity, pack-212 

years, and smoking status) is associated with a 5% increase in the risk lung cancer incidence and/or 213 

mortality (HR=1.05, p=0.031). Further, when restricting the model to current smokers only, we 214 

find that the effect of DNAm PhenoAge on future lung cancer incidence and/or mortality is even 215 

stronger (HR=1.10, p=0.014).  216 

 217 

In evaluating the relationship between DNAm PhenoAge and additional characteristics we observe 218 

significant differences between racial/ethnic groups (p=5.1E-5), with non-Hispanic blacks having 219 

the highest DNAm PhenoAge on average, and non-Hispanic whites having the lowest (Additional 220 

file 1: Fig. S5). We also find evidence of social gradients in DNAm PhenoAge, such that those 221 
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with higher education (p=6E-9) and higher income (p=9E-5) appear younger. DNAm PhenoAge 222 

relates to exercise and dietary habits, such that increased exercise (p=7E-5) and markers of 223 

fruit/vegetable consumption (such as carotenoids, p=2E-27) are associated with lower DNAm 224 

PhenoAge (Additional file 1: Fig. S6A & Additional file 1: Fig. S6B). Cross sectional studies in 225 

the WHI also revealed that DNAmPhenoAge acceleration is positively correlated with C-reactive 226 

protein (r=0.18, p=5E-22, Additional file 1: Fig. S6B), insulin (r=0.15, p=2E-20), glucose (r=0.10, 227 

p=2E-10), triglycerides (r=0.09, p=5E-9), waist to hip ratio (r=0.15, p=5E-22) but it is negatively 228 

correlated with the "good" cholesterol HDL (r=-0.09, p=7E-9).   229 

DNAm PhenoAge in other tissues 230 

One advantage of developing biological aging estimates based on molecular markers (like 231 

DNAm), rather than clinical risk measures (e.g. those in the phenotypic age variable), is that they 232 

may lend themselves to measuring tissue/cell specific aging. Although DNAm PhenoAge was 233 

developed using samples from whole blood, our empirical results show that it strongly correlates 234 

with chronological age in a host of different tissues and cell types (Fig. 3). For instance, when 235 

examining all tissues concurrently, the correlation between DNAm PhenoAge and chronological 236 

age was 0.71. Age correlations in brain tissue ranged from 0.54 to 0.92, while correlations were 237 

also found in breast (r=0.47), buccal cells (r=0.88), dermal fibroblasts (r=0.87), epidermis (r=0.84), 238 

colon (r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80), lung (r=055), and saliva (r=0.81). 239 

Alzheimer's disease and brain samples 240 

Based on the accuracy of the age prediction in other tissues/cells, we examined whether aging in 241 

a given tissue was associated with tissue-associated outcomes. For instance, using data from 242 

approximately 700 post-mortem samples from the Religious Order Study (ROS) and the Memory 243 

and Aging Project (MAP)[39, 40] we tested the association between pathologically diagnosed 244 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276162doi: bioRxiv preprint 

https://doi.org/10.1101/276162
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

Alzheimer’s disease and DNAm PhenoAge in dorsolateral prefrontal cortex (DLPFX). Results 245 

suggest (Fig. 4) that those who are diagnosed with Alzheimer’s disease (AD), based on 246 

postmortem autopsy, have DLPFX that appear more than one year older than same aged 247 

individuals who are not diagnosed with AD postmortem (p=4.6E-4). Further, age adjusted DNAm 248 

PhenoAge was found to be positively associated with neuropathological hallmarks of Alzheimer’s 249 

disease, such as amyloid load (r=0.094, p=0.012), neuritic plaques (r=0.11, p=0.0032), and 250 

neurofibrillary tangles (r=0.10, p=0.0073).  251 

Comparison with other DNAm biomarkers of aging 252 

Several additional DNAm biomarkers have been described in the literature CpGs [12, 13]. A direct 253 

comparison of 6 DNAm biomarkers (including DNAm PhenoAge) reveals that DNAm PhenoAge 254 

stands out in terms of its predictive accuracy for lifespan, its relationship with smoking status, its 255 

relationship with leukocyte telomere length, naïve CD8+ T cells and CD4+ T cells (Additional file 256 

1: Table S5). 257 

DNAm PhenoAge and Immunosenescence  258 

To test the hypothesis that DNAm PhenoAge captures aspects of the age-related decline of the 259 

immune system, we correlated DNAm PhenoAge with estimated blood cell count (Additional file 260 

1, Fig. S7). After adjusting for age, we find that DNAm PhenoAgeAccel is negatively correlated 261 

with naïve CD8+ T cells (r=-0.35, p=9.2E-65), naïve CD4+ T cells (r=-0.29, p=4.2E-42), CD4+ 262 

helper T cells (r=-0.34, p=3.6E-58), and B cells (r=-0.18, p=8.4E-17). Further, DNAm 263 

PhenoAgeAccel is positively correlated with the proportion of granulocytes (r=0.32, p=2.3E-51), 264 

exhausted CD8+ (defined as CD28-CD45RA-) T cells (r=0.20, p=1.9E-20), and plasma blast cells 265 

(r=0.26, p=6.7E-34). These results are consistent with age related changes in blood cells [41] and 266 

suggest that DNAm PhenoAge may capture aspects of immunosenescence in blood. However, 267 
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three lines of evidence suggest that DNAm PhenoAge is not simply a measure of 268 

immunosenescence. First, another measure of immunosenescence, leukocyte telomere length, is 269 

only weakly correlated with DNAm PhenoAgeAccel (r=-0.13 p=0.00019 in the WHI and r=-0.087, 270 

P=7.6E-3 in Framingham Heart study, Additional file 1, Fig. S8). Second, the strong association 271 

between DNAm PhenoAge and mortality does not simply reflect changes in blood cell 272 

composition, as can be seen from the fact that in Additional file 1, Fig. S9 the robust association 273 

remains even after adjusting for estimates of seven blood cell count measures (Meta(FE)=1.036, 274 

Meta p=5.6E-21).  275 

DNA sequence characteristics of the 513 CpGs in DNAm PhenoAge 276 

Of the 513 CpGs in DNAm PhenoAge, we find that, 41 CpGs were also in the Horvath DNAm 277 

Age measure (Additional file 2: Table S6). This represents a 4.88-fold increase over what would 278 

be expected by chance (p=8.97E-15). Of the 41 overlapping CpGs, the average absolute value for 279 

their age correlations was r=0.40, and 31 had age correlations with absolute values in the top 20% 280 

of what is found for among the 513 CpGs in the DNAm PhenoAge score. We also observed 6 281 

CpGs that overlapped between the Hannum DNAm Age score and the DNAm PhenoAge score—282 

five of which were also found in the Horvath DNAm Age measure. All six CpGs had extremely 283 

high age correlations (half positive, half negative), with absolute values between r=0.49 and 284 

r=0.76. The five CpGs that are found in all three epigenetic aging measures were: cg05442902 285 

(P2RXL1), cg06493994 (SCGN), cg09809672 (EDARADD), cg19722847 (IPO8), and 286 

cg22736354 (NHLRC1). 287 

Finally, we conducted a functional enrichment analysis of the chromosomal locations of the 513 288 

CpGs, we found that 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG 289 

islands (p=0.0045, Additional file 1: Fig. S10) and were significantly enriched with polycomb 290 
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group protein targets (p=8.7E-5, Additional file 1: Fig. S10), which echoes results of epigenome 291 

wide studies of aging effects [4, 42, 43]. 292 

Transcriptional and genetic studies of DNAm PhenoAge 293 

Using the genome-wide data from FHS and WHI, we estimated the heritability of DNAm 294 

PhenoAge. The heritability estimated by the SOLAR polygenic model for those of European 295 

ancestry in the FHS was ℎ2=0.33, while the heritability estimated for those of European ancestry 296 

in WHI, using GCTA-GREML analysis[44, 45] was ℎ2=0.51.  297 

Using the monocyte data mentioned above, as well as PBMC expression data on 2,188 persons 298 

from the FHS, we conducted a more thorough transcriptional analysis to identify differential 299 

expression associated with DNAm PhenoAgeAccel (Additional file 3: Table S7). Overall, we find 300 

that genes show similar associations to chronological age and DNAm PhenoAgeAccel. DNAm 301 

PhenoAgeAccel represents aging differences among same-aged individuals and is adjusted so as 302 

to exhibit a correlation of r=0.0 with chronological age. Thus, this observation can be taken to 303 

suggest that genes whose transcription increases with age are upregulated among epigenetically 304 

older compared to epigenetically younger persons of the same chronological age (Additional file 305 

1: Fig. S11)—same applies for genes that show decreases with chronological age being 306 

downregulated in epigenetically older versus younger persons of the same age.   307 

Using the transcriptional data from monocytes described above (adjusting for array, sex, 308 

race/ethnicity, age, and imputed cell counts), we tested for GO enrichment among genes that 309 

positively associated with DNAm PhenoAge and those that negatively associated with DNAm 310 

PhenoAge (Additional file 4: Table S8). Among those with positive aging associations 311 

(overexpression among epigenetically older individuals), we observed enrichment for a number of 312 

pro-inflammatory signaling pathways. These pathways included, but were not limited to: multiple 313 
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toll-like receptor signaling pathways (7,9,3,2), regulation of inflammatory response, JAK-STAT 314 

cascade, response to lipopolysaccharide, tumor necrosis factor-mediated signaling pathway, and 315 

positive regulation of NF-kappaB transcription factor activity. Additionally, positively associated 316 

genes were also enriched for a number anti-viral response pathways—type I interferon signaling, 317 

defense response to virus, interferon-gamma-mediated signaling pathway, cellular response to 318 

interferon-alpha, etc. Finally, other interesting GO terms enriched among positively associated 319 

genes included: response to nutrient, JAK-STAT cascade involved in growth hormone signaling 320 

pathway, multicellular organism growth, and regulation of DNA methylation. 321 

When testing for enrichment among genes that were negatively associated with DNAm 322 

PhenoAgeAccel (decreased expression among epigenetically older persons) we observed that 323 

many were implicated in processes involving transcriptional and translational machinery, as well 324 

as damage recognition and repair. These included: translational initiation; regulation of 325 

translational initiation; ribosomal large subunit assembly; ribosomal small subunit assembly; 326 

translational elongation; transcription initiation from RNA polymerase I promoter; transcription-327 

coupled nucleotide-excision repair; nucleotide-excision repair, DNA incision, 5'-to lesion; 328 

nucleotide-excision repair, DNA damage recognition; DNA damage response, detection of DNA 329 

damage; and regulation of DNA damage checkpoint.  330 

DISCUSSION 331 

Using a novel two-step method, we were successful in developing a DNAm based biomarker of 332 

aging that is highly predictive of nearly every morbidity and mortality outcome we tested. Training 333 

an epigenetic predictor of phenotypic age instead of chronological age led to substantial 334 

improvement in mortality/healthspan predictions over the first generation of DNAm based 335 

biomarkers of chronological age from Hannum[10], Horvath[14] and other published DNAm 336 
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biomarkers. In doing so, this is the first study to conclusively demonstrate that DNAm biomarkers 337 

of aging are highly predictive of CVD and coronary heart disease. DNAm PhenoAge also tracks 338 

chronological age and relates to disease risk in samples other than whole blood. Finally, we find 339 

that an individual’s DNAm PhenoAge, relative to his/her chronological age, is moderately 340 

heritable and is associated with activation of pro-inflammatory, interferon, DNAm damage repair, 341 

transcriptional/translational signaling, and various markers of immunosenescenc: a decline of 342 

naïve T cells and shortened leukocyte telomere length.  343 

The ability of our measure to predict multifactorial aging conditions is consistent with the 344 

fundamental underpinnings of Geroscience research [1, 46], which posits that aging mechanisms 345 

give rise to multiple pathologies and thus, differences in the rate of aging will have implications 346 

for a wide array of diseases and conditions. Further, these results answer a fundamental biological 347 

question of whether differences in multi-system dysregulation (estimated using clinical phenotypic 348 

age measures), healthspan, and lifespan are reflected at the epigenetic level, in the form of 349 

differential DNAm at specific CpG sites.  350 

The improvement over previous epigenetic biomarkers, likely comes down to the types of CpGs 351 

selected for the various measures. Only 41 of the 513 CpGs in DNAm PhenoAge were shared with 352 

the Horvath clock, while only five CpGs were shared between all three clocks (DNAm PhenoAge, 353 

Horvath, and Hannum). In general, these CpGs did not tend to be drivers of the DNAm PhenoAge 354 

score, and instead represented those with large age correlations, but lower weights. This may 355 

explain the improvements of DNAm PhenoAge over previous epigenetic biomarkers of aging. 356 

While the previous DNAm age estimators selected CpGs to optimize prediction of chronological 357 

age, the CpGs in DNAm PhenoAge were optimized to predict a multi-system proxy of 358 

physiological dysregulation (phenotypic age). In doing so, we were able to not only capture CpGs 359 
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that exhibited changes in DNAm with age, but also those that captured variations in risk of death 360 

and disease among same aged individuals. In general, the CpGs with the highest weights in the 361 

new clock did not correlate with chronological age (Additional file 1: Fig. S12), but instead were 362 

related to the difference between phenotypic and chronological age—i.e. divergence in the rate of 363 

aging. Interestingly, the CpGs that contributed the most to the DNAm PhenoAge score, tended to 364 

have low age correlations.  365 

While DNAm PhenoAge greatly outperformed all previous DNAm biomarkers of aging 366 

(Additional file 1: Table S5), the utility of DNAm PhenoAge for estimating risk does not imply 367 

that it should replace clinical biomarkers when it comes to informing medical and health-related 368 

decisions. In fact, but perhaps not surprisingly, the phenotypic age measure used to select CpGs is 369 

a better predictor of morbidity and mortality outcomes than DNAm PhenoAge. While the addition 370 

of error in performing a two-step process, rather than training a DNAm predictor directly on 371 

mortality may contribute, we don’t believe this accounts for the difference in predictive 372 

performance. In fact, a recent DNAm measure by Zhang et al.[38] was trained to directly predict 373 

mortality risk, yet it appears to be a weaker predictor than both our DNAm PhenoAge measure 374 

and our clinical phenotypic age measure (Additional file 1: Table S9). The first generation of 375 

DNAm age estimators only exhibit weak associations with clinical measures of physiological 376 

dysregulation [47, 48]. Physiological dysregulation, which is more closely related to our clinical 377 

age measure “phenotypic age” than to chronological age, is not only the result of 378 

exogenous/endogenous stress factors (such as obesity, infections) but also a result of age related 379 

molecular alterations, one example of which are modifications to the epigenome. Over time, 380 

dysregulation within organ systems leads to pathogenesis of disease (age-related molecular 381 

changes  physiological dysregulation  morbidity  mortality)[49]. However, stochasticity 382 
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and variability exist at each of these transitions. Therefore, measures of physiological 383 

dysregulation, will be better predictors of transition to the next stage in the aging trajectory (i.e. 384 

morbidity and mortality) than will measures of age related molecular alterations, like DNAm 385 

PhenoAge. Similarly, quantification of disease pathogenesis (cancer stage, Alzheimer’s stage) is 386 

likely a better predictor of mortality risk than clinical phenotypic aging measures. As a result, 387 

clinical phenotypic aging measures may be preferable to epigenetic measures when the goal is risk 388 

prediction, and all samples come from blood. 389 

That being said, when the aim is to study the mechanisms of the aging process, DNAm measures 390 

have advantages over clinical measures. First, they may better capture “pre-clinical aging” and 391 

thus may be more suited for differentiating aging in children, young adults, or extremely healthy 392 

individuals, for whom measures like CRP, albumin, creatinine, glucose, etc. are still fairly 393 

homogenous. Second, as demonstrated, these molecular measures can capture cell and/or tissue 394 

specific aging rates and therefore may also lend themselves to in vitro studies of aging, studies for 395 

which blood is not available, studies using postmortem samples, and/or studies comparing aging 396 

rates between tissues/cells. While the fundamental drivers of aging are believed to be shared across 397 

cells/tissues, that is not to say that all the cells and tissues within an individual will age at the same 398 

rate. In fact, it is more likely that individuals will vary in their patterning of aging rates across 399 

tissues, and that this will have implications for death and disease risk. Relatedly, it is not known 400 

how predictions based on DNAm PhenoAge measures from non-blood samples will compare to 401 

phenotypic age predictions. It may be the case that various outcomes will be more tightly related 402 

to aging in specific cells/tissues, rather than blood. Finally, examination of DNAm based aging 403 

rates facilitates the direct study of the proposed mechanisms of aging, of which “epigenetic 404 

alterations” is one of the seven hypothesized “pillars of aging” [1].  405 
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While more work needs to be done to model the biology linking DNAm PhenoAge and aging 406 

outcomes, we began to explore this using differential expression, functional enrichment, 407 

heritability estimates, and network analysis. Overall, we found that CpGs that had larger increases 408 

with aging tended to be located in CpG islands and enriched with polycomb group protein targets, 409 

consistent with what has been reported in previous epigenome wide studies of aging effects [4, 6, 410 

7, 42, 43]. While typically DNAm of CpG islands and/or polycomb recruitment is linked to 411 

transcriptional silencing [50], for the most part, we did not observe associations between DNAm 412 

and expression for co-locating CpG-gene pairs—this was also true when only considering CpGs 413 

located in islands. These findings may suggest that the genes annotated to the CpGs in our score 414 

are not part of the link between changes in DNAm and aging. Nevertheless, we also recognize that 415 

these null results could stem from the fact that 1) associations were only tested in monocytes, 2) 416 

DNAm and expression represents what is present globally for each sample, rather than on a cell-417 

by-cell bases, and 3) stronger associations between DNAm and gene expression levels may only 418 

exist early in life.  419 

Nevertheless, we do identify potentially promising transcriptional pathways when considering 420 

DNAm PhenoAge as a whole. For instance, we observe that higher DNAm PhenoAge is associated 421 

with increases in the activation of proinflammatory pathways, such as NF-kappaB; increased 422 

interferon (IFN) signaling; decreases in ribosomal–related and translational machinery pathways; 423 

and decreases in damage recognition and repair pathways. These findings are consistent with 424 

previous work describing aging associated changes, comprising increases in dysregulated 425 

inflammatory activation, increased DNA damage, and loss of translational fidelity. For instance, 426 

there exists a large body of literature highlighting the importance of an increased low-grade pro-427 

inflammatory status as a driver of the aging process, termed inflamm-aging [41, 51, 52]. IFN 428 
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signaling pathways have been shown to be markers of DNA damage and mediators of cellular 429 

senescence[53]. Additionally, it has been shown that breakdown of the transcriptional and 430 

translational machinery may play a central role in the aging process[54, 55]. For instance, the 431 

ribosome is believed to be a key regulator of proteostasis, and in turn, aging[54, 56]. Relatedly, 432 

loss of integrity in DNA damage repair pathways is considered another hallmark of the aging 433 

process[57-59].  434 

In general, many of these pathways will have implications for adaptation to exogenous and 435 

endogenous stressors. Factors related to stress resistance and response have repeatedly been shown 436 

to be drivers of differences in lifespan and aging[60-65]. This may partially account for our 437 

findings related to smoking. In general, it is not surprising that a biomarker of aging and mortality 438 

risk relates to smoking, given that life expectancies of smokers are on average ten years shorter 439 

than never smokers, and smoking history is associated with a drastic increase in the risk of a 440 

number of age-related conditions. However, perhaps more interestingly, we find that the effects of 441 

DNAm PhenoAge on mortality appear to be higher for smokers than non-smokers, which could 442 

suggest that DNAm PhenoAge represent differences in innate resilience/vulnerability to pro-aging 443 

stressors, such as cigarette smoke. 444 

Interestingly, we observed moderately high heritability estimates for DNAm PhenoAge. For 445 

instance, we estimated that genetic differences accounted for one-third to one-half of the variance 446 

in DNAm PhenoAge, relative to chronological age. In moving forward, it will be useful to identify 447 

the genetic architecture underlying differences in epigenetic aging. Finally, we reported that 448 

individuals’ DNAm PhenoAges—relative to their chronological ages—remained fairly stable over 449 

a nine-year period. However, it is unclear whether it is attributable to genetic influences, or the 450 

fact that social and behavioral characteristics tend to also remain stable for most individuals.    451 
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If the goal is to utilize accurate quantifiable measures of the rate of aging, such as DNAm 452 

PhenoAge, to assess the efficacy of aging interventions, more work will be needed to evaluate the 453 

dynamics of DNAmPhenoAge following various treatments. For instance, it remains to be seen 454 

whether interventions can reverse DNAmPhenoAge in the short term. Along these lines, it will be 455 

essential to determine causality—does DNAm drive the aging process, or is it simply a surrogate 456 

marker of senescence? If the former is true, DNAm PhenoAge could provide insight into promising 457 

targets for therapies aimed at lifespan, and more importantly, healthspan extension. 458 

Conclusion 459 

Overall, DNAm PhenoAge is an attractive composite biomarker that captures organismal age and 460 

the functional state of many organ systems and tissues, above and beyond what is explained by 461 

chronological time. Our validation studies in multiple large and independent cohorts demonstrate 462 

that DNAm PhenoAge is a highly robust predictor of both morbidity and mortality outcomes, and 463 

represents a promising biomarker of aging, which may prove to be beneficial to both basic science 464 

and translational research.  465 

METHODS 466 

Using the NHANES training data, we applied a Cox penalized regression model—where the 467 

hazard of aging-related mortality (mortality from diseases of the heart, malignant neoplasms, 468 

chronic lower respiratory disease, cerebrovascular disease, Alzheimer’s disease, Diabetes mellitus, 469 

nephritis, nephrotic syndrome, and nephrosis) was regressed on forty-two clinical markers and 470 

chronological age to select variables for inclusion in our phenotypic age score. Ten-fold cross-471 

validation was employed to select the parameter value, lambda, for the penalized regression. In 472 

order to develop a sparse phenotypic age estimator (the fewest biomarker variables needed to 473 

produce robust results) we selected a lambda of 0.0192, which represented a one standard deviation 474 
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increase over the lambda with minimum mean-squared error during cross-validation (Additional 475 

file 1, Fig. S13). Of the forty-two biomarkers included in the penalized Cox regression model, this 476 

resulted in ten variables (including chronological age) that were selected for the phenotypic age 477 

predictor.  478 

These nine biomarkers and chronological age were then included in a parametric proportional 479 

hazards model based on the Gompertz distribution. Based on this model, we estimated the 10-year 480 

(120 months) mortality risk of the j-the individual. Next, the mortality score was converted into 481 

units of years (Additional file 1). The resulting phenotypic age estimate was regressed on DNA 482 

methylation data using an elastic net regression analysis. The penalization parameter was chosen 483 

to minimize the cross validated mean square error rate (Additional file 1, Fig. S14), which resulted 484 

in 513 CpGs. 485 

Estimation of blood cell counts based on DNAm levels 486 

We estimate blood cell counts using two different software tools. First, Houseman's estimation 487 

method [66] was used to estimate the proportions of CD8+ T cells, CD4+ T, natural killer, B cells, 488 

and granulocytes (mainly neutrophils). Second, the Horvath method, implemented in the advanced 489 

analysis option of the epigenetic clock software [11, 18], was used to estimate the percentage of 490 

exhausted CD8+ T cells (defined as CD28-CD45RA-), the number (count) of naïve CD8+ T cells 491 

(defined as CD45RA+CCR7+) and plasmablasts. We and others have shown that the estimated 492 

blood cell counts have moderately high correlations with corresponding flow cytometric measures 493 

[66, 67].  494 

Additional descriptions of methods and materials can be found in Additional file 1.  495 

 496 
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TABLES 744 

Table 1: Mortality Validations for Phenotypic Age 745 

Mortality Cause Cases HR P-Value 

All-Cause 1052 1.09 3.8E-49 

Aging-Related 661 1.09 4.5E-34 

CVD 272 1.10 5.1E-17 

Cancer 265 1.07 7.9E-10 

Alzheimer's 30 1.04 2.6E-1 

Diabetes 41 1.20 1.9E-11 

Lung 53 1.09 6.3E-4 
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 769 

 770 

Table 2: Morbidity Validation for DNAm PhenoAge 771 

  Comorbidity Disease Free CHD Risk Physical Functioning 

Sample Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

DNAm PhenoAge         

 WHI BA23 White 0.008 2.38E-01 -0.002 3.82E-01 0.016 5.36E-02 -0.396 1.04E-04 

 WHI BA23 Black 0.013 6.15E-02 -0.006 2.40E-02 0.021 2.02E-02 -0.423 4.50E-04 

 WHI BA23 Hispanic 0.024 1.64E-02 -0.004 3.67E-01 0.033 5.07E-02 -0.329 7.37E-02 

 WHI EMPC White 0.031 2.95E-07 -0.026 1.63E-02 0.023 1.89E-01 -0.361 3.81E-05 

 WHI EMPC Black 0.014 7.67E-02 -0.023 6.98E-02 0.048 2.27E-02 -0.473 3.75E-04 

 WHI EMPC Hispanic 0.003 7.83E-01 0.002 9.28E-01 0.073 1.98E-01 -0.377 6.54E-02 

 FHS 0.022 3.93E-07 -0.034 1.59E-03 0.028 5.47E-06 -0.016 4.60E-01 

 NAS 0.023 7.59E-06 -0.062 2.00E-04 0.030 2.27E-02 NA NA 

 JHS 0.018 1.86E-08 -0.039 5.92E-05 0.033 4.73E-02 NA NA 

 Meta P-value (Stouffer)  1.95E-20  2.14E-10  3.35E-11  2.05E-13 

DNAmAge Hannum         

 WHI BA23 White 0.007 3.90E-01 -0.003 3.48E-01 0.013 2.36E-01 -0.399 2.90E-03 

 WHI BA23 Black 0.022 2.72E-02 -0.007 6.03E-02 0.015 2.67E-01 -0.345 4.29E-02 

 WHI BA23 Hispanic 0.010 4.33E-01 -0.010 6.24E-02 0.011 6.10E-01 -0.599 1.16E-02 

 WHI EMPC White 0.025 1.53E-03 -0.020 1.55E-01 0.022 3.30E-01 -0.284 1.43E-02 

 WHI EMPC Black 0.022 6.34E-02 -0.008 6.62E-01 0.055 6.12E-02 -0.323 9.56E-02 

 WHI EMPC Hispanic -0.012 4.17E-01 0.035 2.09E-01 -0.012 8.85E-01 -0.345 2.54E-01 

 FHS 0.019 5.94E-04 -0.030 2.55E-02 0.022 1.55E-02 0.040 1.32E-01 

 NAS 0.009 2.19E-01 -0.026 2.26E-01 0.025 1.83E-01 NA NA 

 JHS 0.020 2.09E-05 -0.036 9.91E-03 0.086 1.64E-04 NA NA 

 Meta P-value (Stouffer)  1.50E-08  1.64E-04  1.40E-05  2.03E-05 

DNAmAge Horvath         

 WHI BA23 White 0.007 3.49E-01 -0.004 1.69E-01 0.001 9.12E-01 -0.440 5.10E-04 

 WHI BA23 Black 0.018 3.96E-02 -0.006 6.25E-02 0.009 4.07E-01 -0.305 4.52E-02 

 WHI BA23 Hispanic 0.012 3.65E-01 -0.007 1.86E-01 -0.001 9.78E-01 -0.204 4.12E-01 

 WHI EMPC White 0.031 1.99E-04 -0.043 5.56E-03 0.000 9.88E-01 -0.288 1.74E-02 

 WHI EMPC Black 0.016 1.93E-01 -0.003 8.56E-01 0.033 2.87E-01 -0.144 4.68E-01 

 WHI EMPC Hispanic -0.025 8.99E-02 -0.016 5.70E-01 -0.064 4.63E-01 -0.012 9.70E-01 

 FHS 0.011 5.82E-02 -0.021 8.34E-02 0.007 5.19E-01 0.027 3.16E-01 

 NAS 0.011 7.90E-02 -0.039 4.53E-02 0.006 7.14E-01 NA NA 

 JHS 0.014 2.03E-03 -0.040 1.78E-03 0.049 3.93E-02 NA NA 

 Meta P-value (Stouffer)  3.26E-06  6.36E-07  1.49E-01  1.43E-03 
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 774 
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FIG. LEGENDS 776 

Fig. 1. Roadmap for developing DNAm PhenoAge 777 

The roadmap depicts our analytical procedures. In step 1, we developed an estimate of ‘Phenotypic 778 

Age’ based on clinical measure. Phenotypic age was developed using the NHANES III as training 779 

data, in which we employed a proportional hazard penalized regression model to narrow 42 780 

biomarkers to 9 biomarkers and chronological age. This measure was then validated in NHANES 781 

IV and shown to be a strong predictor of both morbidity and mortality risk. In step 2, we developed 782 

an epigenetic biomarker of phenotypic age, which we call DNAm PhenoAge, by regressing 783 

phenotypic age (from step 1) on blood DNA methylation data, using the InCHIANTI data. This 784 

produced an estimate of DNAm PhenoAge based on 513 CpGs. We then validated our new 785 

epigenetic biomarker of aging, DNAm PhenoAge, using multiple cohorts, aging-related outcomes, 786 

and tissues/cells. In step 3, we examined the underlying biology of the 513 CpGs and the composite 787 

DNAm PhenoAge measure, using a variety of complementary data (gene expression, blood cell 788 

counts) and various genome annotation tools including chromatin state analysis and gene ontology 789 

enrichment. 790 

Fig. 2. Mortality Prediction by DNAm PhenoAge 791 

A: Using five samples from large epidemiological cohorts—two samples from the Women’s health 792 

Initiative, the Framingham Heart Study, the Normative Aging Study, and the Jackson Heart 793 

Study—we tested whether DNAm PhenoAge was predictive of all-cause mortality. The Fig. 794 

displays a forest plot for fixed-effect meta-analysis, based on Cox proportional hazard models, and 795 

adjusting for chronological age. Results suggest that DNAm PhenoAge is predictive of mortality 796 

in all samples, and that overall, a one year increase in DNAm PhenoAge is associated with a 4.5% 797 

increase in the risk of death (p=9.9E-47). This is contrasted against the first generation of 798 
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epigenetic biomarkers of aging by Hannum and Horvath, which exhibit less significant 799 

associations with lifespan (p=1.7E-21 and p=4.5E-5, respectively). B & C: Using the WHI sample 800 

1, we plotted Kaplan-Meier survival estimates using actual data from the fastest versus the slowest 801 

agers (panel B). We also applied the equation from the proportional hazard model to predict 802 

remaining life expectancy and plotted predicted survival assuming a chronological age of 50 and 803 

a DNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (panel C). Median 804 

life expectancy at age 50 was predicted to be approximately 81 years for the fastest agers, 83.5 805 

years for average agers, and 86 years for the slowest agers. 806 

Fig. 3. Chronological age versus DNAm PhenoAge in a variety of tissues and cells 807 

Although DNAm PhenoAge was developed using methylation data from whole blood, it also 808 

tracks chronological age in a wide variety of tissues and cells. A) The correlation across all 809 

tissues/cells we examined is r=0.71. B-ZJ) report results in different sources of DNA as indicated 810 

in panel headings. The numbers correspond to the data sets from (Horvath 2013). Overall, 811 

correlations range from r=0.35 (breast, panel O) to r=0.92 (temporal cortex in brain, panel L).  812 

Fig. 4. DNAm PhenoAge measured in dorsolateral prefrontal cortex relates to Alzheimer’s 813 

disease and related neuropathologies 814 

Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project 815 

(MAP), we find a moderate/high correlation between chronological age and DNAm PhenoAge 816 

(panl A), that is further increased after adjusting for the estimated proportion on neurons in each 817 

sample (panel C). We also find that DNAm PhenoAge is significantly higher (p=0.00046) among 818 

those with Alzheimer’s disease versus controls (panel D), and that it positively correlates with 819 

amyloid load (p=0.012, panel E), neuritic plaques (p=0.0032, panel F), diffuse plaques (p=0.036, 820 

panel G), and neurofibrillary tangles (p=0.0073, panel H). 821 
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