

An epigenetic biomarker of aging for lifespan and healthspan

Morgan E. Levine¹, Ake T. Lu¹, Austin Quach¹, Brian H. Chen², Themistocles L. Assimes³, Stefania Bandinelli⁴, Lifang Hou⁵, Andrea A. Baccarelli⁶, James D. Stewart⁷, Yun Li⁷, Eric A. Whitsel^{7,8}, James G Wilson⁹, Alex P Reiner¹⁰, Abraham Aviv¹¹, Kurt Lohman¹², Yongmei Liu¹³, Luigi Ferrucci^{2*}, Steve Horvath^{1,14*}

Affiliations

¹ Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA

10 ²Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging,
11 National Institutes of Health, USA. Baltimore, MD 21224, USA

12 ³Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

13 ⁴Geriatric Unit, Azienda Toscana Centro, Florence, Italy

14 ⁵*Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and*
15 *Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,*
16 *Chicago, IL 60611, USA*

17 *⁶Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences*
18 *Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032*
19 *USA*

20 ⁷*Dept. of Epidemiology, Gillings School of Global Public Health, University of North Carolina,*
21 *Chapel Hill, NC, USA*

22 ⁸*Dept. of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA*

23 ⁹*Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson,*
24 *MS 39216, USA*

25 ¹⁰*Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA*
26 *98109, USA*¹

27 ¹¹*Center of Development and Aging, New Jersey Medical School, Rutgers State University of*
28 *New Jersey, Newark, NJ 07103, USA*

29 ¹²*Department of Biostatistics, Division of Public Health Sciences, Wake Forrest School of*
30 *Medicine, Winston-Salem, NC 27157, USA*

31 ¹³*Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forrest*
32 *School of Medicine, Winston-Salem, NC 27157, USA*

33 ¹⁴*Dept. of Biostatistics, Fielding School of Public Health, University of California Los Angeles,*
34 *Los Angeles, CA 90095, USA*

35 *Denotes joint senior-author status

36

37 **Corresponding author:** Steve Horvath, PhD, E-mail: shorvath@mednet.ucla.edu. Address:
38 Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, 695
39 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA

40

41

42

43 **Abstract**

44 Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation
45 of epigenetic biomarkers of aging were developed using chronological age as a surrogate for
46 biological age, we hypothesized that incorporation of composite clinical measures of phenotypic
47 age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the
48 development of a more powerful epigenetic biomarker of aging. Using a innovative two-step
49 process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly
50 outperforms previous measures in regards to predictions for a variety of aging outcomes, including
51 all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this
52 biomarker was developed using data from whole blood, it correlates strongly with age in every
53 tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that
54 increased epigenetic, relative to chronological age, is associated increased activation of pro-
55 inflammatory and interferon pathways, and decreased activation of transcriptional/translational
56 machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic
57 biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues
58 and cells, and provide insight into important pathways in aging.

59 **Keywords:** aging; life expectancy; biological age; epigenetic clock; DNA methylation

60

61

62

63

64

65 **BACKGROUND**

66 One of the major goals of geroscience research is to define ‘biomarkers of aging’[1, 2], which can
67 be thought of as individual-level measures of aging that capture between-person differences in the
68 timing of disease onset, functional decline, and death over the life course. While chronological age
69 is arguably the strongest risk factor for aging-related death and disease, it is important to
70 distinguish chronological time from biological aging. Individuals of the same chronological age
71 may exhibit greatly different susceptibilities to age-related diseases and death, which is likely
72 reflective of differences in their underlying biological aging processes. Such biomarkers of aging
73 will be crucial to enable evaluation of interventions aimed at promoting healthier aging, by
74 providing a measurable outcome, that unlike incidence of death and/or disease, does not require
75 extremely long follow-up observation.

76 One potential biomarker that has gained significant interest in recent years is DNA methylation
77 (DNAm). Chronological time has been shown to elicit predictable hypo- and hyper-methylation
78 changes at many regions across the genome [3-7], and as a result, the first generation of DNAm
79 based biomarkers of aging were developed to predict chronological age [8-13]. The blood-based
80 algorithm by Hannum[10] and the multi-tissue algorithm by Horvath[14] produce age estimates
81 (DNAm age) that correlate with chronological age well above $r=0.90$ for full age range samples.
82 Nevertheless, while the current epigenetic age estimators exhibit statistically significant
83 associations with many age-related diseases and conditions [15-26], the effect sizes are typically
84 small to moderate. One explanation is that by using chronological age as the reference, by
85 definition, may exclude CpGs whose methylation patterns don’t display strong time-dependent
86 changes, but instead signal the departure of biological age from chronological age. Thus, it is
87 important to not only capture CpGs that display changes with chronological time, but also those

88 that account for differences in risk and physiological status among individuals of the same
89 chronological age.

90 Previous work by us and others have shown that “phenotypic aging measures”, derived from
91 clinical biomarkers[27-31], strongly predict differences in the risk of all-cause mortality, cause-
92 specific mortality, physical functioning, cognitive performance measures, and facial aging among
93 same-aged individuals. What’s more, in representative population data, some of these measures
94 have been shown to be better indicators of remaining life expectancy than chronological age[27],
95 suggesting that they may be approximating individual-level differences in biological aging rates.

96 As a result, we hypothesize that a more powerful epigenetic biomarker of aging could be generated
97 by replacing prediction of chronological age with prediction of a surrogate measure of "phenotypic
98 aging" that, in and of itself, differentiates morbidity and mortality risk among same-age
99 individuals.

100 **RESULTS**

101 **Overview of the statistical model and analysis**

102 Our development of the new epigenetic biomarker of aging proceeded along three main steps (**Fig.**
103 **1**). In step 1, a novel measure of ‘phenotypic age’ was developed using clinical data from the third
104 National Health and Nutrition Examination Survey (NHANES). In step 2, DNAm from whole
105 blood was used to predict phenotypic age, such that:

$$106 \quad DNAm\ PhenoAge = CpG_1 \times \beta_1 + CpG_2 \times \beta_2 + \dots CpG_{513} \times \beta_{513} + constant$$

107 Predicted estimates from this model represent a person’s epigenetic age, which we refer to as
108 ‘DNAm PhenoAge’. Using multiple independent datasets, we then tested whether DNAm
109 PhenoAge was associated with a number of aging-related outcomes. We also tested whether it

110 differed as a function of social, behavioral, and demographic characteristics, as whether it was
111 applicable to tissues other than whole blood. Finally, in step 3, we examine the underlying biology
112 of the 513 CpGs in the DNAm PhenoAge measure by examining differential expression, GO and
113 pathway enrichment, chromosomal locations, and heritability.

114 **Estimating phenotypic age from clinical biomarkers**

115 For step 1, NHANES III was used to generate a measure of phenotypic age. NHANES III is a
116 nationally-representative sample, with over twenty-three years of mortality follow-up, from which
117 our analytical sample included 9,926 adults with complete biomarker data. A Cox penalized
118 regression model—where the hazard of mortality was regressed on forty-two clinical markers and
119 chronological age—was used to select variables for inclusion in our phenotypic age score. The
120 forty-two biomarkers considered represent those that were available in both NHANES III and IV.
121 Based on 10-fold cross-validation, ten variables (including chronological age) were selected for
122 the phenotypic age predictor (**Additional file 1: Table S1**). These nine biomarkers and
123 chronological age were then combined in a phenotypic age estimate (in units of years) as detailed
124 in **Methods**.

125 Validation data for phenotypic age came from NHANES IV, and included up to 17 years of
126 mortality follow-up for n=6,209 national representative US adults. In this population, phenotypic
127 age is correlated with chronological age at $r=0.94$. Results from all-cause and cause-specific
128 (competing risk) mortality predictions, adjusting for chronological age (**Table 1**), show that a one
129 year increase in phenotypic age is associated with a 9% increase in the risk of all-cause mortality
130 ($HR=1.09$, $p=3.8E-49$), a 9% increase in the risk of mortality from aging-related diseases
131 ($HR=1.09$, $p=4.5E-34$), a 10% increase in the risk of CVD mortality ($HR=1.10$, $p=5.1E-17$), a 7%
132 increase in the risk of cancer mortality ($HR=1.07$, $p=7.9E-10$), a 20% increase in the risk of

133 diabetes mortality (HR=1.20, p=1.9E-11), and a 9% increase in the risk of lung disease mortality
134 (HR=1.09, p=6.3E-4). Further, phenotypic age is highly associated with comorbidity count
135 (p=3.9E-21) and physical functioning measures (p=2.1E-10, **Additional file 1: Fig. S1**).

136 **An epigenetic biomarker of aging (DNAm PhenoAge)**

137 For step 2 (**Fig. 1**), data from n=456 participants at two time-points in the Invecchiare in Chianti
138 (InCHIANTI) study was used to relate blood DNAm levels to phenotypic age. InCHIANTI was
139 used as training data for the new epigenetic biomarker because the study assessed all clinical
140 measures needed to estimate phenotypic age, contained data on DNAm, and had a large age range
141 population (21-100 years). A total of 20,169 CpGs were considered when generating the new
142 DNAm measure. They represented those CpGs available on all three chips (27k, 450k, EPIC), so
143 as to facilitate usability across platforms. Elastic net regression, with 10-fold cross-validation,
144 produced a model in which phenotypic age is predicted by DNAm levels at 513 of the 20,169
145 CpGs. The linear combination of the weighted 513 CpGs yields a DNAm based estimator of
146 phenotypic age that we refer to as ‘DNAm PhenoAge’ (mean=58.9, s.d.=18.2, range=9.1-106.1),
147 in contrast to the previously published Hannum and Horvath ‘DNAm Age’ measures.

148 While our new clock was trained on cross-sectional data in InCHIANTI, we capitalized on the
149 repeated time-points to test whether changes in DNAm PhenoAge are related to changes in
150 phenotypic age. As expected, between 1998 and 2007, mean change in DNAm PhenoAge was
151 8.51 years, whereas mean change in phenotypic age was 8.88 years. Moreover, participants’
152 phenotypic age (adjusting for chronological age) at the two time-points was correlated at $r=0.50$,
153 whereas participants’ DNAm PhenoAge (adjusting for chronological age) at the two time-points
154 was correlated at $r=0.68$ (**Additional file 1: Fig. S2**). Finally, we find that the change in phenotypic

155 age between 1998 and 2007 is highly correlated with the change in DNAm PhenoAge between
156 these two time-points ($r=0.74$, $p=3.2E-80$, **Additional file 1: Fig. S2**).

157 **DNAm PhenoAge strongly relates to all-cause mortality**

158 In step 3 (**Fig. 1**), the epigenetic biomarker, DNAm PhenoAge, was calculated in five independent
159 large-scale samples—two samples from Women’s Health Initiative (WHI) ($n=2,016$; and
160 $n=2,191$), the Framingham Heart Study (FHS) ($n=2,553$), the Normative Aging Study (NAS)
161 ($n=657$), and the Jackson Heart Study (JHS) ($n=1,747$). The first four studies used the Illumina
162 450K array while the JHS employed the latest Illumina EPIC array platform. In these studies,
163 DNAm PhenoAge correlated with chronological age at $r=0.66$ in WHI (Sample 1), $r=0.69$ in WHI
164 (Sample 2), $r=0.78$ in FHS, $r=0.62$ in the NAS, and $r=0.89$ in JHS. The five validation samples
165 were then used to assess the effects of DNAm PhenoAge on mortality in comparison to the Horvath
166 and Hannum DNAm Age measures. DNAm PhenoAge was significantly associated with
167 subsequent mortality risk in all studies (independent of chronological age), such that, a one year
168 increase in DNAm PhenoAge is associated with a 4.5% increase in the risk of all-cause mortality
169 ($\text{Meta}(FE)=1.045$, $\text{Meta } p=7.9E-47$, Fig. 2). To better conceptualize what this increase represents,
170 we compared the predicted life expectancy and mortality risk for person’s representing the top 5%
171 (fastest agers), the average, and the bottom 5% (slowest agers). Results suggest that those in the
172 top 5% of fastest agers have a mortality hazard of death that is about 1.62 times that of the average
173 person, i.e. your hazard of death is 62% higher than that of an average person. Further, contrasting
174 the 5% fastest agers with the 5% slowest agers, we find that the hazard of death of the fastest agers
175 is 2.58 times higher than that of the bottom 5% slowest agers ($\text{HR}=1.045^{11.0}/1.045^{-10.5}$).
176 Additionally, both observed and predicted Kaplan-Meier survival estimates showed that faster

177 agers had much lower life expectancy and survival rates compared to average and/or slow agers
178 (Fig. 2).

179 As shown in Fig. 2, the DNAm age based measures from Hannum and Horvath also related to all-
180 cause mortality, consistent with what has been reported previously [16, 24, 32-34]. To directly
181 compare the three epigenetic measures, we contrasted their accuracy in predicting 10-year and 20-
182 year mortality risk, using receiver operating characteristics curves. DNAm PhenoAge (adjusted
183 for age) predicts both 10-year mortality and 20-year mortality significantly better than the other
184 two measures (Additional file 1: Table S2). Finally, when examining a model that includes all
185 three measures (Additional file 1: Table S3), we find that only DNAm PhenoAge is positively
186 associated with mortality (HR=1.04, p=1.33E-8), whereas Horvath DNAm Age is now negatively
187 associated (HR=0.98, p=2.72E-2), and Hannum DNAm Age has no association (HR=1.01,
188 p=4.66E-1).

189 **DNAm PhenoAge strongly relates to aging-related morbidity**

190 Given that aging is believed to also influence diseases incidence/prevalence, we examined whether
191 DNAm PhenoAge relate to diverse ag-related morbidity outcomes. We observe strong associations
192 between DNAm PhenoAge and a variety of other aging outcomes using the same five validation
193 samples (Table 2). For instance, independent of chronological age, higher DNAm PhenoAge is
194 associated with an increase in a person's number of coexisting morbidities ($\beta=0.008$ to 0.031 ;
195 Meta P-value= $1.95E-20$), a decrease in likelihood of being disease-free ($\beta=-0.002$ to -0.039 ; Meta
196 P-value= $2.10E-10$), an increase in physical functioning problems ($\beta=-0.016$ to -0.473 ; Meta P-
197 value= $2.05E-13$), an increase in the risk of CHD risk ($\beta=0.016$ to 0.073 ; Meta P-value= $3.35E-11$).

198 **DNAm PhenoAge and smoking**

199 Cigarette exposure has been shown to have an epigenetic fingerprint[35-37], which has been
200 reflected in previous DNAm risk predictors[38]. Similarly, we find that DNAm PhenoAge
201 significantly differs between never (n=1,097), current (n=209), and former smokers (n=710)
202 (p=0.0033) (Additional file 1, Fig. S3A); however, conversely, we do not find a robust association
203 between pack-years and DNAm PhenoAge (Additional file 1, Fig. S3B-D). Given the association
204 between DNAm PhenoAge and smoking, we re-evaluated the morbidity and mortality associations
205 (fully-adjusted) in our four samples, stratifying by smoking status (Additional file 1: Fig. S4 and
206 Table S4). We find that DNAm PhenoAge is associated with mortality among both smokers
207 (adjusted for pack-years) (Meta(FE)=1.050, Meta p=7.9E-31), and non-smokers
208 (Meta(FE)=1.033, Meta p=1.2E-10). DNAm PhenoAge relates to the number of coexisting
209 morbidities, physical functioning status, disease free status, and CHD for both smokers and non-
210 smokers (Additional file 1: Table S4). Finally, in previous work we showed that Horvath DNAm
211 age of blood predicts lung cancer risk in the first WHI sample[21]. Using the same data, we find
212 that a one year increase in DNAm PhenoAge (adjusting for chronological age, race/ethnicity, pack-
213 years, and smoking status) is associated with a 5% increase in the risk lung cancer incidence and/or
214 mortality (HR=1.05, p=0.031). Further, when restricting the model to current smokers only, we
215 find that the effect of DNAm PhenoAge on future lung cancer incidence and/or mortality is even
216 stronger (HR=1.10, p=0.014).

217

218 In evaluating the relationship between DNAm PhenoAge and additional characteristics we observe
219 significant differences between racial/ethnic groups (p=5.1E-5), with non-Hispanic blacks having
220 the highest DNAm PhenoAge on average, and non-Hispanic whites having the lowest (Additional
221 file 1: Fig. S5). We also find evidence of social gradients in DNAm PhenoAge, such that those

222 with higher education ($p=6E-9$) and higher income ($p=9E-5$) appear younger. DNAm PhenoAge
223 relates to exercise and dietary habits, such that increased exercise ($p=7E-5$) and markers of
224 fruit/vegetable consumption (such as carotenoids, $p=2E-27$) are associated with lower DNAm
225 PhenoAge (Additional file 1: Fig. S6A & Additional file 1: Fig. S6B). Cross sectional studies in
226 the WHI also revealed that DNAmPhenoAge acceleration is positively correlated with C-reactive
227 protein ($r=0.18$, $p=5E-22$, Additional file 1: Fig. S6B), insulin ($r=0.15$, $p=2E-20$), glucose ($r=0.10$,
228 $p=2E-10$), triglycerides ($r=0.09$, $p=5E-9$), waist to hip ratio ($r=0.15$, $p=5E-22$) but it is negatively
229 correlated with the "good" cholesterol HDL ($r=-0.09$, $p=7E-9$).

230 **DNAm PhenoAge in other tissues**

231 One advantage of developing biological aging estimates based on molecular markers (like
232 DNAm), rather than clinical risk measures (e.g. those in the phenotypic age variable), is that they
233 may lend themselves to measuring tissue/cell specific aging. Although DNAm PhenoAge was
234 developed using samples from whole blood, our empirical results show that it strongly correlates
235 with chronological age in a host of different tissues and cell types (Fig. 3). For instance, when
236 examining all tissues concurrently, the correlation between DNAm PhenoAge and chronological
237 age was 0.71. Age correlations in brain tissue ranged from 0.54 to 0.92, while correlations were
238 also found in breast ($r=0.47$), buccal cells ($r=0.88$), dermal fibroblasts ($r=0.87$), epidermis ($r=0.84$),
239 colon ($r=0.88$), heart ($r=0.66$), kidney ($r=0.64$), liver ($r=0.80$), lung ($r=0.55$), and saliva ($r=0.81$).

240 **Alzheimer's disease and brain samples**

241 Based on the accuracy of the age prediction in other tissues/cells, we examined whether aging in
242 a given tissue was associated with tissue-associated outcomes. For instance, using data from
243 approximately 700 post-mortem samples from the Religious Order Study (ROS) and the Memory
244 and Aging Project (MAP)[39, 40] we tested the association between pathologically diagnosed

245 Alzheimer's disease and DNAm PhenoAge in dorsolateral prefrontal cortex (DLPFX). Results
246 suggest (Fig. 4) that those who are diagnosed with Alzheimer's disease (AD), based on
247 postmortem autopsy, have DLPFX that appear more than one year older than same aged
248 individuals who are not diagnosed with AD postmortem ($p=4.6E-4$). Further, age adjusted DNAm
249 PhenoAge was found to be positively associated with neuropathological hallmarks of Alzheimer's
250 disease, such as amyloid load ($r=0.094$, $p=0.012$), neuritic plaques ($r=0.11$, $p=0.0032$), and
251 neurofibrillary tangles ($r=0.10$, $p=0.0073$).

252 **Comparison with other DNAm biomarkers of aging**

253 Several additional DNAm biomarkers have been described in the literature CpGs [12, 13]. A direct
254 comparison of 6 DNAm biomarkers (including DNAm PhenoAge) reveals that DNAm PhenoAge
255 stands out in terms of its predictive accuracy for lifespan, its relationship with smoking status, its
256 relationship with leukocyte telomere length, naïve CD8+ T cells and CD4+ T cells (Additional file
257 1: Table S5).

258 **DNAm PhenoAge and Immunosenescence**

259 To test the hypothesis that DNAm PhenoAge captures aspects of the age-related decline of the
260 immune system, we correlated DNAm PhenoAge with estimated blood cell count (Additional file
261 1, Fig. S7). After adjusting for age, we find that DNAm PhenoAgeAccel is negatively correlated
262 with naïve CD8+ T cells ($r=-0.35$, $p=9.2E-65$), naïve CD4+ T cells ($r=-0.29$, $p=4.2E-42$), CD4+
263 helper T cells ($r=-0.34$, $p=3.6E-58$), and B cells ($r=-0.18$, $p=8.4E-17$). Further, DNAm
264 PhenoAgeAccel is positively correlated with the proportion of granulocytes ($r=0.32$, $p=2.3E-51$),
265 exhausted CD8+ (defined as CD28-CD45RA-) T cells ($r=0.20$, $p=1.9E-20$), and plasma blast cells
266 ($r=0.26$, $p=6.7E-34$). These results are consistent with age related changes in blood cells [41] and
267 suggest that DNAm PhenoAge may capture aspects of immunosenescence in blood. However,

268 three lines of evidence suggest that DNAm PhenoAge is not simply a measure of
269 immunosenescence. First, another measure of immunosenescence, leukocyte telomere length, is
270 only weakly correlated with DNAm PhenoAgeAccel ($r=-0.13$ $p=0.00019$ in the WHI and $r=-0.087$,
271 $P=7.6E-3$ in Framingham Heart study, Additional file 1, Fig. S8). Second, the strong association
272 between DNAm PhenoAge and mortality does not simply reflect changes in blood cell
273 composition, as can be seen from the fact that in Additional file 1, Fig. S9 the robust association
274 remains even after adjusting for estimates of seven blood cell count measures (Meta(FE)=1.036,
275 Meta p=5.6E-21).

276 **DNA sequence characteristics of the 513 CpGs in DNAm PhenoAge**

277 Of the 513 CpGs in DNAm PhenoAge, we find that, 41 CpGs were also in the Horvath DNAm
278 Age measure (Additional file 2: Table S6). This represents a 4.88-fold increase over what would
279 be expected by chance ($p=8.97E-15$). Of the 41 overlapping CpGs, the average absolute value for
280 their age correlations was $r=0.40$, and 31 had age correlations with absolute values in the top 20%
281 of what is found for among the 513 CpGs in the DNAm PhenoAge score. We also observed 6
282 CpGs that overlapped between the Hannum DNAm Age score and the DNAm PhenoAge score—
283 five of which were also found in the Horvath DNAm Age measure. All six CpGs had extremely
284 high age correlations (half positive, half negative), with absolute values between $r=0.49$ and
285 $r=0.76$. The five CpGs that are found in all three epigenetic aging measures were: cg05442902
286 (*P2RXLI*), cg06493994 (*SCGN*), cg09809672 (*EDARADD*), cg19722847 (*IPO8*), and
287 cg22736354 (*NHLRC1*).

288 Finally, we conducted a functional enrichment analysis of the chromosomal locations of the 513
289 CpGs, we found that 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG
290 islands ($p=0.0045$, Additional file 1: Fig. S10) and were significantly enriched with polycomb

291 group protein targets ($p=8.7E-5$, Additional file 1: Fig. S10), which echoes results of epigenome
292 wide studies of aging effects [4, 42, 43].

293 **Transcriptional and genetic studies of DNAm PhenoAge**

294 Using the genome-wide data from FHS and WHI, we estimated the heritability of DNAm
295 PhenoAge. The heritability estimated by the SOLAR polygenic model for those of European
296 ancestry in the FHS was $h^2=0.33$, while the heritability estimated for those of European ancestry
297 in WHI, using GCTA-GREML analysis[44, 45] was $h^2=0.51$.

298 Using the monocyte data mentioned above, as well as PBMC expression data on 2,188 persons
299 from the FHS, we conducted a more thorough transcriptional analysis to identify differential
300 expression associated with DNAm PhenoAgeAccel (Additional file 3: Table S7). Overall, we find
301 that genes show similar associations to chronological age and DNAm PhenoAgeAccel. DNAm
302 PhenoAgeAccel represents aging differences among same-aged individuals and is adjusted so as
303 to exhibit a correlation of $r=0.0$ with chronological age. Thus, this observation can be taken to
304 suggest that genes whose transcription increases with age are upregulated among epigenetically
305 older compared to epigenetically younger persons of the same chronological age (Additional file
306 1: Fig. S11)—same applies for genes that show decreases with chronological age being
307 downregulated in epigenetically older versus younger persons of the same age.

308 Using the transcriptional data from monocytes described above (adjusting for array, sex,
309 race/ethnicity, age, and imputed cell counts), we tested for GO enrichment among genes that
310 positively associated with DNAm PhenoAge and those that negatively associated with DNAm
311 PhenoAge (Additional file 4: Table S8). Among those with positive aging associations
312 (overexpression among epigenetically older individuals), we observed enrichment for a number of
313 pro-inflammatory signaling pathways. These pathways included, but were not limited to: multiple

314 toll-like receptor signaling pathways (7,9,3,2), regulation of inflammatory response, JAK-STAT
315 cascade, response to lipopolysaccharide, tumor necrosis factor-mediated signaling pathway, and
316 positive regulation of NF-kappaB transcription factor activity. Additionally, positively associated
317 genes were also enriched for a number anti-viral response pathways—type I interferon signaling,
318 defense response to virus, interferon-gamma-mediated signaling pathway, cellular response to
319 interferon-alpha, etc. Finally, other interesting GO terms enriched among positively associated
320 genes included: response to nutrient, JAK-STAT cascade involved in growth hormone signaling
321 pathway, multicellular organism growth, and regulation of DNA methylation.

322 When testing for enrichment among genes that were negatively associated with DNAm
323 PhenoAgeAccel (decreased expression among epigenetically older persons) we observed that
324 many were implicated in processes involving transcriptional and translational machinery, as well
325 as damage recognition and repair. These included: translational initiation; regulation of
326 translational initiation; ribosomal large subunit assembly; ribosomal small subunit assembly;
327 translational elongation; transcription initiation from RNA polymerase I promoter; transcription-
328 coupled nucleotide-excision repair; nucleotide-excision repair, DNA incision, 5'-to lesion;
329 nucleotide-excision repair, DNA damage recognition; DNA damage response, detection of DNA
330 damage; and regulation of DNA damage checkpoint.

331 **DISCUSSION**

332 Using a novel two-step method, we were successful in developing a DNAm based biomarker of
333 aging that is highly predictive of nearly every morbidity and mortality outcome we tested. Training
334 an epigenetic predictor of phenotypic age instead of chronological age led to substantial
335 improvement in mortality/healthspan predictions over the first generation of DNAm based
336 biomarkers of chronological age from Hannum[10], Horvath[14] and other published DNAm

337 biomarkers. In doing so, this is the first study to conclusively demonstrate that DNAm biomarkers
338 of aging are highly predictive of CVD and coronary heart disease. DNAm PhenoAge also tracks
339 chronological age and relates to disease risk in samples other than whole blood. Finally, we find
340 that an individual's DNAm PhenoAge, relative to his/her chronological age, is moderately
341 heritable and is associated with activation of pro-inflammatory, interferon, DNAm damage repair,
342 transcriptional/translational signaling, and various markers of immunosenescenc: a decline of
343 naïve T cells and shortened leukocyte telomere length.

344 The ability of our measure to predict multifactorial aging conditions is consistent with the
345 fundamental underpinnings of Geroscience research [1, 46], which posits that aging mechanisms
346 give rise to multiple pathologies and thus, differences in the rate of aging will have implications
347 for a wide array of diseases and conditions. Further, these results answer a fundamental biological
348 question of whether differences in multi-system dysregulation (estimated using clinical phenotypic
349 age measures), healthspan, and lifespan are reflected at the epigenetic level, in the form of
350 differential DNAm at specific CpG sites.

351 The improvement over previous epigenetic biomarkers, likely comes down to the types of CpGs
352 selected for the various measures. Only 41 of the 513 CpGs in DNAm PhenoAge were shared with
353 the Horvath clock, while only five CpGs were shared between all three clocks (DNAm PhenoAge,
354 Horvath, and Hannum). In general, these CpGs did not tend to be drivers of the DNAm PhenoAge
355 score, and instead represented those with large age correlations, but lower weights. This may
356 explain the improvements of DNAm PhenoAge over previous epigenetic biomarkers of aging.
357 While the previous DNAm age estimators selected CpGs to optimize prediction of chronological
358 age, the CpGs in DNAm PhenoAge were optimized to predict a multi-system proxy of
359 physiological dysregulation (phenotypic age). In doing so, we were able to not only capture CpGs

360 that exhibited changes in DNAm with age, but also those that captured variations in risk of death
361 and disease among same aged individuals. In general, the CpGs with the highest weights in the
362 new clock did not correlate with chronological age (Additional file 1: Fig. S12), but instead were
363 related to the difference between phenotypic and chronological age—i.e. divergence in the rate of
364 aging. Interestingly, the CpGs that contributed the most to the DNAm PhenoAge score, tended to
365 have low age correlations.

366 While DNAm PhenoAge greatly outperformed all previous DNAm biomarkers of aging
367 (Additional file 1: Table S5), the utility of DNAm PhenoAge for estimating risk does not imply
368 that it should replace clinical biomarkers when it comes to informing medical and health-related
369 decisions. In fact, but perhaps not surprisingly, the phenotypic age measure used to select CpGs is
370 a better predictor of morbidity and mortality outcomes than DNAm PhenoAge. While the addition
371 of error in performing a two-step process, rather than training a DNAm predictor directly on
372 mortality may contribute, we don't believe this accounts for the difference in predictive
373 performance. In fact, a recent DNAm measure by Zhang et al.[38] was trained to directly predict
374 mortality risk, yet it appears to be a weaker predictor than both our DNAm PhenoAge measure
375 and our clinical phenotypic age measure (Additional file 1: Table S9). The first generation of
376 DNAm age estimators only exhibit weak associations with clinical measures of physiological
377 dysregulation [47, 48]. Physiological dysregulation, which is more closely related to our clinical
378 age measure “phenotypic age” than to chronological age, is not only the result of
379 exogenous/endogenous stress factors (such as obesity, infections) but also a result of age related
380 molecular alterations, one example of which are modifications to the epigenome. Over time,
381 dysregulation within organ systems leads to pathogenesis of disease (age-related molecular
382 changes → physiological dysregulation → morbidity → mortality)[49]. However, stochasticity

383 and variability exist at each of these transitions. Therefore, measures of physiological
384 dysregulation, will be better predictors of transition to the next stage in the aging trajectory (i.e.
385 morbidity and mortality) than will measures of age related molecular alterations, like DNAm
386 PhenoAge. Similarly, quantification of disease pathogenesis (cancer stage, Alzheimer's stage) is
387 likely a better predictor of mortality risk than clinical phenotypic aging measures. As a result,
388 clinical phenotypic aging measures may be preferable to epigenetic measures when the goal is risk
389 prediction, and all samples come from blood.

390 That being said, when the aim is to study the mechanisms of the aging process, DNAm measures
391 have advantages over clinical measures. First, they may better capture “pre-clinical aging” and
392 thus may be more suited for differentiating aging in children, young adults, or extremely healthy
393 individuals, for whom measures like CRP, albumin, creatinine, glucose, etc. are still fairly
394 homogenous. Second, as demonstrated, these molecular measures can capture cell and/or tissue
395 specific aging rates and therefore may also lend themselves to in vitro studies of aging, studies for
396 which blood is not available, studies using postmortem samples, and/or studies comparing aging
397 rates between tissues/cells. While the fundamental drivers of aging are believed to be shared across
398 cells/tissues, that is not to say that all the cells and tissues within an individual will age at the same
399 rate. In fact, it is more likely that individuals will vary in their patterning of aging rates across
400 tissues, and that this will have implications for death and disease risk. Relatedly, it is not known
401 how predictions based on DNAm PhenoAge measures from non-blood samples will compare to
402 phenotypic age predictions. It may be the case that various outcomes will be more tightly related
403 to aging in specific cells/tissues, rather than blood. Finally, examination of DNAm based aging
404 rates facilitates the direct study of the proposed mechanisms of aging, of which “epigenetic
405 alterations” is one of the seven hypothesized “pillars of aging” [1].

406 While more work needs to be done to model the biology linking DNAm PhenoAge and aging
407 outcomes, we began to explore this using differential expression, functional enrichment,
408 heritability estimates, and network analysis. Overall, we found that CpGs that had larger increases
409 with aging tended to be located in CpG islands and enriched with polycomb group protein targets,
410 consistent with what has been reported in previous epigenome wide studies of aging effects [4, 6,
411 7, 42, 43]. While typically DNAm of CpG islands and/or polycomb recruitment is linked to
412 transcriptional silencing [50], for the most part, we did not observe associations between DNAm
413 and expression for co-locating CpG-gene pairs—this was also true when only considering CpGs
414 located in islands. These findings may suggest that the genes annotated to the CpGs in our score
415 are not part of the link between changes in DNAm and aging. Nevertheless, we also recognize that
416 these null results could stem from the fact that 1) associations were only tested in monocytes, 2)
417 DNAm and expression represents what is present globally for each sample, rather than on a cell-
418 by-cell bases, and 3) stronger associations between DNAm and gene expression levels may only
419 exist early in life.

420 Nevertheless, we do identify potentially promising transcriptional pathways when considering
421 DNAm PhenoAge as a whole. For instance, we observe that higher DNAm PhenoAge is associated
422 with increases in the activation of proinflammatory pathways, such as NF-kappaB; increased
423 interferon (IFN) signaling; decreases in ribosomal-related and translational machinery pathways;
424 and decreases in damage recognition and repair pathways. These findings are consistent with
425 previous work describing aging associated changes, comprising increases in dysregulated
426 inflammatory activation, increased DNA damage, and loss of translational fidelity. For instance,
427 there exists a large body of literature highlighting the importance of an increased low-grade pro-
428 inflammatory status as a driver of the aging process, termed inflamm-aging [41, 51, 52]. IFN

429 signaling pathways have been shown to be markers of DNA damage and mediators of cellular
430 senescence[53]. Additionally, it has been shown that breakdown of the transcriptional and
431 translational machinery may play a central role in the aging process[54, 55]. For instance, the
432 ribosome is believed to be a key regulator of proteostasis, and in turn, aging[54, 56]. Relatedly,
433 loss of integrity in DNA damage repair pathways is considered another hallmark of the aging
434 process[57-59].

435 In general, many of these pathways will have implications for adaptation to exogenous and
436 endogenous stressors. Factors related to stress resistance and response have repeatedly been shown
437 to be drivers of differences in lifespan and aging[60-65]. This may partially account for our
438 findings related to smoking. In general, it is not surprising that a biomarker of aging and mortality
439 risk relates to smoking, given that life expectancies of smokers are on average ten years shorter
440 than never smokers, and smoking history is associated with a drastic increase in the risk of a
441 number of age-related conditions. However, perhaps more interestingly, we find that the effects of
442 DNAm PhenoAge on mortality appear to be higher for smokers than non-smokers, which could
443 suggest that DNAm PhenoAge represent differences in innate resilience/vulnerability to pro-aging
444 stressors, such as cigarette smoke.

445 Interestingly, we observed moderately high heritability estimates for DNAm PhenoAge. For
446 instance, we estimated that genetic differences accounted for one-third to one-half of the variance
447 in DNAm PhenoAge, relative to chronological age. In moving forward, it will be useful to identify
448 the genetic architecture underlying differences in epigenetic aging. Finally, we reported that
449 individuals' DNAm PhenoAges—relative to their chronological ages—remained fairly stable over
450 a nine-year period. However, it is unclear whether it is attributable to genetic influences, or the
451 fact that social and behavioral characteristics tend to also remain stable for most individuals.

452 If the goal is to utilize accurate quantifiable measures of the rate of aging, such as DNAm
453 PhenoAge, to assess the efficacy of aging interventions, more work will be needed to evaluate the
454 dynamics of DNAmPhenoAge following various treatments. For instance, it remains to be seen
455 whether interventions can reverse DNAmPhenoAge in the short term. Along these lines, it will be
456 essential to determine causality—does DNAm drive the aging process, or is it simply a surrogate
457 marker of senescence? If the former is true, DNAm PhenoAge could provide insight into promising
458 targets for therapies aimed at lifespan, and more importantly, healthspan extension.

459 **Conclusion**

460 Overall, DNAm PhenoAge is an attractive composite biomarker that captures organismal age and
461 the functional state of many organ systems and tissues, above and beyond what is explained by
462 chronological time. Our validation studies in multiple large and independent cohorts demonstrate
463 that DNAm PhenoAge is a highly robust predictor of both morbidity and mortality outcomes, and
464 represents a promising biomarker of aging, which may prove to be beneficial to both basic science
465 and translational research.

466 **METHODS**

467 Using the NHANES training data, we applied a Cox penalized regression model—where the
468 hazard of aging-related mortality (mortality from diseases of the heart, malignant neoplasms,
469 chronic lower respiratory disease, cerebrovascular disease, Alzheimer's disease, Diabetes mellitus,
470 nephritis, nephrotic syndrome, and nephrosis) was regressed on forty-two clinical markers and
471 chronological age to select variables for inclusion in our phenotypic age score. Ten-fold cross-
472 validation was employed to select the parameter value, lambda, for the penalized regression. In
473 order to develop a sparse phenotypic age estimator (the fewest biomarker variables needed to
474 produce robust results) we selected a lambda of 0.0192, which represented a one standard deviation

475 increase over the lambda with minimum mean-squared error during cross-validation (Additional
476 file 1, Fig. S13). Of the forty-two biomarkers included in the penalized Cox regression model, this
477 resulted in ten variables (including chronological age) that were selected for the phenotypic age
478 predictor.

479 These nine biomarkers and chronological age were then included in a parametric proportional
480 hazards model based on the Gompertz distribution. Based on this model, we estimated the 10-year
481 (120 months) mortality risk of the j-the individual. Next, the mortality score was converted into
482 units of years (Additional file 1). The resulting phenotypic age estimate was regressed on DNA
483 methylation data using an elastic net regression analysis. The penalization parameter was chosen
484 to minimize the cross validated mean square error rate (Additional file 1, Fig. S14), which resulted
485 in 513 CpGs.

486 **Estimation of blood cell counts based on DNAm levels**

487 We estimate blood cell counts using two different software tools. First, Houseman's estimation
488 method [66] was used to estimate the proportions of CD8+ T cells, CD4+ T, natural killer, B cells,
489 and granulocytes (mainly neutrophils). Second, the Horvath method, implemented in the advanced
490 analysis option of the epigenetic clock software [11, 18], was used to estimate the percentage of
491 exhausted CD8+ T cells (defined as CD28-CD45RA-), the number (count) of naïve CD8+ T cells
492 (defined as CD45RA+CCR7+) and plasmablasts. We and others have shown that the estimated
493 blood cell counts have moderately high correlations with corresponding flow cytometric measures
494 [66, 67].

495 Additional descriptions of methods and materials can be found in Additional file 1.

496

497 **Competing interests**

498 The Regents of the University of California is the sole owner of a provisional patent application
499 directed at this invention for which MEL, SH are named inventors.

500 **Ethics approval**

501 This study was reviewed by the UCLA institutional review board (IRB#13-000671, IRB#15-
502 000697, IRB#16-001841, IRB#15-000682)

503 **Author contributions**

504 ML and SH developed the DNAmPhenoAge estimator and wrote the article. SH, ML, LF
505 conceived of the study. ML, SH, AL, AQ carried out the statistical analysis. The remaining authors
506 contributed data and participated in the interpretation of the results.

507 **ACKNOWLEDGEMENTS**

508 We would like to acknowledge The WHI Investigators listed below:

509 Program Office: (National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques
510 Rossouw, Shari Ludlam, Dale Burwen, Joan McGowan, Leslie Ford, and Nancy Geller.

511 Clinical Coordinating Center: (Fred Hutchinson Cancer Research Center, Seattle, WA) Garnet
512 Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg.

513 Investigators and Academic Centers: (Brigham and Women's Hospital, Harvard Medical School,
514 Boston, MA) JoAnn E. Manson; (MedStar Health Research Institute/Howard University,
515 Washington, DC) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA).

516 Marcia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University
517 of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thomson; (University at Buffalo, Buffalo, NY)

518 Jean Wactawski-Wende; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher;
519 (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Pittsburgh,
520 Pittsburgh, PA) Lewis Kuller; (Wake Forest University School of Medicine, Winston-Salem, NC)
521 Sally Shumaker.

522 The Framingham Heart Study is funded by National Institutes of Health contract N01-HC-25195
523 and HHSN268201500001I. The laboratory work for this investigation was funded by the Division
524 of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health.
525 The analytical component of this project was funded by the Division of Intramural Research,
526 National Heart, Lung, and Blood Institute, and the Center for Information Technology, National
527 Institutes of Health, Bethesda, MD. The Framingham Heart Study is conducted and supported by
528 the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University.
529 This manuscript was not prepared in collaboration with investigators of the Framingham Heart
530 Study and does not necessarily reflect the opinions or views of the Framingham Heart Study,
531 Boston University, or the NHLBI.

532 The United States Department of Veterans Affairs (VA) Normative Aging Study (NAS) is
533 supported by the Cooperative Studies Program/ERIC and is a research component of the
534 Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Boston
535 Massachusetts.

536 The MESA Epigenomics and Transcriptomics Studies were funded by R01HL101250, R01
537 DK103531-01, R01 DK103531, R01 AG054474, and R01 HL135009-01 to Wake Forest
538 University Health Sciences.

539 We thank the Jackson Heart Study (JHS) participants and staff for their contributions to this
540 work. The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C,

541 HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National
542 Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health
543 Disparities. Dr. Wilson is supported by U54GM115428 from the National Institute of General
544 Medical Sciences.

545

546 **FUNDING**

547 This study was supported by NIH/NIA U34AG051425-01 (Horvath) and NIH/NIA
548 K99AG052604 (Levine). The WHI epigenetic studies were supported by NIH/NHLBI 60442456
549 BAA23 (Assimes, Absher, Horvath) and by the National Institute of Environmental Health
550 Sciences R01-ES020836 WHI-EMPC (Whitsel, Baccarelli, Hou). The WHI program is funded by
551 the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of
552 Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C,
553 HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and
554 HHSN271201100004C. The authors thank the WHI investigators and staff for their dedication,
555 and the study participants for making the program possible. A full listing of WHI investigators can
556 be found at: www.whi.org/researchers/
557 Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf.

558 The InCHIANTI study baseline (1998-2000) was supported as a "targeted project"
559 (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on
560 Aging (Contracts: 263 MD 9164 and 263 MD 821336).

561 Funding for the DNA methylation in JHS provided by NHLBI R01HL116446.

562 The funding bodies played no role in the design, the collection, analysis, or interpretation of the
563 data.

564 **Availability of data and materials**

565 The WHI data are available at dbGaP under the accession numbers phs000200.v10.p3. The FHS
566 data are available at dbGaP under the accession numbers phs000342 and phs000724. The
567 Normative Aging data are available from dbGAP phs000853.v1.p1. The Jackson Heart Study data
568 are available from <https://www.jacksonheartstudy.org/Research/Study-Data>

569

570

571 **REFERENCES**

- 572 1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, et al: **Geroscience: Linking Aging to Chronic Disease.** *Cell* 2014, **159**:709-713.
- 573 2. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, Khalsa PS, Kohanski RA, Li XL, Macchiarini F, et al: **Advances in geroscience: impact on healthspan and chronic disease.** *J Gerontol A Biol Sci Med Sci* 2014, **69 Suppl 1**:S1-3.
- 574 3. Fraga MF, Esteller M: **Epigenetics and aging: the targets and the marks.** *Trends in Genetics* 2007, **23**:413-418.
- 575 4. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, et al: **Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains.** *Genome Res* 2010, **20**:434-439.
- 576 5. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, et al: **Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.** *Genome Res* 2010, **20**:440-446.
- 577 6. Jung M, Pfeifer GP: **Aging and DNA methylation.** *BMC Biology* 2015, **13**:1-8.
- 578 7. Zheng SC, Widschwendter M, Teschendorff AE: **Epigenetic drift, epigenetic clocks and cancer risk.** *Epigenomics* 2016, **8**:705-719.
- 579 8. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E: **Epigenetic predictor of age.** *PLoS One* 2011, **6**:e14821.
- 580 9. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, et al: **Methylation of ELOVL2 gene as a new epigenetic marker of age.** *Aging Cell* 2012, **11**:1132-1134.
- 581 10. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al: **Genome-wide methylation profiles reveal quantitative views of human aging rates.** *Mol Cell* 2013, **49**:359-367.
- 582 11. Horvath S: **DNA methylation age of human tissues and cell types.** *Genome Biol* 2013, **14**:R115.

598 12. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jockel KH, Erbel R,
599 Muhleisen TW, et al: **Aging of blood can be tracked by DNA methylation changes at just three**
600 **CpG sites.** *Genome Biol* 2014, **15**:R24.

601 13. Lin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MR, Deary IJ, Wagner W: **DNA methylation levels**
602 **at individual age-associated CpG sites can be indicative for life expectancy.** *Aging (Albany NY)*
603 2016, **8**:394-401.

604 14. Horvath S: **DNA methylation age of human tissues and cell types.** *Genome Biol* 2013, **14**.

605 15. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai
606 PC, Spector TD, et al: **Obesity accelerates epigenetic aging of human liver.** *Proc Natl Acad Sci U S*
607 *A* 2014, **111**:15538-15543.

608 16. Marioni R, Shah S, McRae A, Chen B, Colicino E, Harris S, Gibson J, Henders A, Redmond P, Cox S,
609 et al: **DNA methylation age of blood predicts all-cause mortality in later life.** *Genome Biol* 2015,
610 **16**:25.

611 17. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox
612 SR, Pattie A, et al: **The epigenetic clock is correlated with physical and cognitive fitness in the**
613 **Lothian Birth Cohort 1936.** *Int J Epidemiol* 2015, **44**:1388-1396.

614 18. Horvath S, Levine AJ: **HIV-1 Infection Accelerates Age According to the Epigenetic Clock.** *J Infect*
615 *Dis* 2015, **212**:1563-1573.

616 19. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Di Blasio AM, Giuliani C,
617 Tung S, Vinters HV, Franceschi C: **Accelerated epigenetic aging in Down syndrome.** *Aging Cell*
618 2015, **14**:491-495.

619 20. Horvath S, Ritz BR: **Increased epigenetic age and granulocyte counts in the blood of Parkinson's**
620 **disease patients.** *Aging (Albany NY)* 2015, **7**:1130-1142.

621 21. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S: **DNA methylation age of blood**
622 **predicts future onset of lung cancer in the women's health initiative.** *Aging (Albany NY)* 2015,
623 **7**:690-700.

624 22. Levine ME, Lu AT, Bennett DA, Horvath S: **Epigenetic age of the pre-frontal cortex is associated**
625 **with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning.**
626 *Aging (Albany NY)* 2015, **7**:1198-1211.

627 23. Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandinelli S, Salfati E, Manson
628 JE, Quach A, et al: **Menopause accelerates biological aging.** *Proc Natl Acad Sci U S A* 2016,
629 **113**:9327-9332.

630 24. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC,
631 Demerath EW, Guan W, et al: **DNA methylation-based measures of biological age: meta-analysis**
632 **predicting time to death.** *Aging (Albany NY)* 2016, **8**:1844-1865.

633 25. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhausen ML,
634 Beasley JM, et al: **Epigenetic clock analysis of diet, exercise, education, and lifestyle factors.**
635 *Aging (Albany NY)* 2017, **9**:419-446.

636 26. Dugue PA, Bassett JK, Joo JE, Jung CH, Ming Wong E, Moreno-Betancur M, Schmidt D, Makalic E,
637 Li S, Severi G, et al: **DNA methylation-based biological aging and cancer risk and survival: Pooled**
638 **analysis of seven prospective studies.** *Int J Cancer* 2017.

639 27. Levine ME: **Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality**
640 **More Accurately Than Chronological Age?** *The Journals of Gerontology Series A: Biological*
641 *Sciences and Medical Sciences* 2013, **68**:667-674.

642 28. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME,
643 Schaefer JD, et al: **Quantification of biological aging in young adults.** *Proceedings of the National*
644 *Academy of Sciences* 2015, **112**:E4104-E4110.

645 29. Li S, Wong EM, Joo JE, Jung CH, Chung J, Apicella C, Stone J, Dite GS, Giles GG, Southey MC, Hopper
646 JL: **Genetic and Environmental Causes of Variation in the Difference Between Biological Age**
647 **Based on DNA Methylation and Chronological Age for Middle-Aged Women.** *Twin Res Hum*
648 *Genet* 2015, **18**:720-726.

649 30. Sebastiani P, Thyagarajan B, Sun F, Schupf N, Newman AB, Montano M, Perls TT: **Biomarker**
650 **signatures of aging.** *Aging Cell* 2017:n/a-n/a.

651 31. Ferrucci L, Hesdorffer C, Bandinelli S, Simonsick EM: **Frailty as a Nexus Between the Biology of**
652 **Aging, Environmental Conditions and Clinical Geriatrics.** *Public Health Reviews* 2010, **32**:475-488.

653 32. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K: **DNA methylation**
654 **age is associated with mortality in a longitudinal Danish twin study.** *Aging Cell* 2016, **15**:149-
655 154.

656 33. Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Blasio AM, Delledonne M, Mari D, Arosio B, Monti
657 D, Passarino G: **Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and**
658 **their offspring.** *Aging (Albany NY)* 2015, **7**.

659 34. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H: **Epigenetic age acceleration predicts**
660 **cancer, cardiovascular, and all-cause mortality in a German case cohort.** *Clin Epigenetics* 2016,
661 **8**:64.

662 35. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H: **Tobacco-smoking-related differential DNA**
663 **methylation: 27K discovery and replication.** *Am J Hum Genet* 2011, **88**:450-457.

664 36. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, Guan W, Xu T, Elks CE,
665 Aslibekyan S, et al: **Epigenetic Signatures of Cigarette Smoking.** *Circ Cardiovasc Genet* 2016,
666 **9**:436-447.

667 37. Lee KW, Pausova Z: **Cigarette smoking and DNA methylation.** *Front Genet* 2013, **4**:132.

668 38. Zhang Y, Wilson R, Heiss J, P. Breitling L, Saum K-U, Schöttker B, Holleczek B, Waldenberger M,
669 Peters A, Brenner H: **DNA methylation signatures in peripheral blood strongly predict all-cause**
670 **mortality.** 2017.

671 39. Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS: **Overview and findings from the religious**
672 **orders study.** *Curr Alzheimer Res* 2012, **9**:628-645.

673 40. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS: **Overview and findings**
674 **from the Rush Memory and Aging Project.** *Curr Alzheimer Res* 2012, **9**:646-663.

675 41. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G: **Inflamm-**
676 **aging. An evolutionary perspective on immunosenescence.** *Ann NY Acad Sci* 2000, **908**:244-254.

677 42. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M,
678 Noushmehr H, Bell CG, Maxwell AP: **Age-dependent DNA methylation of genes that are**
679 **suppressed in stem cells is a hallmark of cancer.** *Genome research* 2010, **20**:440-446.

680 43. Horvath S, Zhang Y, Langfelder P, Kahn R, Boks M, van Eijk K, van den Berg L, Ophoff RA: **Aging**
681 **effects on DNA methylation modules in human brain and blood tissue.** *Genome Biol* 2012,
682 **13**:R97.

683 44. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin
684 NG, Montgomery GW, et al: **Common SNPs explain a large proportion of the heritability for**
685 **human height.** *Nat Genet* 2010, **42**:565-569.

686 45. Yang J, Lee SH, Goddard ME, Visscher PM: **GCTA: A Tool for Genome-wide Complex Trait Analysis.**
687 *American Journal of Human Genetics* 2011, **88**:76-82.

688 46. Sierra F, Kohanski R: **Geroscience and the trans-NIH Geroscience Interest Group, GSIG.**
689 *Geroscience* 2017, **39**:1-5.

690 47. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML,
691 Beasley JM, et al: **Epigenetic clock analysis of diet, exercise, education, and lifestyle factors.**
692 *Aging (Albany NY)* 2017.

693 48. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, Schaefer J, Sugden K, Williams
694 B, Poulton R, Caspi A: **Eleven Telomere, Epigenetic Clock, and Biomarker-Composite**
695 **Quantifications of Biological Aging: Do They Measure the Same Thing?** *Am J Epidemiol* 2017.

696 49. Kubben N, Misteli T: **Shared molecular and cellular mechanisms of premature ageing and ageing-**
697 **associated diseases.** *Nat Rev Mol Cell Biol* 2017, **18**:595-609.

698 50. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D: **5' CpG island**
699 **methylation is associated with transcriptional silencing of the tumour suppressor**
700 **p16/CDKN2/MTS1 in human cancers.** *Nat Med* 1995, **1**.

701 51. Finch CE: **CHAPTER 1 - Inflammation and Oxidation in Aging and Chronic Diseases.** In *The Biology*
702 *of Human Longevity.* Burlington: Academic Press; 2007: 1-112

703 52. Finch CE: **Evolution of the human lifespan and diseases of aging: Roles of infection,**
704 **inflammation, and nutrition.** *Proceedings of the National Academy of Sciences of the United*
705 *States of America* 2010, **107**:1718-1724.

706 53. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G: **DNA damage signaling and**
707 **p53-dependent senescence after prolonged beta-interferon stimulation.** *Mol Biol Cell* 2006,
708 **17**:1583-1592.

709 54. Gonskikh Y, Polacek N: **Alterations of the translation apparatus during aging and stress response.**
710 *Mechanisms of Ageing and Development* 2017, **168**:30-36.

711 55. Wolters S, Schumacher B: **Genome maintenance and transcription integrity in aging and disease.**
712 *Front Genet* 2013, **4**:19.

713 56. Steffen KK, Dillin A: **A Ribosomal Perspective on Proteostasis and Aging.** *Cell Metab* 2016,
714 **23**:1004-1012.

715 57. Garinis GA, Uittenboogaard LM, Stachelscheid H, Fousteri M, van Ijcken W, Breit TM, van Steeg H,
716 Mullenders LH, van der Horst GT, Bruning JC, et al: **Persistent transcription-blocking DNA lesions**
717 **trigger somatic growth attenuation associated with longevity.** *Nat Cell Biol* 2009, **11**:604-615.

718 58. Schumacher B, Garinis GA, Hoeijmakers JH: **Age to survive: DNA damage and aging.** *Trends Genet*
719 2008, **24**:77-85.

720 59. McMurray CT, Vijg J: **Editorial overview: Molecular and genetic bases of disease: the double life**
721 **of DNA.** *Curr Opin Genet Dev* 2014, **26**:v-vii.

722 60. Finch CE, Morgan TE, Longo VD, de Magalhaes JP: **Cell resilience in species life spans: a link to**
723 **inflammation?** *Aging Cell* 2010, **9**:519-526.

724 61. Levine ME, Crimmins EM: **A Genetic Network Associated With Stress Resistance, Longevity, and**
725 **Cancer in Humans.** *J Gerontol A Biol Sci Med Sci* 2016, **71**:703-712.

726 62. Zhou KL, Pincus Z, Slack FJ: **Longevity and stress in *Caenorhabditis elegans*.** *Aging (Albany NY)*
727 2011, **3**:733-753.

728 63. Lin YJ, Seroude L, Benzer S: **Extended life-span and stress resistance in the *Drosophila* mutant**
729 **methuselah.** *Science* 1998, **282**:943-946.

730 64. Yu BP, Chung HY: **Stress resistance by caloric restriction for longevity.** *Ann N Y Acad Sci* 2001,
731 **928**:39-47.

732 65. Martin GM, Austad SN, Johnson TE: **Genetic analysis of ageing: role of oxidative damage and**
733 **environmental stresses.** *Nat Genet* 1996, **13**:25-34.

734 66. Houseman E, Accomando W, Koestler D, Christensen B, Marsit C, Nelson H, Wiencke J, Kelsey K:
735 **DNA methylation arrays as surrogate measures of cell mixture distribution.** *BMC Bioinformatics*
736 2012, **13**:86.

737 67. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT,
738 Rickabaugh TM, et al: **An epigenetic clock analysis of race/ethnicity, sex, and coronary heart**
739 **disease.** *Genome Biol* 2016, **17**:171.

740

741

742

743

744 **TABLES**

745 **Table 1: Mortality Validations for Phenotypic Age**

Mortality Cause	Cases	HR	P-Value
All-Cause	1052	1.09	3.8E-49
Aging-Related	661	1.09	4.5E-34
CVD	272	1.10	5.1E-17
Cancer	265	1.07	7.9E-10
Alzheimer's	30	1.04	2.6E-1
Diabetes	41	1.20	1.9E-11
Lung	53	1.09	6.3E-4

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767
768
769
770

771 **Table 2: Morbidity Validation for DNAm PhenoAge**

Sample	Comorbidity		Disease Free		CHD Risk		Physical Functioning	
	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value
DNAm PhenoAge								
WHI BA23 White	0.008	2.38E-01	-0.002	3.82E-01	0.016	5.36E-02	-0.396	1.04E-04
WHI BA23 Black	0.013	6.15E-02	-0.006	2.40E-02	0.021	2.02E-02	-0.423	4.50E-04
WHI BA23 Hispanic	0.024	1.64E-02	-0.004	3.67E-01	0.033	5.07E-02	-0.329	7.37E-02
WHI EMPC White	0.031	2.95E-07	-0.026	1.63E-02	0.023	1.89E-01	-0.361	3.81E-05
WHI EMPC Black	0.014	7.67E-02	-0.023	6.98E-02	0.048	2.27E-02	-0.473	3.75E-04
WHI EMPC Hispanic	0.003	7.83E-01	0.002	9.28E-01	0.073	1.98E-01	-0.377	6.54E-02
FHS	0.022	3.93E-07	-0.034	1.59E-03	0.028	5.47E-06	-0.016	4.60E-01
NAS	0.023	7.59E-06	-0.062	2.00E-04	0.030	2.27E-02	NA	NA
JHS	0.018	1.86E-08	-0.039	5.92E-05	0.033	4.73E-02	NA	NA
Meta P-value (Stouffer)	1.95E-20		2.14E-10		3.35E-11		2.05E-13	
DNAmAge Hannum								
WHI BA23 White	0.007	3.90E-01	-0.003	3.48E-01	0.013	2.36E-01	-0.399	2.90E-03
WHI BA23 Black	0.022	2.72E-02	-0.007	6.03E-02	0.015	2.67E-01	-0.345	4.29E-02
WHI BA23 Hispanic	0.010	4.33E-01	-0.010	6.24E-02	0.011	6.10E-01	-0.599	1.16E-02
WHI EMPC White	0.025	1.53E-03	-0.020	1.55E-01	0.022	3.30E-01	-0.284	1.43E-02
WHI EMPC Black	0.022	6.34E-02	-0.008	6.62E-01	0.055	6.12E-02	-0.323	9.56E-02
WHI EMPC Hispanic	-0.012	4.17E-01	0.035	2.09E-01	-0.012	8.85E-01	-0.345	2.54E-01
FHS	0.019	5.94E-04	-0.030	2.55E-02	0.022	1.55E-02	0.040	1.32E-01
NAS	0.009	2.19E-01	-0.026	2.26E-01	0.025	1.83E-01	NA	NA
JHS	0.020	2.09E-05	-0.036	9.91E-03	0.086	1.64E-04	NA	NA
Meta P-value (Stouffer)	1.50E-08		1.64E-04		1.40E-05		2.03E-05	
DNAmAge Horvath								
WHI BA23 White	0.007	3.49E-01	-0.004	1.69E-01	0.001	9.12E-01	-0.440	5.10E-04
WHI BA23 Black	0.018	3.96E-02	-0.006	6.25E-02	0.009	4.07E-01	-0.305	4.52E-02
WHI BA23 Hispanic	0.012	3.65E-01	-0.007	1.86E-01	-0.001	9.78E-01	-0.204	4.12E-01
WHI EMPC White	0.031	1.99E-04	-0.043	5.56E-03	0.000	9.88E-01	-0.288	1.74E-02
WHI EMPC Black	0.016	1.93E-01	-0.003	8.56E-01	0.033	2.87E-01	-0.144	4.68E-01
WHI EMPC Hispanic	-0.025	8.99E-02	-0.016	5.70E-01	-0.064	4.63E-01	-0.012	9.70E-01
FHS	0.011	5.82E-02	-0.021	8.34E-02	0.007	5.19E-01	0.027	3.16E-01
NAS	0.011	7.90E-02	-0.039	4.53E-02	0.006	7.14E-01	NA	NA
JHS	0.014	2.03E-03	-0.040	1.78E-03	0.049	3.93E-02	NA	NA
Meta P-value (Stouffer)	3.26E-06		6.36E-07		1.49E-01		1.43E-03	

772
773
774
775

776 **FIG. LEGENDS**

777 **Fig. 1. Roadmap for developing DNAm PhenoAge**

778 The roadmap depicts our analytical procedures. In step 1, we developed an estimate of 'Phenotypic
779 Age' based on clinical measure. Phenotypic age was developed using the NHANES III as training
780 data, in which we employed a proportional hazard penalized regression model to narrow 42
781 biomarkers to 9 biomarkers and chronological age. This measure was then validated in NHANES
782 IV and shown to be a strong predictor of both morbidity and mortality risk. In step 2, we developed
783 an epigenetic biomarker of phenotypic age, which we call DNAm PhenoAge, by regressing
784 phenotypic age (from step 1) on blood DNA methylation data, using the InCHIANTI data. This
785 produced an estimate of DNAm PhenoAge based on 513 CpGs. We then validated our new
786 epigenetic biomarker of aging, DNAm PhenoAge, using multiple cohorts, aging-related outcomes,
787 and tissues/cells. In step 3, we examined the underlying biology of the 513 CpGs and the composite
788 DNAm PhenoAge measure, using a variety of complementary data (gene expression, blood cell
789 counts) and various genome annotation tools including chromatin state analysis and gene ontology
790 enrichment.

791 **Fig. 2. Mortality Prediction by DNAm PhenoAge**

792 A: Using five samples from large epidemiological cohorts—two samples from the Women's health
793 Initiative, the Framingham Heart Study, the Normative Aging Study, and the Jackson Heart
794 Study—we tested whether DNAm PhenoAge was predictive of all-cause mortality. The Fig.
795 displays a forest plot for fixed-effect meta-analysis, based on Cox proportional hazard models, and
796 adjusting for chronological age. Results suggest that DNAm PhenoAge is predictive of mortality
797 in all samples, and that overall, a one year increase in DNAm PhenoAge is associated with a 4.5%
798 increase in the risk of death ($p=9.9E-47$). This is contrasted against the first generation of

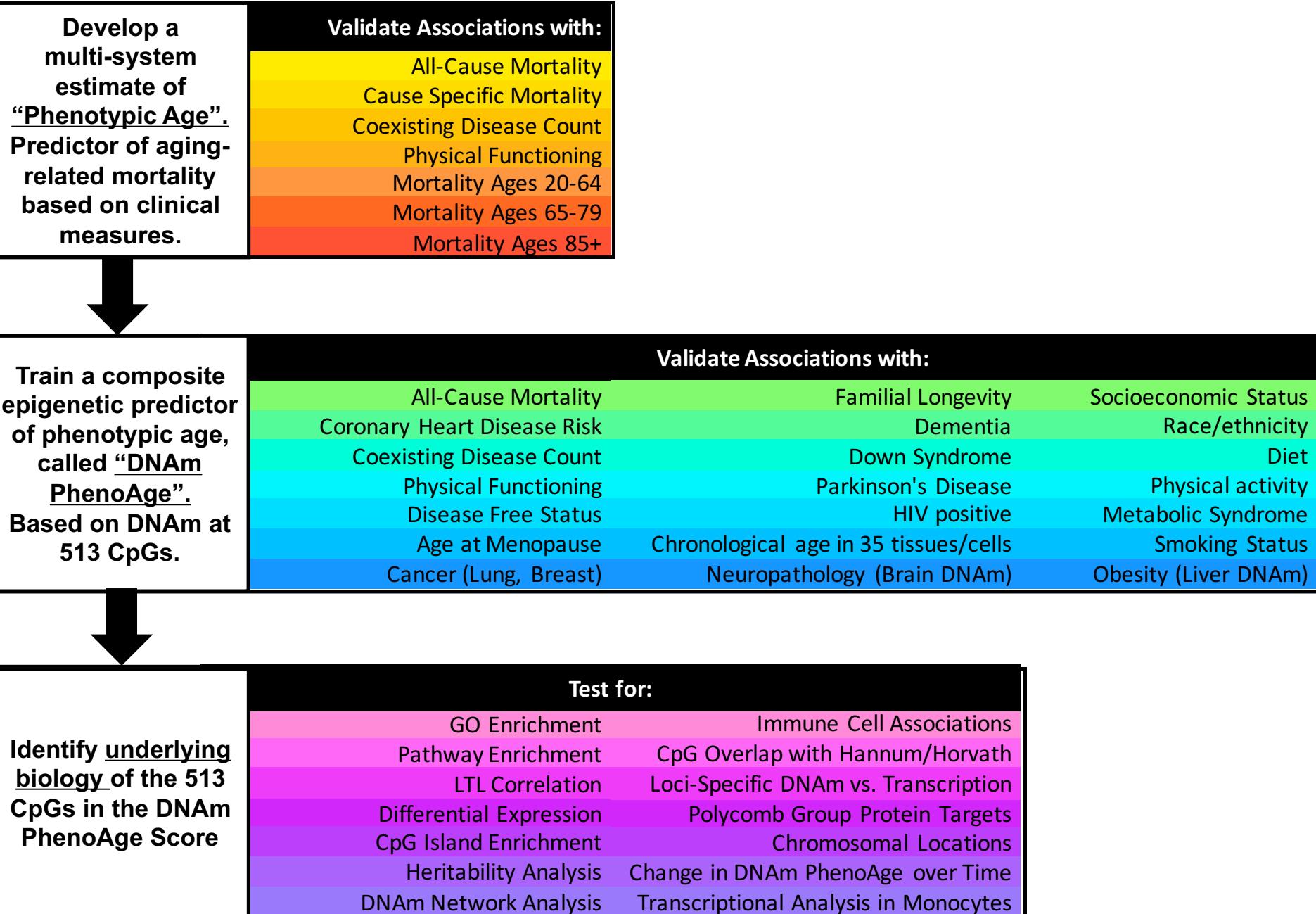
799 epigenetic biomarkers of aging by Hannum and Horvath, which exhibit less significant
800 associations with lifespan ($p=1.7E-21$ and $p=4.5E-5$, respectively). B & C: Using the WHI sample
801 1, we plotted Kaplan-Meier survival estimates using actual data from the fastest versus the slowest
802 agers (panel B). We also applied the equation from the proportional hazard model to predict
803 remaining life expectancy and plotted predicted survival assuming a chronological age of 50 and
804 a DNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (panel C). Median
805 life expectancy at age 50 was predicted to be approximately 81 years for the fastest agers, 83.5
806 years for average agers, and 86 years for the slowest agers.

807 **Fig. 3. Chronological age versus DNAm PhenoAge in a variety of tissues and cells**

808 Although DNAm PhenoAge was developed using methylation data from whole blood, it also
809 tracks chronological age in a wide variety of tissues and cells. A) The correlation across all
810 tissues/cells we examined is $r=0.71$. B-ZJ report results in different sources of DNA as indicated
811 in panel headings. The numbers correspond to the data sets from (Horvath 2013). Overall,
812 correlations range from $r=0.35$ (breast, panel O) to $r=0.92$ (temporal cortex in brain, panel L).

813 **Fig. 4. DNAm PhenoAge measured in dorsolateral prefrontal cortex relates to Alzheimer's
814 disease and related neuropathologies**

815 Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project
816 (MAP), we find a moderate/high correlation between chronological age and DNAm PhenoAge
817 (panl A), that is further increased after adjusting for the estimated proportion on neurons in each
818 sample (panel C). We also find that DNAm PhenoAge is significantly higher ($p=0.00046$) among
819 those with Alzheimer's disease versus controls (panel D), and that it positively correlates with
820 amyloid load ($p=0.012$, panel E), neuritic plaques ($p=0.0032$, panel F), diffuse plaques ($p=0.036$,
821 panel G), and neurofibrillary tangles ($p=0.0073$, panel H).



A

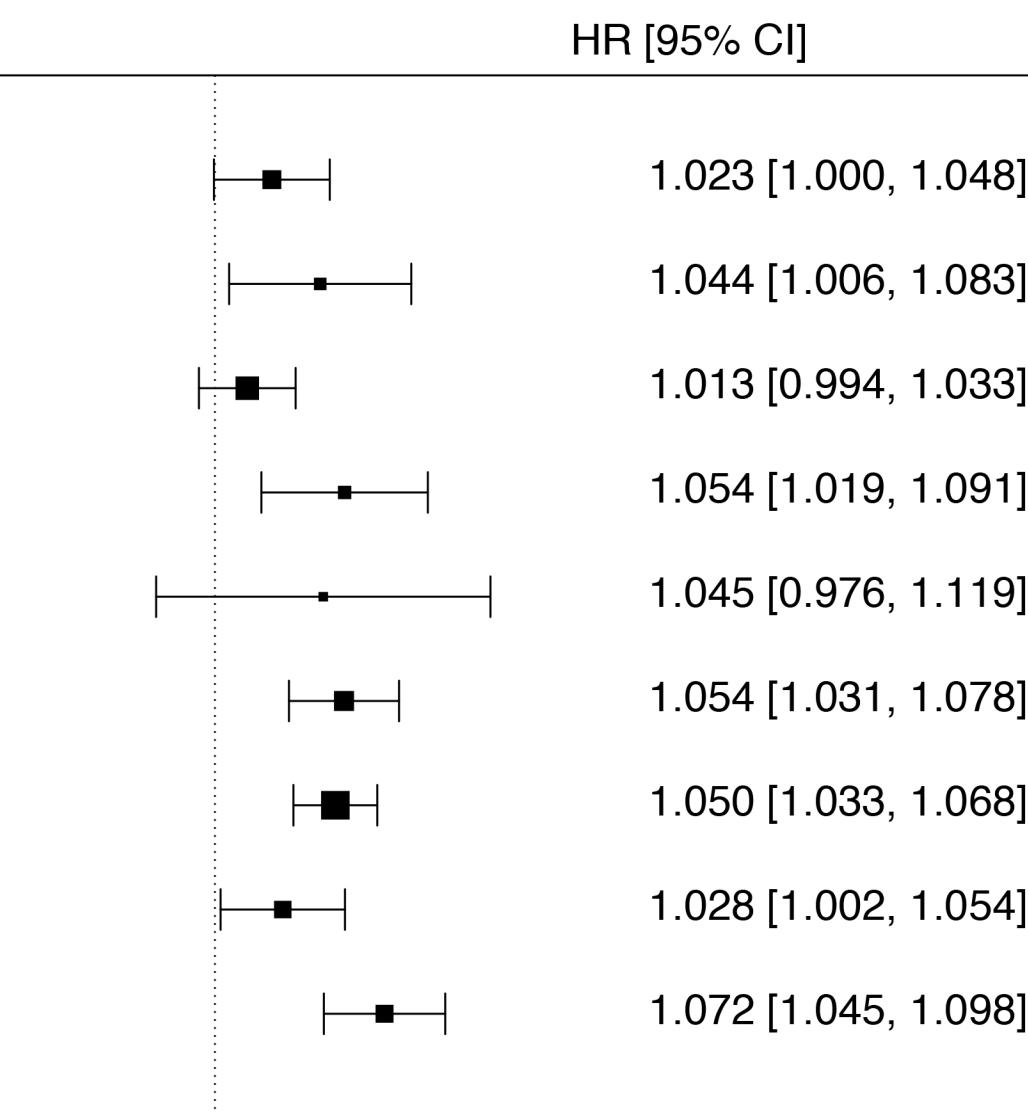
DNAm PhenoAgeAccel, Model 1

Meta P=7.9e-47, Heterog. P=0.038

COHORT	N	Deaths	HR [95% CI]
1 WHI BA23 Black	664	218	1.033 [1.016, 1.050]
1 WHI BA23 Hispanic	410	109	1.044 [1.014, 1.075]
1 WHI BA23 White	962	401	1.026 [1.010, 1.043]
2 WHI EMPC Black	558	141	1.049 [1.024, 1.075]
2 WHI EMPC Hispanic	318	47	1.078 [1.029, 1.129]
2 WHI EMPC White	1096	317	1.050 [1.033, 1.068]
3 FHS	2553	334	1.052 [1.040, 1.065]
4 NAS	657	226	1.031 [1.012, 1.050]
5 JHS	1747	281	1.062 [1.045, 1.080]

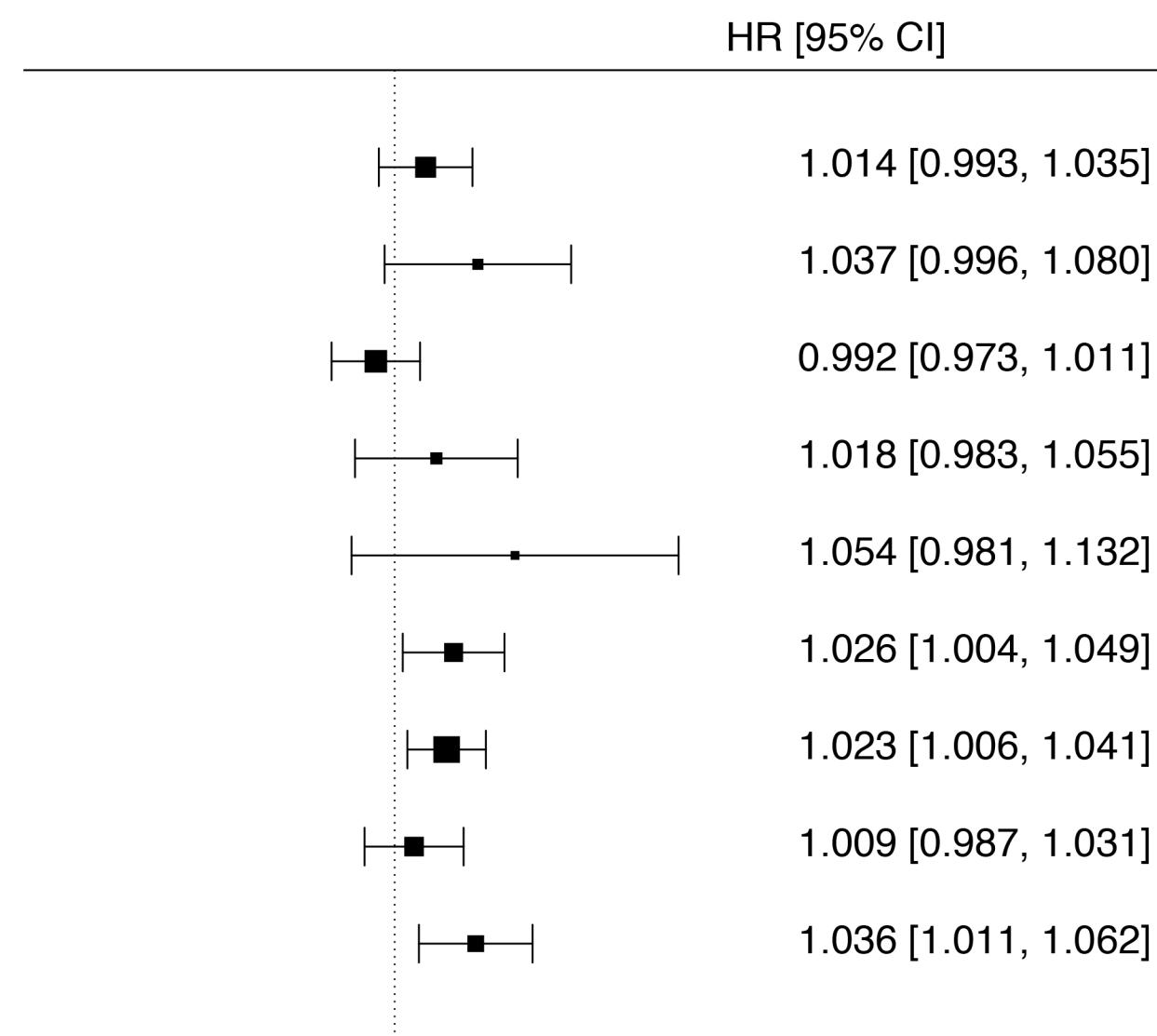
Hannum AgeAccel

Meta P=1.7e-21, Heterog. P=0.02



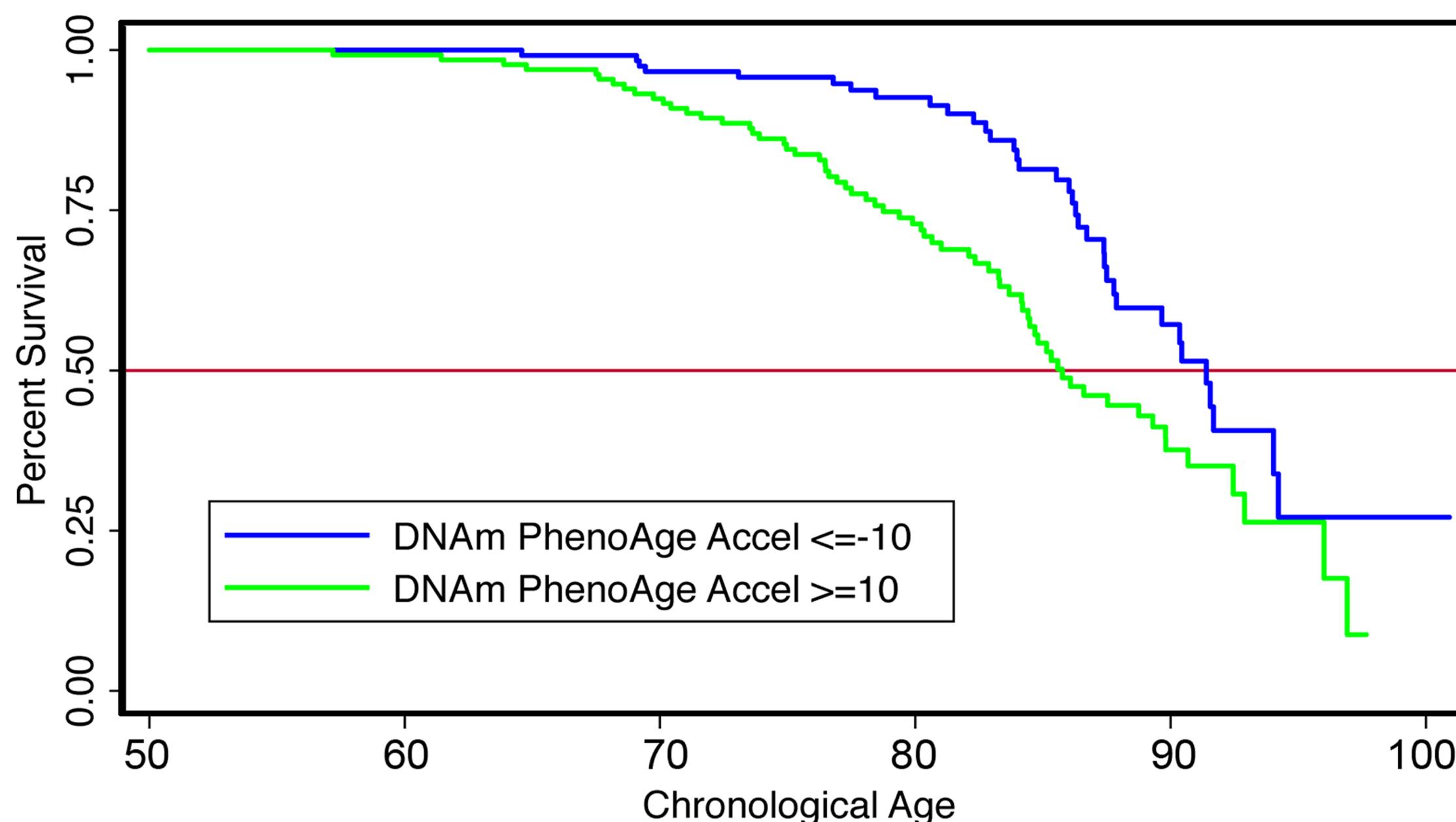
Horvath AgeAccel

Meta P=4.5e-05, Heterog. P=0.14



B

Kaplan-Meier Survival Estimates as a Function of DNAm PhenoAge



C

Predicted Survival at Age 50

