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Abstract

Sexual recombination only occurs in eukaryotes; however, many bacteria can actively recom-

bine with environmental DNA. This behavior, referred to as transformation, has been described in

many species from diverse taxonomic backgrounds. Transformation is hypothesized to carry some

selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accu-

mulation of loss-of-function alleles at transformation loci and an increasedmutational load from

recombining with DNA from dead cells create additional costs to transformation. These costs have

been shown to outweighmany of the benefits of recombination under a variety of likely parameters.

We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis,

as it relates to bacterial transformation. Here we describe amodel showing that host-pathogen

coevolutionmay provide a large selective benefit to transformation and allow transforming cells to

invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe

that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in

time, potentially explaining the tight regulation andwide variety of rates observed in naturally com-

petent bacteria. Host-pathogen dynamics may explain the evolution andmaintenance of natural

competence despite its associated costs.

Keywords: coevolution, recombination, red queen, phage, bacteria, Lotka-Volterra
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1 Introduction

Many bacterial species actively import DNA into their cells from the environment and incorporate

it in the their genomes. This process, which is roughly similar to sexual recombination, is known

as transformation and is foundational to modern molecular biology. However, the evolutionary

explanation for this important phenomenon remains unclear despite extensive study [1, 2]. It is well

known that transformation plays a key role in the evolution of species which undergo it, distributing

allelic variation throughout populations, disrupting linkage disequilibrium, and even introducing novel

genes to the species [3, 4, 5, 6]. These consequences of transformation carry a host of potential benefits

and risks, the balance of which may change across circumstances. The complexity in the evolutionary

effects of transformation has resulted in many unanswered or incompletely answered questions. For

example, what conditions may select for or against transformation? To what extent is the selective

pressure dependent on the rate of transformation? Which of these conditions are likely to be relevant

to the last competent ancestor? Which are relevant to the maintenance of the trait today?

The potential benefits of natural competence are threefold: incoming DNA can be degraded to provide

nucleotides for DNA replication [7], serve as a template for repairing a damaged genome [8], or provide

new allelic combinations that may increase fitness [1, 9].

The nutritional benefit of taking up and degrading DNA for its nucleotidemonomers is clearly apparent,

and some have suggested that transformationmay be a side effect of this behavior, even suggesting

that the nutritional effect alone could be sufficient to maintain competence [7]. This idea is supported

by the fact that starvation activates competence in B. subtilis [10], and the Sxy transcription factor, a

master regulator of competence in several gram negative species, is regulated by intracellular purine

levels [11]. However, the nutrition hypothesis falls short of explaining several mechanistic components

of the transformation system, including the conserved proteins DprA, SsbB, and DpnA, which act to

protect DNA imported through ComEC from degradation by intracellular nucleases [2]. It also fails

to explain why bacteria in DNA-rich environments, such as the respiratory pathogen S. pneumoniae,
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regulate both competence expression and DNA secretion via complex mechanisms such as quorum

sensing [12]. Additionally, other species, such as V. cholerae, have been shown to turn off genes

involved in DNA catabolism, such as extracellular nucleases, upon competence induction [13].

Another idea is that bacteria may take up foreign DNA to serve as a template for homologous repair of

double strand DNA breaks. The initial lines of evidence for this hypothesis were based on increased

survival of transforming types upon experimental challenge with DNA damaging agents [8] and the

observation of regulatory schemes consistent with the repair hypothesis in some species of competent

bacteria [14]. More recent research has led to the suggestion that competencemay serve as a sort of

replacement for the SOS response system in P. pneumoniae and L. pneumophila [15]. Nevertheless,

this explanation makes little sense when applied to other species such as B. subtilis, which contains an

intact SOS system, and S. thermophilus, in which competence is regulated in opposition to the SOS

system [2].

Much of the evidence used to argue for the nutrition and repair hypotheses relies on analysis of the

regulatory schemes by which competence is induced. However, research over the last 20 years has

demonstrated that the complex regulatorymechanismsgoverning the expressionof competence genes,

involving alternative 𝜎-factors, quorum sensing, andmultiple levels of specific and global transcription

factors are inconsistent with explanation by either of these hypotheses alone. Furthermore, both the

biochemical means of regulation and the environmental cues that induce transformation vary widely

and appear to have evolved independently among competent species [2, 13]. Given these findings,

the environmental cues and regulatory signals on a trait in a few species is not sufficient to broadly

infer the evolutionary history of that trait.

The controversy over the evolutionary story behind natural transformation in bacteria has continued

for over two decades now and seems little closer to being resolved. The large amount of new and

more diverse data has clarified the situation some, but much uncertainty remains. For amore in-depth

discussion of the evolution of natural competence, see [1], [2], and [13].
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Transformation by homologous gene recombination in bacteria is thought to provide some of the same

benefits as meiotic sex in eukaryotes, such as slowing the rate of accumulation of deleterious muta-

tions and combining beneficial alleles from different lineages [16, 17, 18]. However, transformation

has additional costs compared to meiotic sex. Cells asymmetrically lose competence by transforming

in loss-of-function alleles at loci necessary for competence in mixed populations [19]. Furthermore, al-

though there is evidence that some populations engage in autolysis and/or DNA secretion for purposes

of transformation [20], the pool of homologous free DNA is likely to be largely composed of DNA from

dead cells for most competent species, and therefore loaded with more deleterious mutations than

the living population (bad genes effect) [19, 21]. Despite these costs, laboratory evolution experiments

have suggested that transformationmay speed up population-level adaptation rates and provide a

selective advantage duemostly to population genetic consequences rather than nutrition or repair

[22].

Models of the evolution of recombination under mutation/selection dynamics are highly dependent

on opaque parameters, especially the distribution of fitness effects of newmutations [23, 24]; however,

computational models have shown that asymmetrical loss and the bad genes effect outweigh the

single population benefits of transformation (Hill-Robertson Effect and breakingMuller’s ratchet) under

a wide variety of likely conditions [19, 21].

Another proposed benefit of meiotic sex is increased adaptability in arms races between hosts and

pathogens or predators and prey (Red Queen hypothesis) [25]. It is well known that host-pathogen

coevolution is a major factor in the evolution of some bacteria-phage systems [26], and it has been

speculated to exert some selective pressures on the homologous recombination rate [1], but to our

knowledge this idea has not been rigorously investigated in either computational models or experi-

mental work. The large variations in selective pressures created by host-pathogen coevolution also

fit previous models of transformation evolution andmaintenance based on short, periodic bursts of

strong selection for transformers [27]. Given the widespread presence of homologous recombination

by transformation in bacteria, combined with the difficulty in describing a convincing advantage to
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the phenotype based on traditional mutation and selection evolution, we have hypothesized that

host-pathogen dynamics contribute to the evolution andmaintenance of natural competence for trans-

formation in bacteria.

To investigate this hypothesis, we have developed a series of computer models with which we can

analyze the consequences of transformation in a coevolving population across different environmental

and genetic conditions. Using these models, we demonstrate that large cyclic variations in population

size due to phage predation select for transformation, allowing a very small subset of transformers to in-

vade a large, established population of non-transformers. We also find evidence for negative frequency-

dependent selection on transformation, whichmay provide insight into competence-controllingmech-

anisms such as stochastic switching in B. subtilis [28] and coordinated competence in S. pneumoniae

[12].

2 Methods

2.1 Deterministic Model

We havemodeled bacterial growth in the presence of phages with a modified form of Lotka-Volterra

differential equations [29]. Our model incorporates onemarker locus and one transformation locus,

eachwith twoalleles. Themarker locusdetermines the susceptibility of thebacteria tophagepredation,

e.g. a cell-surface protein that the phage recognizes to bind and infect the bacterium. There are two

alleles at this locus, which we call ‘1’ and ‘2’. The transformation locus represents the genes needed for

DNA uptake and homologous recombination, and a cell may be either competent ‘𝑡’ or non-competent

‘𝑛’ at this locus. There are two phage types, each corresponding to one of the marker alleles in the

bacterial population. When a bacterium is lysed by a phage, it releases its alleles into the environment

individually. These free alleles can be taken up and incorporated, replacing their current allele, by

living bacteria if they are competent at the transformation locus.
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We keep track of 10 populations in the model: 4 bacterial types, 𝐵1𝑡, 𝐵2𝑡 (transforming), 𝐵1𝑛, 𝐵2𝑛

(non-transforming); 2 phage types, 𝑃1, 𝑃2; and 4 DNA types, 𝐷1, 𝐷2, 𝐷𝑡, 𝐷𝑛. These populations

change with time according to Equations 1, where 𝛼 is the rate of cell division, 𝛽 is the rate of phage

infection, 𝛾 is the rate of phage decay, 𝛿 is the phage fertility rate, 𝜌 is the transformation rate, 𝜁 is

the rate of free DNA decay, and 𝜅 is the bacterial carrying capacity of the environment. 𝑁 is the sum

bacterial population size. Parameters in this model were chosen in accordance with experimental

work analyzing bacteriophage coevolution [30].

𝑑𝐵1𝑡
𝑑𝑡

= 𝐵1𝑡 (𝛼 (1 − 𝑁
𝜅

) − 𝛽𝑃1) + 𝜌
𝐷1 + 𝐷2

(𝐵2𝑡𝐷1 − 𝐵1𝑡𝐷2) − 𝜌
𝐷𝑛 + 𝐷𝑡

𝐵1𝑡𝐷𝑛 (1a)

𝑑𝐵2𝑡
𝑑𝑡

= 𝐵2𝑡 (𝛼 (1 − 𝑁
𝜅

) − 𝛽𝑃2) − 𝜌
𝐷1 + 𝐷2

(𝐵2𝑡𝐷1 − 𝐵1𝑡𝐷2) − 𝜌
𝐷𝑛 + 𝐷𝑡

𝐵2𝑡𝐷𝑛 (1b)

𝑑𝐵1𝑛
𝑑𝑡

= 𝐵1𝑛 (𝛼 (1 − 𝑁
𝜅

) − 𝛽𝑃1) + 𝜌
𝐷𝑛 + 𝐷𝑡

𝐵1𝑡𝐷𝑛 (1c)

𝑑𝐵2𝑛
𝑑𝑡

= 𝐵2𝑛 (𝛼 (1 − 𝑁
𝜅

) − 𝛽𝑃2) + 𝜌
𝐷𝑛 + 𝐷𝑡

𝐵2𝑡𝐷𝑛 (1d)

𝑑𝑃1
𝑑𝑡

= 𝑃1 (𝛿 (𝐵1𝑡 + 𝐵1𝑛) − 𝛾) (1e)

𝑑𝑃2
𝑑𝑡

= 𝑃2 (𝛿 (𝐵2𝑡 + 𝐵2𝑛) − 𝛾) (1f)

𝑑𝐷1
𝑑𝑡

= 𝛽 (𝐵1𝑡 + 𝐵1𝑛) 𝑃1 − 𝜁𝐷1 − 𝜌
𝐷1 + 𝐷2

(𝐵1𝑡 + 𝐵2𝑡) 𝐷1 (1g)

𝑑𝐷2
𝑑𝑡

= 𝛽 (𝐵2𝑡 + 𝐵2𝑛) 𝑃2 − 𝜁𝐷2 − 𝜌
𝐷1 + 𝐷2

(𝐵1𝑛 + 𝐵2𝑡) 𝐷2 (1h)

𝑑𝐷𝑛
𝑑𝑡

= 𝛽 (𝐵1𝑛𝑃1 + 𝐵2𝑛𝑃2) − 𝜁𝐷𝑛 − 𝜌
𝐷𝑛 + 𝐷𝑡

(𝐵1𝑛 + 𝐵2𝑡) 𝐷𝑛 (1i)

𝑑𝐷𝑡
𝑑𝑡

= 𝛽 (𝐵1𝑡𝑃1 + 𝐵2𝑡𝑃2) − 𝜁𝐷𝑡 − 𝜌
𝐷𝑛 + 𝐷𝑡

(𝐵1𝑡 + 𝐵2𝑡) 𝐷𝑡 (1j)

Boom-bust cycles in Lotka-Volterra dynamics without transformation (𝜌 = 0) can be described by

enclosed curves in phase space by solving the system of equations for 𝑑𝑃
𝑑𝐵 for all values of 𝑡. Integrating

the log of this expression for each allele (allele 1 shown here, 𝑑𝑃1
𝑑𝐵1𝑛

), results in a conserved, constant

quantity, 𝑉.
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𝑉 = −𝛿𝐵1𝑛 + 𝛾 log(𝐵1𝑛) − 𝛽𝑃1 + 𝛼 log(𝑃1) (2)

𝑉 can be thought of as a measure of displacement of the population from equilibrium. It is maximized

at equilibrium, and as 𝑉 decreases, the magnitude of the fluctuations in population size increases.

Note that without transformation, 𝑉 remains constant over time. However, because transformers can

switch types and escape predation, when the transformation rate 𝜌 > 0, 𝑉 becomes a function of time.

We used 𝑉 to investigate what conditions make a population susceptible to transformer invasion. We

initialized simulations of displacement from equilibrium bymanipulating the initial 𝑉, then setting

𝐵1𝑛 and 𝐵2𝑛 at the minimum and maximum, respectively, on the curves described by each 𝑉. We

implemented this model in R [31] using the gsl [32] and deSolve [33] packages.

2.2 Stochastic Model

In the deterministic model, a population at equilibriumwill never leave it. However, in reality, stochas-

ticity would cause fluctuations in the population sizes, naturally creating boom and bust cycles. We

used the Gillespie algorithm to implement themodel in fully-stochastic time to determine if stochastic-

ity can induce the cyclic conditions that allow transformers to invade [34].

The stochastic model is derived from the differential equation model, but presented in an event-based

paradigm.
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Event Rate

Cell division 𝛼𝐵𝑥

Lysis and phage replication 𝛽𝐵𝑥𝑃𝑥

Transformation with new allele 𝜌
∑𝑛

𝑖 𝐷𝑖
𝐵𝑥𝐷𝑥

Phage decay 𝛾𝑃𝑥

Free DNA decay 𝜁𝐷𝑥

Immigration 𝜆

Phagemutation 𝜖

Unlike the deterministicmodel, populations here are susceptible to extictiondue todiscrete population

sizes. To protect against extinction, we incorporated slowmutation from one phage type to the other

and steady migration of all bacterial types into the model.

At a given point in the simulation, all rates are calculated based on the current state of the population,

and the time until the next event is drawn froman exponential distributionwith rate equal to the sumof

the rates of all events. At this time, the event that occurs is drawn based on its relative probability and

executed. This is repeated until termination criteria are fulfilled. Parameters in the stochastic model

were scaled down from the more biologically realistic parameters in the deterministic model to make

the model computationally tractable. We implemented this model in R [31] using the GillespieSSA [35]

package.

3 Results

3.1 Deterministic Model

Wehavemodeled a coevolving population of bacteria andphages to examine the selective pressures on

homologous recombination by transformation. Transforming bacteria are initially very rare, but invade
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and become dominant over time (Figures 1, 2). Invasion proceeds when the cycles between the two

infection alleles are opposed. When levels of𝐵1𝑡 and𝐵1𝑛 are high and about to crash, many of the𝐵1𝑡

transformto𝐵2𝑡, whichareat lownumbersbut about togrowasphage𝑃2 decayoutpaces reproduction

due to low numbers of hosts. This allows the proportional growth rate of 𝐵2𝑡, (𝛼𝐵2𝑡 + 𝜌𝐵1𝑡𝐷2), to

exceed that of 𝐵2𝑛, (𝛼𝐵2𝑛), during the growth phase.

To better visualize this difference, we have unpacked the components of the growth rate of 𝐵1𝑛 during

invasion inFigure3. Becauseofnew transformants coming fromtype𝐵2𝑡, the𝐵1𝑡 type stopsdecreasing

and begins growing earlier in the phage cycle and grows faster during that period of early growth.

This continues until type 𝐵2𝑡 is no longer abundant, resulting in a decrease in transformation and a

reversion of the 𝐵1𝑡 growth rate to approximating the base rate not including transformation. This

phenomenon repeats each cycle, with magnitude growing logarithmically each time, resulting in the

invasion pattern seen in Figure 1b.

This effect, compounded over several cycles, allows the transformers to invade. However, when the

transformers are the dominant type in the population, this phage escape feeds back into the phage

population growth and death rate, smoothing the boom/bust cycles. When these cycles become small,

the transformers are no longer able to overcome the asymmetrical loss of transformation alleles, and

non-transformers gradually re-invade (Figure 1).

The termwhich represents the difference in growth rate between a transformer, say 𝐵2𝑡, and the corre-

sponding non-transformer, 𝐵2𝑛, is 𝜌𝐵1𝑡𝐷2. This term, and therefore transformer invasion depends on

(1) the transformation rate, 𝜌, and (2) the population sizes of transformers of type 1 and free DNA of

type 2. Both of these last terms are directly affected by the magnitude of boom and bust cycles.

Transformers are only able to invade when population fluctuations due to host-pathogen dynamics

are sufficiently large. The maximum transformer frequency and length of invasion also depend on this

factor (Figure 2a). Since transformers invade by taking advantage of alternating selective pressures

due to phage boom and bust cycles, it is expected that themagnitude of these cycles would determine
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themagnitude of transformer advantage. The recombination rate also affects the speed of transformer

invasion (Figure 2b). Rapid recombination leads to quick invasion, but also makes the population

more susceptible to reinvasion due to faster loss of transformation alleles, while lower recombination

rates slow both invasion and reinvasion.

Under our model, the rate at which bacteria carrying the transformation allele invade is inversely

proportional to the magnitude of population fluctuations. The speed of invasion asymptotically

slows approaching a threshold value defining how far a non-recombining populationmust venture

from equilibrium to be susceptible to transformer invasion (Figure 4a). The length of invasion shows a

similar pattern of dependence on the recombination rate (Figure 4b). This equilibrium value depends

on the recombination rate of the transformers: increasing recombination by transformation pushes

the threshold closer to equilibrium.

3.2 Stochastic Model

We initialized simulations containing only non-transformers at equilibrium and let them burn-in for

100 generations. Two transformers of each type (𝐵1𝑡 and𝐵2𝑡) were added to the simulation. The trans-

formers became the dominant group in the population, defined as 𝐵1𝑡 > 𝐵1𝑛 and 𝐵2𝑡 > 𝐵2𝑛, with

a frequency dependent on the recombination rate. Probability of invasion increases with increasing

recombination rate until approximately 3 × 10−2, where probability of invasion is maximized (≈ 4-fold

greater than non-transformers). At rates higher than this, the probability of invasion sharply decreases.

It is important to note the magnitude of the optimal transformation rate in this model may not corre-

spond to that in nature due to the parameters used; however, the pattern of the distribution should

hold. The transformation rate estimates from the deterministic model where experimentally validated

parameters were used are more likely to be close to reality.

Unlike the deterministic model, the length of invasion is maximized at the same recombination rate

as the frequency or time to invasion. This may be explained by the fact that stochasticity prevents
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the transformers from reducing the boom/bust cycles through escape to the same extent as in the

deterministic model.

Thismodel demonstrates that stochastic effects can naturally create conditions that allow transformers

to invade, even when the simulation is initialized at a non-transformer dominant equilibrium (Figure

5). In fact, the stochastic simulations cycle through the dynamics observed in the deterministic model:

the dominant type in the population alternates between transformers and non-transformers.

4 Discussion

Our results indicate that host-pathogen dynamics provide a selective advantage to transforming

bacteria which largely depends on two factors: the rate of transformation, and the size of population

fluctuations. The population fluctuations are determined by the growth rate of the bacteria, the

infection rate, the burst size, and the phage decay rate. We estimate that under biologically likely

parameters, invasion occurs most frequently at a recombination rate on the order of 3 × 10−3. To

explain these results, we conceptualize the following model.

In large boom-bust cycles, the crash of one population due to predation opens up a new niche with

plentiful resources for a population immune to the previous phage infection. Transformers maintain

extra genetic variation in the form of the free DNA pool, which is not subject to selection due to phage

predation. These alleles can be reintroduced into the population quickly, allowing the transforming

types to have a significant advantage in colonizing the new space. Due to transformation from the type

under phage attack, transformers are able to both begin colonizing the new space earlier, and grow

faster during the early colonization phase. In the short term, this advantage is paramount, allowing

transformers to invade and dominate. In the long run, however, as smaller cyclic variation reduces the

transforming advantage, non-transformers re-invade. This is mediated by transformers incorporating

free DNA disrupting or eliminating its ability to transform by homologous recombination, while a
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non-transformer never gains the genes necessary for homologous recombination by transformation

[19]. As a result, the allele frequency of functional transformation alleles will gradually decrease in

the absence of compensatory selective pressures. For a transformation phenotype to persist, those

selective pressures must be sufficiently strong to overcome this effect. Alternatively, since bacteria are

under attack by phages, transductionmay also play a role in preserving transformation alleles. This

can be explored in future work.

Under stochastic variation, cycles will be randomly aligned and misaligned in time. Therefore the

selection coefficient of the transformation allele will switch signs frequently and be sharply dependent

on the rate of recombination. Theoretical work has predicted that episodic selective sweeps have

led to the evolution of competence for transformation [27], and we hypothesize that host-pathogen

coevolution provides these sweeps. Indeed, experimental populations of bacteria coevolving with

phages have shown these kinds of fluctuating conditions [26, 36].

It is important to note that this model is valid not only for phage predation, but also for predation by

larger organisms such as eukaryotic protists or immune cells. Here, we have chosen to base our model

on phages, as they are a relatively universal selective problem for bacteria. However, transformation

is somewhat common among pathogenic bacteria, e.g. S. pneumonia, N. gonorrhoeae, H. pylori, etc.

For these species, immune escapemay be amore critical selective force. Our model is applicable to

those situations as well given the partial symmetry in the Lotka-Volterra model [29, 37]. It would be a

judicious test of our model to experimentally set parameters to the environment of a variety of species,

and determine if the model accurately predicts their different recombination rates.

We have shown that host-pathogen dynamics can provide a mechanism for transformation alleles to

becomeprevalent in a population. However, the strong episodes of selectionwhich underlie thatmech-

anism are interspersed between relatively longer periods in which transformation is maladaptive. The

persistence of the trait may be reconciled with this selective regime by considering a meta-population,

spatially explicit model of evolution.
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New research is suggesting that the evolution of many bacterial traits, including natural competence

for transformation is best thought of in spatially explicit terms [38]. A complex spatial structure may

result in a situation in which any given population in a given space has only infrequent conditions

selecting for transformation, such as those encountered in colonization of new territory after localized

extinction or near-extinction, but transformers can always find their niche somewhere, even if it is

frequently in motion. Complex regulatory schemes like those observed in nearly all competent species

[2], may further help transforming bacteria navigate this evolutionary landscape. New experimental

approaches using spatially controlled bacterial populations may further validate this exciting idea.
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Figure 1: Simulation dynamics in the deterministicmodel shownat normal (a), and
log (b) scale. Initial transformer frequency =10−6,𝛼 = 1,𝛽 = 1×10−7,𝛾 = 0.25,
𝛿 = 2 × 10−7, 𝜁 = 0.1, 𝜅 = 1013, (a): 𝜌 = 5 × 10−4, (b): 𝜌 = 5 × 10−3.
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Figure 2: Transformers invade a population of non-transformers under Lotka-
Volterra dynamics dependent on recombination rate and amplitude of predation
cycles. (a): Transformers invade faster, to a higher maximum frequency, and persist
longer when predation cycles are large. Invasion is abolished when cycles are
sufficiently small. Initial transformer frequency = 10−6, 𝛼 = 1, 𝛽 = 1 × 10−7,
𝛾 = 0.25, 𝛿 = 2 × 10−7, 𝜌 = 5 × 10−4, 𝜁 = 0.1, 𝜅 = 1013. (b): Transformer
invasion occurs faster but is less stable with increasing recombination rate. Same
simulation parameters as (a), Δ𝑉 = 1.0.
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Figure 3: Growth rate components of transforming bacterial type 𝐵1𝑡 during inva-
sion. The solid black line represents the total growth rate; dashed lines are the three
main components of equation 1a. The red dashed line represents logistic growth
and phage predation, the green dashed line is type switching between types 𝐵1𝑡
and 𝐵2𝑡 by transformation, and the blue dashed line is type switching from 𝐵1𝑡 to
𝐵1𝑛 by transformation.
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Figure 4: (a): Invasion speed decreases with predation cycle size, asymptotically
approaching a threshold size, below which transformers cannot invade. The thresh-
old size depends on the recombination rate. The invasion threshold is minimized at
a recombination rate ≈ 3 × 10−3. (b): After invasion, transformers decline due to
asymmetrical loss of transformation alleles with a rate proportional to recombina-
tion. Parameters are the same as in Figure 2.
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Figure 5: Transformers invade populations starting at equilibriumdue to stochastic
effects. (a): Frequency of transformer invasion after burn-in. The red line represents
invaders with no recombination. Each data point represents 105 independent
simulations. (b): Duration of invasions in the simulations in (a). 𝛼 = 0.5, 𝛽 =
0.005, 𝛾 = 0.5, 𝛿 = 0.01, 𝜌 = 0, 𝜁 = 0.3, 𝜅 = 104, 𝜆 = 0.05, 𝜖 = 0.02)
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