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Abstract

Whole exome sequencing (WES) has become the preferred diagnostic platform for complex
pediatric disorders with suspected monogenic etiologies, solving up to 30%-40% of cases for
some indications. Despite rapid advancements in WES analysis, the major challenge still resides
in identifying the casual variants among the thousands of variants detected by WES, and thus
establishing a molecular diagnosis. In order to improve the exome diagnostic efficiency, we
developed Phenoxome, a robust phenotype-driven model that adopts a network-based
approach to facilitate automated variant prioritization and classification. Phenoxome dissects
the phenotypic exhibition of a patient in conjunction with their genomic profile to filter and
then prioritize putative pathogenic variants. Our approach identifies the causative variants
within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of 105 positive patient
samples (i.e. at least one reported ‘pathogenic’ variant) respectively, who undergone medical
exome testing at The Children’s Hospital of Philadelphia. Our method outperformed state-of-art
methods by yielding superior ranks of the pathogenic variants, and significantly automating the
exome diagnostic process. The web application of Phenoxome is available to the public at
http://phenoxome.chop.edu/

Introduction

Mendelian diseases are considered rare, yet an approximately 8% individuals worldwide are
identified as having a genetic disorder before reaching adulthood®. Next generation sequencing
(NGS) has rapidly changed the landscape of clinical genetics by enabling the researchers and
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physicians to make novel gene-disease associations’ and precise molecular diagnoses™*.
However, NGS-based clinical diagnostics remains challenging with only about 30% of patients
receive a definitive diagnosiss. The diagnostic quest in a clinical exome test is complicated by
the sheer volume of mutations detected and the presentation of overlapping phenotypic
characteristics in affected individuals®.

A carefully designed analysis paradigm is essential for high quality interpretation of a clinical
exome test’. Clinical correlation, which includes analysis of the patient's phenotype and
genotype in conjunction, is central to the overall clinical interpretation®. During this step,
putative causative genes and variants contributing to the disease are identified. Nonetheless,
clinical correlation is often time consuming and requires extensive expertise in medical genetics
and genomics®'®. To perform clinical interpretation at scale and keep up with the latest
discoveries that would require re-analysis, it is critical to engage computational algorithms to
automate this procedure.

Using prior biological and clinical knowledge, such as previously known disease genes and
pathogenic mutations, together with phenotype information may assist in gene-disease clinical
correlation™. A number of databases’”™ that curate gene-disease associations have been
developed, along with several computational variant annotation tools™ ™. Specifically,
phenotypic information has been recognized to have greatly enhanced the diagnostic power,
prompting numerous phenotype-driven approaches that often employ machine learning
methods, including eXtasy'®, Phenomizer®, PHIVE'®, Phevor?®, PhenIX*!, Phen-Gen?, SimReg*
and Phenolyzer®. Most of these tools use the vocabulary from the Human Phenotype
Ontology® to describe a patient's phenotypic abnormalities.

These tools have clearly demonstrated the utility of using phenotype data to improve disease
gene identification. Most of these approaches are validated on large number of simulated
scenarios and/or limited numbers of clinical samples. However, these purely computational
approaches have been shown less effective on clinical cases compared to clinician-aid
strategies’®. Additionally, none of these tools have been validated on a large-scale clinical
sequencing cohort.

Here, we present a computational framework, Phenoxome, to filter and then prioritize
candidate variants using population frequency, deleteriousness and clinical relevance of the
affected gene (Figure 1). Phenoxome uses two inputs, (i) a variant call format (VCF) file
representing the genotype of the affected individual, and (ii) a set of symptoms described using
Human Phenotype Ontology (HPO) terms. Our approach first filters the variants according to
rarity, predicted protein effects and other prior knowledge. Following this, Phenoxome
generates a personalized gene panel (PGP) according to the phenotype manifestation, and each
gene in the PGP is scored based on its involvement in these phenotypes. Finally, each variant is
prioritized based upon a composite score combining the knowledge inferred from both variant
level and gene level. In this work, we first evaluate the performance of our method on
comprehensive computational simulations of different scenarios. We then demonstrate the
effectiveness of Phenoxome using 105 positive clinical exomes at The Children's Hospital of
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Philadelphia (CHOP). Our approach outperforms state-of-art methods by yielding more robust
and superior rankings of the causative variants on the clinical samples.

Material and Methods
Variant Annotation and Filtration

Our approach first annotates variants using SnpEff package v4.2% with UCSC RefSeq/refGene
database”. In addition, the variants are also annotated with a public version of the Human
Gene Mutation Database (HGMD) database, obtained through Ensembl annotation system28
and minor allele frequencies from the Genome Aggregation Database (gnomAD) v2.0%.

Next, similar to the clinical exome protocol implemented at CHOP?°, Phenoxome retains a
variant if it meets one of the following criteria:
e AF < 1% in gnomAD and classified as disease mutation (DM or DM?) in HGMD
e AF<0.2% in all sub-populations in gnomAD and predicted to alter protein or splice sites
(i.e splice acceptor/donor, stop retained/gained, start/stop loss, inframe
deletion/insertion, frameshift and missense variants)
Detailed variant filtering schemes are demonstrated in Figure 2.

Variant Prioritization Strategy

In Phenoxome, each of the post-filtration variants receives a comprehensive score reflecting its
likelihood of being pathogenic to the affected individual, and hence a global ranking of the
variants is achieved based upon the scores. Similar to other approaches’”?, the composite
score of each variant is contributed by deleterious score and phenotypic relevance score,
derived from variant level and gene level respectively. A variant level score usually indicates the
deleteriousness of the variant, inferred by characteristics such as rarity, evolutionary
conservation and predicted functional impact®™*>. In general, a gene level score reflects the
assessment of the affected gene's functional involvement in the observed phenotypes. Unlike
other approaches that calculate the composite score by averaging the variant score and the
gene relevance score'>?", our approach assigns greater weight to the phenotypic component
while generating the overall score of a variant. This empirical implementation was derived from
the clinical observation that most of the rare variants with disruptive protein effects were
harbored by genes that shared little or no overlap to the phenotype manifestation of the
affected individual.

Deleterious Score

Each of the post-filtration variants are evaluated and assigned a deleterious score based upon
its HGMD label and predicted functional impact. Inspired by clinical protocols classifying
variants into different categories®>**, we implement a tier system to triage the variants into
three different bins. A variant is deemed the most damaging if it is in HGMD with a DM/DM?
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class. The damage level is deemed high if the functional impact of a non-HGMD variant is any of
the following: splice site aberration, frameshift, stop gain, start loss or stop loss. The rest of the
variants are deemed medium damaging with predicted effects including missense, inframe
deletion or inframe insertion. Variants in each of the bins receive a different deleterious score
of 1.0, 0.8 and 0.6 respectively (see Figure 2).

Phenotypic Relevance Score

Variants are also assessed on the gene level through the utility of HPO. HPO is a computational
representation of a wide collection of phenotype abnormalities in human. Each of the
phenotypes in the vocabulary is annotated with genes implicated with the clinical symptomes,
curated from resources including OMIM™ and Orphanet™. Because of its strictly controlled and
standardized vocabulary, hierarchical structure and well-defined phenotype-gene relationships,
HPO has become an ideal resource for clinical phenotyping®®.

The phenotypic terms in HPO are organized in a directed acyclic graph where they are
associated by "is a" relationships. An "is a" relationship indicates that one phenotype is a
subclass of another phenotype that is a more generic parent term®’. For instance, Abnormality
of the atrial septum "is an" Abnormality of the cardiac setpa which "is an" Abnormal heart
morphology. The design of Phenoxome takes the advantage of the hierarchical structure of HPO
and compiles a Personalized Gene Panel (PGP) for each patient, where each gene of the PGP is
potentially associated with the input phenotypes. Our approach starts from each of the
provided phenotypes, it then traverses down the ontology tree to retrieve all of its direct and
indirect subclass nodes/phenotypes until a terminal branch is encountered. The nature of "is a"
associations guarantees that all of the children nodes are essentially subclasses of the primary
phenotypes by the definition of the hierarchy. In addition, in order to account for imprecision in
selecting the primary phenotypes in clinical scenarios, the algorithm also visits the immediate
parent nodes of the input phenotypes. The original terms describing the phenotypes of the
patient are considered primary, while the terms retrieved during the extending process are
termed secondary. The algorithm to generate secondary phenotypes is demonstrated in Figure
3. Following this, PGP is compiled to collect all of the genes associated with any of the primary
or secondary phenotypes. These genes are reported to have caused corresponding symptoms
and therefore are potentially relevant to explain the patient's phenotypes.

Once Phenoxome identifies the primary and secondary terms, a sub-graph of HPO tree
containing all of the nodes and their parent-child relationships is also generated (see Fig 3), we
then employ a network-based stochastic approach, PageRank with Priors®®*’, to prioritize each
phenotype in the sub-graph. The algorithm evaluates the significance of each node of a graph
with a clear-defined transition matrix by imitating a random walker surfing the graph. Starting
from a root node, the surfer selects an outgoing edge from the current node randomly to jump
to the next node in each iteration. The algorithm converges when the significance scores of the
nodes become steady. In a directed acyclic graph, this process is similar to the ontology
propagation described by Singleton et a*®. However, with a set of priors (root set), the random
surfer opts to jump back to any of the node in the root set regardless of its current location
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with a predefined probability in each iteration. The iterative stationary probability equation of a
node n is given by

n(m)*t = (1 - B) Zno"" P p(iwyrt (W) + Bpy, (Equation 1)
where S is the back probability. The first component of the equation summarizes the likelihood
of arriving at this node from all of its neighboring nodes while the second component indicates
transporting back to the root set. In Equation 1, p,is a 0/1 prior vector where 1 indicates the
node is in the root set and O indicates otherwise. The stationary distribution after the
convergence of the algorithm represents the probability of the random surfer landing on each
node at any given moment.

In order to implement the algorithm in the context of the sub-graph of the HPO tree, we set the
primary HPO terms as the priors and the back probability § to be 0.5 as it was suggested to
yield optimal performance by previous studies*’, meaning there is a 50% chance of the random
surfer returning to the primary terms in each step. It is intuitive to see several benefits with this
implementation to prioritize the phenotypes for the clinical utility. The primary phenotypes are
ranked high because of the back probability; the secondary phenotypes that are close to the
primary phenotypes are ranked high because they are easily accessible from the root set; and
the secondary phenotypes with more “is a” relationships are ranked high because they are
more likely to be visited during the random walk. Each gene in PGP may be associated with
multiple primary and secondary phenotypes, thus a variant receives a phenotypic score that is
the sum of the phenotypes’ scores the harboring gene is associated with. In this way, variants
harbored by genes associated with more significant phenotypes are ranked higher.

Integrated Variant Pathogenic Score

As discussed earlier, an overall score is assigned to each of the candidate variants. The first
component is the phenotypic score and the second is the deleterious score. Weight factor a is
employed to combines the two components together in the final significance score:

s(v,a) = a * pheno_score(v) + (1 — a) * deleterious_score(v) (Equation 2)

where « is intuitively set to 0.8 to ensure the global implementation is phenotype-driven. Thus,
a prioritization of the variants is achieved based upon the final scores.

Clinical Sample Cohort

Acquiring large scale clinical cohorts for differential clinical diagnostics studies is challenging for
a number of reasons. Thus, limited access to these resources has forced most of the
abovementioned computational tools to perform their validation largely or solely on in silico
patient profiles. We collected a large cohort of clinical patients (n=105) where each individual
patient received a positive molecular diagnosis from whole exome sequencing (WES) analysis.
Eighty-five positive samples were from patients diagnosed by the clinical exome test at the
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Division of Genomic Diagnostics (DGD) at CHOP between 2014 and 2017. Twenty positive
exomes were collected through the CHOP Pediatric Sequencing (PediSeq) project, which was a
part of Clinical Sequencing Exploratory Research (CSER) consortium. For this study, we define
positive cases as having at least one pathogenic variant in the final clinical lab report. These
pathogenic variants were thoroughly evaluated and classified as disease causing with concrete
supporting evidence that was previously established such as published articles and clinical
reports. They were confirmed by an orthogonal technology (Sanger Sequencing) before
reported. All of these positive cases had gone through comprehensive manual clinical
correlation performed by experienced clinical geneticists during variant interpretation and the
findings were confirmed by clinical laboratory directors.

The phenotypic features of these patients were carefully discussed and documented by
physicians upon clinical chart reviews, and the corresponding terms in HPO were selected to
best represent the symptoms. A total of 422 unique HPO terms were used to describe the
phenotypes of all individuals in the cohort. The numbers of HPO terms per case range from 1 to
23, with an average of 6 terms. Out of the 422 phenotypes, 306 terms (73%) were unique to
only one individual respectively, while another 62 terms (15%) were shared by two individuals.
This collection of phenotypes represents a wide range of developmental abnormalities. The
most frequently used 15 terms are shown in Figure 4. It should be noted that the phenotypes
with the most term frequencies are more generic than those with the least term frequency. For
instance, Global developmental delay was used to describe 43 patients in the cohort and the
term was annotated with 1063 genes, Short stature was observed in 19 patients and the term
was annotated with 832 genes. It was similar for terms such as Failure to thrive (16 patients,
577 genes), Microcephaly (14 patients, 678 genes) and etc. On the contrary, terms that were
unique to one or two patients were likely to be more specific, such as Prominent fingertip pads
(1 patient, 8 genes), Vocal cord paralysis (1 patient, 11 genes) and Metatarsus adductus (2
patients, 30 genes). It is evident that these medical cases present an unparalleled opportunity
to evaluate the performance of the computational tools in real clinical samples as opposed to
utilizing simulated data, for they offer a wealth of heterogeneity and complexity in
constitutional genetic disorders with a focus in pediatrics.

Sequencing and bioinformatics pipeline

For each of the clinical WES samples from the DGD, Agilent SureSelect Clinical Research Exome
(CRE) V1 capture was used as the exome capture platform. FASTQ data generated by
MiSeq/HiSeq was aligned to the hgl9/Grch37 reference genome using Novoalign from
Novocraft (Selangor, Malaysia). Read alighment and variant calling were performed with an in-
house bioinformatics pipeline that incorporated Novoalign for read alignment, Picard (Broad
Institute, Cambridge, MA) for marking duplicates, the Genome Analysis Toolkit (Broad Institute,
Cambridge, MA) for variant calling (reference sequence: hgl9/Grch37 build) and variant read
depth filtering (=5X). Variant call sets were generated in the format VCF 4.1/4.2. Variant
annotation and initial variant filtration were then performed. This filtration restricted the data
to variants in the Human Genome Mutation Database (HGMD) and/or rare variants with a
coding effect such as missense, stop loss, stop gain, start loss, indels, frameshifts, and variants
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within the consensus splice site (+/- 6 bases in intron) among all genes. To eliminate lab-specific
sequencing artifacts we used an internal cohort compiled from 665 unaffected and unrelated
clinical exome sequencing samples in the laboratory of DGD. Patient’s variants present at a
high frequency (1.0% or > 6 individuals) in this cohort were removed. All 85 DGD clinical exome
samples were filtered against this internal cohort. The VCF files of final products of these exome
samples were generated as the input to Phenoxome.

For PediSeq samples, exome capture was performed using SureSelect V6 kit (51MB target size).
Exome sequencing was done at 100X depth of coverage on HiSeq 200 sequencers. Same
bioinformatics processing as DGD was performed on these samples and the variant call sets
were filtered to remove common variants using the Exome Aggregation Consortium (ExAC)29
database (>0.5% MAF) and the "internal cohort (>5% MAF)" to remove high frequency technical
artifacts. The internal cohort consisted of data from 269 samples from various PediSeq cohorts.

Results
Ranking Candidate Genes Using Synthetic Patient Profiles

Since the phenotypic scores of candidate variants are imperative to the overall prioritization
and due to the general lack of clinical data, we first assessed the performance of the candidate
gene ranking through in silico patients®*>**. We focused on 33 monogenic diseases with known
causative genes and used a similar strategy as provided by Masino et al*.

Each of these diseases is well characterized with sufficient phenotypic features and penetrance
information as described using HPO terms. We produced synthetic patient profiles by selecting
disease HPO terms for the patient, with the probability of being affected determined by the
penetrance data. For instance, to generate a synthetic patient profile with a disease of
phenotypes A that is observed in 70% of the patients of this disease, a random value between 0
and 1 was generated by a random number generator of uniform distribution. If the number was
equal to or less than 0.7, then phenotype A was assigned to the profile. Phenotype A was not
added to the synthetic profile otherwise. Same procedure was carried out on other phenotypes
associated with this disease. This process was repeated to generated 1,000 synthetic profiles of
each disease. This scenario was denoted as the "optimal" clinical scenario where the patient
phenotype is well recognized.

However, it is common that patients may exhibit symptoms that are not directly related to the
medical problem. In addition, clinician or medical specialists may fail to choose the most
accurate terms to describe the phenotype manifestation or the clinical anomaly is not properly
defined in HPO vocabulary, so a more generic phenotype is used. These two typical scenarios
contribute to a large number of cases in clinical practice and are denoted as "noisy" and
"imprecise" respectively. In order to imitate the "noisy" scenario, randomly selected HPO terms
were added to the "optimal" profile as noise. The number of noise terms was determined to be
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half of the number of "optimal” terms in the synthetic patient. To investigate the impact of the
"imprecise" terms, each of the "optimal" terms of a patient was replaced by a parent term of
the original HPO term . These procedures were repeated 1,000 times so that 1,000 in silico
patient profiles for "noisy" and "imprecise" scenarios were generated respectively, resulting a
total of 99,000 simulated profiles for the study.

We carried out candidate gene prioritization approach of Phenoxome on all simulated patient
profiles of the three scenarios. For each synthetic patient, our algorithm first generated the PGP
from the phenotypes and then prioritized the genes in PGP using the phenotypic relevance
scores presented in Methods. In all 99,000 simulated cases, the causative genes were
constantly captured by the PGP across the 33 diseases of the above scenarios. In the "optimal"
scenario, the causative gene was ranked first for 98.5% of the cases. This was not surprising
since the causative disease gene was associated with at least one phenotype of greater than 50%
penetrance in 32 diseases except for Holt-oram syndrome. For this disorder, which is caused by
mutations in the TBX5 gene, the most common phenotypes were Defect in the atrial septum
and Hypoplasia of the radius, with 41.46% and 37.8% penetrance respectively (Supplement file).
Introducing the "noise" terms did not have any substantial impact on the rankings. In the “noisy”
scenario, the causative gene was ranked first for 94.4% of the cases. Consistent with previous
studies, a deteriorated performance of Phenoxome in the "imprecise" scenarios was observed
where the causative gene was ranked first in only 3.7% of the cases. However, the target gene
was ranked within top 10% of the PGPs in 89.8% of the cases. The overall summary of the
performance of Phenoxome in three scenarios is demonstrated in Figure 5. The respective AUC
(area under curve) values for the "optimal”, "noisy" and "imprecise" scenarios are 0.995, 0.991
and 0.952, which demonstrated a modest advantage compared to other network-based

methods®**.

Performance on Clinical Samples

We then used the clinical cohort (n=105) to validate Phenoxome performance. Paired VCF files
and HPO terms of each clinical sample were utilized as described in Methods. Phenoxome
generated a list of ranked variants independent from the original clinical evaluation. The
numbers of variants in the original input VCF files ranged from 37,150 to 258,968. Number of
variants was reduced to 431 - 2,995 after the effective variant filtration strategy implemented
by Phenoxome. The clinically reported pathogenic variants were consistently reported in the
final ranked lists and its rank was recorded for each of the patient. If more than one pathogenic
variant was reported, the best rank of these variants was used in the benchmarking for this
case.

The median rank of the pathogenic variants in the 105 patients was 5 with a standard deviation
of 23. Specifically, 92 (88%) pathogenic variants were ranked in top 25, 74 (71%) in top 10, 53
(51%) within top 5, while 17 pathogenic variants (16%) were ranked in the first place.

Causal genes harboring the pathogenic variants were captured in the PGP in 95 out of 105 cases
(associated with at least one primary or secondary phenotype). The median rank of the
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pathogenic variants was 4 among those 95 cases. Three primary and/or secondary phenotypes
were annotated to the causal gene on average among these cases. Causal genes were
associated with at least one primary phenotype in 78 out of 95 cases while they were
associated with only secondary phenotypes in the other 17 cases. No statistical differences
between the two groups were observed regarding the final ranks of the pathogenic variants.
For the 17 cases where the causal genes were associated with only secondary phenotypes, the
ranking of causative variants were in the range of 1 to 24 with an average of 6. It is perennial
that the causal gene was associated with a primary phenotype when it was also implicated in
secondary phenotypes inferred from other primary phenotypes. For instance, a missense
variant in SCN1A was reported as pathogenic for a patient from the cohort. SCNIA was not only
associated with one of the primary phenotypes (Global developmental delay) but also
annotated with Obtundation status and Seizures, which were secondary phenotypes inferred
from the primary phenotype Status epilepticus. Hence, SCN1A was compiled in the PGP and the
pathogenic variant was ranked in the first place by Phenoxome. In a more striking instance
where the patient was documented with phenotypes of Chronic mucocutaneous candidiasis,
Recurrent fungal infections, Recurrent candida infections and Impaired T cell function, the
pathogenic variant was identified in /LI2RB1 that was not directly annotated with any of the
primary phenotypes but was associated with Onychomycosis which was a sub-class of Recurrent
fungal infections. Thus, the causal gene was captured in the PGP and the missense pathogenic
variant was ranked in the second position for this patient. The performance of Phenoxome on
the clinical samples is summarized in Table 1.

Phenoxome heavily relies on the provided phenotypes and the gene-phenotype associations in
prioritizing the variants. Thus, using the most accurate and up to date phenotypes is essential
to achieving the optimal performance. On the other hand, as phenotypic features of patients
evolve over time, as well as new gene-phenotype associates are uncovered, re-analysis using
Phenoxome could yield new diagnosis.

In our clinical validation cohort, 10 pathogenic variants (marked in orange in Figure 6) were not
in PGP during the initial benchmarking. The pathogenic variants in these 10 cases were ranked
in the range of 5 to 140. With one exception where the pathogenic variant was ranked in top 5,
the rest of these variants were all scored below the median rank of the cohort, with an average
rank of 59. To investigate the ten cases, re-analysis was performed using the latest build of HPO
(build 1249, January 2018). Three out of the ten causative genes were identified to be
annotated with at least one pertinent phenotype in the re-analysis, resulting substantially
better ranks of the pathogenic variants (Table 2). This improvement was due to novel gene-
phenotype relationships curated by HPO that were absent in the HPO database version at the
time of the initial analysis. These findings highlight the clinical utility of re-analysis of exome
data to yield additional diagnosis in a systematic manner™. On the other hand, we discovered
that the most precise HPO terms were absent for the rest seven cases. For example, in a case
where the pathogenic variant was confirmed in CTSA, Decreased beta-galactosidase activity
was mentioned in the clinical chart review, but was not provided to Phenoxome as a primary
phenotype of the patient. With only two associated genes (CTSA and GLB1), this specific HPO
term could have guided Phenoxome to collect CTSA in the PGP. Instead, Abnormality of
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lysosomal metabolism was reported which was a more generic term, for it was more inclusive
as the patient manifested other symptoms related to lysosomal metabolism. However,
Abnormality of lysosomal metabolism resides in a separate trunk in the HPO tree compared to
Decreased beta-galactosidase activity and hence was never visited or retrieved by the
algorithm. Therefore, CTSA was not in the PGP and the overall rank of the pathogenic variant
was poor.

Comparison to Other Methods

Unlike phenoxome, most previously published computational approaches were primarily
assessed using simulated patient data (see Table 3). It was suggested that the performance of
such tools, including Phenoxome, could vary significantly when using actual clinical cases™**.
Therefore, we compared the performance of Phenoxome against other methods using our
clinical cohort. A recent comparative study examined the performance of a wide range of
phenotype-driven variant prioritization methods, including OMIM Explorer45, Phen-Gen, Phevor
and PhenlX, on 21 positive clinical exomes, and determined that PhenIX ** was the most
effective®. Thus, we benchmarked the performance of PhenlX on the exomes in our cohort and
compared the rank positions of the causative variants with Phenoxome.

We could not use the webserver for PhenlX to analyze the samples directly due to the clinical
nature of the data, so the samples were processed through a local implementation of PhenlX.
The latest version of the Exomiser (V8.0.0)*” was obtained through its ftp site and locally
installed on our server. To be consistent with the analysis on Phenoxome, same sets of paired
VCF files and HPO terms were analyzed in the template of the local installation, where the
variant prioritization method was set to PhenIX. A similar variant filtration strategy was
implemented in the template to ensure a fair comparison. Variants of MAF greater than 0.5%
that were annotated with functional impacts of intergenic, intronic, upstream/downstream
gene or synonymous mutation were removed. PhenlX used the template as its input parameter
to generate the ranking of the variants from the input VCF file specified.

As the result, the pathogenic variants were ranked in the range of 1 to 497 among 86 patients
in the cohort. PhenlX ranked the causative variants in the first place in 22 (21%) out of the 86
cases, showing a slight advantage over Phenoxome (17/105). However, PhenlX scored less
number of causative variants in top 5 (45, 43%), top 10 (50, 48%) and top 25 (57, 54%) than
Phenoxome respectively (Table 4). Moreover, PhenlX did not report the causative variants in
the final ranked list in 19 out of the 105 cases.

The statistical analysis on the overall rank positions of the pathogenic variants in the large
clinical cohort between the two approaches indicated the superiority of Phenoxome over
PhenIX (p = 0.0015; Mann-Whitney test). Collectively, Phenoxome outperformed PhenlX by
yielding more robust rank positions of the pathogenic variants (Figure 7). Although PhenlIX had
several more pathogenic variants ranked in the first place, Phenoxome placed more pathogenic
variants in top 5, top 10 and top 25 of this large cohort of genetic heterogeneity, and it did not
miss the pathogenic variant in any of the cases.
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Composite Score Weight Factor Revisit

The weight factor a of Equation 2 was used to combine phenotypic relevance score and the
variant deleteriousness score to generate an overall score for each variant, and was set to 0.8
empirically to calculate the scores and hence prioritize the variants. After benchmarking
Phenoxome's performance on 105 positive clinical exomes, we re-estimated a to achieve an
optimal result. In practice, the higher score of the pathogenic variant generated by Equation 2,
the better the rank in each case. Thus, optimizing the global ranking is correlated to maximizing
the final scores of all of the pathogenic variants:

argmax h(a,v) = ¥;s(a,v;) = X(av?™" + (1 — a)vfet) (Equation 3)

where s(a, x;) is Equation 2 for each case i in the cohort, v?*™° is the phenotypic relevance
score of the pathogenic variant, ¢! is the variant deleteriousness score and a € (0,1). Then,

@) _ g, (wPhene — pely (Equation 4)

Va
The gradient of Equation 4 suggests that h(a, v) is maximized when « is close to 1. In practice,
little gain was observed in the 95 clinical samples where the pathogenic genes were in the PGP
when a was set to 1. However, completely eliminating the variant deleterious score from
Equation 2 will substantially deteriorate the ranking performance of Phenoxome on those ten
pathogenic variants whose genes were not in PGP. Thus, to reduce overfitting the model with
our cohort, we decide to continue to use @ = 0.8 to balance the two components in Equation 2
for the consistency of the variants prioritization in Phenoxome.

Phenoxome Web Application

The method described in this paper have been implemented in a web-accessible system using
Java that runs on a Linux server utilizing an Apache Tomcat Server environment. Provided with
paired VCF file and a list of HPO terms describing the phenotypes of an affected individual,
Phenoxome performs the data analysis and then generates a report of ranked variants for
download. The database backend of Phenoxome is updated on a monthly basis, and the web
application is publicly available at http://phenoxome.chop.edu. To allow Phenoxome to run in a
reasonable time frame (~4 to 10 min) and with a limited memory, we limit the size of input VCF
file to be 10 MB.

Discussion

We have presented a computational framework that is optimized for identifying causative
variants utilizing genotype and phenotype information in a clinical setting. Through a series of
compelling benchmarking using in silico and large-scale clinical data, Phenoxome has
demonstrated high clinical utility in identifying the causative variants in a wide range of
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scenarios. Further, our approach outperformed leading algorithms in the large cohort of
heterogeneous clinical exome samples, by ranking most pathogenic variants in top 25 and in
over 70% of the cases in top 10.

Phenoxome’s advantage over PhenlX is exhibited through the capability to consistently retain
the causative variants during the filtration process and yield better rank positions overall.
Specifically, we believe that our model outperforms the semantic similarity-based PhenIX in the
clinical setting because Phenoxome is more patient-centric through utilization of PGP. In
semantic similarity-based models, the phenotypic relevance score of a gene is calculated
comparing the set of phenotypes manifested by the patient and all of the phenotypes
associated with the gene, which may lead to what we call "phenotype dilution”. In clinical
practice, the symptom manifestations of a patient are usually consolidated on several key
phenotypes. However, a well-studied gene may be associated to a wide range of diseases that
may be unrelated to each other. All of these associated phenotypes contribute to the semantic
similarity calculation, which may "dilute" the associated phenotypes specific to this patient. On
the other hand, our approach only takes into account the primary and secondary phenotypes of
the patient and thus the signal is enhanced for the causal gene, as other irrelevant phenotypes
associated to the gene are not considered in the analysis. For instance, in an exome sample
where the patient was documented with Volvulus, Intestinal pseudo-obstruction, Cholestatis
and Intestinal malrotation, a missense variant in ACTG2 was classified pathogenic. ACTG2 was
associated with a total of 34 different phenotypes in HPO, ranging from Camptodactyly of finger
to Sepsis, including Intestinal malrotation. Most of these phenotypes were not observed and
unrelated to this patient, as they were "noise" in the similarity metrics and PhenlX prioritized
this variant at rank 70. In contrast, Phenoxome did not consider those "noise" phenotypes
associated with ACTG2 in its modeling and ranked the causative variant in the second place.
Unlike some other tools’®*, Phenoxome does not make inferences from non-human genomic
data. By utilizing only well-established evidence of human disease and associated genes, it is
not designed to make novel gene discoveries but rather for clinical testing. While this strategy
restrains Phenoxome from leveraging information from other heterogeneous resources of
genetic data, it offers clinical reliability non-human genomic data is not valid enough to offer
any benefit to clinical diagnostics*®.

Another advantage of Phenoxome is its ability to perform very well with or without inheritance
information. Trio-based clinical exome sequencing (both parents and their affected child
sequenced simultaneously) has shown more effective in detecting de novo and compound
heterozygous variants compared to proband-only approach5’48. However, parents might not
always be available for exome analysis. While Phenoxome can certainly rank variants prioritized
by any inheritance model, it is also optimized to process and analyze singletons only and while
agnostic to gene inheritance patterns.

It can be seen from the performance benchmarking that the computational tools may behave
differently on the clinical samples as opposed to synthetic patients. This highlights the
importance of validation of computational tools on real clinical data. Further, the validation
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results also indicate that selecting the most accurate phenotypes to describe the symptom
manifestation of a patient is crucial to a successful clinical diagnostic. The rankings of the
pathogenic variants where the causal genes were captured in the PGP were consistently better
than those that were not. We have shown that several scenarios that are not mutually exclusive
could have contributed to those cases. One plausible explanation is the phenotype-gene
annotations are absent in the database because HPO has missed them. The HPO project is
dependent on text-mining algorithms to consolidate phenotypes and curate phenotype-gene
associations from resource such as OMIM and PubMed Corpuszs. However, it might not be
sufficient to parse and extrapolate recently published articles or discoveries. In addition,
despite the extensive knowledge and experiences of the physicians and medical specialists, it is
also possible that a phenotype abnormality, which could potentially direct Phenoxome to the
causal gene, might have been missed during the clinical chart review. Nonetheless, with its
robust algorithm and regular database updates, Phenoxome provides an ideal platform that
enables physicians and clinical researchers to interrogate the data more effectively and
efficiently, in scenarios such as re-analyses.

While human factors in the clinical diagnostics is difficult to model, computational tools may be
deployed to account for the deficiency of HPQO's semi-automated algorithm to extract
phenotype-gene relationships. For instance, a number of text mining-based tools have been
developed to identify variant and gene information in biomedical literatures*>>*. We speculate
that incorporating these algorithms may serve to reinforce and supplement resources such as
HPO and facilitate the clinical diagnostics by providing more supporting evidence of genes and
variants of interest’® and therefore improve the overall effectiveness and efficiency of
Phenoxome.

Web Resources

The URLs for data presented herein are as follows:

The Gnome Aggregation Database (gnomAD), http://gnomad.broadinstitute.org/
UCSC RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq/

SnpEff, hptt://snpeff.sourceforge.net/

The Human Phenotype Ontology (HPO), http://human-phenotype-ontology.github.io/
Novoalign, http://www.novocraft.com/products/novoalign/

Picard, http://broadinstitute.github.io/picard/

Genome Analysis Toolkit (GATK), https://software.broadinstitute.org/gatk/
Ensembl Annotation System, http://www.ensembl.org/downloads.html
Exomiser, https://data.monarchinitiative.org/exomiser/

PhenlX, http://compbio.charite.de/PhenIX/

Phenoxome, http://phenoxome.chop.edu/

PediSeq Project, https://pediseq.research.chop.edu/
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Figure 1. Overview of Phenoxome Workflow

A. Raw variants yielded from sequencing the patient’s exome and subsequent bioinformatics analysis. Blue rectangles imply genes and ovals indicate variants.

B. Variants annotated by Phenoxome using a series of bioinformatics resources. Distinct color schemes indicate different predicted effects on protein products.

C. Variants retained after filtering procedure depending on HGIMD annotations, population allele frequency and functional effects.

D.Variants deleterious score are derived from the tier strategy where a darker color implies a more disruptive variant.

E. Genes harboring post-filtered variants are assigned phenotypic relevance scores inferred by their associations with relevant phenotypes in HPO. A darker color implies the gene is
more pertinent to the patient’s phenotypic manifestation.

F. Each of post-filtration variants receives an overall score by integrating both variant deleterious score and the gene’s phenotypic relevance score. Hence a global prioritization of the
variants is achieved in the framework.
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Figure 2. Variant Filtration Strategy and Tiers of Deleterious Score.

A HGMD variant of DM or DM? class is retained if the minor allele frequency of the variant
is less than 1% in general population in gnomAD database. This variant is binned tier one
and is assigned 1.0 as deleterious score (shown in orange 1). A non-HGMD variant is
retained if the predicted protein effect is disruptive, and its minor allele frequency is less
than 0.2% in general population as well as five sub-populations (East Asian, Finnish, Non-
finnish European, African/African American and South Asian) in gnomAD. If the predicted
effects of the variant include change of splice site, start/stop loss, frameshift and stopgain,
the variant is binned tier two and is assigned 0.8 as deleterious score (shown in blue 2). The
variant is binned tier three otherwise and is assigned 0.6 as deleterious score (shown in

blue 3).
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Figure 3. Compilation of Personalized Gene Panel using HPO.

The cartoon panels demonstrate the procedure to generate personalized gene panel (PGP) from patient’s phenotypic manifestation using HPO in
Phenoxome.The left panel is a representation of the initial state of a sub-network of HPO containing relevant phenotypes. Limb hypertonia and Central
Hypotonia are the reported phenotypes in the patient example,which are the primary phenotypes and are highlighted in blue. The right panel reflects the
end state of the sub-network where pertinent phenotypes are retrieved and personalized gene panel generated. The phenotypes in orange are children
nodes of the primary phenotypes while the phenotypes in green are the immediate parents of the primary phenotypes. Genes associated with any of the

primary or secondary phenotypes are compiled in PGP, such as GPHN (Spasticity and Abnormality of Central Motor Function) and SPATAS5 (Limb
Hypertonia).
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Figure 4. Fifteen Most Frequent HPO Terms of Clinical Cohort
Global Development Delay was documented for 43 patients while each of the rest terms was
used to describe at least five different patients in the cohort.
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Figure 5. Performance of
Phenoxome on Simulated

Profiles

Blue curve is the ROC of Phenoxome’s
performance on the “optimal” scenarios
based on score ranks; green and red curves
indicate the “noisy” and “imprecise”
scenarios respectively. Each of the plots was
generated from 33,000 simulated cases.
Sensitivity was defined as the frequency of
"target" genes that are ranked above a
particular threshold position, and specificity
as the percentage of genes ranked below the
threshold. For instance, a sensitivity/
specificity value of 70/90 indicates that the
disease gene (the "target") is ranked among
the best-scoring 10% of genes in 70% of the
prioritizations.
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Figure 6. Performance of Phenoxome on Clinical Samples.
Blue bars represent the cases where the causative variants/genes are associated with at least one pertinent phenotype.

Orange bars represent the cases where the causative variants/genes are not associated with any pertinent phenotype.
53(50%) target variants were ranked in top 5 while 92(87%) target variants were ranked in top 25 among 105 clinical cases.
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Figure 7. Comparison Between Phenoxome and PhenlX on Clinical Cohort

Blue bars represent the rank of the causative variants in Phenoxome while orange bars represent
those in PhenlX. PhenlX placed 22 causative variants on top among 105 cases, which was more
than that of Phenoxome. However, Phenoxome ranked more causative variants in top 5, 10 and
25, demonstrating a superior performance overall. In addition, 19 causative variants were missed
by PhenlX ( in >300 bar).
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# Variants After Filtration

Rank of Pathogenic Variants

Median Rank of Pathogenic Variants

STD of Rank of Target Variant

# Variants Associated with Phenotypes

Median Rank of 95 Pathogenic Variants

105 (85 DGD + 20 PediSeq)

30,640 ~ 258,900

600 ~ 3,000 (Median=1,575)

1~140

5 (0.36% top percentile)

23.0

Table 1. Overall Performance on 105 CHOP

Positive Samples
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Rank of Initial Benchmarking Rank of Re-analysis

HPO terms

PA-528 HP:0000577;HP:0001249;HP:0000717;HP:0000739;HP:0000047;HP:0004322;HP: 41 31
0001999;HP:0002275;HP:0011098

HP:0001263;HP:0001508;HP:0008872;HP:0001385;HP:0004474;HP:0004482;HP: 48

0000280;HP:0010813

PA-S78 HP:0000410;HP:0001508;HP:0001263;HP:0001738;HP:0000010;HP:0012330;HP: 41
0100785;HP:0004322;HP:0000076

Table 2. Re-analysis results for Three Cases
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Simulated Profiles # Positive Clinical Exomes

Masino et al. 33 diseases with penetrance 4

Phen-Gen 765 disease from OMIM and HGMD 16

PHEVOR 200 diseases from HGMD 3

PHIVE 869 diseases from HGMD

Phenomizer 44 diseases with penetrance 0

PhenlX 8504 simulated HGMD profiles

Phenoxome 33 diseases with penetrance 105

Table 3. Validation Resource and Data for Computational Methods
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105 Clinical Cohort Phenoxome

PhenlX

17 (16%)
41 (39%)

22 (21%)
39 (37%)

53 (51%)

54%)

57 (
(

63

60%)
9 (9%)

>150

6 (6%)

19 (18%)

Table 4. Performance Comparison Between
Phenoxome and PhenlX on Clinical Cohort
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