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Abstract 

 

Whole exome sequencing (WES) has become the preferred diagnostic platform for complex 

pediatric disorders with suspected monogenic etiologies, solving up to 30%-40% of cases for 

some indications. Despite rapid advancements in WES analysis, the major challenge still resides 

in identifying the casual variants among the thousands of variants detected by WES, and thus 

establishing a molecular diagnosis. In order to improve the exome diagnostic efficiency, we 

developed Phenoxome, a robust phenotype-driven model that adopts a network-based 

approach to facilitate automated variant prioritization and classification. Phenoxome dissects 

the phenotypic exhibition of a patient in conjunction with their genomic profile to filter and 

then prioritize putative pathogenic variants. Our approach identifies the causative variants 

within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of 105 positive patient 

samples (i.e. at least one reported ‘pathogenic’ variant)  respectively, who undergone medical 

exome testing at The Children’s Hospital of Philadelphia. Our method outperformed state-of-art 

methods by yielding superior ranks of the pathogenic variants, and significantly automating the 

exome diagnostic process. The web application of Phenoxome is available to the public at 

http://phenoxome.chop.edu/ 

 

 

 

Introduction 

 

Mendelian diseases are considered rare, yet an approximately 8% individuals worldwide are 

identified as having a genetic disorder before reaching adulthood
1
. Next generation sequencing 

(NGS) has rapidly changed the landscape of clinical genetics by enabling the researchers and 
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physicians to make novel gene-disease associations
2
 and precise molecular diagnoses

3,4
. 

However, NGS-based clinical diagnostics remains challenging with only about 30% of patients 

receive a definitive diagnosis
5
. The diagnostic quest in a clinical exome test is complicated by 

the sheer volume of mutations detected and the presentation of overlapping phenotypic 

characteristics in affected individuals
6
.  

 

A carefully designed analysis paradigm is essential for high quality interpretation of a clinical 

exome test
7
. Clinical correlation, which includes analysis of the patient's phenotype and 

genotype in conjunction, is central to the overall clinical interpretation
8
. During this step, 

putative causative genes and variants contributing to the disease are identified. Nonetheless, 

clinical correlation is often time consuming and requires extensive expertise in medical genetics 

and genomics
9,10

. To perform clinical interpretation at scale and keep up with the latest 

discoveries that would require re-analysis, it is critical to engage computational algorithms to 

automate this procedure. 

 

Using prior biological and clinical knowledge, such as previously known disease genes and 

pathogenic mutations, together with phenotype information may assist in gene-disease clinical 

correlation
11

. A number of databases
12-14

 that curate gene-disease associations have been 

developed, along with several computational variant annotation tools
15-17

. Specifically, 

phenotypic information has been recognized to have greatly enhanced the diagnostic power, 

prompting numerous phenotype-driven approaches that often employ machine learning 

methods, including eXtasy
18

, Phenomizer
6
, PHIVE

19
, Phevor

20
, PhenIX

21
, Phen-Gen

22
, SimReg

23
 

and Phenolyzer
24

. Most of these tools use the vocabulary from the Human Phenotype 

Ontology
25

 to describe a patient's phenotypic abnormalities.  

 

These tools have clearly demonstrated the utility of using phenotype data to improve disease 

gene identification. Most of these approaches are validated on large number of simulated 

scenarios and/or limited numbers of clinical samples. However, these purely computational 

approaches have been shown less effective on clinical cases compared to clinician-aid 

strategies
26

. Additionally, none of these tools have been validated on a large-scale clinical 

sequencing cohort. 

 

Here, we present a computational framework, Phenoxome, to filter and then prioritize 

candidate variants using population frequency, deleteriousness and clinical relevance of the 

affected gene (Figure 1). Phenoxome uses two inputs, (i) a variant call format (VCF) file 

representing the genotype of the affected individual, and (ii) a set of symptoms described using 

Human Phenotype Ontology (HPO) terms. Our approach first filters the variants according to 

rarity, predicted protein effects and other prior knowledge. Following this, Phenoxome 

generates a personalized gene panel (PGP) according to the phenotype manifestation, and each 

gene in the PGP is scored based on its involvement in these phenotypes. Finally, each variant is 

prioritized based upon a composite score combining the knowledge inferred from both variant 

level and gene level. In this work, we first evaluate the performance of our method on 

comprehensive computational simulations of different scenarios. We then demonstrate the 

effectiveness of Phenoxome using 105 positive clinical exomes at The Children's Hospital of 
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Philadelphia (CHOP). Our approach outperforms state-of-art methods by yielding more robust 

and superior rankings of the causative variants on the clinical samples.  

 

Material and Methods 

 

Variant Annotation and Filtration 

 

Our approach first annotates variants using SnpEff package v4.2
16

 with UCSC RefSeq/refGene 

database
27

. In addition, the variants are also annotated with a public version of the Human 

Gene Mutation Database (HGMD) database, obtained through Ensembl annotation system
28

 

and minor allele frequencies from the Genome Aggregation Database (gnomAD) v2.0
29

.  

 

Next, similar to the clinical exome protocol implemented at CHOP
30

, Phenoxome retains a 

variant if it meets one of the following criteria: 

• AF < 1% in gnomAD and classified as disease mutation (DM or DM?) in HGMD 

• AF < 0.2% in all sub-populations in gnomAD and predicted to alter protein or splice sites 

(i.e splice acceptor/donor, stop retained/gained, start/stop loss, inframe 

deletion/insertion, frameshift and missense variants) 

Detailed variant filtering schemes are demonstrated in Figure 2.  

 

Variant Prioritization Strategy 

 

In Phenoxome, each of the post-filtration variants receives a comprehensive score reflecting its 

likelihood of being pathogenic to the affected individual, and hence a global ranking of the 

variants is achieved based upon the scores. Similar to other approaches
21,22

, the composite 

score of each variant is contributed by deleterious score and phenotypic relevance score, 

derived from variant level and gene level respectively. A variant level score usually indicates the 

deleteriousness of the variant, inferred by characteristics such as rarity, evolutionary 

conservation and predicted functional impact
31,32

. In general, a gene level score reflects the 

assessment of the affected gene's functional involvement in the observed phenotypes. Unlike 

other approaches that calculate the composite score by averaging the variant score and the 

gene relevance score
19,21

, our approach assigns greater weight to the phenotypic component 

while generating the overall score of a variant. This empirical implementation was derived from 

the clinical observation that most of the rare variants with disruptive protein effects were 

harbored by genes that shared little or no overlap to the phenotype manifestation of the 

affected individual. 

 

Deleterious Score 

 

Each of the post-filtration variants are evaluated and assigned a deleterious score based upon 

its HGMD label and predicted functional impact. Inspired by clinical protocols classifying 

variants into different categories
33,34

, we implement a tier system to triage the variants into 

three different bins. A variant is deemed the most damaging if it is in HGMD with a DM/DM? 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/275479doi: bioRxiv preprint 

https://doi.org/10.1101/275479
http://creativecommons.org/licenses/by-nc-nd/4.0/


class. The damage level is deemed high if the functional impact of a non-HGMD variant is any of 

the following: splice site aberration, frameshift, stop gain, start loss or stop loss. The rest of the 

variants are deemed medium damaging with predicted effects including missense, inframe 

deletion or inframe insertion. Variants in each of the bins receive a different deleterious score 

of 1.0, 0.8 and 0.6 respectively (see Figure 2).  

 

Phenotypic Relevance Score 

 

Variants are also assessed on the gene level through the utility of HPO. HPO is a computational 

representation of a wide collection of phenotype abnormalities in human. Each of the 

phenotypes in the vocabulary is annotated with genes implicated with the clinical symptoms, 

curated from resources including OMIM
13

 and Orphanet
35

. Because of its strictly controlled and 

standardized vocabulary, hierarchical structure and well-defined phenotype-gene relationships, 

HPO has become an ideal resource for clinical phenotyping
36

.  

 

The phenotypic terms in HPO are organized in a directed acyclic graph where they are 

associated by "is a" relationships. An "is a" relationship indicates that one phenotype is a 

subclass of another phenotype that is a more generic parent term
37

. For instance, Abnormality 

of the atrial septum "is an" Abnormality of the cardiac setpa which "is an" Abnormal heart 

morphology. The design of Phenoxome takes the advantage of the hierarchical structure of HPO 

and compiles a Personalized Gene Panel (PGP) for each patient, where each gene of the PGP is 

potentially associated with the input phenotypes. Our approach starts from each of the 

provided phenotypes, it then traverses down the ontology tree to retrieve all of its direct and 

indirect subclass nodes/phenotypes until a terminal branch is encountered. The nature of "is a" 

associations guarantees that all of the children nodes are essentially subclasses of the primary 

phenotypes by the definition of the hierarchy. In addition, in order to account for imprecision in 

selecting the primary phenotypes in clinical scenarios, the algorithm also visits the immediate 

parent nodes of the input phenotypes. The original terms describing the phenotypes of the 

patient are considered primary, while the terms retrieved during the extending process are 

termed secondary. The algorithm to generate secondary phenotypes is demonstrated in Figure 

3. Following this, PGP is compiled to collect all of the genes associated with any of the primary 

or secondary phenotypes. These genes are reported to have caused corresponding symptoms 

and therefore are potentially relevant to explain the patient's phenotypes.  

 

Once Phenoxome identifies the primary and secondary terms, a sub-graph of HPO tree 

containing all of the nodes and their parent-child relationships is also generated (see Fig 3), we 

then employ a network-based stochastic approach, PageRank with Priors
38,39

, to prioritize each 

phenotype in the sub-graph. The algorithm evaluates the significance of each node of a graph 

with a clear-defined transition matrix by imitating a random walker surfing the graph. Starting 

from a root node, the surfer selects an outgoing edge from the current node randomly to jump 

to the next node in each iteration. The algorithm converges when the significance scores of the 

nodes become steady. In a directed acyclic graph, this process is similar to the ontology 

propagation described by Singleton et al
20

. However, with a set of priors (root set), the random 

surfer opts to jump back to any of the node in the root set regardless of its current location 
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with a predefined probability in each iteration. The iterative stationary probability equation of a 

node n is given by 

 

������� � �1 � �� ∑ 
��|������� 
 �
�
�����	
���


���    (Equation 1) 

 

where � is the back probability. The first component of the equation summarizes the likelihood 

of arriving at this node from all of its neighboring nodes while the second component indicates 

transporting back to the root set. In Equation 1, 
�is a 0/1 prior vector where 1 indicates the 

node is in the root set and 0 indicates otherwise. The stationary distribution after the 

convergence of the algorithm represents the probability of the random surfer landing on each 

node at any given moment.  

 

In order to implement the algorithm in the context of the sub-graph of the HPO tree, we set the 

primary HPO terms as the priors and the back probability � to be 0.5 as it was suggested to 

yield optimal performance by previous studies
40

, meaning there is a 50% chance of the random 

surfer returning to the primary terms in each step. It is intuitive to see several benefits with this 

implementation to prioritize the phenotypes for the clinical utility. The primary phenotypes are 

ranked high because of the back probability; the secondary phenotypes that are close to the 

primary phenotypes are ranked high because they are easily accessible from the root set; and 

the secondary phenotypes with more “is a” relationships are ranked high because they are 

more likely to be visited during the random walk. Each gene in PGP may be associated with 

multiple primary and secondary phenotypes, thus a variant receives a phenotypic score that is 

the sum of the phenotypes’ scores the harboring gene is associated with. In this way, variants 

harbored by genes associated with more significant phenotypes are ranked higher. 

 

Integrated Variant Pathogenic Score 

 

As discussed earlier, an overall score is assigned to each of the candidate variants. The first 

component is the phenotypic score and the second is the deleterious score. Weight factor � is 

employed to combines the two components together in the final significance score: 

 

���, �� �  � � 
����_�������� 
 �1 � �� � �����������_��������  (Equation 2) 

 

where � is intuitively set to 0.8 to ensure the global implementation is phenotype-driven. Thus, 

a prioritization of the variants is achieved based upon the final scores. 

 

Clinical Sample Cohort 

 

Acquiring large scale clinical cohorts for differential clinical diagnostics studies is challenging for 

a number of reasons. Thus, limited access to these resources has forced most of the 

abovementioned computational tools to perform their validation largely or solely on in silico 

patient profiles. We collected a large cohort of clinical patients (n=105) where each individual 

patient received a positive molecular diagnosis from whole exome sequencing (WES) analysis. 

Eighty-five positive samples were from patients diagnosed by the clinical exome test at the 
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Division of Genomic Diagnostics (DGD) at CHOP between 2014 and 2017. Twenty positive 

exomes were collected through the CHOP Pediatric Sequencing (PediSeq) project, which was a 

part of Clinical Sequencing Exploratory Research (CSER) consortium. For this study, we define 

positive cases as having at least one pathogenic variant in the final clinical lab report. These 

pathogenic variants were thoroughly evaluated and classified as disease causing with concrete 

supporting evidence that was previously established such as published articles and clinical 

reports. They were confirmed by an orthogonal technology (Sanger Sequencing) before 

reported. All of these positive cases had gone through comprehensive manual clinical 

correlation performed by experienced clinical geneticists during variant interpretation and the 

findings were confirmed by clinical laboratory directors.  

 

The phenotypic features of these patients were carefully discussed and documented by 

physicians upon clinical chart reviews, and the corresponding terms in HPO were selected to 

best represent the symptoms. A total of 422 unique HPO terms were used to describe the 

phenotypes of all individuals in the cohort. The numbers of HPO terms per case range from 1 to 

23, with an average of 6 terms. Out of the 422 phenotypes, 306 terms (73%) were unique to 

only one individual respectively, while another 62 terms (15%) were shared by two individuals. 

This collection of phenotypes represents a wide range of developmental abnormalities. The 

most frequently used 15 terms are shown in Figure 4. It should be noted that the phenotypes 

with the most term frequencies are more generic than those with the least term frequency. For 

instance, Global developmental delay was used to describe 43 patients in the cohort and the 

term was annotated with 1063 genes, Short stature was observed in 19 patients and the term 

was annotated with 832 genes. It was similar for terms such as Failure to thrive (16 patients, 

577 genes), Microcephaly (14 patients, 678 genes) and etc. On the contrary, terms that were 

unique to one or two patients were likely to be more specific, such as Prominent fingertip pads 

(1 patient, 8 genes), Vocal cord paralysis (1 patient, 11 genes) and Metatarsus adductus (2 

patients, 30 genes). It is evident that these medical cases present an unparalleled opportunity 

to evaluate the performance of the computational tools in real clinical samples as opposed to 

utilizing simulated data, for they offer a wealth of heterogeneity and complexity in 

constitutional genetic disorders with a focus in pediatrics.  

 

Sequencing and bioinformatics pipeline 

 

For each of the clinical WES samples from the DGD, Agilent SureSelect Clinical Research Exome 

(CRE) V1 capture was used as the exome capture platform. FASTQ data generated by 

MiSeq/HiSeq was aligned to the hg19/Grch37 reference genome using Novoalign from 

Novocraft (Selangor, Malaysia). Read alignment and variant calling were performed with an in-

house bioinformatics pipeline that incorporated Novoalign for read alignment, Picard (Broad 

Institute, Cambridge, MA) for marking duplicates, the Genome Analysis Toolkit (Broad Institute, 

Cambridge, MA) for variant calling (reference sequence: hg19/Grch37 build) and variant read 

depth filtering (≥5X). Variant call sets were generated in the format VCF 4.1/4.2. Variant 

annotation and initial variant filtration were then performed. This filtration restricted the data 

to variants in the Human Genome Mutation Database (HGMD) and/or rare variants with a 

coding effect such as missense, stop loss, stop gain, start loss, indels, frameshifts, and variants 
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within the consensus splice site (+/- 6 bases in intron) among all genes. To eliminate lab-specific 

sequencing artifacts we used an internal cohort compiled from 665 unaffected and unrelated 

clinical exome sequencing samples in the laboratory of DGD.  Patient’s variants  present at a 

high frequency (1.0% or > 6 individuals) in this cohort were removed. All 85 DGD clinical exome 

samples were filtered against this internal cohort. The VCF files of final products of these exome 

samples were generated as the input to Phenoxome. 

 

For PediSeq samples, exome capture was performed using SureSelect V6 kit (51MB target size).  

Exome sequencing was done at 100X depth of coverage on HiSeq 200 sequencers. Same 

bioinformatics processing as DGD was performed on these samples and the variant call sets 

were filtered to remove common variants using the Exome Aggregation Consortium (ExAC)
29

 

database (>0.5% MAF) and the "internal cohort (>5% MAF)" to remove high frequency technical 

artifacts. The internal cohort consisted of data from 269 samples from various PediSeq cohorts. 

 

 

Results 

 

Ranking Candidate Genes Using Synthetic Patient Profiles 

 

Since the phenotypic scores of candidate variants are imperative to the overall prioritization 

and due to the general lack of clinical data, we first assessed the performance of the candidate 

gene ranking through in silico patients
6,23,24

. We focused on 33 monogenic diseases with known 

causative genes and used a similar strategy as provided by Masino et al
41

.  

 

Each of these diseases is well characterized with sufficient phenotypic features and penetrance 

information as described using HPO terms. We produced synthetic patient profiles by selecting 

disease HPO terms for the patient, with the probability of being affected determined by the 

penetrance data. For instance, to generate a synthetic patient profile with a disease of 

phenotypes A that is observed in 70% of the patients of this disease, a random value between 0 

and 1 was generated by a random number generator of uniform distribution. If the number was 

equal to or less than 0.7, then phenotype A was assigned to the profile. Phenotype A was not 

added to the synthetic profile otherwise. Same procedure was carried out on other phenotypes 

associated with this disease. This process was repeated to generated 1,000 synthetic profiles of 

each disease. This scenario was denoted as the "optimal" clinical scenario where the patient 

phenotype is well recognized.  

 

However, it is common that patients may exhibit symptoms that are not directly related to the 

medical problem. In addition, clinician or medical specialists may fail to choose the most 

accurate terms to describe the phenotype manifestation or the clinical anomaly is not properly 

defined in HPO vocabulary, so a more generic phenotype is used. These two typical scenarios 

contribute to a large number of cases in clinical practice and are denoted as "noisy" and 

"imprecise" respectively. In order to imitate the "noisy" scenario, randomly selected HPO terms 

were added to the "optimal" profile as noise. The number of noise terms was determined to be 
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half of the number of "optimal" terms in the synthetic patient. To investigate the impact of the 

"imprecise" terms, each of the "optimal" terms of a patient was replaced by a parent term of 

the original HPO term 
41

. These procedures were repeated 1,000 times so that 1,000 in silico 

patient profiles for "noisy" and "imprecise" scenarios were generated respectively, resulting a 

total of 99,000 simulated profiles for the study. 

 

We carried out candidate gene prioritization approach of Phenoxome on all simulated patient 

profiles of the three scenarios. For each synthetic patient, our algorithm first generated the PGP 

from the phenotypes and then prioritized the genes in PGP using the phenotypic relevance 

scores presented in Methods. In all 99,000 simulated cases, the causative genes were 

constantly captured by the PGP across the 33 diseases of the above scenarios. In the "optimal" 

scenario, the causative gene was ranked first for 98.5% of the cases. This was not surprising 

since the causative disease gene was associated with at least one phenotype of greater than 50% 

penetrance in 32 diseases except for Holt-oram syndrome. For this disorder, which is caused by 

mutations in the TBX5 gene, the most common phenotypes were Defect in the atrial septum 

and Hypoplasia of the radius, with 41.46% and 37.8% penetrance respectively (Supplement file). 

Introducing the "noise" terms did not have any substantial impact on the rankings. In the “noisy” 

scenario, the causative gene was ranked first for 94.4% of the cases. Consistent with previous 

studies, a deteriorated performance of Phenoxome in the "imprecise" scenarios was observed 

where the causative gene was ranked first in only 3.7% of the cases. However, the target gene 

was ranked within top 10% of the PGPs in 89.8% of the cases. The overall summary of the 

performance of Phenoxome in three scenarios is demonstrated in Figure 5. The respective AUC 

(area under curve) values for the "optimal", "noisy" and "imprecise" scenarios are 0.995, 0.991 

and 0.952, which demonstrated a modest advantage compared to other network-based 

methods
6,41

.  

 

Performance on Clinical Samples 

 

We then used the clinical cohort (n=105) to validate Phenoxome performance. Paired VCF files 

and HPO terms of each clinical sample were utilized as described in Methods. Phenoxome 

generated a list of ranked variants independent from the original clinical evaluation. The 

numbers of variants in the original input VCF files ranged from 37,150 to 258,968. Number of 

variants was reduced to 431 - 2,995 after the effective variant filtration strategy implemented 

by Phenoxome. The clinically reported pathogenic variants were consistently reported in the 

final ranked lists and its rank was recorded for each of the patient. If more than one pathogenic 

variant was reported, the best rank of these variants was used in the benchmarking for this 

case.  

 

The median rank of the pathogenic variants in the 105 patients was 5 with a standard deviation 

of 23. Specifically, 92 (88%) pathogenic variants were ranked in top 25, 74 (71%) in top 10, 53 

(51%) within top 5, while 17 pathogenic variants (16%) were ranked in the first place. 

 

Causal genes harboring the pathogenic variants were captured in the PGP in 95 out of 105 cases 

(associated with at least one primary or secondary phenotype). The median rank of the 
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pathogenic variants was 4 among those 95 cases. Three primary and/or secondary phenotypes 

were annotated to the causal gene on average among these cases. Causal genes were 

associated with at least one primary phenotype in 78 out of 95 cases while they were 

associated with only secondary phenotypes in the other 17 cases. No statistical differences 

between the two groups were observed regarding the final ranks of the pathogenic variants. 

For the 17 cases where the causal genes were associated with only secondary phenotypes, the 

ranking of causative variants were in the range of 1 to 24 with an average of 6. It is perennial 

that the causal gene was associated with a primary phenotype when it was also implicated in 

secondary phenotypes inferred from other primary phenotypes. For instance, a missense 

variant in SCN1A was reported as pathogenic for a patient from the cohort. SCN1A was not only 

associated with one of the primary phenotypes (Global developmental delay) but also 

annotated with Obtundation status and Seizures, which were secondary phenotypes inferred 

from the primary phenotype Status epilepticus. Hence, SCN1A was compiled in the PGP and the 

pathogenic variant was ranked in the first place by Phenoxome. In a more striking instance 

where the patient was documented with phenotypes of Chronic mucocutaneous candidiasis, 

Recurrent fungal infections, Recurrent candida infections and Impaired T cell function, the 

pathogenic variant was identified in IL12RB1 that was not directly annotated with any of the 

primary phenotypes but was associated with Onychomycosis which was a sub-class of Recurrent 

fungal infections. Thus, the causal gene was captured in the PGP and the missense pathogenic 

variant was ranked in the second position for this patient. The performance of Phenoxome on 

the clinical samples is summarized in Table 1. 

 

Phenoxome heavily relies on the provided phenotypes and the gene-phenotype associations in 

prioritizing the variants. Thus, using the most accurate and up to date phenotypes is essential 

to achieving the optimal performance. On the other hand, as phenotypic features of patients 

evolve over time, as well as new gene-phenotype associates are uncovered, re-analysis using 

Phenoxome could yield new diagnosis.  

 

In our clinical validation cohort, 10 pathogenic variants (marked in orange in Figure 6) were not 

in PGP during the initial benchmarking. The pathogenic variants in these 10 cases were ranked 

in the range of 5 to 140. With one exception where the pathogenic variant was ranked in top 5, 

the rest of these variants were all scored below the median rank of the cohort, with an average 

rank of 59. To investigate the ten cases, re-analysis was performed using the latest build of HPO 

(build 1249, January 2018). Three out of the ten causative genes were identified to be 

annotated with at least one pertinent phenotype in the re-analysis, resulting substantially 

better ranks of the pathogenic variants (Table 2). This improvement was due to novel gene-

phenotype relationships curated by HPO that were absent in the HPO database version at the 

time of the initial analysis. These findings highlight the clinical utility of re-analysis of exome 

data to yield additional diagnosis in a systematic manner
42

. On the other hand, we discovered 

that the most precise HPO terms were absent for the rest seven cases. For example, in a case 

where the pathogenic variant was confirmed in CTSA, Decreased beta-galactosidase activity 

was mentioned in the clinical chart review, but was not provided to Phenoxome as a primary 

phenotype of the patient. With only two associated genes (CTSA and GLB1), this specific HPO 

term could have guided Phenoxome to collect CTSA in the PGP. Instead, Abnormality of 
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lysosomal metabolism was reported which was a more generic term, for it was more inclusive 

as the patient manifested other symptoms related to lysosomal metabolism. However, 

Abnormality of lysosomal metabolism resides in a separate trunk in the HPO tree compared to 

Decreased beta-galactosidase activity and hence was never visited or retrieved by the 

algorithm. Therefore, CTSA was not in the PGP and the overall rank of the pathogenic variant 

was poor.  

 

Comparison to Other Methods 

 

Unlike phenoxome, most previously published computational approaches were primarily 

assessed using simulated patient data (see Table 3). It was suggested that the performance of 

such tools, including Phenoxome, could vary significantly when using actual clinical cases
43,44

. 

Therefore, we compared the performance of Phenoxome against other methods using our 

clinical cohort. A recent comparative study examined the performance of a wide range of 

phenotype-driven variant prioritization methods, including OMIM Explorer
45

, Phen-Gen, Phevor 

and PhenIX, on 21 positive clinical exomes, and determined that PhenIX 
21

 was the most 

effective
46

. Thus, we benchmarked the performance of PhenIX on the exomes in our cohort and 

compared the rank positions of the causative variants with Phenoxome. 

 

We could not use the webserver for PhenIX to analyze the samples directly due to the clinical 

nature of the data, so the samples were processed through a local implementation of PhenIX. 

The latest version of the Exomiser (V8.0.0)
47

 was obtained through its ftp site and locally 

installed on our server. To be consistent with the analysis on Phenoxome, same sets of paired 

VCF files and HPO terms were analyzed in the template of the local installation, where the 

variant prioritization method was set to PhenIX. A similar variant filtration strategy was 

implemented in the template to ensure a fair comparison. Variants of MAF greater than 0.5% 

that were annotated with functional impacts of intergenic, intronic, upstream/downstream 

gene or synonymous mutation were removed. PhenIX used the template as its input parameter 

to generate the ranking of the variants from the input VCF file specified.  

 

As the result, the pathogenic variants were ranked in the range of 1 to 497 among 86 patients 

in the cohort. PhenIX ranked the causative variants in the first place in 22 (21%) out of the 86 

cases, showing a slight advantage over Phenoxome (17/105). However, PhenIX scored less 

number of causative variants in top 5 (45, 43%), top 10 (50, 48%) and top 25 (57, 54%) than 

Phenoxome respectively (Table 4). Moreover, PhenIX did not report the causative variants in 

the final ranked list in 19 out of the 105 cases.  

 

The statistical analysis on the overall rank positions of the pathogenic variants in the large 

clinical cohort between the two approaches indicated the superiority of Phenoxome over 

PhenIX (
 � 0.0015; Mann-Whitney test). Collectively, Phenoxome outperformed PhenIX by 

yielding more robust rank positions of the pathogenic variants (Figure 7). Although PhenIX had 

several more pathogenic variants ranked in the first place, Phenoxome placed more pathogenic 

variants in top 5, top 10 and top 25 of this large cohort of genetic heterogeneity, and it did not 

miss the pathogenic variant in any of the cases. 
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Composite Score Weight Factor Revisit 

 

The weight factor � of Equation 2 was used to combine phenotypic relevance score and the 

variant deleteriousness score to generate an overall score for each variant, and was set to 0.8 

empirically to calculate the scores and hence prioritize the variants. After benchmarking 

Phenoxome's performance on 105 positive clinical exomes, we re-estimated � to achieve an 

optimal result. In practice, the higher score of the pathogenic variant generated by Equation 2, 

the better the rank in each case. Thus, optimizing the global ranking is correlated to maximizing 

the final scores of all of the pathogenic variants: 

 

!�"#!$ ���, �� �  ∑ ���, ��� � ∑ ����
����



 �1 � ����
���

��  �   (Equation 3) 

 

where ���, $�� is Equation 2 for each case � in the cohort, �����
 is the phenotypic relevance 

score of the pathogenic variant, ���� is the variant deleteriousness score and � % �0,1�. Then,  

 
����,�


��
� ∑ ���

����

� ��

�����      (Equation 4) 

 

The gradient of Equation 4 suggests that ���, �� is maximized when � is close to 1. In practice, 

little gain was observed in the 95 clinical samples where the pathogenic genes were in the PGP 

when � was set to 1. However, completely eliminating the variant deleterious score from 

Equation 2 will substantially deteriorate the ranking performance of Phenoxome on those ten 

pathogenic variants whose genes were not in PGP. Thus, to reduce overfitting the model with 

our cohort, we decide to continue to use � � 0.8 to balance the two components in Equation 2 

for the consistency of the variants prioritization in Phenoxome. 

 

Phenoxome Web Application 

 

The method described in this paper have been implemented in a web-accessible system using 

Java that runs on a Linux server utilizing an Apache Tomcat Server environment. Provided with 

paired VCF file and a list of HPO terms describing the phenotypes of an affected individual, 

Phenoxome performs the data analysis and then generates a report of ranked variants for 

download. The database backend of Phenoxome is updated on a monthly basis, and the web 

application is publicly available at http://phenoxome.chop.edu. To allow Phenoxome to run in a 

reasonable time frame (~4 to 10 min) and with a limited memory, we  limit the size of input VCF 

file to be 10 MB. 

 

Discussion 

 

We have presented a computational framework that is optimized for identifying causative 

variants utilizing genotype and phenotype information in a clinical setting. Through a series of 

compelling benchmarking using in silico and large-scale clinical data, Phenoxome has 

demonstrated high clinical utility in identifying the causative variants in a wide range of 
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scenarios. Further, our approach outperformed leading algorithms in the large cohort of 

heterogeneous clinical exome samples, by ranking most pathogenic variants in top 25 and in 

over 70% of the cases in top 10.  

 

Phenoxome’s advantage over PhenIX is exhibited through the capability to consistently retain 

the causative variants during the filtration process and yield better rank positions overall. 

Specifically, we believe that our model outperforms the semantic similarity-based PhenIX in the 

clinical setting because Phenoxome is more patient-centric through utilization of PGP. In 

semantic similarity-based models, the phenotypic relevance score of a gene is calculated 

comparing the set of phenotypes manifested by the patient and all of the phenotypes 

associated with the gene, which may lead to what we call "phenotype dilution". In clinical 

practice, the symptom manifestations of a patient are usually consolidated on several key 

phenotypes. However, a well-studied gene may be associated to a wide range of diseases that 

may be unrelated to each other. All of these associated phenotypes contribute to the semantic 

similarity calculation, which may "dilute" the associated phenotypes specific to this patient. On 

the other hand, our approach only takes into account the primary and secondary phenotypes of 

the patient and thus the signal is enhanced for the causal gene, as other irrelevant phenotypes 

associated to the gene are not considered in the analysis. For instance, in an exome sample 

where the patient was documented with Volvulus, Intestinal pseudo-obstruction, Cholestatis 

and Intestinal malrotation, a missense variant in ACTG2 was classified pathogenic. ACTG2 was 

associated with a total of 34 different phenotypes in HPO, ranging from Camptodactyly of finger 

to Sepsis, including Intestinal malrotation. Most of these phenotypes were not observed and 

unrelated to this patient, as they were "noise" in the similarity metrics and PhenIX prioritized 

this variant at rank 70. In contrast, Phenoxome did not consider those "noise" phenotypes 

associated with ACTG2 in its modeling and ranked the causative variant in the second place. 

 

Unlike some other tools
20,22

, Phenoxome does not make inferences from non-human genomic 

data. By utilizing only well-established evidence of human disease and associated genes, it is 

not designed to make novel gene discoveries but rather for clinical testing. While this strategy 

restrains Phenoxome from leveraging information from other heterogeneous resources of 

genetic data, it offers clinical reliability non-human genomic data is not valid enough to offer 

any benefit to clinical diagnostics
46

.  

 

Another advantage of Phenoxome is its ability to perform very well with or without inheritance 

information. Trio-based clinical exome sequencing (both parents and their affected child 

sequenced simultaneously) has shown more effective in detecting de novo and compound 

heterozygous variants compared to proband-only approach
5,48

. However, parents might not 

always be available for exome analysis. While Phenoxome can certainly rank variants prioritized 

by any inheritance model, it is also optimized to process and analyze singletons only and while 

agnostic to gene inheritance patterns. 

 

It can be seen from the performance benchmarking that the computational tools may behave 

differently on the clinical samples as opposed to synthetic patients. This highlights the 

importance of validation of computational tools on real clinical data. Further, the validation 
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results also indicate that selecting the most accurate phenotypes to describe the symptom 

manifestation of a patient is crucial to a successful clinical diagnostic. The rankings of the 

pathogenic variants where the causal genes were captured in the PGP were consistently better 

than those that were not. We have shown that several scenarios that are not mutually exclusive 

could have contributed to those cases. One plausible explanation is the phenotype-gene 

annotations are absent in the database because HPO has missed them. The HPO project is 

dependent on text-mining algorithms to consolidate phenotypes and curate phenotype-gene 

associations from resource such as OMIM and PubMed Corpus
25

. However, it might not be 

sufficient to parse and extrapolate recently published articles or discoveries. In addition, 

despite the extensive knowledge and experiences of the physicians and medical specialists, it is 

also possible that a phenotype abnormality, which could potentially direct Phenoxome to the 

causal gene, might have been missed during the clinical chart review. Nonetheless, with its 

robust algorithm and regular database updates, Phenoxome provides an ideal platform that 

enables physicians and clinical researchers to interrogate the data more effectively and 

efficiently, in scenarios such as re-analyses. 

 

While human factors in the clinical diagnostics is difficult to model, computational tools may be 

deployed to account for the deficiency of HPO's semi-automated algorithm to extract 

phenotype-gene relationships. For instance, a number of text mining-based tools have been 

developed to identify variant and gene information in biomedical literatures
49-51

. We speculate 

that incorporating these algorithms may serve to reinforce and supplement resources such as 

HPO and facilitate the clinical diagnostics by providing more supporting evidence of genes and 

variants of interest
52

 and therefore improve the overall effectiveness and efficiency of 

Phenoxome. 

 

Web Resources 

 

The URLs for data presented herein are as follows: 

 

The Gnome Aggregation Database (gnomAD), http://gnomad.broadinstitute.org/ 

UCSC RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq/ 

SnpEff, hptt://snpeff.sourceforge.net/ 

The Human Phenotype Ontology (HPO), http://human-phenotype-ontology.github.io/ 

Novoalign, http://www.novocraft.com/products/novoalign/ 

Picard, http://broadinstitute.github.io/picard/ 

Genome Analysis Toolkit (GATK), https://software.broadinstitute.org/gatk/ 

Ensembl Annotation System, http://www.ensembl.org/downloads.html 

Exomiser, https://data.monarchinitiative.org/exomiser/ 

PhenIX, http://compbio.charite.de/PhenIX/ 

Phenoxome, http://phenoxome.chop.edu/ 

PediSeq Project, https://pediseq.research.chop.edu/ 
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