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Abstract

Summary: Metabolomics is an established tool to gain insights into (patho)physiological outcomes.
Associations of metabolism with such outcomes are expected to span functional modules, which are
defined as sets of correlating metabolites that are coordinately regulated. Moreover, these associations
occur at different scales, from entire pathways to only a few metabolites, which is an aspect that has not
been addressed by previous methods. Here we present MoDentify, a freely available R package to
identify regulated modules in metabolomics networks at different layers of resolution. Importantly,
MoDentify shows higher statistical power than classical association analysis. Moreover, the package
offers direct visualization of results as interactive networks in Cytoscape. We present an application
example using a complex, multifluid metabolomics dataset. Owing to its generic character, the method
is widely applicable to any dataset with a phenotype variable, a data matrix, and optional pathway
annotations.

Availability and Implementation: MoDentify is freely available from GitHub:
https://github.com/krumsiek/MoDentify

The package vignette contains a detailed tutorial of the analysis workflow.

Contact: jan.krumsiek@helmholtz-muenchen.de

The systematic identification of modules is often based on networks,
. where nodes correspond to the molecules under investigation, and edges
1 Introduction pone o g g
o ] ] o o represent the correlations or associations between two molecules.
Associations with phenotypic parameters and clinical endpoints in large- Modules are commonly identified as highly connected parts of the
scale, heterogeneous metabolomics datasets are complex. They typically  nerwork that contain nodes that are coordinately associated with a given
span entire functional modules, which are defined as groups of phenotype.
correlating molecules that are functionally coordinated, coregulated, or Systematic module identification algorithms are well established for
generally driven by a common biological process (Mitra et al, 2013). various types of omics data (Polanski et al, 2014; Chuang et al, 2007;
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May et al, 2016; Martignetti et al, 2016). However, they have scarcely
been applied to metabolomics data. Moreover, none of these methods
consider that phenotype associations can occur at different scales,
ranging from global associations spanning entire pathways or even sets
of pathways (e.g., “dense” associations between metabolomics and
gender or BMI), to localized associations with only a few metabolites
(e.g., “sparse” associations between metabolomics and insulin-like
growth-factor | levels or asthma) (Do et al, 2017). For sparse
associations, the identification and interpretation of modules is usually
straightforward. However, modules for dense phenotype associations at
the metabolite level are challenging to interpret due to their
overwhelming number. To facilitate interpretation, the plethora of
information at the fine-grained metabolite level can be condensed to a
hierarchically superordinate level, such as a pathway network. Here,
nodes correspond to entire pathways, edges represent pathway
relationships, and modules reflect phenotype-associated processes
covering sets of pathways.

We have recently introduced a module identification algorithm for
multifluid metabolomics data (Do et al, 2017). The approach was applied
to blood concentrations of insulin-like growth factor (IGF-1) and gender
as examples of sparse and dense phenotype associations, respectively.
We here present MoDentify, a free R package implementing the
approach for general use. In particular, MoDentify offers (i) the
estimation of data-driven networks based on Gaussian graphical models
(GGMs), (ii) module identification at both fine-grained metabolite level
and more global pathway levels, and (iii) visualization of the identified
modules in an interactive network through Cytoscape (Shannon et al,
2003). MoDentify increases statistical power compared with classical
association analysis due to the reduction of statistical noise and can
easily be applied to any type of quantitative data because of its generic
character.

2 Description

MoDentify identifies network-based modules that are highly affected by
a phenotype of interest. The underlying network is either directly
inferred from the data at the single metabolite or pathway level (see
below) or can be provided from an external source.

Network inference: MoDentify estimates either classical Pearson
correlation networks or GGMs using the GeneNet R package (Opgen-
Rhein & Strimmer, 2007). GGMs are based on partial correlations,
which represent associations between two variables corrected for all
remaining variables in multivariate Gaussian distributions (Krumsiek et
al, 2011). An important property of GGMs compared with Pearson
correlation networks is their sparsity, because only direct correlations are
included. At the fine-grained level, the GGM consists of nodes
corresponding to metabolites and edges representing significant partial
correlations between two nodes after multiple testing correction. At the
pathway level, the GGM consists of nodes corresponding to entire
pathways (sets of metabolites), whereas edges represent significant
partial correlations between two pathways. To estimate a correlation
network between pathways, representative values are computed for each
pathway (see Pathway representation). Alternatively, a network from
an external source can be provided. Importantly, all nodes in the network
must be measured in the given dataset.

Pathway representation: As stated above, in addition to regular
network inference, MoDentify can build a network of interacting
pathways. To this end, a new variable is defined as a representative for

each pathway, which aggregates the total abundance of metabolites from

the pathway into a single value. MoDentify provides two approaches for

pathway representation:

1) eigenmetabolite approach: For each pathway, a principal
component analysis (PCA) is performed after scaling all
metabolites to a mean of 0 and a variance of 1. The first principle
component — also termed eigenmetabolite — is used as a
representative value for the entire set of variables in the pathway
(Langfelder and Horvath 2007).

) average approach: All variables are first scaled to mean 0 and
variance 1. Subsequently, the pathway representative is
calculated as the average of all variable values in the pathway.

MoDentify computes the amount of explained variances explained by

each eigenmetabolite per pathway to facilitate the choice between these

two approaches. If explained variances are high, the eigenmetabolite
approach should be used; otherwise, the average approach might be the
more appropriate choice.

Module identification: To identify functional modules, MoDentify uses
a score maximization approach. Given a network, a scoring function, and
a starting node (seed node) as the initial candidate module, the algorithm
identifies an optimal module by score maximization. For a given
candidate module, the following procedure is performed: Each
neighboring node of the module is subsequently added to the candidate
module, and the score of the extended module is calculated (see Module
scoring). The neighbor resulting in the highest score improvement is
finally added to the candidate module, if the new module score is higher
than the score of each of its single components. The procedure is
repeated until no further score improvements can be made, yielding the
optimal module for the given seed node. In an optional consolidation
step, overlapping optimal modules from different seed nodes are
combined into one module, which is reevaluated by the scoring function.

Module scoring: The score of a candidate module is obtained from the
multivariable linear regression model

c
R=p,+ BlXP+Zl=‘1ﬁi+1XCi+E

where R is the module representative defined by the eigenmetabolite or
average approach (see Pathway representation), f3, is the intercept, f3;
are the regression coefficients for the respective independent variables, P
is the phenotype of interest, C is an optional set of covariates c;, and € is
a normally distributed error term. The module score is then defined as
the negative log-transformed p-value of B;. The significance of the
modules is assessed by correcting for the total number of nodes in the
underlying network.

Module visualization: MoDentify offers visualization of the identified
modules within an interactive network in the open source software
Cytoscape (Shannon et al, 2003). The network contains different node
colors and node sizes, which depict the membership of a node in a
certain module and its association with the given phenotype from a
classical, single-molecule association analysis, respectively. Moreover,
significance of the phenotype association is indicated by diamond-
shaped nodes. In addition to returning R data structures and producing
flat-file results, one of the main advantages of our module visualization
is the direct call of Cytoscape from within R via the RCytoscape package
(Shannon et al, 2013) for external visualization, without cumbersome
exporting of data files from R and re-importing them into Cytoscape.
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MoDentify: Modules in metabolomics networks

3 Application example

We demonstrate the easy use of MoDentify on plasma, urine, and saliva
metabolomics data from the Qatar Metabolomics Study on Diabetes
(QMDiab) (Mook-Kanamori et al, 2014), aiming to identify functional
modules associated with type 2 diabetes (T2D). The multifluid dataset
comprises mass spectrometry-based metabolomics measurements for 190
diabetes patients and 184 healthy controls of Arab and Asian ethnicities
aged 17-81 years. The dataset consists of 1524 metabolites. For each
metabolite, two levels of pathway annotation are available. The
preprocessed QMDiab data (normalized, log-transformed, missing values
handled, and scaled) are integrated within the MoDentify package. The
dataset is also available from the following figshare repository via the
following link https://doi.org/10.6084/m9.figshare.5904022.

MoDentify was applied to the QMDiab dataset at both metabolite and
pathway levels. The following code with default parameters produces a
list of metabolite modules associated with T2D, as well as interactive
visualization of the modules in the underlying network in Cytoscape
(Figure 1A). Here, we only show code for the application of MoDentify
at the metabolite level. Code for application at the pathway level (Figure
1B) can be found in the package vignette, available from the GitHub
repository.

# Load MoDentify
library(MoDentify)

# Network inference
met.graph <- generate.network(data = gmdiab.data, annotations = gmdiab.annos)

# Module identification

modules.summary <- identify.modules(graph = met.graph, data = gmdiab.data,
annotations = gmdiab.annos,
phenotype = gmdiab.phenos$T2D)

# Module visualization
draw.modules(graph = met.graph, summary = modules.summary)

By default, generate.network estimates partial correlations between
metabolites and assigns edges using a significance threshold of « = 0.05
after Bonferroni multiple testing correction. identify.modules searches
network modules for the given phenotype, where the default module
representation approach is the average approach, @ = 0.05 is set for
significance filtering, and Bonferroni multiple testing correction is
applied. The output structure modules.summary contains a list of
modules with their components and scores, which can be visualized
within an interactive network in Cytoscape using draw.modules.

MoDentify identified 36 modules for T2D at the metabolite level (Figure
1A). Many of these modules consist of metabolites that are not
significantly associated with T2D if considered alone. However, in
interplay with other metabolites, they form a module that is more
strongly associated with T2D than all of its single components. This
increased statistical power in MoDentify can be attributed to the
reduction of statistical noise when aggregating module components and
allows the detection of links between metabolites and phenotype that
would have been missed with classical association analysis. MoDentify
found several modules containing metabolites from at least two fluids.
For instance, one module (orange in Figure 1A) comprises the three
vitamin B derivatives plasma pantothenate (vitamin Bs) and pyridoxate
(vitamin Be), and urine riboflavin (vitamin B,). Although pyridoxate and
riboflavin are not related to T2D when analyzed alone, they form a
module in combination with pantothenate that is significantly associated
with the phenotype. This module corroborates previous observations that
vitamin B levels in blood and urine are associated with T2D (Nix et al,

2015; Unoki-Kubota et al, 2010; Valdés-Ramos et al, 2015). In addition,
the results indicate that not only the concentration levels in blood and
urine but also exchange processes between the two fluids are linked to
T2D as well. At the pathway level (Figure 1B), six modules were
detected. These modules show the interplay of multiple pathways in
diabetes. For instance, one module comprises plasma metabolites from
glutathione and histidine metabolism and urinary metabolites from
histidine metabolism (yellow in Figure 1B). Although histidine and
glutathione were shown to be related to diabetes in previous studies
(Kimura et al, 2013; Sekhar et al, 2011), the identified module suggests
that histidine and glutathione metabolism as well as the secretion of
histidine derivatives might be part of the same process in T2D.

A

P::pyridoxate

Uzdboflavin | 5 0 1L PN
(Vitamin B2) ~..°- :

Ppantothenate L\ e \F e

U::glutarate
(pentanedioate)

. "|Uzglutaryicarnitine
c5) :2-hydroxy-
glutarate

U::adipate

.
Rt © =

o8

@@06o

P::Glutathione
metabolism
B O : < ;
P::Histidine

metabolism  U::Histidine

. £ :
@ @,‘ S metabolism

T vz;y@{e . S
°’a..e.ne-?a»@==.%=@.eee

Figure 1 Visualization of identified modules for type 2 diabetes. The metabolomics
networks with embedded modules at metabolite level (A) and pathway level (B) are
screenshots of the interactive versions in Cytoscape produced by MoDentify. Zoom-ins
have been added to highlight examples for MoDentify's increased statistical power and its
ability to extract biologically valuable insights. Round nodes correspond to metabolic
entities not significantly associated with T2D when considered alone. Diamond nodes
represent metabolic entities significantly related to T2D.

4 Conclusion

To the best of our knowledge, MoDentify implements the first approach
for the systematic identification of phenotype-driven modules at different
layers of resolution. To this end, the algorithm allows the estimation of
data-driven networks based on Pearson or partial correlations.
Optionally, a network from an external source can be provided. To
facilitate result interpretation for different scales of phenotype
associations, MoDentify enables the module search at both fine-grained
metabolite level and more global pathway levels. Owing to the increased
statistical power of the approach, novel links between clinical parameters
and molecular levels can be detected. We presented an application
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example using a complex multifluid metabolomics dataset, but owing to
its generic character, this approach can be applied for any quantitative
dataset.
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