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Abstract 
Summary: Metabolomics is an established tool to gain insights into (patho)physiological outcomes. 

Associations of metabolism with such outcomes are expected to span functional modules, which are 

defined as sets of correlating metabolites that are coordinately regulated. Moreover, these associations 

occur at different scales, from entire pathways to only a few metabolites, which is an aspect that has not 

been addressed by previous methods. Here we present MoDentify, a freely available R package to 

identify regulated modules in metabolomics networks at different layers of resolution. Importantly, 

MoDentify shows higher statistical power than classical association analysis. Moreover, the package 

offers direct visualization of results as interactive networks in Cytoscape. We present an application 

example using a complex, multifluid metabolomics dataset. Owing to its generic character, the method 

is widely applicable to any dataset with a phenotype variable, a data matrix, and optional pathway 

annotations.  

Availability and Implementation: MoDentify is freely available from GitHub: 

https://github.com/krumsiek/MoDentify 

The package vignette contains a detailed tutorial of the analysis workflow. 
Contact: jan.krumsiek@helmholtz-muenchen.de 

 

 

1 Introduction  

Associations with phenotypic parameters and clinical endpoints in large-

scale, heterogeneous metabolomics datasets are complex. They typically 

span entire functional modules, which are defined as groups of 

correlating molecules that are functionally coordinated, coregulated, or 

generally driven by a common biological process (Mitra et al, 2013). 

The systematic identification of modules is often based on networks, 

where nodes correspond to the molecules under investigation, and edges 

represent the correlations or associations between two molecules. 

Modules are commonly identified as highly connected parts of the 

network that contain nodes that are coordinately associated with a given 

phenotype. 

Systematic module identification algorithms are well established for 

various types of omics data (Polanski et al, 2014; Chuang et al, 2007; 
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May et al, 2016; Martignetti et al, 2016). However, they have scarcely 

been applied to metabolomics data. Moreover, none of these methods 

consider that phenotype associations can occur at different scales, 

ranging from global associations spanning entire pathways or even sets 

of pathways (e.g., “dense” associations between metabolomics and 

gender or BMI), to localized associations with only a few metabolites 

(e.g., “sparse” associations between metabolomics and insulin-like 

growth-factor I levels or asthma) (Do et al, 2017). For sparse 

associations, the identification and interpretation of modules is usually 

straightforward. However, modules for dense phenotype associations at 

the metabolite level are challenging to interpret due to their 

overwhelming number. To facilitate interpretation, the plethora of 

information at the fine-grained metabolite level can be condensed to a 

hierarchically superordinate level, such as a pathway network. Here, 

nodes correspond to entire pathways, edges represent pathway 

relationships, and modules reflect phenotype-associated processes 

covering sets of pathways.  

We have recently introduced a module identification algorithm for 

multifluid metabolomics data (Do et al, 2017). The approach was applied 

to blood concentrations of insulin-like growth factor (IGF-I) and gender 

as examples of sparse and dense phenotype associations, respectively. 

We here present MoDentify, a free R package implementing the 

approach for general use. In particular, MoDentify offers (i) the 

estimation of data-driven networks based on Gaussian graphical models 

(GGMs), (ii) module identification at both fine-grained metabolite level 

and more global pathway levels, and (iii) visualization of the identified 

modules in an interactive network through Cytoscape (Shannon et al, 

2003). MoDentify increases statistical power compared with classical 

association analysis due to the reduction of statistical noise and can 

easily be applied to any type of quantitative data because of its generic 

character. 

2 Description 

MoDentify identifies network-based modules that are highly affected by 

a phenotype of interest. The underlying network is either directly 

inferred from the data at the single metabolite or pathway level (see 

below) or can be provided from an external source. 

 

Network inference: MoDentify estimates either classical Pearson 

correlation networks or GGMs using the GeneNet R package (Opgen-

Rhein & Strimmer, 2007). GGMs are based on partial correlations, 

which represent associations between two variables corrected for all 

remaining variables in multivariate Gaussian distributions (Krumsiek et 

al, 2011). An important property of GGMs compared with Pearson 

correlation networks is their sparsity, because only direct correlations are 

included. At the fine-grained level, the GGM consists of nodes 

corresponding to metabolites and edges representing significant partial 

correlations between two nodes after multiple testing correction. At the 

pathway level, the GGM consists of nodes corresponding to entire 

pathways (sets of metabolites), whereas edges represent significant 

partial correlations between two pathways. To estimate a correlation 

network between pathways, representative values are computed for each 

pathway (see Pathway representation). Alternatively, a network from 

an external source can be provided. Importantly, all nodes in the network 

must be measured in the given dataset. 

 

Pathway representation: As stated above, in addition to regular 

network inference, MoDentify can build a network of interacting 

pathways. To this end, a new variable is defined as a representative for 

each pathway, which aggregates the total abundance of metabolites from 

the pathway into a single value. MoDentify provides two approaches for 

pathway representation: 

(1) eigenmetabolite approach: For each pathway, a principal 

component analysis (PCA) is performed after scaling all 

metabolites to a mean of 0 and a variance of 1. The first principle 

component  also termed eigenmetabolite  is used as a 

representative value for the entire set of variables in the pathway 

(Langfelder and Horvath 2007).  

(2) average approach: All variables are first scaled to mean 0 and 

variance 1. Subsequently, the pathway representative is 

calculated as the average of all variable values in the pathway. 

MoDentify computes the amount of explained variances explained by 

each eigenmetabolite per pathway to facilitate the choice between these 

two approaches. If explained variances are high, the eigenmetabolite 

approach should be used; otherwise, the average approach might be the 

more appropriate choice.  

 

Module identification: To identify functional modules, MoDentify uses 

a score maximization approach. Given a network, a scoring function, and 

a starting node (seed node) as the initial candidate module, the algorithm 

identifies an optimal module by score maximization. For a given 

candidate module, the following procedure is performed: Each 

neighboring node of the module is subsequently added to the candidate 

module, and the score of the extended module is calculated (see Module 

scoring). The neighbor resulting in the highest score improvement is 

finally added to the candidate module, if the new module score is higher 

than the score of each of its single components. The procedure is 

repeated until no further score improvements can be made, yielding the 

optimal module for the given seed node. In an optional consolidation 

step, overlapping optimal modules from different seed nodes are 

combined into one module, which is reevaluated by the scoring function.  

 

Module scoring: The score of a candidate module is obtained from the 

multivariable linear regression model  

 

𝑅 = 𝛽0 + 𝛽1 × 𝑃 + ∑ 𝛽𝑖+1 × 𝑐𝑖
|𝐶|
𝑖=1 + 𝜖  

 

where 𝑅 is the module representative defined by the eigenmetabolite or 

average approach (see Pathway representation), 𝛽0 is the intercept, 𝛽𝑖 

are the regression coefficients for the respective independent variables, 𝑃 

is the phenotype of interest, 𝐶 is an optional set of covariates 𝑐𝑖, and 𝜖 is 

a normally distributed error term. The module score is then defined as 

the negative log-transformed p-value of 𝛽1. The significance of the 

modules is assessed by correcting for the total number of nodes in the 

underlying network.  

 

Module visualization: MoDentify offers visualization of the identified 

modules within an interactive network in the open source software 

Cytoscape (Shannon et al, 2003). The network contains different node 

colors and node sizes, which depict the membership of a node in a 

certain module and its association with the given phenotype from a 

classical, single-molecule association analysis, respectively. Moreover, 

significance of the phenotype association is indicated by diamond-

shaped nodes. In addition to returning R data structures and producing 

flat-file results, one of the main advantages of our module visualization 

is the direct call of Cytoscape from within R via the RCytoscape package 

(Shannon et al, 2013) for external visualization, without cumbersome 

exporting of data files from R and re-importing them into Cytoscape.  
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MoDentify: Modules in metabolomics networks 

3 Application example 

We demonstrate the easy use of MoDentify on plasma, urine, and saliva 

metabolomics data from the Qatar Metabolomics Study on Diabetes 

(QMDiab) (Mook-Kanamori et al, 2014), aiming to identify functional 

modules associated with type 2 diabetes (T2D). The multifluid dataset 

comprises mass spectrometry-based metabolomics measurements for 190 

diabetes patients and 184 healthy controls of Arab and Asian ethnicities 

aged 17–81 years. The dataset consists of 1524 metabolites. For each 

metabolite, two levels of pathway annotation are available. The 

preprocessed QMDiab data (normalized, log-transformed, missing values 

handled, and scaled) are integrated within the MoDentify package. The 

dataset is also available from the following figshare repository via the 

following link https://doi.org/10.6084/m9.figshare.5904022. 

 

MoDentify was applied to the QMDiab dataset at both metabolite and 

pathway levels. The following code with default parameters produces a 

list of metabolite modules associated with T2D, as well as interactive 

visualization of the modules in the underlying network in Cytoscape 

(Figure 1A). Here, we only show code for the application of MoDentify 

at the metabolite level. Code for application at the pathway level (Figure 

1B) can be found in the package vignette, available from the GitHub 

repository. 

  
# Load MoDentify 
library(MoDentify) 
 
# Network inference 
met.graph <- generate.network(data = qmdiab.data, annotations = qmdiab.annos) 
 
# Module identification 
modules.summary <- identify.modules(graph = met.graph, data = qmdiab.data, 
                                  annotations = qmdiab.annos, 
                                  phenotype = qmdiab.phenos$T2D) 
 
# Module visualization 
draw.modules(graph = met.graph, summary = modules.summary) 

 

By default, generate.network estimates partial correlations between 

metabolites and assigns edges using a significance threshold of 𝛼 = 0.05 

after Bonferroni multiple testing correction. identify.modules searches 

network modules for the given phenotype, where the default module 

representation approach is the average approach, 𝛼 = 0.05 is set for 

significance filtering, and Bonferroni multiple testing correction is 

applied. The output structure modules.summary contains a list of 

modules with their components and scores, which can be visualized 

within an interactive network in Cytoscape using draw.modules.  

 

MoDentify identified 36 modules for T2D at the metabolite level (Figure 

1A). Many of these modules consist of metabolites that are not 

significantly associated with T2D if considered alone. However, in 

interplay with other metabolites, they form a module that is more 

strongly associated with T2D than all of its single components. This 

increased statistical power in MoDentify can be attributed to the 

reduction of statistical noise when aggregating module components and 

allows the detection of links between metabolites and phenotype that 

would have been missed with classical association analysis. MoDentify 

found several modules containing metabolites from at least two fluids. 

For instance, one module (orange in Figure 1A) comprises the three 

vitamin B derivatives plasma pantothenate (vitamin B5) and pyridoxate 

(vitamin B6), and urine riboflavin (vitamin B2). Although pyridoxate and 

riboflavin are not related to T2D when analyzed alone, they form a 

module in combination with pantothenate that is significantly associated 

with the phenotype. This module corroborates previous observations that 

vitamin B levels in blood and urine are associated with T2D (Nix et al, 

2015; Unoki-Kubota et al, 2010; Valdés-Ramos et al, 2015). In addition, 

the results indicate that not only the concentration levels in blood and 

urine but also exchange processes between the two fluids are linked to 

T2D as well. At the pathway level (Figure 1B), six modules were 

detected. These modules show the interplay of multiple pathways in 

diabetes. For instance, one module comprises plasma metabolites from 

glutathione and histidine metabolism and urinary metabolites from 

histidine metabolism (yellow in Figure 1B). Although histidine and 

glutathione were shown to be related to diabetes in previous studies 

(Kimura et al, 2013; Sekhar et al, 2011), the identified module suggests 

that histidine and glutathione metabolism as well as the secretion of 

histidine derivatives might be part of the same process in T2D. 

4 Conclusion 

To the best of our knowledge, MoDentify implements the first approach 

for the systematic identification of phenotype-driven modules at different 

layers of resolution. To this end, the algorithm allows the estimation of 

data-driven networks based on Pearson or partial correlations. 

Optionally, a network from an external source can be provided. To 

facilitate result interpretation for different scales of phenotype 

associations, MoDentify enables the module search at both fine-grained 

metabolite level and more global pathway levels. Owing to the increased 

statistical power of the approach, novel links between clinical parameters 

and molecular levels can be detected. We presented an application 

Figure 1 Visualization of identified modules for type 2 diabetes. The metabolomics 

networks with embedded modules at metabolite level (A) and pathway level (B) are 

screenshots of the interactive versions in Cytoscape produced by MoDentify. Zoom-ins 

have been added to highlight examples for MoDentify's increased statistical power and its 

ability to extract biologically valuable insights. Round nodes correspond to metabolic 

entities not significantly associated with T2D when considered alone. Diamond nodes 

represent metabolic entities significantly related to T2D. 
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example using a complex multifluid metabolomics dataset, but owing to 

its generic character, this approach can be applied for any quantitative 

dataset. 
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