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2 Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and                 
Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research              
Organisation (CSIRO) which was made available at the ADNI database (www.loni.usc.edu/ADNI). The            
AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL                
researchers are listed at www.aibl.csiro.au. 
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Abstract 
A large number of papers have introduced novel machine learning and feature extraction             
methods for automatic classification of Alzheimer’s disease (AD). However, while the vast            
majority of these works use the public dataset ADNI for evaluation, they are difficult to               
reproduce because different key components of the validation are often not readily available.             
These components include selected participants and input data, image preprocessing and           
cross-validation procedures. The performance of the different approaches is also difficult to            
compare objectively. In particular, it is often difficult to assess which part of the method (e.g.                
preprocessing, feature extraction or classification algorithms) provides a real improvement, if           
any. In the present paper, we propose a framework for reproducible and objective             
classification experiments in AD using three publicly available datasets (ADNI, AIBL and            
OASIS). The framework comprises: i) automatic conversion of the three datasets into a             
standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and             
classification methods, together with an evaluation framework, that provide a baseline for            
benchmarking the different components. We demonstrate the use of the framework for a             
large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this              
evaluation, we assess the influence of different modalities, preprocessing, feature types           
(regional or voxel-based features), classifiers, training set sizes and datasets. Performances           
were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification              
tasks. No difference in performance was found for the use of different atlases, image              
smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and              
L2-logistic regression resulted in similar performance and both outperformed random forests.           
The classification performance increased along with the number of subjects used for training.             
Classifiers trained on ADNI generalized well to AIBL and OASIS, performing better than the              
classifiers trained and tested on each of these datasets independently. All the code of the               
framework and the experiments is publicly available. 

 

Keywords ​:  

classification, reproducibility, Alzheimer's disease, magnetic resonance imaging, positron        
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1. Introduction 
Alzheimer’s disease (AD) affects over 20 million people worldwide. Identification of AD at             
an early stage is important for adequate care of patients and for testing of new treatments.                
Neuroimaging provides useful information to identify AD ​(Ewers et al., 2011) ​: atrophy due             
to gray matter loss with anatomical magnetic resonance imaging (MRI), hypometabolism           
with ​18​F-fluorodeoxyglucose positron emission tomography (FDG PET), accumulation of         
amyloid-beta protein with amyloid PET imaging. A major interest is then to analyze those              
markers to identify AD at an early stage. In particular, machine learning methods have the               
potential to assist in identifying patients with AD by learning discriminative patterns from             
neuroimaging data. 

A large number of machine learning approaches have been proposed to classify and             
predict AD stages (see ​(Falahati et al., 2014; Haller et al., 2011; Rathore et al., 2017) for                 
reviews). Some of them make use of a single imaging modality (usually anatomical MRI)              
(Cuingnet et al., 2011; Fan et al., 2008; Klöppel et al., 2008; Liu et al., 2012; Tong et al.,                   
2014) and others have proposed to combine multiple modalities (MRI and PET images, fluid              
biomarkers) ​(Gray et al., 2013; Jie et al., 2015; Teipel et al., 2015; Young et al., 2013; Yun et                   
al., 2015; Zhang et al., 2011) ​. Validation and comparison of such approaches require a large               
number of patients followed over time. A large number of published works uses the publicly               
available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. However, the         
objective comparison between their results is almost impossible because they differ in terms             
of: i) subsets of patients (with unclear specification of selection criteria); ii) image             
preprocessing pipelines (and thus it is not clear if the superior performance comes from the               
classification or the preprocessing); iii) feature extraction and selection; iv) machine learning            
algorithms; v) cross-validation procedures and vi) reported evaluation metrics. Because of           
these differences, it is arduous to conclude which methods perform the best, and even              
whether a given modality provides useful additional information. As a result, the practical             
impact of these works has remained very limited.  

Comparison papers ​(Cuingnet et al., 2011; Sabuncu et al., 2014) and challenges            
(Allen et al., 2016; Bron et al., 2015) have been an important step towards objective               
evaluation of machine learning methods by allowing the benchmark of different methods on             
the same dataset and with the same preprocessing. Nevertheless, such studies provide a             
“static” assessment of methods. Evaluation datasets are used in their current state at the time               
of the study, whereas new patients are continuously included in studies such as ADNI.              
Similarly, they are limited to the classification and preprocessing methods that were used at              
the time of the study. It is thus difficult to complement them with new approaches. 

In this paper, we propose a framework for the reproducible evaluation of machine             
learning algorithms in AD and demonstrate its use on classification of PET and MRI data               
obtained from three publicly available datasets: ADNI, the Australian Imaging Biomarker           
and Lifestyle study (AIBL) and the Open Access Series of Imaging Studies (OASIS).             
Specifically, our contributions are three-fold: 
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i) a framework for the management of publicly available datasets and their continuous             
update with new subjects, and in particular tools for fully automatic conversion into             
the Brain Imaging Data Structure  (BIDS) format ​(Gorgolewski et al., 2016) ​; 3

ii) a modular set of preprocessing pipelines, feature extraction and classification           
methods, together with an evaluation framework, that provide a baseline for           
benchmarking of different components; 

iii) a large-scale evaluation on T1 MRI and PET data from three publicly available              
neuroimaging datasets (ADNI, AIBL and OASIS).  

We demonstrate the use of this framework for automatic classification from T1 MRI             
and PET data obtained from three datasets (ADNI, AIBL and OASIS). We assess the              
influence of various components on the classification performance: modality (T1 MRI or            
PET), feature type (voxel or regional features), preprocessing, diagnostic criteria (clinical or            
clinico-biological), classification algorithm. Experiments were first performed on the ADNI,          
AIBL and OASIS datasets independently, and the generalization of the results was assessed             
by applying classifiers trained on ADNI to the AIBL and OASIS data.  

The code is open source and available at ​https://gitlab.icm-institute.org/aramislab/AD-ML​.  

 

  

3 http://bids.neuroimaging.io 
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2. Materials 

2.1. Datasets 
Part of the data used in the preparation of this article were obtained from the Alzheimer’s                
Disease Neuroimaging Initiative database (adni.loni.usc.edu). The ADNI was launched in          
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.             
The primary goal of ADNI has been to test whether serial MRI, PET, other biological               
markers, and clinical and neuropsychological assessment can be combined to measure the            
progression of mild cognitive impairment (MCI) and early AD. Over 1,650 participants were             
recruited across North America during the three phases of the study (ADNI1, ADNI GO and               
ADNI2). Around 400 participants were diagnosed with AD, 900 with MCI and 350 were              
control subjects. Three main criteria were used to classify the subjects ​(Petersen et al., 2010) ​.               
The normal subjects had no memory complaints, while the subjects with MCI and AD both               
had to have complaints. CN and MCI subjects had a mini-mental state examination (MMSE)              
score between 24 and 30 (inclusive), and AD subjects between 20 and 26 (inclusive). The CN                
subjects had a clinical dementia rating (CDR) score of 0, the MCI subjects of 0.5 with a                 
mandatory requirement of the memory box score being 0.5 or greater, and the AD subjects of                
0.5 or 1. The other criteria can be found in ​(Petersen et al., 2010)​. 

We also used data collected by the AIBL study group. Similarly to ADNI, the              
Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing seeks to discover            
which biomarkers, cognitive characteristics, and health and lifestyle factors determine the           
development of AD. AIBL has enrolled 1100 participants and collected over 4.5 years worth              
of longitudinal data: 211 AD patients, 133 MCI patients and 768 comparable healthy             
controls. AIBL study methodology has been reported previously ​(Ellis et al., 2010, 2009) ​.             
Briefly, the MCI diagnoses were made according to a protocol based on the criteria of               
(Winblad et al., 2004) and the AD diagnoses on the NINCDS-ADRDA criteria ​(McKhann et              
al., 1984) ​. Note that about half of the subjects diagnosed as healthy controls reported memory               
complaints ​(Ellis et al., 2010, 2009) ​ . 

Finally, we used data from the Open Access Series of Imaging Studies project whose              
aim is to make MRI datasets of the brain freely available to the scientific community. We                
focused on the "Cross-sectional MRI Data in Young, Middle Aged, Nondemented and            
Demented Older Adults" set ​(Marcus et al., 2007) ​, which consists of a cross-sectional             
collection of 416 subjects aged 18 to 96. 100 of the included subjects over the age of 60 have                   
been clinically diagnosed with very mild to moderate AD. The criteria used to evaluate the               
diagnosis was the CDR score. All participants with a CDR greater than 0 were diagnosed               
with probable AD. Note that there are no MCI subjects in OASIS. 
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2.2. Participants 

2.2.1. ADNI 

Three subsets were created from the ADNI dataset: ADNI ​T1w​, ADNI ​CLASS and ADNI ​CLASS, Aß​.             
ADNI ​T1w comprises all participants (N=1,628) for whom a T1-weighted (T1w) MRI image            
was available at baseline. ADNI ​CLASS comprises 1,159 participants for whom a T1w MRI             
image and an FDG PET scan, with a known effective resolution, were available at baseline.               
ADNI ​CLASS, Aß is a subset of ADNI ​CLASS

​that comprises 918 participants with a known amyloid               
status determined from a PiB or an AV45 PET scan using 1.47 and 1.10 as cutoffs,                
respectively ​(Landau et al., 2013) ​. For each ADNI subset, five diagnosis groups were             
considered:  

● CN: subjects who were diagnosed as CN at baseline; 

● AD: subjects who were diagnosed as AD at baseline; 

● MCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline; 

● pMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were             
followed during at least 36 months and progressed to AD between their first visit and               
the visit at 36 months; 

● sMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were             
followed during at least 36 months and did not progress to AD between their first visit                
and the visit at 36 months. 

Naturally, all participants in the pMCI and sMCI groups are also in the MCI group.               
Note that the reverse is false, as some MCI subjects did not convert to AD but were not                  
followed long enough to state whether they were sMCI or pMCI. We did not consider the                
subjects with significant memory concerns (SMC) as this category only exists in ADNI 2. 

Tables 1, 2 and 3 summarise the demographics, and the MMSE and global CDR              
scores of the participants composing ADNI​T1w​, ADNI​CLASS​ and ADNI ​CLASS, Aß​. 

 

 

Table 1 Summary of participant demographics, mini-mental state examination (MMSE) and           
global clinical dementia rating (CDR) scores for ADNI​T1w​.  

 N Age Gender MMSE CDR 

CN 418 74.7 ± 5.8 [56.2, 89.6] 209 M / 209 F 29.1 ± 1.1 [24, 30] 0: 417; 0.5: 1 

MCI 868 73.0 ± 7.6 [54.4, 91.4] 512 M / 356 F 27.6 ± 1.8 [23, 30] 0: 2; 0.5: 865; 1: 1 

AD 342 75.0 ± 7.8 [55.1, 90.9] 189 M /153 F 23.2 ± 2.1 [18, 28] 0.5: 165; 1: 176; 2: 1 

Values are presented as mean ​ ± ​SD [range]. M: male, F: female 
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​Table 2 Summary of participant demographics, mini-mental state examination (MMSE) and            
global clinical dementia rating (CDR) scores  for ADNI​CLASS​. 

 N Age Gender MMSE CDR 

CN 282 74. 3 ± 5.9 [56.2, 89.0] 147 M / 135 F 29.0 ± 1.2 [24, 30] 0: 281; 0.5: 1 

MCI 640 72.7 ± 7.5 [55.0, 91.4] 378 M / 262 F 27.8 ± 1.8 [23, 30] 0: 1;  0.5: 638; 1:1 

sMCI 342 71.8 ± 7.5 [55.0, 88.6] 202 M / 140 F 28.1± 1.6 [23, 30] 0.5: 342 

pMCI 167 74.9 ± 6.9 [55.0, 88.3] 98 M / 69 F 27.0 ± 1.7 [24, 30] 0.5: 166; 1: 1 

AD 237 74.9 ± 7.8 [55.1, 90.3] 137 M / 100 F 23.2 ± 2.1 [18, 27] 0.5: 99; 1: 137; 2: 1 

 ​ Values are presented as mean ​ ± ​SD [range]. M: male, F: female 

  

Table 3 Summary of participant demographics, mini-mental state examination (MMSE) and           
global clinical dementia rating (CDR) scores for ADNI ​CLASS, Aß​. The amyloid status (Aß-:             
negative, Aß+: positive) was determined from each participant’s amyloid PET scan (PiB or             
AV45). 

   N Age Gender MMSE CDR 

CN Aß- 116 72.2 ± 6.1 [56.2, 89.0] 60 M / 56 F 29.0 ± 1.3 [24,30]] 0: 115; 0.5: 1 

Aß+ 63 75.7 ± 5.8 [65.7, 85.6] 26 M / 37 F 28.9 ± 1.1 [24, 30] 0: 63 

MCI Aß- 195 70.0 ± 7.9 [55.0, 91.4] 107 M / 88 F 28.5 ± 1.4 [24, 30] 0: 1; 0.5: 193; 1: 1 

Aß+ 253 73.0 ± 6.8 [55.0, 87.8] 142 M / 111 F 27.7 ± 1.8 [23, 30] 0.5: 253 

sMCI Aß- 147 69.7 ± 7.7 [55.5, 91.4] 82 M / 65 F 28.5 ± 1.4 [25, 30] 0.5: 147 

Aß+ 118 72.5 ± 6.5 [55.0, 87.8] 67 M / 51 F 27.9± 1.7 [23, 30] 0.5: 118 

pMCI Aß- 10 70.1 ± 6.7 [60.0, 81.6] 5 M / 5 F 27.6 ± 2.0 [24, 30] 0.5: 9; 1: 1 

Aß+ 84 73.2 ± 6.9 [55.0, 85.9] 47 M / 37 F 27.2 ± 1.8 [24, 30] 0.5: 84 

AD Aß- 18 77.2 ± 8.1 [60.6, 90.3] 16 M / 2 F 23.4 ± 2.0 [20, 26] 0.5: 7; 1: 11  

Aß+ 126 74.1 ± 8.1 [55.1, 90.3] 65 M / 61 F 22.9 ± 2.1 [19, 26] 0.5: 54; 1: 71; 2: 16 

 ​ Values are presented as mean ​ ± ​SD [range]. M: male, F: female 
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2.2.2. AIBL 

The AIBL dataset considered in this work is composed of 608 participants for whom a               
T1-weighted MRI image was available at baseline. The criteria used to create the diagnosis              
groups are identical to the ones used for ADNI. ​Table 4 summarises the demographics, and               
the MMSE and global CDR scores of the AIBL participants. 

 

Table 4 Summary of participant demographics, mini-mental state examination (MMSE) and           
global clinical dementia rating (CDR) scores for AIBL. 

  N Age Gender MMSE CDR 

CN 442 72.5 ± 6.2 [60, 92] 191 M / 251 F 28.7 ± 1.2 [25, 30] 0: 415; 0.5: 26; 1: 1 

MCI 94 75.2 ± 7.0 [60, 96] 50 M / 44 F 27.1 ± 2.1 [20, 30] 0: 6; 0.5: 87; 1: 1 

sMCI 21 75.8 ± 6.1 [64, 87] 12 M / 9 F 27.9 ± 1.6 [25, 30] 0.5: 21 

pMCI 16 78.0 ± 7.3 [63, 91] 8 M / 8 F 26.9 ± 2.0 [22, 30] 0.5: 16 

AD 72 73.4 ± 7.9 [55, 93] 30 M / 42 F 20.5 ± 5.6 [6, 29] 0.5: 31; 1: 32; 2: 7; 3: 2 

 ​ Values are presented as mean ​ ± ​SD [range]. M: male, F: female 

 

2.2.3. OASIS 

The OASIS dataset considered in this work is composed of 193 participants aged 61 years or                
more (minimum age of the participants diagnosed with AD). ​Table 5 summarises the             
demographics, and the MMSE and global CDR scores of the OASIS participants.  

 

Table 5 Summary of participant demographics, mini-mental state examination (MMSE) and           
global clinical dementia rating (CDR) scores for OASIS. 

  N Age Gender MMSE CDR 

CN 93 76.8 ± 8.4 [62, 94] 25 M / 68 F 28.9 ± 1.21 [25, 30] 0: 93 

AD 100 76.8 ± 7.1 [62, 96] 41 M / 59 F 24.3 ± 4.15 [14, 30] 0.5: 70; 1: 28; 2: 2 

 Values are presented as mean ​ ± ​SD [range]. M: male, F: female 
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2.3. Imaging data 

2.3.1. ADNI 

2.3.1.1. T1-weighted MRI 

The acquisition protocols of the 3D T1w images can be found in ​(Jack et al., 2008) for ADNI                  
1 and ​(Jack et al., 2010a) for ADNI GO/2. The images can be downloaded as they were                 
acquired or after having undergone several preprocessing correction steps, which include           
correction of image geometry distortion due to gradient non-linearity (gradwarp), correction           
of the image intensity non-uniformity that occurs when RF transmission is performed with a              
more uniform body coil while reception is performed with a less uniform head coil (B1               
non-uniformity), and reduction of intensity non-uniformity due to the wave or the dielectric             
effect at 3T or of residual intensity non-uniformity for 1.5T scans (N3) ​(Jack et al., 2010a,                
2008) ​. 

2.3.1.2. PET 

The ADNI FDG PET protocol consisted of a dynamic acquisition of six five-minute frames              
(ADNI 1) or four five-minute frames (ADNI GO/2), 30 to 60 minutes post-injection ​(Jagust              
et al., 2015, 2010) ​. Images at different stages of preprocessing (frame averaging, spatial             
alignment, interpolation to a standard voxel size, and smoothing to a common resolution of 8               
mm full width at half maximum) are available for download. Even though not used in the                
experiments, 11C-Pittsburgh compound B (PIB), for ADNI 1, and 18F-Florbetapir, also           
known as AV45, for ADNI 1/GO/2, were acquired to image the deposition of amyloid in the                
brain. The protocol consisted of a dynamic acquisition of four five-minute frames from 50 to               
70 minutes post-injection (Jagust et al., 2015, 2010). As for the FDG PET, images at different                
stages of preprocessing are available for download. 

2.3.2. AIBL 

The T1w MRI images used for the AIBL subjects were acquired using the ADNI 3D T1w                
sequence, with 1 ✕ 1 mm in-plane resolution and 1.2 mm slice thickness,             
TR/TE/TI=2300/2.98/900, flip angle 9°, and field of view 240 ✕ 256 and 160 slices ​(Ellis et                
al., 2010) ​. Even though they were not used in the experiments, Florbetapir, PiB and              
Flutemetamol PET data were also acquired. 

2.3.3. OASIS 

For each OASIS subject, three or four T1w images, with 1 ✕ 1 mm in-plane resolution and                 
1.25 mm slice thickness, TR/TE/TI=9.7/4.0/20, flip angle 10°, field of view 256 ✕ 256 and               
128 slices, were acquired on a 1.5 T scanner in a single imaging session ​(Marcus et al.,                 
2007) ​. For each subject, an average of the motion-corrected co-registered images resampled            
to 1 mm isotropic voxels, as well as spatially normalized images, are also available for               
download.  
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3. Methods 
We developed a unified set of tools for data management, image preprocessing, feature             
extraction, classification, and evaluation. Conversion tools allow an easy update of the            
datasets as new subjects become available. The different components were designed in a             
modular way: processing pipelines using Nipype ​(Gorgolewski et al., 2011) ​, and           
classification and evaluation tools using the scikit-learn library. This allows the development            4

and testing of other methods as replacement for a given step, and the objective measurement               
of the impact of each component on the results. A simple command line interface is provided                
and the code can also be used as a Python library. 

3.1. Converting datasets to a standardized data structure 
Even though public datasets are extremely valuable, an important difficulty with these studies             
lies in the organization of the clinical and imaging data. As an example, the ADNI and AIBL                 
imaging data, in the state they are downloaded, do not rely on community standards for data                
organization and lack of a clear structure. Multiple image acquisitions exist for a given visit               
of a participant and the complementary image information is contained in numerous csv files,              
making the exploration of the database and subject selection very complicated. To organize             
the data, we selected the BIDS format ​(Gorgolewski et al., 2016) ​, a community standard              
enabling the storage of multiple neuroimaging modalities. Being based on a file hierarchy             
rather than on a database management system, BIDS can be easily deployed in any              
environment. Very importantly, we provide the code that automatically performs the           
conversion of the data as they were downloaded to the BIDS organized version, for all the                
datasets used: ADNI, AIBL and OASIS. This allows direct reproducibility by other groups             
without having to redistribute the dataset, which is not allowed in the case of ADNI and                
AIBL. We also provide tools for subject selection according to desired imaging modalities,             
duration of follow up and diagnoses, which makes possible the use of the same groups with                
the largest possible number of subjects across studies. Finally, we propose a BIDS-inspired             
standardized structure for all the outputs of the experiments. 

3.1.1. Conversion of the ADNI dataset to BIDS 

For each ADNI participant, among the multiple scans available per session, we selected a              
single scan per imaging modality. Regarding the T1 scans, gradwarp and B1-inhomogeneity            
corrected images were selected when available as these corrections can be performed in a              
clinical setting, otherwise the original image was selected. When several T1 scans were             
available for a single session, the preferred scan (as identified in           
MAYOADIRL_MRI_IMAGEQC_12_08_15.csv) was chosen. If a preferred scan was not         
specified then the higher quality scan (as defined in MRIQUALITY.csv) was selected. If no              
quality control was found, then we chose the first scan. 1.5 T images were preferred for                
ADNI 1 since they were available for a larger number of patients. Regarding the FDG PET                
scans, the images co-registered and averaged across time frames were selected. The scans             
failing quality control (if specified in PETQC.csv) were discarded. Note that AV45 PET was              
also converted, though not used in the experiments. 

4  http://scikit-learn.org 
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3.1.2. Conversion of the AIBL dataset to BIDS 

For each AIBL participant, the only T1w MRI image available per session was converted.              
Note that even though they were not used in this work, we also converted the Florbetapir, PiB                 
and Flutemetamol PET images (only one image per tracer was available for each session). 

3.1.3. Conversion of the OASIS dataset to BIDS 

Among the multiple T1w MRI images available, we selected the average of the             
motion-corrected co-registered individual images resampled to 1 mm isotropic voxels,          
located in the SUBJ_111 subfolder. 

 

3.2. Preprocessing pipelines 
Two pipelines were developed to preprocess the anatomical T1w MRI and PET images.             
These pipelines have a modular structure based on Nipype allowing the user to easily connect               
and/or replace components. We chose to develop pipelines following well established           
procedures based on the use of publicly available standard image processing tools.  

3.2.1. Preprocessing of T1-weighted MRI images 

For anatomical T1w MRI, the preprocessing pipeline was based on SPM12 . First, the             5

Unified Segmentation procedure ​(Ashburner and Friston, 2005) is used to simultaneously           
perform tissue segmentation, bias correction and spatial normalization of the input image.            
Next, a group template is created using DARTEL, an algorithm for diffeomorphic image             
registration ​(Ashburner, 2007) ​, from the subjects’ tissue probability maps on the native space,             
usually GM, WM and CSF tissues, obtained at the previous step. Here, not only the group                
template is obtained, but also the deformation fields from each subject’s native space into the               
DARTEL template space. Lastly, the DARTEL to MNI method ​(Ashburner, 2007) is applied,             
providing a registration of the native space images into the MNI space: for a given subject its                 
flow field into the DARTEL template is combined with the transformation of the DARTEL              
template into MNI space, and the resulting transformation is applied to the subject’s different              
tissue maps. As a result, all the images are in a common space, providing a voxel-wise                
correspondence across subjects. 

3.2.2. Preprocessing of PET images 

The PET preprocessing pipeline relies on SPM12 and on the PETPVC tool for partial              6

volume correction (PVC) ​(Thomas et al., 2016) ​. We assume that each PET image has a               
corresponding T1w image that has been preprocessed using the pipeline described above. The             
first step is to perform a registration of the PET image to the corresponding T1w image in                 
native space using the Co-register method of SPM ​(Friston et al., 1995) ​. An optional PVC               
step with the regional voxel-based (RBV) method ​(Thomas et al., 2011) can be performed              
using as input regions the different tissue maps from the T1w in native space. Then, the PET                 
image is registered into MNI space using the same transformation as for the corresponding              
T1w (the DARTEL to MNI method is used). The PET image in MNI space is then intensity                 

5 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
6 https://github.com/UCL/PETPVC 
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normalized according to a reference region (eroded pons for FDG PET) and we obtain a               
standardized uptake value ratio (SUVR) map. Finally, we mask the non-brain regions using a              
binary mask resulting from thresholding the sum of the GM, WM and CSF tissue probability               
maps for the subject in MNI space. The resulting masked SUVR images are also in a                
common space and provide voxel-wise correspondence across subjects. 

 

3.3. Feature extraction 
Two types of features were extracted from the imaging data: voxel and region features. After               
preprocessing, both the T1w MRI and FDG PET images are in the MNI space. The first type                 
of features simply corresponds, for each image, to all the voxels in the brain. The signal                
obtained from the T1w MRI images is the gray matter density and the one obtained from the                 
FDG PET images is the SUVR. 

Regional features correspond to the average signal (gray matter density or SUVR,            
respectively) computed in a set of regions of interest (ROIs) obtained from different atlases,              
also in MNI space. The five atlases selected contain both cortical and subcortical regions, and               
cover the brain areas affected by AD. They are described below:  

● AAL2 ​(Tzourio-Mazoyer et al., 2002) is an anatomical atlas based on a single subject.              
It is the updated version of AAL, which is probably the most widely used parcellation               
map in the neuroimaging literature. It was built using manual tracing on the spatially              
normalized single-subject high-resolution T1 volume in MNI space ​(Holmes et al.,           
1998) ​. It is composed of 120 regions covering the whole cortex as well as the main                
subcortical structures.  

● AICHA ​(Joliot et al., 2015) is a functional atlas based on multiple subjects. It was               
built using parcellation of group-level functional connectivity profiles computed from          
resting-state fMRI data of 281 healthy subjects. It is composed of 345 regions             
covering the whole cortex as well as the main subcortical structures. 

● Hammers ​(Gousias et al., 2008; Hammers et al., 2003) is an anatomical atlas based on               
multiple subjects. It was built using manual tracing on anatomical MRI from 30             
healthy subjects. The individual subjects parcellations were then registered to MNI           
space to generate a probabilistic atlas as well as a maximum probability map. The              
latter was used in the present work. It is composed of 69 regions covering the whole                
cortex as well as the main subcortical structures.  

● LPBA40 ​(Shattuck et al., 2008) is an anatomical atlas based on multiple subjects. It              
was built using manual tracing on anatomical MRI from 40 healthy subjects. The             
individual subject parcellations were then registered to MNI space to generate a            
maximum probability map. It is composed of 56 regions covering the whole cortex as              
well as the main subcortical structures. 

● Neuromorphometrics is an anatomical atlas based on multiple subjects. It was built            7

using manual tracing on anatomical MRI from 30 healthy subjects. The individual            
subject parcellations were then registered to MNI space to generate a maximum            
probability map. It is composed of 140 regions covering the whole cortex as well as               

7 www.neuromorphometrics.com 
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the main subcortical structures. Data were made available for the “MICCAI 2012            
Grand Challenge and Workshop on Multi-Atlas Labeling”. 

The main difference between the LBPA40, Hammers and Neuromorphometrics         
atlases is the degree of detail (i.e. the number of regions) of the anatomical parcellation. 

  

3.4. Classification models 
We included three different classifiers: linear SVM, logistic regression with L2           
regularization, and random forest. The linear SVM was used with both the voxel and the               
regional features because its computational complexity depends only on the number of            
subjects when using its dual form. On the other hand, the logistic regression with L2               
regularization and random forest models were only used for the region-based analyses given             
that their complexity depends on the number of features, which becomes infeasible with             
images containing about 1 million voxels. We used the implementations of the scikit-learn             
library. 

For each of the tasks performed, we obtain the feature weights that describe the              
importance of a given feature for the current classification task. These weights are stored as               
part of the output of the classifications, as is the information to reconstruct the classifiers, like                
the optimal parameters found. We can obtain, for each classification, an image with the              
representation of weights across brain voxels or regions.  

3.4.1. Linear SVM 

The first method included is linear SVM. To reduce computational load, the Gram matrix K =                
( ​k​( ​x​i​, ​x​j​)) ​i, j was precalculated using a linear kernel ​k for each pair of images ( ​x ​i​, ​x ​j​) (using                  
the region or voxel features) for the provided subjects. This Gram matrix is used as input for                 
the generic SVM. We chose to optimize the penalty parameter C of the error term. An                
advantage of SVM is that, when using a precomputed Gram matrix (dual SVM), computing              
time depends on the number of subjects, and not on the number of features. Given its                
simplicity, linear SVM is useful as a baseline to compare the performance of the different               
methods.  

3.4.2. Logistic regression with L2 regularization 

The second method is logistic regression with L2 regularization (which is classically used to              
reduce overfitting). We optimized, as for the linear SVM, the penalty parameter C of the error                
term. Logistic regression with L2 regularization directly optimizes the weights for each            
feature, and the number of features influences the training time. This is the reason why we                
only used it for regional features. 

3.4.3. Random forest 

The third classifier used is the random forest. Unlike both linear SVM and logistic regression,               
random forest is an ensemble method that fits a number of decision trees on various               
sub-samples of the dataset. The combined estimator prevents overfitting and improves the            
predictive accuracy. Based on the implementation provided by the scikit-learn library, there is             
a large number of parameters that can be optimized. After preliminary experiments to assess              
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which had a larger influence, we selected the following two hyperparameters to optimize: i)              
the number of trees in the forest; ii) the number of features to consider when looking for the                  
best split. Random forest was only used for regional features and not voxel features, due to its                 
high computational cost. 

 

3.5. Evaluation strategy 

3.5.1. Cross-validation 

Evaluation of classification performances mainly followed the recent guidelines provided by           
(Varoquaux et al., 2017) ​. Cross-validation (CV), the classical strategy to maintain the            
independence of the train set (used for fitting the model) and the test set (used to evaluate the                  
performances), was performed. The CV procedure included two nested loops: an outer loop             
evaluating the classification performances and an inner loop used to optimize the            
hyperparameters of the model (C for SVM and L2 logistic regression, the number of trees and                
features for a split for the random forest). It should be noted that the use of an inner loop of                    
CV is important to avoid biasing performances upward when optimizing hyperparameters.           
This step has not always been appropriately performed in the literature ​(Querbes et al., 2009;               
Wolz et al., 2011) ​ leading to over-optimistic results, as presented in ​(Maggipinto et al., 2017)​.  

We implemented three different outer CV methods: k-fold, repeated k-fold and           
repeated random splits (all of them stratified), using scikit-learn based tools. The choice of              
the method would depend on the computational resources at hand. However, whenever            
possible, it is recommended to use repeated random splits with a large number of repetitions               
to yield more stable estimates of performances and better estimates of empirical variance.             
Therefore, we used for each experiment 250 iterations of random splits. We report the full               
distribution of the evaluation metrics in addition to the mean and empirical            
standard-deviation, as done in ​(Raamana and Strother, 2017)​ that uses of neuropredict .  8

For hyperparameter optimization, we implemented an inner k-fold. For each split, the            
model with the highest balanced accuracy is selected, and then these selected models are              
averaged across splits to profit of model averaging, that should have a stabilizing effect. In               
the present paper, experiments were performed with k=10 for the inner loop. 

3.5.2. Metrics 

As output of the classification, we report the balanced accuracy, area under the ROC curve               
(AUC), accuracy, sensitivity, specificity and, in addition, the predicted class for each subject,             
so the user can calculate other desired metrics with this information.  

 

3.6. Classification experiments 
The different classification tasks considered in our analyses for each dataset, driven by the              
data availability, are detailed in ​table 6​. Details regarding the group compositions can be              
found in tables 2 to 5. In general, we perform clinical diagnosis classification tasks, or               

8 ​https://github.com/raamana/neuropredict  
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“predictive” tasks of the evolution of MCI subjects. Note that tasks involving progression             
from MCI to AD were not performed for AIBL due to the small number of participants in the                  
sMCI and pMCI categories. However, the framework would allow performing these           
experiments very easily when more progressive MCI subjects become publicly available in            
AIBL. 

Depending on the type of features, the performance of several classifiers with            
different parameters was tested. For voxel features, the only classifier was the linear SVM.              
Four different levels of smoothing were applied to the images using a gaussian kernel, from               
no smoothing to up to 12 mm full width at half maximum (FWHM). For region-based               
classification experiments, three classifiers were tested: linear SVM, logistic regression and           
random forest. The features were extracted using five atlases: AAL2, AICHA, Hammers,            
LPBA40 and Neuromorphometrics. This information is summarized in ​table 7​. 

For the datasets under study, different imaging modalities were available: while both            
T1w MRI and FDG PET images were available for the ADNI participants, only T1w MRI               
were available for AIBL and OASIS participants. For each modality considered, both voxel             
and region features were extracted using the different parameters detailed in ​table 7​. All the               
classification experiments tested in this work are summarized in ​table 8​. If not otherwise              
stated, the FDG PET features were extracted from images that did not undergo PVC. 

 

 
 

Table 6​ List of classification tasks for each dataset 

tasks_ADNI tasks_AIBL tasks_OASIS 

CN vs AD CN vs AD CN vs AD 

CN vs pMCI CN vs MCI   

sMCI vs pMCI    

CN vs MCI    

CN- vs AD+     

CN- vs pMCI+     

sMCI- vs pMCI+     

sMCI+ vs pMCI+     

MCI- vs MCI+     
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Table 7​ ​Summary of classifiers and parameters used for each type of features. 

Voxel-based Linear SVM Smoothing 0 mm 

Smoothing 4 mm 

Smoothing 8 mm 

Smoothing 12 mm 

Region-based Linear SVM Atlas AAL2 

Atlas Neuromorphometrics 

Atlas Hammers 

Atlas LPBA40 

Atlas AICHA 

Logistic Regression Atlas AAL2 

Atlas Neuromorphometrics 

Atlas Hammers 

Atlas LPBA40 

Atlas AICHA 

Random Forest Atlas AAL2 

Atlas Neuromorphometrics 

Atlas Hammers 

Atlas LPBA40 

Atlas AICHA 

 

 

  

16 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/274324doi: bioRxiv preprint 

https://doi.org/10.1101/274324
http://creativecommons.org/licenses/by/4.0/


 

Table 8 Summary of all the classification experiments run in our analysis for each dataset,                
imaging modality, feature type (different parameters tested, see ​table 7​) and task (more             
details in ​table 6​). 

Dataset Imaging Modality Feature Type Tasks 

ADNI 

T1w MRI  
Voxel-based tasks_ADNI 

Region-based tasks_ADNI 

FDG PET 

With PVC 
Voxel-based tasks_ADNI 

Region-based tasks_ADNI 

Without PVC 
Voxel-based tasks_ADNI 

Region-based tasks_ADNI 

AIBL T1w MRI  
Voxel-based tasks_AIBL 

Region-based tasks_AIBL 

OASIS T1w MRI  
Voxel-based tasks_OASIS 

Region-based tasks_OASIS 
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4. Results 
Here, we present a selection of the results that we believe are the most valuable but all the                  
results (including other preprocessing parameters, features or classifiers) are available at           
https://gitlab.icm-institute.org/aramislab/AD-ML​. In the following subsections, we present       
the results using the balanced accuracy as performance metric but all the other metrics are               
available in the results.  

4.1. Influence of the atlas 
To assess the impact of the choice of atlas on the classification accuracy and to potentially                
identify a preferred atlas, the linear SVM classifier using regional features was selected.             
Features from T1w MRI and FDG PET images of ADNI participants were extracted using              
five different atlases: AAL2, AICHA, Hammers, LPBA40 and Neuromorphometrics. Three          
classification tasks were studied: CN vs AD, CN vs pMCI and sMCI vs pMCI. 

As shown in ​figure 1​, no specific atlas provides the highest classification accuracy for              
all the tasks. For example, Neuromorphometrics and AICHA provide better results for CN vs              
AD on T1w and FDG PET images, along with LBPA40 for T1w, while AAL2 provides the                
highest balanced accuracy for CN vs pMCI and sMCI vs pMCI on both imaging modalities.               
The same analysis was performed on AIBL subjects (T1w MRI images only) and, similarly,              
no atlas consistently performed better than others across tasks. For the following            
region-based experiments, the AAL2 atlas was chosen as reference atlas as it leads to good               
classification accuracies and is widely used in the neuroimaging community. Again, all other             
results are available in the repository. 

 

4.2. Influence of the smoothing 
T1w MRI and FDG PET images were not smoothed or smoothed using Gaussian kernels with               
FWHMs of 4 mm, 8 mm and 12 mm. To determine the influence of different smoothing                
degrees on the classification accuracy, a linear SVM classifier using voxel features was             
chosen. Three classification tasks were studied: CN vs AD, CN vs pMCI and sMCI vs pMCI.                
The results in ​figure 2 show that, for most classification tasks, the balanced accuracy does not                
vary to a great extent with the smoothing kernel size. The only variations are observed for the                 
CN vs pMCI and sMCI vs pMCI tasks when the features were extracted from T1w MRI                
images: the balanced accuracy increases slightly with the kernel size. The same analysis was              
run using T1w MRI images from the AIBL dataset. The mean balanced accuracy also              
increased slightly with the kernel size, but the standard deviations of the balanced accuracies              
are larger than for ADNI. As the degree of smoothing does not have a clear impact on the                  
classification performance, we chose to present the subsequent results related to the            
voxel-based classification with a reference smoothing of 4 mm. 
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Figure 1 Distribution of the balanced accuracies obtained from the T1w MRI (top) and FDG               
PET (bottom) images of ADNI participants using the reference classifier (linear SVM) and             
regional features from different atlases for the CN vs AD, CN vs pMCI and sMCI vs pMCI                 
tasks. 

 

4.3. Influence of the type of features 
We compared the balanced accuracies obtained for the voxel features with reference            
smoothing (gaussian kernel of 4 mm FWHM) to the ones obtained for the regional features               
with reference atlas (AAL2) when using linear SVM classifiers. These features were            
extracted from T1w MRI and FDG PET images of ADNI participants. The same three              
classification tasks as before were evaluated. 

The results, displayed in ​table 9​, do not show notable differences between the mean              
balanced accuracies obtained using voxel or regional features. In the case of the AIBL              
dataset, the balanced accuracy is higher for the region-based classification (for AD vs CN:              
voxel-based 0.79 [±0.059], region-based 0.86 [±0.042]), but we can observe that the            
corresponding standard deviations are high. 
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Figure 2 Distribution of the balanced accuracy obtained from the T1w (top) and FDG PET               
(bottom) images of ADNI participants using the reference classifier (linear SVM) and voxel             
features with different degrees of smoothing for the CN vs AD, CN vs pMCI and sMCI vs                 
pMCI tasks. 

 

Table 9 Mean balanced accuracy and standard deviation obtained for three tasks (CN vs AD,               
CN vs pMCI and sMCI vs pMCI) using the reference classifier (linear SVM) with voxel               
(reference smoothing: 4 mm) and region (reference atlas: AAL2) features extracted from T1w             
MRI and FDG PET images of ADNI subjects. 

 T1w – Linear SVM FDG PET – Linear SVM 

 Voxel-based  
(4 mm smoothing) 

Region-based 
(AAL2 atlas) 

Voxel-based  
(4 mm smoothing) 

Region-based 
(AAL2 atlas) 

CN vs AD 0.87 ​± 0.026 0.84 ​± 0.024 0.88 ​± 0.022 0.88 ​± 0.023 

CN vs pMCI 0.74 ​± 0.035 0.78 ​± 0.031 0.77 ​± 0.028 0.80 ​± 0.030 

sMCI vs pMCI 0.66 ​± 0.040 0.70 ​± 0.034 0.71 ​± 0.037 0.73 ​± 0.036 
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4.4. Influence of the classification method 
Region-based experiments were carried out using three different classifiers to evaluate if            
there were variations in balanced accuracies depending on the chosen classifier. Regional            
features were extracted using the reference AAL2 atlas from T1w MRI and FDG PET images               
of ADNI participants. The three previously defined classification tasks were performed. 

The results displayed in ​figure 3 show that both the linear SVM and logistic              
regression with L2 regularization models lead to similar balanced accuracies, consistently           
higher than the one obtained with random forest for all the tasks and imaging modalities               
tested. 

 
 

Figure 3 Distribution of the balanced accuracy obtained from the T1w MRI (top) and FDG               
PET (bottom) images of ADNI participants using different region-based classifiers (reference           
atlas: AAL2) for the CN vs AD, CN vs pMCI and sMCI vs pMCI tasks.  
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4.5. Influence of the partial volume correction of PET 
images  

Both region and voxel-based analyses were performed using linear SVM classifiers to            
evaluate if correcting PET images for partial volume effect had an influence on the              
classification accuracy. FDG PET images of ADNI participants with and without PVC were             
used for these experiments.  

The results displayed in ​figure 4 show little difference between the balanced            
accuracies obtained with and without PVC. When using voxel features, the average balanced             
accuracy is almost identical no matter the presence or absence of PVC. Using regional              
features, there is a very small increase in mean balanced accuracy when the FDG PET images                
are not corrected for partial volume effect. 

 

 
Figure 4 Distribution of the balanced accuracy obtained from the FDG PET images of ADNI               
participants with and without PVC using the reference classifier (linear SVM) and regional             
features derived from the AAL2 atlas (top) and voxel features with 4 mm of smoothing               
(bottom) for the CN vs AD, CN vs pMCI and sMCI vs pMCI tasks. 
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4.6. Influence of the training dataset size 
Learning curves were computed to assess how the performance of linear SVM classifiers             
varies depending on the size of the training dataset. We tested four scenarios: voxel and               
region features extracted from T1w MRI and FDG PET images, all obtained from ADNI              
participants. As cross-validation, 250 iterations were run where the dataset was randomly            
split into a test dataset (30% of the samples) and a training dataset (70% of the samples). For                  
each run, 10 classifiers were trained and evaluated on the same test set using from 10% to all                  
of the training set (from 7% to up to 70% of the samples), increasing the number of samples                  
used by 10% on each step. We can observe from the learning curves in ​figure 5 that, as                  
expected, the balanced accuracy always increases with the number of training samples.  

 

 

 
Figure 5 Learning curves for the T1w MRI (top) and FDG PET (bottom) images of ADNI                
participants using voxel features with 4 mm of smoothing (left) and regional features derived              
from the AAL2 atlas (right) for the CN vs AD, CN vs pMCI and sMCI vs pMCI tasks. 
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4.7. Influence of the dataset 
We also wanted to know how consistent were the results across datasets, and thus we               
compared the classification performances obtained from ADNI, AIBL and OASIS, for the            
task of differentiating control subjects from patients with Alzheimer’s disease. Voxel (4 mm             
smoothing) and regional (AAL2 atlas) features were extracted from T1w MRI images and             
used with linear SVM classifiers. We tested two configurations: training and testing the             
classifiers on the same dataset, and training a classifier on ADNI and testing it on AIBL and                 
OASIS.  

Results are displayed in ​table 10​. The highest balanced accuracies when training and             
testing on the same dataset are obtained for ADNI, dataset that comprises the largest number               
of subjects. When training and testing on AIBL, the balanced accuracy is lower and appears               
less stable, as can be seen from the higher standard deviation. For OASIS the balanced               
accuracy is even lower and also has a high standard deviation. When training on ADNI and                
testing on AIBL or OASIS, the balanced accuracy is higher than when training and testing on                
AIBL or OASIS respectively. 

 
 
Table 10 Average ± SD of the balanced accuracy obtained for the reference linear SVM               
classifier when differentiating CN and AD subjects using voxel (4 mm smoothing) and             
regional (AAL2 atlas) features extracted from T1w MRI images for three datasets: ADNI,             
AIBL and OASIS. When the testing dataset differs from the training dataset, there is no CV                
and thus no empirical SD. 

Training dataset Testing dataset Voxel-based 
(4 mm smoothing) 

Region-based  
(AAL2 atlas) 

ADNI ADNI 0.87 ​± 0.025 0.84 ​± 0.024 

AIBL AIBL 0.79 ​± 0.059 0.86 ​± 0.042 

ADNI AIBL 0.87 0.88 

OASIS OASIS 0.70 ​± 0.058 0.71 ​± 0.053 

ADNI OASIS 0.76 0.76 
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4.8. Influence of the diagnostic criteria 

We defined new classification tasks by refining the previously used diagnostic criteria using             
information regarding the amyloid status of each subject, when available. As can be seen in               
figure 6​, when comparing the performance of these tasks with their related tasks not using the                
amyloid status, the mean balanced accuracy is higher, or at least the same, for all the newly                 
defined tasks. We have to note that this performance is reached in spite of counting with a                 
lower number of subjects, given that the amyloid status is not known for all the subjects. 

 

 

 

Figure 6 Distribution of the balanced accuracy obtained from the T1w MRI and FDG PET               
images of ADNI participants using the voxel-based SVM classifier with a 4-mm smoothing             
for the CN- vs AD+, CN- vs pMCI+, sMCI- vs pMCI+, and sMCI+ vs pMCI+ tasks. 
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5. Discussion 
We presented an open-source framework for the reproducible evaluation of AD classification            
methods that contains the following components: i) converters to normalize three publicly            
available datasets into BIDS; ii) standardized preprocessing and feature extraction pipelines           
for T1w MRI and PET; iii) standard classification algorithms; iv) cross-validation procedures            
following recent best practices. We demonstrated its use for the assessment of different             
imaging modalities, preprocessing options, features and classifiers on three public datasets. 

In this work, we first aim to contribute to make evaluation of machine learning              
approaches in AD: i) more reproducible; ii) more objective. Reproducibility is the ability to              
reproduce results based on the same data and experimental procedures. Calls to increase             
reproducibility have been made in different fields, including neuroimaging ​(Poldrack et al.,            
2017) and machine learning ​(Ke et al., 2017) ​. Reproducibility differs from replication, which             
is the ability to confirm results on independent data. Key elements of reproducible research              
include: data sharing, storing of data using community standards, fully automatic data            
manipulation, sharing of code. Our work can contribute to increase reproducibility of AD ML              
research through different aspects. A first component is the fully automatic conversion of             
three public datasets into the community standard BIDS. Indeed, ADNI and AIBL cannot be              
redistributed. Through these tools, we hope to make it easy to reproduce experiments based              
on these datasets without redistributing them. In particular, we offer a huge saving of time to                
users compared to simply making public the list of subjects used. This is particularly true for                
complex multimodal datasets such as ADNI (with plenty of incomplete data, multiple            
instances of a given modality and complex metadata). The second key component is publicly              
available code for preprocessing, feature extraction and classification. These contributions are           
gathered in Clinica , a freely available software platform for clinical neuroscience research            9

studies. In addition to increased reproducibility, we hope that these tools will also make the               
work of researchers easier. 

We also hope to contribute to more objective evaluations. Objective evaluation of a             
new approach (classification algorithm, feature extraction method or other) requires to test            
this specific component without changing the others. Our framework includes standard           
approaches for preprocessing and feature extraction from T1-weighted MRI and FDG PET            
data, and standard classification tools. These constitute a set of baseline approaches against             
which new methods can easily be compared. Researchers working on novel methods can then              
straightforwardly replace a given part of the pipeline (e.g. feature extraction, classification)            
with their own solution, and evaluate the added value of this specific new component over the                
baseline approach provided. We also propose tools for rigorous validation, largely based on             
recent guidelines of ​(Varoquaux et al., 2017) and implemented based on the standard             
software scikit-learn. These include: i) large number of repeated random split to extensively             
assess the variability of performances; ii) reporting the full distribution of accuracies and             
standard deviation rather than only mean accuracies; iii) adequate nested CV for            
hyperparameter tuning.  

We then demonstrated the use of the framework on different classification tasks based             
on T1 MRI and FDG PET data. Through this, we aim to provide a baseline performance to                 
which advanced machine learning and feature extraction methods can be compared. These            

9 ​http://clinica.run  
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baseline performances are in line with the state-of-the-art results, which have been            
summarized in ​(Arbabshirani et al., 2017; Falahati et al., 2014; Rathore et al., 2017) ​, where               
classification accuracies typically range from 80% to 95% for CN vs AD, and from 60% to                
80% for sMCI vs pMCI. For instance, using a linear SVM, regional features (AAL2) and               
FDG PET data, we report 88% for CN vs AD, 80% for CN vs pMCI and 73% for sMCI vs                    
pMCI.  

Diagnosis criteria used in ADNI are those from NINCDS-ADRDA ​(McKhann et al.,            
1984) which only rely on patients’ symptoms and cognitive status. However, in the past              
decade, newer criteria have emerged with a clinico-biological definition that integrates           
imaging and other biomarkers. In particular, the presence of beta-amyloid and/or tau proteins             
has been proposed in IWG ​(Dubois et al., 2007) ​, IWG-2 ​(Dubois et al., 2014) and NIA-AA                
(Albert et al., 2011; Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011) ​. In this                  
work, we assessed if using biomarker-refined diagnoses group (in our case using amyloid) led              
to improve performance. We found that classification using biomarker-refined diagnoses          
always performed better or at least similarly to the related tasks using clinical diagnoses, even               
though the training sets then comprise less individuals.  

Classifications from FDG PET consistently performed better across tasks, features          
and classification methods than from T1w MRI. Some studies support our finding ​(Dukart et              
al., 2013, 2011; Gray et al., 2013; Ota et al., 2015; Young et al., 2013) while others do not                   
find a difference in performance ​(Hinrichs et al., 2009; Zhang et al., 2011; Zhu et al., 2014) ​.                 
Given the larger sample size of our study and the rigorous evaluation design, we believe that                
the superior performance of FDG PET compared to MRI is a robust finding. It is likely due to                  
the fact that hypometabolism can be detected earlier in the disease course, before atrophy              
(Jack et al., 2010b) ​.  

Diverse parameters and options are used as for preprocessing and feature extraction in             
AD machine learning studies. Their influence on classification performance is not clear and             
constitutes a problem for the comparability of classification methods. We assessed the effect             
of the choice of atlas, of degree of smoothing, of the correction of PET images for partial                 
volume effect, and of the type of features (regions or voxels). We found no systematic effect                
of each of these different components on the performances. Some studies found an influence              
of the atlas on the classification performance ​(Ota et al., 2015, 2014) ​. However, the number               
of subjects in this study was small. In ​(Chu et al., 2012) ​, an improved of 3% was found when                   
using a combination of a few ROIs compared to using all the voxels. In our study, a much                  
larger number of subjects and a strict validation process were used. 

We compared three widely used classification methods: SVM, logistic regression with           
L2 regularization and random forests. Our main finding was the underperformance of the             
latter. This might be caused by the nature of brain imaging data that contains relatively               
homogeneous values, and which should show dependence across voxels or brain regions.            
These characteristics of the data could explain why techniques trying to find a smooth              
combination of features, such as those using L2 regularization, are more suited for single              
modality classification problem. On the other hand, random forests or other ensemble            
methods could be useful when combining features from different modalities such as images,             
clinical data and cognitive scores, as done in ​(Moradi et al., 2015; Sørensen et al., 2018) ​. In                 
other papers comparing several standard classification algorithms such as SVM, LDA or            
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Naive Bayes ​(Aguilar et al., 2013; Cabral et al., 2015; Sabuncu et al., 2014) ​, results did not                 
show differences between methods.  

Unsurprisingly, increased training set size led to increased classification         
performances. This improvement of the results depending on the training set size has also              
been found in other studies such as ​(Abdulkadir et al., 2011; Chu et al., 2012; Franke et al.,                  
2010) ​. Interestingly, with the current number of samples available, the point where the results              
stop improving has not been reached. The performance of the classifier reaches a limit              
imposed by the number of images that have been provided for training, meaning that more               
data are necessary to find the top performance of a classifier. These results highlight the need                
for more publicly available datasets, on which most of the current research in the field relies. 

Using multiple datasets is important to assess if the performances are robust to             
different populations, acquired in different conditions. A first component consisted in           
performing the same experiments on different datasets. We found that classification results            
were similar for ADNI and AIBL datasets (if we take into account the dataset size), but much                 
lower for OASIS. The lower performance for OASIS is likely due to the diagnosis criteria               
which are less rigorous (in OASIS, all participants with CDR>0 are considered AD). It is also                
valuable to know how a classifier will perform when trained on one dataset and and tested on                 
another one. The classifiers trained on ADNI data generalized well to AIBL, and even to               
OASIS. Interestingly, they even performed better than the classifiers trained on AIBL or             
OASIS, demonstrating that the increased training set size is the key factor for improving              
performance. In general, we can say that classifiers are able to generalize across different              
datasets, as is also concluded in ​(Dukart et al., 2013; Sabuncu et al., 2014) ​, particularly if                
they are obtained using large multicentric datasets with strict diagnostic criteria, as is the case               
for ADNI.  

6. Conclusion 
Our framework for reproducible classification experiments aims to address current issues           
faced in the area of machine learning-based AD classification, such as comparability and             
reproducibility of the results. Its application to T1w MRI and FDG PET data allowed the               
extensive assessment of the influence of imaging modality, preprocessing options, features           
and algorithms on the performances. These results provide a baseline performance against            
which other approaches can be compared. We hope that both the framework and the              
experimental results will be useful to researchers working in the AD field. 
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