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ABSTRACT 
 
Many proteins display complex dynamical properties that are often intimately linked to their 

biological functions. As the native state of a protein is best described as an ensemble of confor-

mations, it is important to be able to generate models of native state ensembles with high accu-

racy. Due to limitations in sampling efficiency and force field accuracy it is, however, challeng-

ing to obtain accurate ensembles of protein conformations by the use of molecular simulations 

alone. Here we show that dynamic ensemble refinement, which combines an accurate atomistic 

force field with commonly available nuclear magnetic resonance (NMR) chemical shifts and 

NOEs, can provide a detailed and accurate description of the conformational ensemble of the 

native state of a highly dynamic protein. As both NOEs and chemical shifts are averaged on 

timescales up to milliseconds, the resulting ensembles reflect the structural heterogeneity that 

goes beyond that probed e.g. by NMR relaxation order parameters. We selected the small pro-

tein domain NCBD as object of our study since this protein, which has been characterized ex-

perimentally in substantial detail, displays a rich and complex dynamical behaviour. In partic-

ular, the protein has been described as having a molten-globule like structure, but with a rela-

tively rigid core. Our approach allowed us to describe the conformational dynamics of NCBD 

in solution, and to probe the structural heterogeneity resulting from both short- and long-time-

scale dynamics by the calculation of order parameters on different time scales. These results 

illustrate the usefulness of our approach since they show that NCBD is rather rigid on the na-

nosecond timescale, but interconverts within a broader ensemble on longer timescales, thus 

enabling the derivation of a coherent set of conclusions from various NMR experiments on this 

protein, which could otherwise appear in contradiction with each other. 

 

INTRODUCTION  

Molecular dynamics (MD) simulations have the potential ability to provide an accurate, 

atomic-level description of the conformational ensembles of proteins and their macromolecular 

complexes (Lindorff-Larsen et al., 2005; Dror et al., 2012; Perilla et al., 2015). Nevertheless, 

simulations are limited by both the accuracy of the physical models (force fields) and the pre-

cision due to conformational sampling (Mobley, 2012; Esteban-Martín, Fenwick & Salvatella, 

2012). To overcome these problems, it is possible to bias the simulations using experimental 

data as structural restraints taking into account the inherent averaging in the experiments 

(Lindorff-Larsen et al., 2005; Camilloni et al., 2012; Lehtivarjo et al., 2012; Pitera & Chodera, 

2012; Camilloni & Vendruscolo, 2014; Ravera et al., 2016). In this way, the experimental data 
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can be included as a system-specific force-field correction, that combines the two sources of 

information using Bayesian statistics or the maximum entropy principle (Pitera & Chodera, 

2012; Roux & Weare, 2013; Cavalli, Camilloni & Vendruscolo, 2013; Boomsma, Ferkinghoff-

Borg & Lindorff-Larsen, 2014; White & Voth, 2014; Olsson et al., 2014; MacCallum, Perez & 

Dill, 2015; Hummer & Köfinger, 2015; Bonomi et al., 2016, 2017). Among the many tech-

niques that can be used to probe structure and dynamics of proteins, NMR spectroscopy stands 

out as being able to provide a number of different parameters that are sensitive to protein dy-

namics over different timescales, as well as to probe the “average structure” in solution. 

Previously, replica-averaged simulations have provided a wealth of information about the dy-

namical ensembles that proteins can attain in solution (Lindorff-Larsen et al., 2005; Tang, 

Schwieters & Clore, 2007; Fenwick et al., 2011; Camilloni et al., 2012; Ángyán & Gáspári, 

2013; Camilloni, Cavalli & Vendruscolo, 2013a,b; Islam et al., 2013; Vögeli et al., 2014; 

Camilloni & Vendruscolo, 2014). Exploiting improvements in the accuracy and speed of pre-

dicting protein NMR chemical shifts from protein structure, (Kohlhoff et al., 2009; Han et al., 

2011; Li & Brüschweiler, 2012) it is now possible to combine experimental chemical shifts 

with molecular simulations to study protein structure and dynamics (Wishart & Case, 2001; 

Cavalli et al., 2007; Shen et al., 2008; Wishart et al., 2008; Robustelli et al., 2009, 2010; 

Boomsma et al., 2014). In particular, chemical shifts can be used as replica-averaged structural 

restraints to determine the conformational fluctuations in proteins (Camilloni et al., 2012; 

Camilloni, Cavalli & Vendruscolo, 2013a,b; Kannan et al., 2014; Kukic et al., 2014; Krieger et 

al., 2014). By using experimental data as a “system specific force field correction” (Boomsma, 

Ferkinghoff-Borg & Lindorff-Larsen, 2014) such experimentally-restrained simulations re-

move some of the uncertainty associated with imperfect force fields and sampling (Tiberti et 

al., 2015; Löhr, Jussupow & Camilloni, 2017). 

Previously, we developed a dynamic-ensemble refinement (DER) approach for determining 

simultaneously the structure and dynamics of proteins by combining distance restraints from 

nuclear Overhauser effect (NOE) experiments, dynamical information from relaxation order 

parameters and MD simulations (Lindorff-Larsen et al., 2005). Similarly, it has been demon-

strated that accurate ensembles of conformations that represent longer timescale dynamics can 

be obtained from residual dipolar couplings (Lange et al., 2008; De Simone et al., 2009, 2015). 

These applications have, however, relied on a type of data (relaxation order parameters or re-

sidual dipolar couplings) that may not be readily available. 
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We therefore sought to extend this approach to study conformational variability using more 

commonly available data, thus making the DER method more generally applicable. We thus 

focus on using NMR chemical shifts and NOEs as these are both commonly available and are 

averaged over long, millisecond timescales. We demonstrate the potential by describing the 

structural heterogeneity of a highly dynamic protein. Our method relies on supplementing the 

sparse experimental data with the experimentally-validated CHARMM22* force field (Piana, 

Lindorff-Larsen & Shaw, 2011), which provides a relatively accurate description of the subtle 

balance among the stability of the different secondary structure classes, and which has been 

shown to provide a good description of many structural and dynamical aspects related to protein 

structure (Shaw et al., 2010; Lindorff-Larsen et al., 2012a,b; Piana, Lindorff-Larsen & Shaw, 

2012; Papaleo et al., 2014; Rauscher et al., 2015). Our hypothesis was that using a more accu-

rate force field would make it possible to determine an accurate ensemble from less infor-

mation-rich experimental data. In particular, though chemical shifts in principle contain very 

detailed information, this information is difficult to extract using current methods. 

As object of our study we selected NCBD (the Nuclear Coactivator Binding Domain) of CBP 

(CREB Binding Protein), a 59-residue protein domain that has been experimentally character-

ized in substantial detail. Experiments on NCBD have revealed a rich and complex dynamical 

behaviour of the protein in solution (Demarest et al., 2004; Ebert et al., 2008; Kjaergaard, 

Teilum & Poulsen, 2010; Kjaergaard, Poulsen & Teilum, 2012; Kjaergaard et al., 2013). For a 

protein of its size, NCBD displays surprisingly broad NMR peaks, suggestive of conformational 

heterogeneity with relatively slow interconversion between different states. Nevertheless, it was 

possible to assign both backbone and side chain chemical shifts and determine a number of 

conformationally-averaged inter-nuclear distances, including a few long-range contacts, via 

NOE experiments (Ebert et al., 2008; Kjaergaard, Teilum & Poulsen, 2010; Kjaergaard, Poulsen 

& Teilum, 2012). NMR relaxation experiments suggest that the protein, at least on the nano-

second timescale, is relatively rigid (Kjaergaard, Poulsen & Teilum, 2012). NCBD forms com-

plexes with several other proteins, where it intriguingly folds into remarkably different tertiary 

structures (Demarest et al., 2002; Qin et al., 2005). For example, the structure of NCBD in 

complex with ACTR (Demarest et al., 2002) and certain other partners (Waters et al., 2006; Lee 

et al., 2010) resembles the average structure populated by NCBD in the absence of binding 

partners (Figure 1), whereas the structure of NCBD is markedly different when bound to the 

protein IRF-3 (Qin et al., 2005). Thus, the dynamical properties of NCBD, and its ability to 

adopt different conformations, appear crucial for its diverse biological functions.  
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Our results show that a dynamic ensemble refinement that combines NOEs, chemical shifts 

and the CHARMM22* force field provides a rather accurate description of the structural dy-

namics of the ground state structure of NCBD. We show via cross-validation with independent 

NMR data that all three components (the two sources of experimental information and the force 

field) contribute to the overall accuracy. The ensemble that we obtained reveals a relatively 

broad distribution of conformations, reflecting the conformational heterogeneity of NCBD on 

the millisecond timescale. Further, we quantified the level of structural fluctuations that would 

be measured by relaxation experiments and demonstrate that, on the nanosecond timescale, 

NCBD is more rigid, thus helping to reconcile earlier conflicting views of this protein. 

 

MATERIALS AND METHODS 

Ensemble generation. MD simulations were performed using Gromacs 4.5, (Pronk et al., 

2013) coupled to a modified version of Plumed 1.3, (Bonomi et al., 2009) and using either the 

CHARMM22* (Piana, Lindorff-Larsen & Shaw, 2011) or CHARMM22 (MacKerell, et al., 

1998) force fields. As starting structure for most simulations we used the first conformer from 

a previously determined NMR structure of free NCBD as deposited in the PDB entry 2KKJ 

(Kjaergaard, Teilum & Poulsen, 2010). To evaluate the effect of our choice of the initial struc-

ture, we also performed one simulation starting from an alternative NCBD conformation (PDB 

entry: 1ZOQ, chain C) (Qin et al., 2005). Missing residues in 1ZOQ (compared to 2KKJ) were 

rebuilt by Modeller 9.11 (Fiser & Šali, 2003). 

The protein was embedded in a dodecahedral box containing 8372 TIP3P water molecules 

(Jorgensen et al., 1983) and simulated using periodic boundary conditions with a 2 fs timestep 

and LINCS constraints (Hess et al., 1993). Production simulations were performed in the NVT 

ensemble with the Bussi thermostat (Bussi, Donadio & Parrinello, 2007) using a pre-equili-

brated starting structure for which the volume was selected based on a short NPT simulation. 

NaCl was added to a concentration of ~20 mM to reproduce the experimental conditions at 

which chemical shifts and NOEs were determined (Kjaergaard, Teilum & Poulsen, 2010). The 

van der Waals and short-range electrostatic interactions were truncated at 9 Å, whereas long-

range electrostatic effects were treated with the particle mesh Ewald method (Essmann et al., 

1995). 

We carried out MD simulations with replica-averaged experimental restraints using 1, 2, 4 or 

8 replicas (Table S1 gives an overview of the simulations that were performed). The use of 

replica-averaged restrained simulations enables us to use different equilibrium experimental 
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observable as a restraint in MD simulation in a way that minimises the risk of over restraining 

because replica-averaging is a practical implementation of the maximum entropy principle. As 

a control we also performed a simulation that was not biased by any experimental restraints 

(i.e. an unbiased simulation). To examine the role played by each of the different types of ex-

perimental data, we also performed simulations in which we included different combinations 

of the experimental restraints: chemical shifts only (CS), NOEs only (NOE), and both chemical 

shifts and NOEs (CS-NOE). In the simulations, each replica was evolved through a series of 

simulated annealing (SA) cycles between 304 and 454K for a total duration of 0.6 ns per cycle. 

We only used structures from the 304K portions of the simulations for our analyses.  

Chemical shifts for the backbone atoms (Ca, C’, Ha, H and N) and Cb CS (deposited in 

BMRB entry 16363) were used as restraints (with the exception of the Cb of glutamines). The 

resulting dataset includes 54 Ca, 37 Cb, 52 Ha and 48 C’, H and N chemical shifts, respec-

tively. The backbone chemical shifts cover most of the NCBD sequence with the exception of 

the first four to six N-terminal residues, depending on type of chemical shifts. The Cb chemical 

shifts for the first seven N-terminal and last five C-terminal residues, as well as for some resi-

dues of the loops connecting the a-helices, are missing with few exceptions. 

During the structure determination protocol, chemical shifts were calculated by CamShift 

(Kohlhoff et al., 2009) for all the nuclei for which an experimental value is available and then 

averaged over the replicas of the replicas. The resulting average over the replicas was compared 

with the experimental value, and the ensemble as a whole restrained using a harmonic function 

with a force constant of 5.2 kJ mol-1ppm-2 (Camilloni et al., 2012; Camilloni, Cavalli & 

Vendruscolo, 2013a). At the higher temperatures, T, explored during the simulated annealing, 

the force constant was scaled by a factor of (304 K/T). The value of the force constant was 

chosen roughly to match the calculated chemical shifts to experiments within the uncertainty 

of the CamShift predictor; the experimental uncertainty of the chemical shifts is negligible in 

comparison. 

NOE restraints were obtained by 455 NOE-derived distance intervals (Kjaergaard, Teilum & 

Poulsen, 2010) (BMRB entry 16363) of which 46 were long-range (i.e. separated by more than 

4 residues). The proton-proton distances, r, were calculated and averaged as r-6 over the replicas 

(Tropp, 1980; Lindorff-Larsen et al., 2005). We used a flat-bottomed harmonic function imple-

mented in Gromacs to restrain the calculated averaged distances within the experimentally-

derived intervals. We used a variable force constant for the NOE-restraints during the SA cy-

cles, allowing the protein to sample more diverse structures in the high-temperature regime and 
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thus to decrease the risk of getting trapped in local minima. Force constants of 1000, 20 and 

125 kJ mol-1 nm-2 were used for the 304K phase, a heating phase (from 304K to 454K) and 

cooling phase (from 454K to 304K), respectively.  

In short, in the replica-averaged simulations we calculated at each step and for each replica-

conformation the atomic distances that were measured by the NOE experiments and the back-

bone chemical shifts. These calculated single-conformer values were then averaged (linearly 

for the shifts and using r-6 averaging for the distances) to determine the replica-averaged values, 

which were then compared to the experimentally determined values. Thus, the simulations pe-

nalize deviations between the calculated ensemble averages and experimental values but allow 

fluctuations of individual structures. In this way, the simulations are biased so as to agree with 

the experimental data as a whole, while allowing individual conformations to take on confor-

mations whose NMR parameters differ from the experimentally derived averages. 

To examine the role of the force field used in our approach, we compared the results from 

two different force fields belonging to the same family (CHARMM). These force fields mostly 

differ for the main-chain dihedral angle potential, as well a few parameters for certain side 

chains. Further, in a previous comprehensive evaluation of protein force fields it, was demon-

strated that these two force fields resulted in very different levels of agreement between simu-

lations and experiments (Lindorff-Larsen et al., 2012a), making it possible for us to evaluate 

the importance of force field accuracy in restrained simulations.  

Unbiased simulations for the calculation of fast-timescale order parameters. We also 

performed 28 independent unbiased MD simulations, each 50 ns long, at 304K and with the 

same computational setup as the restrained simulations, but without any restraints. As starting 

points, we selected seven different structures from each of the four replicas obtained in the CS-

NOE-4 ensemble (Table S1). In particular, the seven structures were selected from the SA cy-

cles after convergence (i.e. at SA cycles 65, 75, 85, 95, 100, 110, 125). We calculated fast time-

scale order parameters, which correspond to those measured by NMR relaxation measurements, 

from these 28 unbiased simulations using a previously described approach (Maragakis et al., 

2008). In particular, we calculated bond-vector autocorrelation functions (independently from 

each simulation) including both internal motions and overall tumbling of NCBD. The resulting 

correlation functions were then averaged over the 28 simulations and subsequently fitted glob-

ally to a Lipari-Szabo model (Lipari & Szabo, 1982) to yield relaxation order parameters. To 

calculate order parameters that report on the long-timescale motions we first aligned the full 

ensemble and then calculated order parameters as ensemble averages (Maragakis et al., 2008). 
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Analyses of convergence and cross validation. We used two different methods to examine 

the convergence of our simulations. First, we used the ENCORE ensemble comparison method 

(Lindorff-Larsen & Ferkinghoff-Borg, 2009; Tiberti et al., 2015) to quantify the overlap be-

tween the structural ensembles. The latter is based on clustering the structures using affinity 

propagation (setting the “preference value” in the clustering to 12) and subsequent comparison 

of the ensembles by calculating the Jensen-Shannon (JS) divergence between pairs of ensem-

bles by comparing how they populate the different clusters. For additional details, please confer 

to original descriptions of the method (Lindorff-Larsen & Ferkinghoff-Borg, 2009; Tiberti et 

al., 2015). As an alternative method, we calculated the Root Mean Square Inner Product 

(RMSIP) over the first 10 eigenvectors obtained from a principal component analysis of the 

covariance matrix of atomic (Ca-atoms) fluctuations (Amadei, Linssen & Berendsen, 1993). 

To cross-validate our ensembles we calculated the chemical shifts of side chain methyl hy-

drogen and carbon atoms using CH3Shift (Sahakyan et al., 2011) (both 1H and 13C shifts) and 

PPM (Li & Brüschweiler, 2012) (only 1H shifts) and compared to the previously determined 

experimental side chain chemical shifts. In particular, we compared the calculated side chain 

chemical shifts with the experimental values (deposited in BMRB entry 16363) using a reduced 

χ2 metric. In this metric, the square deviation between the calculated and experimental values 

were normalized by the variance of the chemical shift predictor (for each type of chemical shift) 

and the total number of chemical shifts, so that low numbers indicate good agreement between 

experimental and calculated chemical shifts. 

 

RESULTS AND DISCUSSION 

Convergence of the simulations. Before assessing the accuracy of the different structural 

ensembles that we generated, we first ensured that the simulated annealing protocol allowed us 

to obtain converged ensembles that represent the dynamical properties encoded in the experi-

mental restraints and the molecular force field. To quantify convergence of the ensembles, we 

calculated two different measures of the overlap between the subspaces sampled by different 

simulations. 

First, we used a previously described approach (Lindorff-Larsen & Ferkinghoff-Borg, 2009; 

Tiberti et al., 2015), which is based on a quantification of the extent to which the different 

ensembles mix during conformational clustering, to calculate the Jensen-Shannon (JS) diver-

gence between the ensembles (Figure 2). A JS divergence of zero is evidence of identical en-

sembles, and it has previously been observed that a JS divergence in the range of 0.1-0.3 
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represents similar ensembles (Lindorff-Larsen & Ferkinghoff-Borg, 2009; Tiberti et al., 2015). 

We expect that in a converged replica-averaged simulation that the different replicas should 

populate equally the different structural basins. With this in mind, we calculated the JS diver-

gence between two replicas in a simulation restrained by NOEs and chemical shifts (Figure 2, 

black line). We find that after approximately ~30 cycles of simulated annealing the two replicas 

have covered approximately the same conformational space with the JS divergence stabilizing 

around 0.2-0.3 with the fluctuations in the JS-divergence representing the stochastic nature of 

the simulations. Thus, we decided to discard the first 45 simulated annealing cycles from all 

the simulations. As an alternative measure of ensemble similarity we also calculated the Root 

Mean Square Inner Product (Hess, 2002) (RMSIP) with very similar results. In particular, the 

similarity of the two replicas converge to an RMSIP value greater than 0.83 (here RMSIP=1 is 

expected for fully overlapping ensembles). 

As a second, perhaps even more stringent, test of convergence we also examined whether two 

simulations with the same number of replicas and experimental restraints, but initiated from 

substantially different starting structures, converge to similar ensembles. Indeed, we find that 

simulations initiated from two distinct structures of NCBD (Table S1) converge to similar en-

sembles when the first 45 cycles are discarded as initial equilibration (Figure 2, grey line). Thus, 

based on these two tests we concluded that our sampling protocol allows us to obtain structural 

ensembles that represent the force field and restraints employed. 

Assessment of the accuracy of the NCBD ensembles. Once we had assessed the conver-

gence of the simulations, we analysed the different ensembles to evaluate their accuracy. To do 

so, we back-calculated experimental parameters that were not used as restraints and compared 

them with the experimental values. As our different simulations employed different sets of ex-

perimental restraints, not all experimental data can be employed for validation purposes. For 

example, while the NOEs can be used to evaluate the quality of an ensemble obtained using 

CS-restraints, they can obviously not be used to validate an ensemble that was generated using 

those NOEs as restraints. 

We first examined whether the CS or NOE restraints alone are sufficient to increase the ac-

curacy in the description of the conformational ensemble of NCBD. We thus compared unbi-

ased simulations with simulations biased by either CS or NOEs by cross-validation with the 

measured NOEs and CS, respectively. 

We back-calculated NOEs from the inter-proton distances and observed substantial violations 

(some greater than 2 Å) in both unbiased and CS ensembles (Figure S1) independently of the 
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number of replicas used for the averaging. To determine the origin of these discrepancies we 

calculated intramolecular contacts between side chains, and observed an overall decrease in 

these (from 27 in the previously-determined NMR ensemble, to 14 and 17 in unbiased and CS-

restrained, respectively). More specifically we found a loss of inter-helical contacts between 

helices a1 and a2 in the simulations, in agreement with our finding of several long-range NOEs 

that are violated in these ensembles. 

These results demonstrate that the CS-restraints and MD force field, as implemented here, are 

not sufficient to provide a fully accurate description of the conformational ensemble of NCBD. 

Similarly, we found that back-calculation of backbone chemical shifts from the unbiased sim-

ulation and, to a lesser extent a NOE-restrained ensemble, resulted in deviations from experi-

ments. We therefore decided to determine conformational ensembles that combine the infor-

mation of the NOEs, chemical shifts and force field in replica-averaged simulations (CS-NOE) 

aiming to provide a more accurate structural ensemble of NCBD than possible via the applica-

tion of just one of the two classes of restraints. We also assessed the influence of the choice of 

force field since we expected that a more accurate ensemble could be obtained with the rela-

tively limited amounts of experimental data when using a more accurate force field. Thus, we 

compared simulations using either the CHARMM22 force field (CS-NOE-4-C22 simulation), 

or a more recent and accurate force field variant, CHARMM22* (CS-NOE simulations). 

As both the NOEs and backbone chemical shifts were used as restraints they cannot be used 

for validation of these ensembles. Instead, we turned to side-chain methyl chemical shifts for a 

comparison and validation of the different ensembles. Methyl-containing residues, for which 

the chemical shifts are available, cover the entire protein structure and are thus excellent probes 

of both local structure (13C methyl chemical shifts, which are mostly dependent on the rotameric 

state) and long-range contacts (1H methyl chemical shifts). The methyl chemical shifts were 

predicted by CH3Shift (Sahakyan et al., 2011) and the resulting values compared to experi-

ments, separating the contributions from 13C and 1H. We then calculated c2red thus taking into 

account the inherent uncertainty of the chemical shift predictions (Sahakyan et al., 2011). 

As also indicated by the calculation of NOEs and backbone chemical shifts, we find that the 

side chain chemical shifts predicted from the unbiased simulation (green line in Figure 3) de-

viates substantially from experiments. The introduction of backbone chemical shift restraints 

(CS ensembles, orange line in Figure 3) provides a better structural ensemble than the force 

field alone, especially for 13C methyl chemical shifts and when averaged over 2 or 4 replicas. 

We also calculated the chemical shifts from NOE-derived ensembles, obtained with or without 
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replica-averaging. Surprisingly, we find that the ensembles obtained using NOEs as replica-

averaged restraints (NOE, magenta line in Figure 3) perform slightly worse than the CS ensem-

ble. Thus, when evaluated in this way, ensembles derived by MD refinement using either back-

bone chemical shifts or NOEs do not increase accuracy compared to the ensemble deposited in 

the PDB. 

By combining the NOEs, chemical shifts and the CHARMM22* force field we were, how-

ever, able to obtain even more accurate ensembles, in particular when averaging over four rep-

licas, as assessed by the ability to predict side chain 13C and 1H methyl chemical shifts (Figure 

3). Interestingly we find that not only the experimental data but also the CHARMM22* force 

field contributes to the improved agreement with the experimental data. Indeed, when we em-

ploy both chemical shift and NOE-based restraints in simulations averaged over 4 replicas, but 

replacing the CHARMM22* force field by an earlier, less accurate variant of the same force 

field (CHARMM22; CS-NOE-4-C22) (Lindorff-Larsen et al., 2012a) we find that the accuracy 

decreases dramatically. Calculations of 1H methyl chemical shifts using PPM (Li & 

Brüschweiler, 2012) instead of CH3Shift demonstrate that the conclusions are robust to the 

method for calculating the chemical shifts (Figure S2). Similarly, calculations of the chemical 

shifts using the ensemble generated from the alternative starting structure (CS-NOE-2-1ZOQ) 

resulted in essentially the same agreement with the experimental data as when simulations were 

initiated from the 2KKJ structure (Figure 3), confirming the conclusions from the convergence 

analysis described above (Figure 2). The CS-NOE-4 ensemble, which we found to provide the 

most accurate representation of the free state of NCBD in solution, is shown in Figure 4. It is a 

relatively broad ensemble of conformations, where the three helical regions are maintained 

overall, but differ in the lengths and relative positions of the three a-helices. 

Small Angle X-ray scattering (SAXS) measurements have been carried out for NCBD in so-

lution (Kjaergaard, Teilum & Poulsen, 2010) and previously been compared to simulation-de-

rived ensembles of NCBD (Knott & Best, 2012; Naganathan & Orozco, 2013). We thus calcu-

lated the radius of gyration (Rg) using CRYSOL (Svergun, Barberato & Koch, 1995) for the 

various ensembles. In all cases we find that the average Rg values are in the range of 13.7Å –

14.9Å. These values are comparable to that obtained previously from simulations (13.7 Å) 

(Knott & Best, 2012) but lower than the values estimated from a Guinier analysis of the exper-

imental data (~16.5 Å) or an ensemble-optimization method (18.8 Å) (Kjaergaard, Teilum & 

Poulsen, 2010). We note, however, that the experimental values also include contributions from 

a ~8% population of unfolded protein that is not captured by our simulations. Although a 
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detailed understanding is lacking for the role of solvation on the SAXS properties of partially 

disordered proteins we, however, expect that the discrepancy between experiment and simula-

tion should be ascribed to remaining force field deficiencies. Indeed, overly large compaction 

of proteins is a common problem of most atomistic force fields (Piana, Klepeis & Shaw, 2014) 

though recent work suggests that, at least for fully disordered proteins, that modified protein-

water interactions can improve accuracy (Nerenberg et al., 2012; Best, Zheng & Mittal, 2014; 

Henriques, Cragnell & Skepö, 2015; Mercadante et al., 2015; Piana et al., 2015). We also note 

that while the force field used here (CHARMM22*) in certain cases has been shown to produce 

too compact structures, (Piana et al., 2015) in other cases it appears to perform quite well 

(Rauscher et al., 2015). We expect that resolving these issues will require both further force 

field developments (Best, 2017) as well as improved methods for comparing experiments and 

SAXS experiments (Hub, 2018). 

A unified view of NCBD dynamics. While the broad peaks and sparse NOEs are suggestive 

of a rather dynamic protein, previous NMR relaxation measurements of side chain dynamics 

found relatively high order parameters (S2relaxation) comparable to values found in well-ordered 

proteins (Kjaergaard, Poulsen & Teilum, 2012). To shed light on this apparent discrepancy and 

to assess whether our relatively broad structural ensemble is compatible with mobility on dif-

ferent timescales, we calculated S2 values representing different timescales. 

To mimic the dynamics probed in relaxation experiments we selected 28 structures from each 

of the 4 replicas of the CS-NOE-4 ensemble sampled at seven different SA steps. Starting from 

each of these conformations we performed 50 ns of unbiased MD simulation (in total 1.4 µs, 

Figure S3), and from each simulation we calculated the autocorrelation functions of the N-H 

bond vectors (without removing the overall rotational motion of the protein). These correlation 

functions were subsequently averaged and fitted to the Lipari-Szabo model to estimate the S2re-

laxation values, which report on the nanosecond dynamics of the protein (Figure 5, black line). 

The results show a relatively rigid ensemble on the ns timescale attested by high order param-

eters throughout most of the polypeptide backbone.  

To quantify the backbone dynamics on the longer timescales that may influence both the NOE 

and chemical shifts (but which the relaxation measurements would not be sensitive to) we de-

fined and calculated “S2chemical shift”-values from the structural variability in the ensemble after 

aligning the structures. These S2 values include contributions also from any millisecond-time-

scale motions that might be present in the ground state of NCBD. As internal and overall mo-

tions cannot be decoupled, the results of such calculations will depend on how the ensemble is 
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aligned. In our calculations we chose THESEUS (Theobald & Steindel, 2012) as the least biased 

method to align the structures (Figure 4). These order parameter calculations reveal a broader 

distribution of conformations with additional, longer-timescale dynamics evident both in loop 

regions and the C-terminal region, even though relatively high S2 values are found in the regions 

of secondary structures (Figure 5, grey line). 

A similar analysis of side chain motions suggests even greater differences in motions present 

on relaxation and chemical shift timescales. In particular, we find that, for methyl-bearing side 

chains, S2chemical shift-values are on average lower than S2relaxation-values by 0.4 compared to an 

average difference of 0.2 for the backbone amides. Finally, we note that although both calcu-

lated S2chemical shift-values and S2relaxation-values correlate strongly with the experimentally deter-

mined side chain S2relaxation-values (Spearman correlation coefficient of 0.9 and 0.8, respec-

tively), a more quantitative analysis is hampered by several issues including (i) the presence of 

a small population of unfolded protein in the experiments, (ii) the difficulty in appropriate 

model selection of the calculated correlation functions, (iii) the well-known observation of too-

fast rotational motions of proteins in the TIP3P model that we used and (iv) uncertainties in the 

parameterization of the rotational motions in the experimental analyses. We note, however, the 

potential complications that arise from the fact that the S2chemical shift-values were obtained from 

simulations with an experimental bias, whereas the S2relaxation-values were obtained from simu-

lations starting from such a biased ensemble, but performed with the standard CHARMM22* 

force field. 

Taken together, however, our calculations of order parameters demonstrate that NCBD may 

be described as a semi-rigid protein on fast-timescales, but with additional dynamics in the 

backbone and—in particular—side chains on timescales longer than the rotational correlation 

time of the protein, as also previously suggested (Kjaergaard, Poulsen & Teilum, 2012). 

 

CONCLUSIONS 

We have presented an application of the dynamic-ensemble refinement method to study the 

native state dynamics of NCBD. In the original implementation of DER we combined NMR 

relaxation order parameters with NOEs in MD simulations (Lindorff-Larsen et al., 2005). This 

approach was here extended to the combination of chemical shifts and NOEs to make it more 

generally applicable. In particular, our results show that it is possible to combine NOEs, back-

bone chemical shifts and an accurate MD force field into replica-averaged restrained 
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simulations, and that all three components add substantially to the accuracy of the resulting 

NCBD ensemble.  

NMR structures are typically obtained by combining distance information from NOE meas-

urements with in vacuo simulations, in certain cases with subsequent refinement by short, MD 

simulations in explicit solvent. Further, the inherent ensemble averaging of the experimental 

data is typically not exploited explicitly. In this way, standard NMR structures can provide 

highly accurate models of the “average structure” of a protein, but only little information about 

the conformational heterogeneity around this average. 

Replica-averaged MD simulations make it possible to obtain structural ensembles that match 

the experimental data according to the principle of maximum entropy (Pitera & Chodera, 2012; 

Roux & Weare, 2013; Cavalli, Camilloni & Vendruscolo, 2013; Boomsma, Ferkinghoff-Borg 

& Lindorff-Larsen, 2014; White & Voth, 2014; Olsson et al., 2014). In such calculations prior 

information, here in the form of a molecular mechanics force field, is biased in a minimal fash-

ion to agree with the experimental data. Thus, to obtain an accurate ensemble, such simulations 

require an accurate force field, an efficient sampling approach as well as sufficient experimental 

information. Our results show that, at least in the case of the small, but relatively mobile protein 

NCBD, it is possible to perform such simulations when NOEs are supplemented by the infor-

mation available in the backbone chemical shifts and a well-parameterized molecular force 

field. The application of the experimentally-derived structural restraints helps overcome at least 

some of the deficiencies in force field accuracy and also improves sampling of the relevant 

regions of conformational space.  

Our approach also allowed us to probe the structural heterogeneity arising from both short- 

and long-timescale dynamics by the calculation of order parameters. In the case of NCBD we 

found that this protein can be described as a relatively rigid protein domain on a fast timescale, 

as attested by the high relaxation order parameters that, nevertheless, displays additional mo-

tions in both the backbone and side chains on longer timescales. This situation is reminiscent 

of the molten globule state of apomyoglobin, that also displays restricted motions on the nano-

second timescale but with greater motions on a slower timescale (Eliezer et al., 2000; Meinhold 

& Wright, 2011). The current study also provides the groundwork for further studies on NCBDs 

intricate conformational dynamics, and the relationship to ligand binding (Dogan et al., 2012; 

Zijlstra et al., 2017). Given the importance of understanding and quantifying protein dynamics, 

in particular on long timescales, we expect that our approach, which uses only commonly 
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available data, and possible combined with novel algorithms for enhancing sampling (Bonomi 

et al., 2016; Bonomi, Camilloni & Vendruscolo, 2016), will have a wide range of applications. 
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FIGURE LEGENDS 

 

Figure 1. A previously determined structural model of the conformation of NCBD in so-
lution. The structure is shown as a cartoon (PDB entry: 2KKJ) with the protein coloured from 
the N- to the C-terminal (blue to red). The three a-helices are labelled. The goal of this work is 
to provide an ensemble of structures that represent the conformational fluctuations associated 
with this average conformation. 

 

Figure 2. Assessment of the convergence of the simulations. The similarity between struc-
tural ensembles was quantified using structural clustering with Affinity Propagation and sub-
sequent comparison of the ensembles by Jensen-Shannon (JS) divergence. The JS divergence 
between two identical ensembles is zero, and it has previously been found that values less than 
~0.3 represent similar ensembles. We monitored the evolution of the JS-divergence in two dif-
ferent tests, either by comparing two replicas from the same simulation (i.e. CS-NOE-2, black) 
or two simulations with the same force field and restraints but different starting structures (i.e. 
CS-NOE-2 starting from 2KKJ and 1ZOQ structures, respectively, grey). As described in the 
text we discarded the first 45 SA cycles before calculating the ensemble similarity for the test 
with different starting structures. 

 

Figure 3. Validation of the structural ensemble using 13C (upper panel) and 1H (bottom 
panel) side-chain methyl chemical shifts. We calculated the deviation between experimental 
and predicted side-chain chemical shifts from each MD ensemble. The results are shown as a 
function of the number of replicas used for the averaging of the simulations. The previously 
determined NMR structure (black) and unbiased MD simulation (green) do not involve replica 
averaging and are shown as horizontal lines. 

 

Figure 4. Conformational ensemble of the free state of NCBD obtained by molecular dy-
namics simulations with the CHARMM22* force field and replica-averaged CS and NOE 
restraints. The a-helices are represented as cylinders and the structural ensemble was aligned 
using THESEUS.  

 

Figure 5. Calculation of order parameters from MD simulations to probe short and long 
timescale dynamics. We calculated S2 order parameters that reflect either motions faster than 
overall tumbling of the protein (black) or longer timescale motions that give rise to chemical 
shift and NOE averaging (red). For reference, the main chain Root Mean Square Deviation 
(RMSD) values of the 28 unbiased simulations that we used to calculate the S2relaxation values 
are shown in Figure S3. 
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Table S1. Summary of the MD ensembles obtained in this study. The number of 
simulated annealing (SA) cycles listed represents the number of cycles performed (for 
each replica) and analyzed after discarding the first 45 cycles for convergence. 

  

MD ensemble Number 
of 

replicas 

Number of 
SA cycles 

per replica 

Experimental 
restraints used 

Force Field Starting 
Structure 

unbiased //  // CHARMM22* 2KKJ 

CS-1 1 320 CS CHARMM22* 2KKJ 

CS-2 2 160 CS CHARMM22* 2KKJ 

CS-4 4 80 CS CHARMM22* 2KKJ 

CS-8 8 40 CS CHARMM22* 2KKJ 

NOE-1 1 320 NOEs CHARMM22* 2KKJ 

NOE-2 2 160 NOEs CHARMM22* 2KKJ 

NOE-4 4 80 NOEs CHARMM22* 2KKJ 

CS-NOE-1 1 320 NOEs CHARMM22* 2KKJ 

CS-NOE-2 2 160 CS and NOEs CHARMM22* 2KKJ 

CS-NOE-2-1ZOQ 2 160 CS and NOEs CHARMM22* 1ZOQ 

CS-NOE-4 4 80 CS and NOEs CHARMM22* 2KKJ 

CS-NOE-4-C22 4 80 CS and NOEs CHARMM22 2KKJ 

CS-NOE-8 8 40 CS and NOEs CHARMM22* 2KKJ 
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Figure S1. Cross-validation of unbiased and CS-restrained ensembles using NOE 
measurements. We calculated the total number of NOE violations in the unbiased and 
CS-restrained ensembles. We used 455 NOE-derived distance restraints (BMRB entry 
16363) of which 409 are short- and 46 are long-range (i.e. separated by more than 4 
residues). In addition to the total number of violations (all), we also separated the 
violations into different categories depending on their magnitude (0.5Å-1Å, 1Å-2Å or 
greater than 2Å) and whether they are short (0–4 residues apart) or long-range (more 
than 4 residues apart).  
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Figure S2.  Validation of the structural ensemble using 1H methyl chemical side-
chain chemical shifts. We calculated the deviation between experimental and 
calculated side-chain 1H chemical shifts from each MD ensemble with PPM to compare 
with the CH3Shift predictions reported in Figure 3B.  The results are shown as a 
function of the number of replicas used for the averaging of the simulations. The 
previously determined NMR structure (black) and unbiased MD simulation (green) do 
not involve replica averaging and are shown as horizontal lines. 
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Figure S3. Main chain RMSD of the 28 NCBD unbiased simulations started from 
conformations extracted from the CS-NOE-4 ensemble. 
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