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ABSTRACT 

Determining which target to pursue is a challenging and error-prone first step in developing a 

therapeutic treatment for a disease, where missteps are potentially very costly given the long-time 

frames and high expenses of drug development. We identified examples of successes and failures of 

target-indication pairs in clinical trials across 875 targets and 574 disease indications to build a gold-

standard data set of 6,140 known clinical outcomes. We used information from Open Targets and 

others databases that covered 17 different sources of evidence for target-indication association and 

represented the data as a matrix of 21,437×2,211×17 with over two million non-null values. We 

designed and executed three benchmarking strategies to examine the performance of multiple machine 

learning models: Logistic Regression, Elasticnet, Random Forest, Tensor Factorization and Gradient 

Boosting Machine. With ten-fold cross validation, tensor factorization achieved AUROC=0.82±0.02 

and AUPRC=0.71±0.03. Across multiple validation schemes, this was comparable or better than other 

methods. Tensor factorization is a general form of matrix factorization that has been successfully 

exploited in recommendation systems that suggest items to users based on their existing preference on 

a small number of items. Our application, using Bayesian probabilistic modelling, extends the capacity 

of matrix factorization to model multiple relationships between and among targets and indications. We 

use the model to show that our predicted probabilities of success correlate with clinical phases, and 

within clinical phase we can predict which trials are most likely to succeed.  

 

BACKGROUND 

Drug discovery and development often begins with a drug target, typically a biological protein 

through which the drug exerts its therapeutic effect in patients. Although selecting an efficacious drug 

target is the first and most important step in drug development, more than half of clinical trials still fail 

due to lack of efficacy [1, 2]. This is critical to improve given the long-time frame and high expense 

of drug development. Major challenges in determining which targets to pursue and for which disease 

indication are that there are few positive examples (as most diseases do not have great proven 

treatments) and the evidence linking targets with disease mechanism is limited. Thus, any insights 

gleaned from the limited number of pursued targets may be useful in delivering new medicines with 

lower attrition rates. In this paper, we collated historical outcomes of clinical trials and determined if 

these clinical outcomes can be predicted retrospectively using multiple machine learning models built 

on existing evidence of the targets’ biological association with indications. A successful prediction 

model provides understanding on how informative the evidence is for clinical success, and is also 

capable of generating new target-indication hypotheses with higher potential of being developed into 

successful medicines. 

One challenge in building such a model is that not all biological evidence is available for every 

pair of target and indication due to reasons such as technological limitation and limited disease 

coverage. For example, Open Targets is a recently published comprehensive database of molecular 

and phenotypical evidence that associates potential drug targets with disease indications [3]. As of 

June 2017, it contains 26,122 targets, 9,150 diseases with 2,857,732 positive associations from 15 data 

sources. Though Open Targets contains over 2.8 million associations, that is still only 0.08% of the 

possible combinations covered by this data, suggesting that a great deal of association evidence 

(99.92%) is still to be determined by biomedical researchers and clinicians. Traditional paradigms of 

machine learning algorithms, learning a mapping from input features (biological evidence) to output 

prediction (clinical outcomes), may be inadequate in this context. We show in this manuscript that the 

tensor factorization technique is useful in the analysis of this sparse biological dataset.  

                                                           
 Corresponding author (jin.8.yao@gsk.com) 
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Tensor extends the concept of matrix to multidimensional array where each dimension 

corresponds to one “axis”, called mode, of a tensor [4]. Data in many applications can be naturally 

organized into a tensor format. Figure 1a shows a three-mode tensor representing different types of 

evidence associating targets with disease indications where the front “slice” represents clinical 

outcomes. Tensor factorization decomposes a tensor into factor matrices that compactly store 

information encoded in a tensor and integrate interaction across different modes even when a large 

portion of entries of a tensor is missing [4]. This technique has a wide range of applications such as in 

recommendation systems [5], knowledge graph systems [6] and multiple biomedical domains [7].  

In the following sections, we first introduce the basic formulation of matrix factorization, a 

special form of tensor factorization. Then we explain our selection of a specific algorithm of tensor 

factorization based on characteristics of our problem. We then discuss how we design experiments to 

benchmark the method against a series of baseline models under three scenarios of drug discovery. We 

demonstrate that the model can capture known biological mechanisms of human diseases and can 

identify opportunities of approved drug targets to novel indications. 

 

METHODS 

Matrix factorization 

The clinical outcomes of existing target-indication pairs can be represented in a matrix format 

as 𝑹 ∈ ℝ𝑀×𝑁 , where the M rows represent targets and the N columns represent indications. 𝑹𝑖𝑗 = 1 

if there is at least one drug that modulates target 𝑖 and is marketed for indication 𝑗. 𝑹𝑖𝑗 = 0 if all the 

drugs modulating target 𝑖 are reported failed for indication 𝑗 in the clinic (from Phase I to Phase III). 

For target-indication pairs that have no outcomes in the clinic, the corresponding 𝑹𝑖𝑗 is empty. The 

goal is to predict clinical outcomes of all possible pairs of targets and indications i.e. fill out the empty 

𝑹𝑖𝑗′𝑠. Thus, we can treat the problem as completing the target-indication matrix of clinical outcomes. 

Matrix completion problem has been widely studied in machine learning community in the context of 

recommendation systems [5, 8]. A famous application is Netflix’s movie recommendation system, 

where each user has ratings on a small number of movies and the task is to recommend movies for 

each user based on existing ratings of other users with similar patterns of movie ratings. Matrix 

factorization is recognized as one of more successful methods for this task [5, 9, 10]. The method  

assumes that the true completed matrix is of low rank and can be approximated by a product of two 

low-dimensional latent factor matrices that represent rows and columns of a matrix in a joint D-

dimensional latent space, i.e. 𝑹 ≈ 𝑼𝑇𝑽, where 𝑼 = {𝒖𝑖}𝑖=1
𝑀 ∈ ℝ𝐷×𝑀,  𝑽 = {𝒗𝑗}

𝑗=1

𝑁
∈ ℝ𝐷×𝑁 and 𝒖𝑖 ∈

ℝ𝐷,  𝒗𝑗  ∈ ℝ𝐷 are column vectors of 𝑼 and 𝑽, respectively. The predicted entries in 𝑹𝑖𝑗 is achieved 

by the inner product of 𝒖𝑖 and 𝒗𝑗. Learning of 𝑼 and 𝑽 can be formulated as an optimization problem 

by minimizing the mean squared error between observed and predicted entries. To avoid overfitting, 

regularization on the latent factor matrices is added to the minimization problem that can be solved by 

methods such as stochastic gradient descent and alternating least square [5]. 

 

Bayesian tensor factorization 

Many matrix-factorization based methods have been proposed for recommendation systems. 

To choose an appropriate method to predict clinical outcomes, we considered three aspects of our 

problem. First, some of the evidence is target-indication specific such as human genetic evidence for 

each disease, and this has been suggested as related to clinical outcome [11]. Second, in our data, there 

are several target-only attributes independent of indications, such as target protein location, gene 

expression in tissues etc. Thus, the chosen method should also take target-only information into 

consideration. Third, in drug discovery, it is not uncommon that targets or indications that have never 

been tested in clinical trials. In the case of movie recommendation systems, this corresponds to 

recommending movies to users who have not rated any movies in the system or recommending new 
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movies that do not have any ratings in the system. The chosen method should be able to handle this 

situation.  

Given these three aspects, we investigated a method based on tensor factorization, called 

Macau, that is capable of naturally handling all the three aspects in a unified Bayesian framework and 

was originally used to predict drug-protein interaction[12]. Tensor extends the concept of matrix to a 

multidimensional array, where each dimension corresponds to one mode of a tensor. Our data can be 

organized into a three-mode tensor: target × indication × evidence 𝑹 ∈ ℝ𝑀×𝑁×𝐾,  where one entry 𝑹𝑖𝑗𝑘 

indicates the association score in 𝑘𝑡ℎ  evidence between target 𝑖  and indication 𝑗  and the clinical 

outcome matrix is included as one evidence “slice” of the tensor (Figure 1a). Similar with matrix 

factorization, tensor factorization decomposes a tensor into a series of low-dimensional latent factor 

matrices where each matrix represents one mode of the tensor. One direct way to decompose a three-

mode tensor is to assume that each entry 𝑹𝑖𝑗𝑘 can be expressed as the sum of elementwise product of 

three low dimensional vectors: 𝒖𝑖, 𝒗𝑗.and 𝒆𝑘,  representing 𝑖𝑡ℎ target, 𝑗𝑡ℎ indication and 𝑘𝑡ℎ evidence 

respectively in a joint latent factor space. The prediction of clinical outcome is achieved by the sum of 

elementwise product of the low-dimensional representation of target, indication and clinical outcome 

evidence.  

The specified tensor factorization method we chose is based on Bayesian probabilistic 

modeling, which assumes each evidence score is a random variable following a normal distribution. 

In this model, the parameter of the normal distribution is determined by the three low-dimensional 

latent factors: 𝒖𝑖, 𝒗𝑗.and 𝒆𝑘. Each latent factor is assumed to have a Gaussian prior with a Gaussian-

Wishart hyper prior placed on its hyperparameters. The target-only attributes are linearly projected 

into the latent space and added to the target’s latent factor, which provides prediction ability to targets 

that do not have any observed clinical outcomes. The inference of model parameters and 

hyperparameters is carried out by Markov Chain Monte Carlo (MCMC) approximation method. 

Specifically, we used the Julia implementation of the method [13] and followed a common practice of 

MCMC inference where we “burn-in” samples generated in the beginning and collect samples after 

that to approximate posterior distribution over model parameters and hyperparameters [14]. In our case, 

the first 500 samples were discarded and the posterior distribution over parameters were estimated 

using 300 samples after the “burn-in” process. The predictive distribution is approximated from the 

300 samples of the model parameters and then used to make predictions. Generally, we did not observe 

further improvement on prediction performance if we let the chain run longer. One parameter that 

needs to be specified is the number of latent factors. In this paper, we determined this parameter by a 

heuristic approach (supplementary material).  

 

Data collection and processing 

We created a dataset which combined clinical outcomes from the commercial database 

Pharmaprojects [15] with evidence from Open Targets[3] and other sources (Table 1), converting all 

data to target-indication pairs using EntrezGene and MeSH ID ontologies to facilitate comparison. The 

collected evidence covers data space of 21,437 targets, 2,211 indications and 17 evidence sources. For 

outcome data, if at least one drug asset for a given target-indication pair was identified as successful, 

then the target-indication pair was classified as Succeeded. Of the remaining target-indication pairs, if 

at least one asset had a clinical failure then it was classified as a Clinical Failure. Open Targets presents 

evidence from each individual source as a numerical value for a target-indication pair, with a positive 

value representing evidence. To simplify the further collation of target-indication evidence with target-

only evidence (Table 2), we converted numerical evidence value into binary values: 1 indicates 

positive association, 0 means that there is no association and unknown evidence is represented as null. 

We encoded categorical evidence, typically present as target annotations, as multiple binary values 

with each category converted into a binary value, i.e., having the property or not having the property. 

Here, we analyzed data mapped to the 574 non-cancer indications with at least one clinical outcome 
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and the corresponding 875 targets. Oncology indications have different characteristics and the 

methodology can be expanded to those. 

 

Model benchmark experiments 

We performed three cross validation experiments to evaluate the method in three scenarios 

(Figure 1b). In each experiment, we divided the target indication pairs with clinical outcomes (6,140) 

into experiment-dependent K folds, and tested the prediction results on a held-out fold using a model 

trained with the rest of folds. This process is repeated until every fold has been used as a test fold. The 

first case is a standard ten-fold cross validation where each fold is randomly determined but retains the 

same fraction of successes. In drug discovery, we know that certain sub-classes of targets and 

indications have different properties. In order to assess if the model can be generalized to sub-classes 

of targets and indications different from those used in the training stage, we devised two other cross 

validation experiments where each time the clinical outcomes of one pre-defined group of targets 

(indications) are left out as the test set. Specifically, for the leave one target group out case, we used 

the grouping defined by target class. A given target is assigned to one of ten target classes based on 

the target’s protein family retrieved from ChEMBL hierarchical target classification system [16]. For 

leave one indication group out case, we defined eight indication groups by de novo clustering 

indications based on how similar two indications are in terms of their relative positions in MeSH 

(Medical Subject Heading) hierarchical tree and co-occurrence frequency in literature (supplementary 

material). 

Baseline models 
For comparison purposes, we also ran the cross-validation experiments using four machine 

learning models as baseline models. For the baseline models, each target indication pair is treated as a 

sample and the corresponding association evidence and target attributes are treated as its features. The 

task is being cast as a binary classification problem. To allow the four baseline models to handle 

missing values, we treated the association scores as categorical variables with three categories: no 

association (0), positive association (1) and unknown (missing) association. Each categorical variable 

is then encoded as two binary variables (also called one-hot encoding). The four models that we tested 

are:  

1. Logistic Regression (LR), a simple linear model. 

2. Elasticnet [17], which is a generalized linear model with elastic net regularization 

implemented in the glmnet R package where the regularization parameters were determined 

using cross validation.  

3. Random Forest (RF), an ensemble model of decision trees where the parameters are 

determined by the Out-of-Bag error estimate using tuneRF function in randomForest R 

package. 

4. Gradient Boosting Machine (GBM)[18], a boosting method which is implemented in 

xgboost [19] where we tuned the following parameters using cross validation: the feature 

shrinkage rate, maximum depth of a tree, subsample ratio of features and number of 

iterations. 

5. Matrix Factorization (MF): We also included another baseline model where we only used 

the clinical outcome matrix and applied matrix factorization to complete the matrix for 

prediction. Specifically, we used a nuclear norm regularized matrix factorization method 

that is implemented in the softimpute [20] R package and the regularization parameter is 

determined through cross validation. 

Performance metrics 
We used two metrics to measure the prediction performance of the evaluated methods: area 

under receiver operator curve (AUROC) and area under precision recall curve. (AUPRC). The 

AUROC measures the probability of a model ranking a randomly chosen positive example higher than 

a randomly chosen negative example and is commonly used in assessing performance of models for 
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binary classification tasks. AUROC treats positive and negative examples equally, this metric is of 

limited value when the number of positive examples are relatively low. Given the low success rate in 

drug development, we chose AUPRC as the primary evaluation metric as it focuses on the performance 

on positive examples. Here the precision is the proportion of correctly predicted positives out of all 

predicted positives and recall is the proportion of correctly predicted positives out of all positives.  

 

RESULTS 

Model benchmark results 

We performed a standard cross validation experiment to benchmark various types of machine 

learning models (Figure 1b, panel 1). The best model is the matrix factorization (MF) model 

(AUROC=0.83±0.02, AUPRC=0.77±0.02) (Figure 2), which only factorizes the clinical outcomes 

matrix without considering any other evidence in the dataset. Due to the highly-correlated structure 

within the clinical outcomes of target-indication pairs, the standard way of randomly splitting them 

into training and test sets may overestimate the predictability of clinical outcomes. This may explain 

the high performance of MF; knowing which targets have succeeded against which indications in the 

training data may provide enough information to predict the outcome status of new indications for 

these targets. Many drug targets are from the same gene family and it is very likely that targets within 

the same gene family are not assigned to the same training or test set, though the same drug may bind 

to members in each set. A similar effect may relate indications with different subtypes, as drug targets 

are often sequentially tried against closely related diseases.  

To mitigate this problem and obtain an unbiased estimation of predictive capacity, we designed 

two benchmark experiments, where a group of similar targets (Figure 1b, panels 2 and 3) or 

indications is held out as a test set and models trained on the other target or indication groups, 

respectively, are evaluated against the held-out set. We categorized targets into ten target classes 

largely derived from the ChEMBL hierarchical target classification system [16], and grouped 

indications into eight clusters that are based on MeSH hierarchy and co-occurrence frequency in 

literature (supplementary material). In the leave one target class out cross validation experiment 

(Figure 2), the performance of MF decreases dramatically as there is no information in the training set 

to predict clinical outcomes of the held-out target class. All the other methods perform similarly and 

the overall performance is not as good as in the standard cross validation setting. This implies that it 

is difficult to predict candidate indications for targets that have not been assessed in clinic trials. In the 

leave one disease cluster out validation experiment, the performance of MF again dropped below that 

of the other methods as there is no information about clinical outcomes of the held-out disease clusters 

in the training step.  

However, the Bayesian tensor factorization (BTF) model scored as the best model in the disease 

group benchmark (AUROC=0.73±0.05, AUPRC=0.58±0.09) and the second best model in standard 

cross-validation (AUROC=0.82±0.02, AUPRC=0.71±0.03). It is counter-intuitive that BTF does not 

out-perform the MF method in the standard cross-validation case, as it incorporated more data. MF 

approach may be taking maximum advantage of the highly-related nature of the outcomes, given the 

poor performance of MF in the target class and disease group benchmarks. MF also only needs to learn 

latent factors to explain the clinical outcomes, while BTF needs to learn latent factors to explain the 

clinical outcomes and all the evidence as well, which is inherently a more difficult task.  

In general, the performance of models that explicitly use evidence as predictors did not vary 

too much across three validation settings. Among these models, ensemble based methods (RF and 

GBM) worked slightly better than linear model based methods (LR and Elasticnet). Although MF 

performed relative well in the standard validation case, its performance was inconsistent among 

validation settings. BTF combined both evidence and inter-relationship among targets and indications 

and performed consistently well in all three validation scenarios. 

 

Leave one out experiment 
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One advantage of this leave one target/disease group out validation scheme is that we can also 

assess how trained models can be generalized to groups of targets/diseases that the models have never 

trained on before. Figure 3 shows the prediction performance of the six models on the held-out target 

classes (Figure 3a) and disease clusters (Figure 3b). In the leave one target class out case, the 

prediction performance averaged over the six models varies between target classes (AUPRC ranges 

from 0.24 to 0.58; AUROC ranges from 0.53 to 0.68). Specifically, we notice that the models perform 

consistently poorly for transcriptional factor targets and miscellaneous enzymes, which implies that 

these target classes are quite different from the other target classes. On the other hand, most models 

perform relatively well in protease targets. We note there is good consistency of performance among 

models within each target class, but this low variability is not repeated in the leave one disease cluster 

out case, where the prediction performance shows higher variability among disease clusters. For 

example, the BTF model performs better than the other models in the metabolic, GI and urologic and 

oral disease clusters, and performs as well as any other model in the other disease clusters. 

 

Latent factors capture disease relationship 

After benchmarking the performance of the BTF model in the cross-validation experiments, 

we fitted the model to the whole dataset. We chose eleven latent factors (supplementary material). 

Before using the fitted BTF model to make any predictions, we explored whether the latent factors 

learned from the model are biologically meaningful so that we can increase our trust on the prediction 

made by the model. To do so, we reduced the eleven latent factors to two dimensions using t-SNE [21] 

to visualize how indications are distributed and examined whether the learned latent factors can capture 

inter-relationship among indications. t-SNE is a dimension reduction technique used to visualize high-

dimensional dataset where similar points in high dimensional space are transformed to neighboring 

points in a low dimensional space and dissimilar points are transformed to distant points in the low 

dimensional embedding. Figure 4a shows the two-dimensional t-SNE embedding of the 574 

indications with at least one clinical outcome, where large-scale themes as well as local clustering of 

biological mechanisms can be observed. For example, different disease areas generally occupy 

different domains in the map. Three clusters are enriched with three distinct disease categories 

including Central nervous system diseases, Digestive system diseases and Hemic & lymphatic diseases, 

respectively. Auto-immune diseases, such as rheumatoid arthritis, asthma, psoriasis and Crohn’s 

diseases, that manifest in different organs are localized in the same neighboring area in the map. Figure 

4a shows the 2D embedding with perplexity=30 in t-SNE. The above observation is consistent using 

different perplexity values in the range from 10 to 50.  

 

Prediction scores of target-indication pairs under clinical trials 

To validate the prediction made by the BTF model, we chose 1,246 novel target-indication 

pairs that were in progress in clinical trials (Phase I-III) at the time when we collected the data (May 

2016), and thus did not have clinical outcome readouts. We compared the prediction scores generated 

by the BTF model on these target-indication pairs and noticed that the prediction scores of later phase 

pairs are significantly higher than those of earlier phase pairs (Figure 4b), which recapitulates the 

observation that drugs in later phases on average have higher likelihood of approval. Since we did not 

include phase information of these target-indication pairs when training the model, these pairs serve 

as an independent test set and the results increase our confidence on the predictions of the model. 

Next, we conducted literature search on the top 63 hypotheses of the 1,246 pairs based on a 

prediction score threshold, which corresponds with 0.8 precision and 0.27 recall in the standard cross 

validation experiment. We list 15 of these 63 hypotheses along with a relevant literature reference in 

Table 3; the complete list of 63 can be found in the supplementary material. 

As an example, interleukin 6 (IL6) is an approved drug target for giant lymph node hyperplasia 

(Table 3). Our results suggest that the current trials for psoriatic arthritis, which includes a Phase IIb 

trial of a monoclonal antibody against this protein [22], have greater than random chance of success. 
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Psoriatic arthritis is a chronic inflammatory arthritis that is associated with psoriasis and thus 

somewhat related to the successful indication for IL6, a cytokine with a wide variety of biological 

functions. It induces the acute phase response and is involved in the final differentiation of B-cells into 

Ig-secreting cells in lymphocyte and monocyte differentiation. It acts on B-cells, T-cells, hepatocytes, 

hematopoietic progenitor cells and is required for the generation of T(H)17 cells. It also acts as a 

myokine and is discharged into the bloodstream after muscle contraction and acts to increase the 

breakdown of fats and to improve insulin resistance[23]. Genetic polymorphism of IL6 has been shown 

to be significantly associated with a form of psoriatic arthritis [24], and serum IL6 is considered as a 

biomarker for assessing disease activity in patients with psoriasis, as well as for predicting 

responsiveness of joint symptoms to biologic treatment [25].  

Another target of interest is angiotensin II receptor type 1 (AGTR1), an important effector 

controlling blood pressure and volume in the cardiovascular system. It has been approved for many 

cardiovascular indications such as heart failure, myocardial infarction and hypertension. The predicted 

indication for AGTR1 is hypercholesterolemia, also known as high cholesterol. AGTR1 antagonism 

improves hypercholesterolemia-associated endothelial dysfunction[26] and attenuates the 

inflammatory and thrombogenic responses to hypercholesterolemia in venules [27]. Significant 

association of AGTR1 polymorphism with hypercholesterolemia was also observed in hypertension 

patients [28]. During the time of preparing this manuscript, we found that a drug has been launched in 

South Korea [29] for hypercholesterolemia by targeting AGTR1.  

 

DISCUSSION 

In this paper, we focused on the problem of predicting clinically promising therapeutic 

hypotheses using associative knowledge of targets and indications. We compared tensor factorization 

with other traditional machine learning methods in a variety of benchmarking experiments and 

identified two interesting findings from the evaluation of this method: 1) the latent factors learned from 

the model align with known biological relationships among human diseases; and 2) the method can be 

applied to different scenarios of drug discovery and achieves competitive prediction performance.  

However, there are some limitations worth discussing before deploying tensor factorization to 

propose novel target-indication hypotheses. First, the model relies on the available compilation of 

evidence sources. Open Targets provided us a good foundation, but clearly more sources could be 

gathered. Second, we treated every clinical failure equally. Our preliminary analysis has shown that 

some target-indications pairs have been tried multiple times and are still being pursued clinically, while 

some failed only once and were never tested again. Although the probabilistic framework of the model 

can potentially mitigate this problem, the model does not explicitly differentiate definitive failures 

from those that have not been thoroughly explored and may become successful drugs in the future. 

Lastly, we only applied the technique to a dataset of targets and indications with at least one clinical 

outcome; thus, the application as benchmarked here is constrained to applying approved drug targets 

to new indications. The methodology, however, can be expanded to any target and any indication so 

long as their evidence is encoded in the data. Such an application may result in the identification of 

novel target-indication hypotheses with a high predicted probability of being successfully translated 

into medicines.  

 

CONCLUSION 

In this work, we evaluated a machine learning technique called tensor factorization on the 

problem of predicting clinical outcomes of therapeutic hypotheses using existing association evidence 

between drug targets and disease indications. We illustrate that the method can achieve equal or better 

prediction performance compared with a variety of baseline models across three scenarios of drug 

discovery, and the learned model can capture known biological mechanism of human diseases. 

Furthermore, we demonstrated an application of the method to predict outcomes of trials on novel 

indications of approved drug targets. Future work includes expanding this method to targets and 
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indications that previously have never been clinically tested and proposing novel target-indication 

hypotheses that can be developed into medicines with predicted high probabilities of success. 
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FIGURES 

 
 

Figure 1. Data representation and model benchmark schematic. (a) Tensor representation of the 

dataset. The front “slice” matrix represents clinical outcomes of target-indication pairs. (b) Illustration of three 

schemes of benchmarking models on predicting clinical outcomes. Each matrix represents clinical outcomes 

of targets (rows) and indications (columns). Grey and green cells are target-indications pairs used for training 

and testing, respectively. Blank cells represent unknown clinical outcomes of target-indication pairs. 

 

Figure 2. Benchmark performance of models. Prediction performance comparison in three benchmark 

schemes in terms of Area Under Receiving Operation Curve (AUROC, Top) and Area Under Precision Recall 

Curve (AUPRC, Bottom). Error bars are calculated from cross validation. 

 

Targets

Indications
Genetic

Animal K.O.

RNA Expression

Pathway

Literature

Clinical outcome

a b
Standard K fold validation

Leave one target class out

Leave one disease cluster out

Testing

Training

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2018. ; https://doi.org/10.1101/272740doi: bioRxiv preprint 

https://doi.org/10.1101/272740
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Benchmark performance of leave one out experiments. Model performance on predicting 

clinical outcomes of target classes (Top) and disease clusters (Bottom) in leave one out experiment in terms of 

Area Under Receiving Operation Curve (AUROC, x axis) and Area Under Precision Recall Curve (AUPRC, 

y-axis). 95 confidence interval are calculated using 1,000 bootstraps. Dotted lines mark the AUROC (vertical) 

and AUPRC (horizontal) of random guess, which is 0.5 and% of positives in the testing set, respectively. 

 

 
Figure 4. Validation of BTF model prediction. a). t-SNE visualization of indications based on the latent 

factors learned in BTF model. Each dot represents one indication and the size of the dot is proportional to the 
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number of targets that have been clinically failed. The inserted pie charts show diseases composition of 

representative clusters of indications in the 2D visualization. b) BTF prediction scores of target-indication pairs 

in Phase I-III clinical trials. P-values are based on Wilcoxon rank sum tests. 

TABLES 

Table 1. 17 sources of target-indication evidence. Numerical data was obtained from Open Targets [1] 

except for commercial sources (TERMITE: www.scibite.com/products/termite; GeneLogic: GeneLogic 

Division, Ocimum Biosolutions, Inc) and where indicated  
Evidence Type Sources 

Phenotypes from animal KOs Phenodigm 

Mendelian/Curated Genetics European Variant Archive, Uniprot, Uniprot literature 

GWAS/Statistical Genetics GWAS catalog, STOPGAP[11] 

Somatic Mutation Cancer Gene Census, European Variant Archive somatic 

Literature Europe PMC, TERMITE 

mRNA disease vs. normal 

expression 
Expression Atlas, Internal expression data 

mRNA tissue overexpression GeneLogic, GTEx[30], Human Protein Atlas[31] 

Pathways Reactome, Metabase 

 

Table 2. Six sources of target-only evidence. Genes were broken into non-overlapping categories based 

on available data. Genes were classified as tolerant, intolerant and unclassified based on data from the Exome 

Aggregation Consortium[32] and the percentile rank of Residual Variation Intolerance Score [33]. Genes were 

based on identification of >=75% protein homology between human and mouse, data downloaded from 

BioMart[34]. Target Location and Topology were derived from a review of information from Gene Ontology, 

InterPro, PFAM and Uniprot, 

Evidence Type Sources (# of categories) 

Mutation Tolerance ExAc_LoF(3), ExAc_Missense (3), RVIS (3), Mouse Protein identity (2) 

Other Target Characteristics Target Location (7), Target Topology (5) 

 

Table 3. High Scoring Pairs of Interest from TF Model. New indications of approved targets in 

clinical trials (Phase* as of May 27, 2016) that have the highest probability of eventual clinical success as 

measured by the tensor factorization model. The full list is available in the supplement. For illustrative 

purposes, we list a related indication approved for assets for each target  

Target 
High Scoring Indication in Clinical 

Pipeline (Phase*) 
PubmedID 

Related Approved Indication 

(Total Approved Indications) 

ABCC8 Glucose Intolerance (III) 23903354 Diabetes Mellitus (1) 

ADRB1 Cachexia (II) 20426789 Ischemia (13) 

ADRB2 Hypoglycemia (I) 22013013 Glaucoma (15) 

ADRB2 Myocardial Infarction (III) 26692153 Heart Failure (15) 

AGTR1 Hypercholesterolemia (III) 12117739 Hyperlipidemias (7) 

CYP3A4 Hepatitis C (II) 20938912 HIV Infections (1) 

IL2 Behcet Syndrome (II) 26654556 Graft Rejection (1) 

IL6 Waldenstrom Macroglobulinemia (I) 26238488 Giant Lymph Node Hyperplasia (1) 

IL6 Arthritis, Psoriatic (II) 27789987 Giant Lymph Node Hyperplasia (1) 

OPRM1 Schizophrenia (III) 27397309 Migraine Disorders (22) 

RYR1 Muscular Dystrophy, Duchenne (I) 26793121 Malignant Hyperthermia (1) 

SERPINC1 Hemophilia (II) 27099538 Blood Coagulation Disorders (16) 

TNFSF11 Hypercalcemia (II) 27904108 Osteoporosis (1) 

VDR Alopecia (I) 27932380 Keratosis (9) 

VDR Cachexia (I) 22497530 Chronic Kidney Failure (9) 
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