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Abstract

freely available on Bioconductor.

Paired-end tags

We present Model-based Analysis for ChIA-PET (MACPET) which analyzes paired-end read sequences
provided by ChIA-PET for finding binding sites of a protein of interest. MACPET uses information from both
tags of each PET and searches for binding sites in a two-dimensional space, while taking into account different
noise levels in different genomic regions. MACPET shows favorable results compared to MACS in terms of
motif occurrence, spatial resolution and false discovery rate. Significant binding sites discovered by MACPET
are involved in a higher number of significant 3D interactions than those discovered by MACS. MACPET is
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Background

In the recent years a lot of interest has been placed
on understanding the three-dimensional structure of
chromosomes inside the cell nucleus [1, 2, 3, 4, 5, 6],
as genomes are organized as three-dimensional rather
than linear structures in the nucleus of the cell [1].
Those structures play an important role in chromoso-
mal activities such as transcription and regulation of
gene expression [1, 2].

The ChIA-PET method allows for analysis of the
three-dimensional structure of DNA associated with a
protein of interest. It can be used for finding protein
binding sites (PBSs) on the genome as well as potential
chromatin interactions associated with those proteins.
Those interactions provide information on the three-
dimensional genome structure [6].

ChIA-PET data contain short DNA sequences ~ 20
base pairs (bp), which are called tags. Each tag is lig-
ated to a half-linker sequence, either A or B (often
TAAG for linker A and ATGT for linker B). Each of
those half-linkers also contain the site for the restric-
tion enzyme used to cut the sequences for releasing the
tags. For example GTTGGA for the Mmel restriction
enzyme which cuts 20 bp from its restriction site to
reveal the 20 bp long tag sequence. Pairs of tag-half-
linker products are connected to each other by prox-
imity ligation to form tag-linker-tag products named
paired-end-tags (PETSs). The final linker sequence re-
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veals different combinations of the two half-linkers A
and B [7].

The combination of the half-linkers classifies the
PETs into three categories. Ambiguous PETSs are those
for which any of their half-linkers is missing. Chimeric
PETs are those with half-linkers A/B or B/A and are
derived from random ligations between different ChIP
complexes. Finally, non-chimeric PETs are those with
half-linkers A/A or B/B. Only the non-chimeric PETs
are considered for the ChIA-PET analysis [7].

After classifying the PETs based on their half-
linkers, the linker sequences are removed from the
non-chimeric PETSs [7], and the tags of each PET are
separately mapped on the genome [8, 9]. The loca-
tion to which the tags are mapped classifies the PETs
into three categories (see figure 1) [7, 10]. Self-ligated
PETs are products of self-circularization ligation of a
single DNA fragment. They consist of tags which be-
long to the same chromosome and strand, and which
have same orientation and short genomic span between
them. Furthermore, each PET has the same chance of
being sequenced on both strands which will result in
both tags being mapped either on Watson or on Crick
strand. Intra-chromosomal PETs consist of tags which
belong to the same chromosome, have long genomic
distance between them, and may have been mapped on
different strands or with different orientation. Inter-
chromosomal are PETs with the same characteris-
tics as the intra-chromosomal ones, but their tags are
mapped on different chromosomes. Intra- and inter-
chromosomal PETSs correspond to two DNA fragments
from different genomic regions bound to the same pro-
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tein of interest and ligated to each other during the
ligation process [7, 10].

The process of creating ChIA-PET data is composed
of many experimental steps, each of which may intro-
duce some noise to the data [8, 11, 7]. Noise PETSs are
usually defined as those that show a random position-
ing on the genome without creating significant peaks
[7]. However, noise might not be evenly distributed
across the genome, but might gather around certain
regions [11]. This suggests different amounts of noise in
different regions. Furthermore, noise can also be gener-
ated by PCR clonal amplification. These PETSs might
show significant overlap and be misclassified as PBSs
by peak-calling algorithms. For reducing that kind of
noise, Li et al. [7] proposes merging all PETSs for which
both of their tags overlap +1 bp with another PET’s
tags.

Self-ligated PETs are used for identifying PBSs by
finding significant peaks of overlapping PETs on the
genome. The tags of those PETs would pile up creating
two peaks, one upstream and one downstream from the
true PBS location, where the exact binding position
exists somewhere between the two peaks [7, 10].

MACS is a widely used algorithm for finding PBSs
on DNA for ChIP-Seq data using a non-parametric
model [12]. However MACS is also used for ChIA-PET
data by using only the 5-end tag of each PET. Because
PETs can be sequenced from either strand with the
same probability, using only the 5-end tag of each PET
would reveal an upstream and a downstream density of
the Watson and Crick tags, respectively, with the PBS
location positioned in the middle. MACS identifies and
separates the two densities around each PBS by scan-
ning the genome with a user-specified window. It then
shifts the two densities towards each other to find the
precise binding location. Finally, it merges candidate
PBSs which overlap for creating a single one [12]. How-
ever, if the window is too large the PBSs might be
overestimated, and if it is too small the probability of
false positives increases [11]. The choice of the window
size might be a challenge for the user.

It would be reasonable to assume that using both
tags of the self-ligated PETs provided by ChIA-PET
would result in better identification of the PBSs. This
is because if a PET belongs to a PBS, then both of
its tags should be mapped around that PBS, irrespec-
tive of strand. Additionally, using a parametric model
which takes into account specific characteristics of the
PBSs for identifying their location, might be more ef-
ficient than a non-parametric. To be more specific, it
might be reasonable to expect that the distribution of
the upstream peak of a PBS would be negative-skewed
towards the PBS and with longer left tail, since more
upstream tags will be mapped on the left side of the
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PBS. Accordingly, the distribution of the downstream
peak would be positive-skewed towards the PBS and
with longer right tail, since more of the downstream
tags will be mapped on the right side of the PBS.
Predicting more accurate PBS locations should result
in better discovery of significant interactions between
those PBSs.

Intra- and inter-chromosomal PETSs are used for find-
ing interactions between PBSs which are previously
identified by the self-ligated PETs. Those interac-
tions provide information about the three-dimensional
structure of the genome and how it is folded in the
nucleus of the cell 7, 10].

MANGO is a complete ChIA-PET pipeline which
uses MACS for finding significant PBSs and searches
for significant interactions between those PBSs by tak-
ing the distance between them into account. Moreover,
the user can choose which stage of the MANGO anal-
ysis to run, as well as provide PBSs found by algo-
rithms other than MACS. MANGO has been proven
to give more accurate results than other algorithms of
the same kind [13].

In the current paper we present Model-based Anal-
ysis for ChIA-PET (MACPET), an efficient method
for discovering PBSs using ChIA-PET data. MACPET
uses both tags of each self-ligated PET and estimates
the PBSs using two-dimensional parametric mixture
models. Modeling the self-ligated PETSs in two dimen-
sions, one dimension for each tag, and representing
them as dots in a two-dimensional space, ensures that
in order for a self-ligated PET to belong to a PBS,
both of its tags need to belong to it. MACPET identi-
fies the upstream and downstream peaks of each PBS
by taking into account potential skewness of the peaks.
Since both tags of each self-ligated PET are used,
MACPET does not use strand information of the tags.
Furthermore, MACPET models non-overlapping ge-
nomic regions separately and evaluates noise locally,
which results in better identification of noise PETs
and excludes the need for user-specified values. Finally,
MACPET also implements the preliminary stages of
ChIA-PET analysis like linker identification, linker
trimming, mapping to the reference genome and PET
classification. The output of MACPET can be directly
used in the MANGO algorithm. MACPET is publicly
available at Bioconductor. It is mainly implemented in
C++ and is thus fast and supports all relevant plat-
forms.

Results

We compare MACPET with MACS on six ChIA-
PET datasets publicly available at NCBI [14]. Table
1 presents the datasets used and shows the results of
the first three stages of MACPET analysis. Because
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MACS cannot filter, trim, map or classify the PETs
we used MACPET for those stages. The self-ligated
PETs found by MACPET are then used in MACS for
binding site analysis. In the main text we only present
results from the ESR1 (MCF-7), CTCF (MCF-7) and
CTCF (K562) datasets. The results of the remaining
datasets can be found in the supplementary material
available online. However, we will refer to them in the
main text.

Figure 2 shows the self-ligated and intra-chromosomal
separation cut-off of the three datasets (for the other
three datasets see figure S2 in supplementary material
available online). The self-ligated data was then used
in both MACPET and MACS for finding significant
PBSs on each dataset. For both MACPET and MACS
we declared significant PBSs with false discovery rate
(FDR) cut-off at 0.05, mainly because this is the de-
fault cut-off for PBSs which are used in the interaction
analysis algorithm as we discuss later.

For the ESR1 (MCF-7), CTCF (MCF-7) and CTCF
(K562) datasets we can investigate the association of
the significant PBSs with the expected motifs (ESR1
and CTCT accordingly). Using 200 bp windows cen-
tered at the precise PBS locations for the top 5000
most significant PBSs from MACPET and MACS, we
compare the quality and precision of those bindings
in terms of motif occurrence (the percentage of PBSs
associated with the expected motif) and spatial resolu-
tion (the distance of the PBS location to the expected
motif). For doing so, we used the rtGADEM algorithm
[15] for de novo motif analysis, and then the MotIV al-
gorithm [16], for keeping only the most common motif
on each dataset. rGADEM applies a stochastic algo-
rithm for de novo motif discovery and it is therefore
not guaranteed to give identical results on each run
[17]. Therefore, we run rGADEM five times for both
MACPET and MACS (using MotIV after each run)
and we take the mean among the runs as the final re-
sult. For both MACPET and MACS the most common
motifs for each run were the expected motif for each
dataset.

Figures 3 (a-c) show the motif occurrence for each
dataset. MACPET results in a higher number of PBSs
associated with the expected motif than those from
MACS, for each dataset. Figures 3 (d-f) show the spa-
tial resolution of the PBSs, where only PBSs with dis-
tance less than 50 bp from the expected motif are taken
into account. The locations of the MACPET PBSs are
more precise as they are closer to the expected motif
location than those of MACS.

For evaluating the inference methods of MACPET
and MACS, we compare the FDR of the first 5000
most significant PBSs. Figures 3 (g-1) show the FDR
for the three datasets (for the other three datasets see
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figures S3 (a~c) in supplementary material available
online). MACPET results in lower FDR than MACS
in general for all six datasets, which is an indication
that fewer false PBSs will be found by MACPET.

Figures 4 (a-c) show Venn diagrams for the signif-
icant PBSs which are in common for MACPET and
MACS, for the three datasets (for the rest of the
datasets see figures S4 (a-c) in supplementary mate-
rial available online). There are in general many PBSs
which are common for the two algorithms. However,
it is noticeable that MACS finds far more significant
PBSs than MACPET. In figures 4 (d-f), on the other
hand, one can see that MACPET finds stronger PBSs
in terms of total tags than MACS for all six datasets
(for the rest of the datasets see figures S4 (d-f) in sup-
plementary material available online).

Additionally, comparing the interval sizes of the
PBSs in figures 4 (g-i), we can see that MACPET
seems to result in larger, but probably more realistic
PBS intervals than MACS (for the rest of the datasets
see figures S4 (g-1) in supplementary material available
online).

Moreover, we used the fifth stage in MANGO al-
gorithm for investigating the potential benefits of the
PBSs from MACPET over those from MACS in terms
of interaction analysis and 3D DNA structure. We used
the significant PBSs found by MACPET and MACS
as inputs in MANGO (FDR< 0.05 which is the default
for peak-calling in MANGO), as well as the intra- and
inter-chromosomal PETs classified by MACPET.

MANGO gives the option to extend the PBS inter-
vals in both sides with a user specified window (500
bp being the default) [13]. Because MANGO merges
the extended PBSs before running interaction analy-
sis [13], we run MANGO on a sequence of extending
windows 0, 100, ..., 900, 1000. This allows us to investi-
gate how different extending windows affect the merg-
ing of the PBSs and thus the interactions. The rest
of MANGO parameters are kept at default for both
MACPET and MACS.

Figures 5 (a-c) show the total number of significant
interactions (FDR< 0.05) for each extension window
for MACPET and MACS (for the rest of the datasets
see figures S5 (a-c) in supplementary material available
online). MACPET gives higher total number of signif-
icant interactions than MACS for all six datasets and
all windows. In figures 5 (d-f) we also compared the
total PBSs involved in interactions for MACPET and
MACS (for the rest of the datasets see figures S5 (d-
f) in supplementary material available online). PBSs
found by MACPET are more involved in interactions
than those from MACS.

Finally, we consider only interactions for the 500 bp
extension window. Figures 6 (a-c) show the Venn dia-
grams for the common interactions between MACPET
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and MACS (see figures S6 (a-c) for the rest of the
data in supplementary material available online). In
general there are many common interactions between
MACPET and MACS. However MACPET reveals
many more interactions than MACS. Figures 6 (d-f)
show the distance of the interactions (see figures S6 (d-
f) for the rest of the datasets in supplementary mate-
rial available online), where MACPET seems to result
in slightly longer interactions for all the datasets.

Discussion

We compared MACPET with MACS since the latter is
one of the most used algorithms for discovering PBS.
PICS [18] is another known algorithm for binding site
analysis which also uses only the 5-end tag when used
for ChIA-PET data. However, PICS needs control data
for computing the FDR for the PBSs, and control data
were unavailable for the datasets used in the analysis.
Without an FDR estimate it was not possible to subset
the most significant PBSs from PICS and thus, we
could not compare PICS with MACPET.

We showed that MACPET discovers fewer significant
PBSs than MACS. This is expected since MACPET
models noise locally using mixture models, which re-
sults in weaker overlapping PETSs being categorized
as noise, while MACS categorizes them as PBSs. This
is consistent with the PBSs’ FDR for MACPET and
MACS. The FDR of MACPET PBSs is much lower
than those for MACS, indicating that many of the
PBSs found by MACS are actually mistaken as PBSs,
but they should rather be classified as noise (i.e.,
false positives). This result was also consistent with
the strength of the PBSs from MACPET and MACS,
where we showed that PBSs found by MACPET con-
tain a higher number of tags than PBSs found by
MACS. Which is expected since MACPET forces both
tags of each self-ligated PET to be part of a PBS.

Moreover, we showed that MACPET results in bet-
ter identification or PBSs as well as more accurate po-
sitioning of PBSs than MACS. Although MACPET
finds fewer significant PBSs, those PBSs are associated
with the expected motif in higher frequency than those
from MACS. This indicates once more that MACS
have discovered a higher number of false PBSs with no
motif association. Moreover, PBSs found by MACPET
were closer to the exact motif position than those from
MACS. Consequently, this confirms the assumption
that using both tags of each PET in ChIA-PET data
results in more accurate PBS locations.

Additionally, we showed that MACPET results in
PBSs with longer and, overall, more flexible intervals.
The skewness that MACPET implements when mod-
eling PBSs seems to reflect the characteristics of the
proteins being modeled. For example, PBSs from the
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datasets ESR1 (MCF-7), CTCF (MCF-7) and CTCF
(K562), which are transcription factor proteins and
it is known that they bind at specific location, give
smaller intervals than the dataset POL2 (K562), which
is a polymerace protein and it is known to bind in wide
locations. MACS also captures the characteristics of
the proteins, however not as much as MACPET does,
because MACS’ model is not as flexible.

We also investigated how PBSs found by MACPET
affect the 3D genome interactions, compared to those
from MACS. We used the significant PBSs found by
MACPET and MACS in the interaction stage of the
MANGO algorithm. We showed that, although the to-
tal number of PBSs given as input in MANGO was
much higher for MACS than for MACPET, MACPET
resulted in a higher number of significant interactions
between its PBSs irrespective of the extending win-
dow. Furthermore, a higher portion of PBSs found by
MACPET are involved in interactions than those from
MACS. This also indicates that the quality and preci-
sion of the PBSs found by MACPET are better than
those from MACS.

Finally, we showed that PBS found by MAPCET are
involved in slightly longer interactions than PBS found
by MACS. It is well known that PBS which are close
to each other in genomic distance, tend to randomly
interact more often than PBS which are separated by
long genomic distance [3]. This also indicates that the
PBS found by MACPET are more accurate than those
found by MACS.

Conclusions

The aim of the study was to create an algorithm-
pipeline which would take advantage of all the avail-
able information provided by paired-end data like
ChIA-PET for discovering PBSs. The reason behind
this was that identifying more accurate PBS locations
should result in more robust identification of interac-
tions. As intra- and inter-chromosomal PETs connect
PBSs by being mapped near the PBSs’ binding loca-
tions, improperly identified PBSs might result in weak
or even inaccurate interactions. We created MACPET,
which runs a ChIA-PET data analysis including stages
for linker trimming, mapping to the reference genome,
PET classification, as well as a new statistical method
for discovering PBSs using both tags of each PET. We
showed that using all the available information from
the paired-end data, combined with a more flexible
model when discovering PBSs, is very important and
leads to the discovery of a higher number of interac-
tions between those PBSs. Those interactions might
reveal new insights of the 3D DNA structure which
might not have been found if using only the one tag
of the paired-end data for finding PBSs. Finally, al-
though the output from MACPET can be directly used
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in MANGO for interaction analysis, we are planning
to implement a new interaction model in MACPET in
the near future.

Methods

MACPET currently implements a four-stage analysis
of ChIA-PET data. Each of those stages (0-3) is briefly
discussed in the following Sections. Figure 7 shows a
complete MACPET pipeline.

Stage 0: Linker filtering

MACPET identifies the half-linkers and classifies the
PETs as ambiguous, chimeric and non-chimeric. It
then removes the half-linker sequences from non-
chimeric to reveal the two tags of each PET in the
data. The trimmed non-chimeric PETs are used in
the next stage of the analysis. This stage also removes
PETSs which include non-standard residues (for exam-
ple the N letter).

Stage 1: Mapping to the genome

MACPET maps the tags of the non-chimeric PETs
separately to the reference genome using the Bowtie al-
gorithm [19]. First the tags are mapped without allow-
ing any mismatch and the uniquely mapped tags are
kept. Then non-mapped tags are subject to a second
run mapping with at most one mismatch and only the
uniquely mapped tags are kept again. Note that this
is the same process as the one proposed in [7]. PETs
with both of their tags uniquely mapped with zero or
one mismatch are used for constructing the paired-end
BAM file which is used in subsequent stages. Finally,
PETs with either tag overlapping any black listed re-
gions of the corresponding genome are removed before
continuing to the next stage of the analysis [20].

Stage 2: PET classification

MACPET classifies the PETSs into self-ligated, intra-
and inter- chromosomal. Inter-chromosomal PETs can
be easily separated as the tags of each PET are
mapped on different chromosomes. For separating the
other two categories, MACPET plots the histogram of
the log-lengths of the PETs (using a bandwidth of 100
for each bin), spanning from the minimum to the max-
imum length of the PETSs (see figure 2). The length of a
PET is defined as the distance between its tags. It then
applies the elbow method for finding a cut-off between
the two populations. Thereafter, PETSs for which both
of their tags overlap with another PET’s tags (£1 bp)
are removed and only one of those PETSs is kept for
reducing noise by PCR amplification procedures.
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Stage 3: Peak calling

At this stage MACPET uses only the self-ligated PET's
for identifying candidate binding site locations. The
genome is first segmented into non-overlapping re-
gions, where each region has at least two overlapping
self-ligated PETs. Each self-ligated PET in a region
overlaps with at least one other self-ligated PET in
the same region and no other self-ligated PET in any
other region. In this way MACPET can analyse each
region separately and ensure that a binding event can
only belong to one region. An example of a region can
be seen in figure 8.

Distribution of tags in a Protein Binding Site
Self-ligated PETs which construct a PBS are prod-
ucts of the same type of protein which binds on ap-
proximately the same position across a set of identi-
cal genomes [7]. Therefore it should be reasonable to
expect that self-ligated PETSs in a specific PBS would
have approximately the same characteristics regarding
the positions of their upstream and downstream tags.
On the other hand, noise PETSs should have character-
istics which differ from those in a PBS.

Consider a PBS g with n, total self-ligated PETs and
let Sy = (51, e sng) be the self-ligated PET's in that
PBS, with s; = (x;, y;) being the pair of upstream and
downstream tags in self-ligated PET 4, respectively.
Although each tag of a self-ligated PET is mapped
separately on the genome, with one tag not affecting
the position of the other, we assume that z; < ;.
That is, we sort the tags of each self-ligated PET in
increasing order for better representing the left and
right stream tags. This of course creates a dependency
between x; and y;.

Because the PBS should have two peaks, one on
each of its sides, MACPET models the left and right
peaks of the PBS as a two-dimensional skew gen-
eralized t-distribution (SGT) distribution. The one-
dimensional SGT distribution is a five parameter dis-
tribution which models both skewness and long tails
of the data [21]. It consists of three parameters p € R,
A € (-1,1) and 0 € R which represent the mode,
skewness and scale, respectively, and two parameters
p,q > 0 which are shape parameters. Here R* rep-
resents positive real numbers. It as been shown that
for estimating the first three parameters, both of the
shape parameters need to be known [21]. We choose
p = 2 which leads to normal-type peak of the mode,
and ¢ = 1 which leads to heavy and long tails [21]. The
one-dimensional SGT density function is:

(- )‘3/ ?
(1 + Wrsgn@—mn7e?

fsar(x:0) = 9

(1)
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where 6 = (u, A, 0), sgn(z) is the signum function
which equals 1 if z > 0, =1 if x < 0 and 0 if x = 0.

MACPET assumes that the two-dimensional den-
sity of a self-ligated PET ¢, ¢ = 1,...,n4, in PBS g
is fo(si:0g) = A(Og) fag(@i;0ng) fyg(yii Oyg) if i < ys
and 0 if z; > y,;, where fyq(2i;60z9) and fyq(vi;0y4)
have the SGT density given in equation 1. Moreover,
0y = (0zg,0y4) are the parameters of the PBS g, with
029 = (Hags Avg, Oag), and byg = (fiyg, Ayg, 0yg) being
the parameters of the upstream and downstream peaks
of the PBS respectively.

—1
The term A (6,) = (ffoo fug (W3 0yg) Fug(y; 9xg)dy)

ensures that the function f,(s;;6,) integrates to 1, and
hence is a valid probability density. Here F,, is the cu-
mulative distribution function of the SGT (see Section
Quantile function for the SGT distribution in supple-
mentary material available online).

MACPET models the left stream, x4 = (xh e xng),
and right stream tags, y, = (yl, ...,yng), as nega-
tive and positive skewed towards the PBS location,
respectively. This is achieved by imposing a hierar-
chical structure where Mg, is restricted in the in-
terval (—1,0] with the density function fi,(Azg) =
(14 Aag) (—Azg)”, while X,q is restricted in the in-
terval [0,1) with the density function fx, (Ayy) =
Agg (1= Ayg). The value o = 39 has been chosen in
order that A\;, will tend towards —1, while A, will
tend towards +1.

Additionally, for ensuring that the left and right
peaks are on their correct positions around the PBS,
MACPET uses the reparametrization pyq = fyg — kg
where k, € RT. This ensures that the left peak of a
PBS will always be on the left side of the right peak
of the PBS on the genome.

The precise binding location is assumed to be be-
tween the two peak modes, that is (ftzg + fyg) /2. Fur-
thermore, a 95% interval for the binding location is de-
fined as (Qrz4(0.05), QRryy(0.95)), where Q1,4(0.05) is
the 5% quantile of the upstream peak and Q gy4(0.95)
is the 95% quantile of the downstream peak (see Sec-
tion Quantile function for SGT distribution in supple-
mentary material available online).

Modeling a region

Consider a region with N total self-ligated PETs and
G total PBSs. Let S = (s1, ..., sn) be the self-ligated
PETs in that region, with s; defined as before and
i=1,...,N. MACPET models the region as a mixture
of G clusters representing the PBSs and a noise cluster
representing randomly distributed PETSs in the region.
That is, the density of S in the region is f(S;0,p) =
pofo(S) +ZgG:1 Pafq(S;04), where p = (po, ..., pc) and
pg are the mixing probabilities of each cluster which
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sum to 1. Furthermore, § = (04, ...,0g) andg=1,...,G
refer to the PBS clusters and g = 0 refers to the noise
cluster. The noise cluster is assumed to be uniformly
distributed with density fo(x,y) = 1/(2.5V) if 2 < y
and 0 if x > y, where V is the two-dimensional volume
of the region. Note that the constant 2.5 increases the
volume of the region and creates a slightly bigger area
over the overlapping self-ligated PETs. By doing that,
MACPET takes into account the noise level surround-
ing the region.

Taking into account the hierarchical structure for the
A parameters mentioned earlier in the text, the ob-
served log-likelihood of the region is [22]:

N G
Cop(0,p;8) = log {pOfO(Si) + pofylsi; 99)}
=1

g=1

a G
+ ) 10g(fr, (Aag)) + D log(f, (Ayg))
" " @)

MACPET uses the Expectation/Conditional Maxi-
mization Either (ECME) algorithm for fitting the re-
gion model in equation 2 [23]. A detailed description
of the estimation procedure can be found in Section
Deriving the likelihood for the estimation in supple-
mentary material available online.

Inference
For assessing the significance of each candidate bind-
ing event, MACPET considers the quantile func-
tions of the estimated candidate PBSs. Consider a
candidate PBS g located at chromosome C and let
(Q1g(0.05), Qg (0.95)) and (Q(0.05), Qrry (0.95))
be the 95% confidence intervals for its upstream and
downstream peaks, respectively (see Section Quantile
function for SGT distribution in supplementary mate-
rial available online). Furthermore, let S;4 and Sy, be
the lengths of those intervals, and N¢, and N¢y, be the
total number of upstream and downstream tags on the
chromosome C, respectively. Note that N, = Ney,.
The null hypothesis for the upstream tags (Hozq) as-
sumes that the number of tags in the upstream peak of
¢ is random, following a Poisson distribution with in-
tensity Azg = maz(2, A\og, Adwa10, Awz1s). Here Ay =
NcySzg/Sc is the expected number of upstream tags
in the upstream peak, given the chromosome size S¢.
Furthermore, Ayz10 = NwloxSl.g/(lOSl.g) and Ayg15 =
Nui15252¢/(155,4) are the expected number of up-
stream tags in the upstream peak, by looking at a win-
dow of 10 and 15 times the size of the upstream peak,
respectively. Furthermore, the constant 2 ensures that
at least two tags have to exist in the peak interval in
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order to be considered significant. The analogous hy-
pothesis is assumed for the downstream tags (Hoyq) of
g.
The null hypothesis for the candidate PBS g (Ho,)
assumes that g is not a PBS but a random sample of
overlapping self-ligated PETs. Intuitively for g not be-
ing a true PBS, both of its upstream and downstream
peaks need to be randomly formed, that is both Hogg
and Hy,g are valid. Let E, be the event that g is not a
true PBS and E,, and Ey, the events under Ho,, and
Hy, 4, respectively. Then under Hy, the upstream and
downstream tags are assumed to be independent and
thus P(E,) = P(Eyq N Eyy) = P(Eyy)P(Ey,). There-
fore, the p-value for g can be defined as p; = paugpyg,
where p,4 and p,4 are the p-values of the upstream and
downstream peak, respectively. Finally, the p-values
from all the PBSs are corrected using the Benjamini-
Hochberg procedure [24].

Note that the quantile intervals are computed assum-
ing A (64) = 1. That is, the quantile intervals are found
using the marginal distributions of x4, and ¥, under
the assumption of independence between them. We use
this assumption because computing the marginal dis-
tributions of x4, and y4, in case of dependence between
them, was computationally intensive. This should not
be a big violation of the model, however, as the es-
timated A (6,) value for the majority of the PBS in
each dataset is very close to 1 (see figure S7 in sup-
plementary material available online). There are a few
values deviate a lot from 1, which could be the result
of rounding errors while computing the A () integral.
The reason that we still include the A (6,) term when
finding candidate PBS on the previous step of the al-
gorithm is that we observed an increase in the speed of
the algorithm as well as smoother convergence, while
assuming that A (6,) = 1 led to almost identical results
but with slower speed.

List of abbreviations

PBS: protein binding site; bp: base-pairs; PETs:
paired-end tags; MACPET: Model-based Analysis for
ChIA-PET; SGT: skew generalized t; ECME: Expec-
tation/Conditional Maximization Either; FDR: false
discovery rate;
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Availability of data and material

The MACPET algorithm is available on Bioconductor
(https://bioconductor.org/packages/MACPET) under the public license
GPL-3, and can be used on all platforms.

The datasets used during the current study are available in the NCBI
repository [14]. More specifically:
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ChlA-PET dataset for ESR1 TF from MCF-7 human cell line
(GEO:GSM970212), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970212).
ChIA-PET dataset for CTCF TF from MCF-7 human cell line
(GEO:GSM970215), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970215).
ChIA-PET dataset for CTCF TF from K562 human cell line
(GEO:GSM970216), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970216).
ChIA-PET dataset for histone H3K4mel from K562 human cell line
(GEO:GSM1436263), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1436263).
ChIA-PET dataset for histone H3K27ac from K562 human cell line
(GEO:GSM1436262), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1436262).
ChIA-PET dataset for POL2 from K562 human cell line
(GEO:GSM970213), available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970213).
All processed data are available at https://figshare.com/projects/
MACPET_Model-based_Analysis_for_ChIA-PET/29473.
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Figure 1 lllustration of PET types. (a) Self-ligated PETs
with both tags on same chromosome and strand, and short
genomic distance between them. (b) Intra-chromosomal PETs
with tags on same chromosome, with any strand combination
and long genomic distance between them. (c)
Inter-chromosomal PETs with tags on different chromosomes
and with any strand combination.

Figure 2 Self-Intra cut-off. Self-ligated and
Intra-chromosomal cut-off for the three datasets. (a) ESR1
(MCF-7), (b) CTCF (MCF-7), (c) CTCF (K562). The x-axis
are the lengths of the PETs in log scale, while the y-axis is the
frequency. The dashed line represents the cut-off point, where
the self-ligated PETs are on its left side and the
intra-chromosomal on its right.

Figure 3 De novo motif discovery and FDR. Comparison of
motif discovery, spatial resolution and FDR between MACPET
and MACS. The x-axis for all plots is the top 5000 PBSs,
sorted by significance in descending order. (a-c) Motif
occurrence (y-axis) for (a) ESR1 (MCF-7), (b) CTCF
(MCF-7), (c) CTCF (K562). (d-f) Spatial resolution (y-axis)
for (d) ESR1 (MCF-7), (e) CTCF (MCF-7), (f) CTCF
(K562). (g-i) FDR (y-axis) for (g) ESR1 (MCF-7), (h) CTCF
(MCF-7), (i) CTCF (K562).

Figure 4 Comparison of significant binding sites. (a-c) Venn
diagrams of the significant PBSs for MACPET and MACS for
ESR1 (MCF-7)(a), CTCF (MCF-7)(b), CTCF (K562)(c).
(d-f) densities for the total number of tags in each significant
PBSs from MACPET and MACS for (d) ESR1 (MCF-7), (e)
CTCF (MCF-7), (f) CTCF (K562). The x-axis is the total
tags in log scale and the y-axis is the density of the total tags.
(g-1) densities for the sizes of the significant PBSs from
MACPET and MACS for (g) ESR1 (MCF-7), (h) CTCF
(MCF-7), (i) CTCF (K562). The x-axis is the sizes of the
significant PBSs and the y-axis is their density.

Figure 5 Comparison for MANGO interactions. Comparison
of MANGO interaction results between significant PBSs from
MACPET and MACS, for different PBSs extension windows.
For all the plots, the x-axis is the number of bp. Each PBS
interval was extended from either side before running
MANGO. (a-c) total significant interactions (y-axis) for (a)
ESR1 (MCF-7), (b) CTCF (MCF-7), (c) CTCF (K562). (d-f)
proportion of significant PBSs involved in significant
interactions (y-axis) for (d) ESR1 (MCF-7), (e) CTCF
(MCF-7), (f) CTCF (K562).

Figures

Tables

Additional Files

Additional file 1 —Supplementary Material

Supplementary material which include figures from the rest of datasets as
well as proofs and estimation procedure details can be found online.
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Table 1 Description of the datasets.

Name GEO PETs Ambiguous  Chimeric NN Usable Final PETs Inter-chrom. Intra-chrom.  Self-ligated
ESR1 (MCF-7) GSM970212 26170257 165093 2492122 620598 22892444 6575793 1765891 164974 534284
CTCF (MCF-7) GSM970215 119959634 7105105 11018238 317231 101519060 53526399 20630265 2729210 5872607
CTCF (K562) GSM970216 195436387 42363105 9477776 1893878 141701628 80927884 2824894 1531945 2337518

H3K4mel (K562) GSM1436263 162190720 23144511 30577815 465092 108003302 38161523 31963485 2483809 2867067
H3K27ac (K562)  GSM1436262 165109173 32418202 53756946 683759 78250266 25168926 19265500 1770107 3167743
POL2 (K562) GSM970213 37889691 3920503 409894 453521 33105773 17473165 2919406 4068174 7387093

Name of the datasets (Name), GEO number of the datasets (GEO) and total number of initial PETs of the datasets (PETs). Total
PETs classified as Ambiguous, Chimeric, Usable (non-chimeric), as well as the total PETs with non-standard residues (NN). Total valid
paired and mapped PETs used (Final PETs), as well as their classification into inter-chromosomal, intra-chromosomal and self-ligated.

Figure 6 Comparison for MANGO interactions of 500 bp
window extension. (a-c) Venn diagrams from significant
interactions for a 500 bp extension window for the significant
PBSs from MACPET and MACS for (a) ESR1 (MCF-7), (b)
CTCF (MCF-7), (c) CTCF (K562). (d-f) density plots for the
distances of the significant intra-chromosomal interactions
from MACPET and MACS for (d) ESR1 (MCF-7), (e) CTCF
(MCF-7), (f) CTCF (K562). The x-axis is the sizes of the
intra-chromosomal interactions and the y-axis is their density.

Figure 7 MACPET pipeline. Stage 0: MACPET takes the
forward (1) and reverse (2) fastq files as input, as well as the
user-specified barcode sequences for the half-linkers. It then
classifies the PETs as ambiguous, chimeric and usable
(non-chimeric). The half-linkers of the usable PETs are
trimmed to release the two tags of each PET. Stage 1: The
tags of the usable PETs are mapped separately to the
reference genome and a paired-end BAM file is created. Stage
2: PETs are classified as self-ligated, intra- and
inter-chromosomal. Stage 3: Self-ligated PETs are used for
discovering PBSs. Finally, the PBSs as well as the intra- and
inter-chromosomal PETs can be used in MANGO for
interaction analysis.

Figure 8 lllustration of a region. lllustration of a region in
two dimensions. The x-axis is the midpoints of the PETs and
the y-axis is the length of the PETs. Each segment represents
a PET from its upstream to its downstream tag. Red colored
PETs are classified as noise PETs by MACPET. The rest
colors represent binding sites, where each color represents a
different binding site. The dashed lines represent the exact
binding location found by MACPET for each binding site.
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