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Abstract

Oscillatory activity robustly correlates with task demands during many cognitive tasks.
However, not only are the network mechanisms underlying the generation of these
rhythms poorly understood, but it is also still unknown to what extent they may play a
functional role, as opposed to being a mere epiphenomenon. Here we study the
mechanisms underlying the influence of oscillatory drive on network dynamics related to
cognitive processing in simple working memory (WM), and memory recall tasks.
Specifically, we investigate how the frequency of oscillatory input interacts with the
intrinsic dynamics in networks of recurrently coupled spiking neurons to cause changes
of state: the neuronal correlates of the corresponding cognitive process. We find that
slow oscillations, in the delta and theta band, are effective in activating network states
associated with memory recall by virtue of the hysteresis in sweeping through a
saddle-node bifurcation. On the other hand, faster oscillations, in the beta range, can
serve to clear memory states by resonantly driving transient bouts of spike synchrony
which destabilize the activity. We leverage a recently derived set of exact mean-field
equations for networks of quadratic integrate-and-fire neurons to systematically study
the bifurcation structure in the periodically forced spiking network. Interestingly, we
find that the oscillatory signals which are most effective in allowing flexible switching
between network states are not smooth, pure sinusoids, but rather burst-like, with a
sharp onset. We show that such periodic bursts themselves readily arise spontaneously
in networks of excitatory and inhibitory neurons, and that the burst frequency can be
tuned via changes in tonic drive. Finally, we show that oscillations in the gamma range
can actually stabilize WM states which otherwise would not persist.

Author Summary

Oscillations are ubiquitous in the brain and often correlate with distinct cognitive tasks.
Nonetheless their role in shaping network dynamics, and hence in driving behavior
during such tasks is poorly understood. Here we provide a comprehensive study of the
effect of periodic drive on neuronal networks exhibiting multistability, which has been
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invoked as a possible circuit mechanism underlying the storage of memory states. We
find that oscillatory drive in low frequency bands leads to robust switching between
stored patterns in a Hopfield-like model, while oscillations in the beta band suppress
sustained activity altogether. Furthermore, inputs in the gamma band can lead to the
creation of working-memory states, which otherwise do not exist in the absence of
oscillatory drive.

Introduction

Oscillations are ubiquitous in neuronal systems and span temporal scales over several
orders of magnitude [1]. Some prominent rhythms, such as occipital alpha waves during
eye-closure [2] or slow-oscillations during non-REM sleep [3] are indicative of a
particular behavioral state. Other rhythms have been specifically shown to correlate
with memory demands during working memory tasks, including theta (4 - 8Hz) [4H7],
alpha/beta (8 - 30Hz) [8H10] and gamma (20 - 100Hz) [11-13]. Nonetheless, neither the
physiological origin nor the functional role of such oscillations are well understood.

Here we study how oscillatory signals in distinct frequency bands can serve to
robustly and flexibly switch between different dynamical states in cortical circuit models
of working memory and memory storage and recall. In doing so we characterize the
dynamical mechanisms responsible for some of the computational findings in an earlier
study [14]; we go beyond that work to include new results on oscillatory control of
network states. Specifically, we consider the response of multistable networks of
recurrently coupled spiking neurons to external oscillatory drive. We make use of recent
theoretical advances in mean-field theory to reduce the spiking networks to a
low-dimensional macroscopic description in terms of mean firing rate and membrane
potential, which is exact in the limit of large networks |15]. This allows us to perform a
systematic and detailed exploration of network states analytically or with numerical
bifurcation analysis, which informs us about suitable parameter sets for numerical
simulations. The latter serve to give representative examples of the dynamical
phenomena investigated here. As a result, we can completely characterize the dynamics
of the forced system.

Specifically, we consider networks which exhibit multistability in the absence of
forcing. Such attracting network states have been proposed as the neural correlate of
memory recall [16,[17], and as a possible mechanism for sustaining neuronal activity
during working memory tasks [18-20]. We find that an external oscillatory drive
interacts with such multistable networks in highly nontrivial ways. Low-frequency
oscillations are effective in switching on states of elevated activity in simple bistable
networks, while in higher dimensional multistable networks they allow for robust
switching between stored memory states. Higher frequencies, in the beta range,
destabilize WM states through a resonant interaction which recruits spike synchrony.
Such oscillatory signals can therefore be used to clear memory buffers. Finally, when
networks operate outside the region of multistability, e.g. due to reduced excitability, an
oscillatory signal in the gamma range can be used to recover robust memory recall.

Results

Oscillatory drive can selectively turn on or off WM states

Networks of recurrently coupled excitatory neurons can exhibit bistability given
sufficiently strong synaptic weights. Such networks act as binary switches: a transient
input can cause a transition from a baseline state to a state of elevated activity, or
vice-versa. We asked to what extent an oscillatory signal alone could also drive
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transitions between states in such a network. In particular we were interested in
knowing if the directionality of the transition, and hence the final state of the system,
could be controlled via the frequency of the oscillatory drive.

To investigate this we simulated a network of recurrently coupled excitatory
quadratic integrate-and-fire neurons, see Materials and Methods for details. Fig|[I| shows
an illustration of the network dynamics as a function of the stimulus frequency and
initial state of the network. In particular, at low frequencies, the oscillations push the
system from the state of low activity into the state of high activity, which persists under
such forcing, see Fig[[A. As the frequency is increased past a critical value, it is no
longer effective in driving a transition, and the network remains in its initial state, see
Fig[IB. A further increase then shows the opposite effect: The state of high activity
becomes unstable under the forcing, whereas the state of low activity persists, Fig [IIC.
At large enough frequencies we then observe again that no transitions occur and the
initial network state persists, Fig [ID.

The results from Fig 1| show that the frequency of an external oscillatory drive can
be used to selectively stabilize a given network state. For the parameter values used
here, oscillation frequencies in the delta range result in a WM state while frequencies in
the beta range force the system to the “ground” state, essentially clearing the WM
state, a result seen also in |14]. Oscillations outside these ranges are ineffective in
driving transitions. We seek to understand the mechanisms underlying these transitions,
and additionally to determine to what extent the precise frequency ranges are
influenced by the network parameters. To do this we will take advantage of recent work
in which the authors derived a set of simple equations for the mean firing rate and mean
membrane potential in a network of recurrently coupled quadratic integrate-and-fire
(QIF) neurons [15]. In the large-system limit these equations are exact. The exact
correspondence between the low-dimensional mean-field equations and the original
network allows us to use standard dynamical systems techniques to fully characterize
the range of dynamical states in the network.

Model equations and network analysis

The dynamics in networks of recurrently coupled QIF neurons can be described exactly
under the assumptions of all-to-all coupling and quenched neuronal variability, i.e.
static distributions in cellular or network properties. For the case of a single network of
excitatory cells in which the input currents to individual neurons are distributed, the
resulting mean-field equations are [15]:

2. A
Tr — + 2707,
T

0 = v+ Jrr+n+I(t) - iR (1)

Here, r is the network average of the firing rate and v is the network average of the
membrane potential, J is the strength of synaptic weights, n is the mean of the static
distribution of inputs, while A is the width of the input distribution. External,
time-variant forcing is represented here by I(t). The time constant 7 is the membrane
time constant of the individual neurons and is set to 20ms throughout.

This macroscopic model permits a straightforward investigation of the stationary
states in the full network. For sufficiently strong synaptic coupling two stable fixed
points co-exist over a range of mean external inputs, see Fig (left). Linear stability
analysis further reveals that the stable high-activity fixed point is a focus for sufficiently
high rates, whereas the stable low-activity fixed point is a node, see Materials and
Methods. The network therefore shows a damped oscillatory response to external
perturbations in the high-activity state. This response reflects transient spike synchrony

PLOS

329

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87


https://doi.org/10.1101/271973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/271973; this version posted February 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

@PLOS | susmission

under aCC-BY-NC-ND 4.0 International license.

ﬁ‘) Rlecalll (f=1|.6Hz) B1o Mgintgnans:e (f‘=4HZ‘)
r[Hz]+ 4
50 1
o — — = =
é:

-
o
=)

L M_T_T_/ L L N~ T T J \\ T l\ \ T T J \\ T I\ \"
0 0.5 t[s] 0 0.5 t[s]
1? Clearance (f=16Hz) Dm Maintenance (f=80Hz)
r[Hz] 4 r[Hz]t J
50 1 50 1
sl &
il L L L L hls L L L L
10 T T T T 10 T T T T
rmth 1 1 HZl A Rs AR AMAR AAARFAA AR AR AR AR
50r B 50r B
5| :
3 3
2| 2|
#| Py
It 4: 4
2: 2
R g 0
0 0 0.1 0.2 0.3 0.4 t[s] 0.5

Fig 1. Frequency response of a network of QIF neurons. Here we show the
response of a network of 104 all-to-all coupled QIF neurons with distributed input
currents to periodic forcing. The model parameters are chosen such that the network is
bistable, see also Fig[2JA. Each panel shows the network-averaged firing rate and raster
plot of the response for an initial condition in the low-activity state (top, r ~ 6Hz) and
high-activity state (bottom, r ~ 73Hz). A At low enough frequencies, the system is
pushed from the low- to the high-activity state. B At slightly higher frequencies, both
states persist under the forcing. C Driven with frequencies from an intermediate range
of frequencies, the state with high firing activity destabilizes in favor of the state with
low firing activity. D At high frequencies, both states persist under the forcing.
Parameters: 7 = 20ms, n = —10, A =2, J = 15v/A, A = 1.
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which decays over time due to the heterogeneity; the characteristic time scale of the
desynchronization is in fact proportional to the width of the distribution of input
currents A. This type of spike synchrony is seen ubiquitously in networks of
heterogeneous and noise-drive spiking neurons [1521,46] and is captured in Eq (1] by the
interplay between the mean sub-threshold membrane potential and mean firing rate [23].

We use this macroscopic description to systematically investigate the network
response to periodic forcing with amplitude A and frequency f. Fig (right) shows a
phase diagram of the network dynamics as a function of these two parameters. As in
Fig[l] we keep track of the final state of the network as a function of the initial state.
For sufficiently slow frequencies and over a range of amplitudes the network is always
driven to the high-activity state (green). This region therefore corresponds to recall of
the memory state, see Fig (left). For an intermediate range of frequencies a
suffienctly strong forcing always drives the network to the low-activity state (red),
which corresponds to clearance, Fig (right). The frequency band for clearance is
essentially set by the frequency of intrinsic oscillations of the high-activity state, i.e. it
is a resonant effect, see Fig[3] Weak forcing and forcing at very high frequencies fail to
drive any transitions, while strong forcing at low enough frequencies can enslave the
network dynamics entirely (orange). For the parameter values used here recall occurs
for frequencies below about 2Hz and clearance in the range between 10-30Hz.

In order to characterize the role of spike synchrony in determining the network
response, we derive a reduced firing rate equation with the identical fixed-point
structure as in the original, exact mean-field equations Eq [T} but without the
subthreshold dynamics. Specifically, the fixed-point value of the firing rate in Eq[l] can
be written as

ro = ®(J7rro +n), (2)

where ® is the steady-state f-I curve, which in the case of Egs is

O(x) = ﬁ\/ x+ Va2 4+ A2 (3)

We use the steady-state f-I curve to construct a heuristic firing rate model given by
T = —r+ ®(Jrr+n+1(t)), (4)

and investigate its response to periodic forcing I(t), see Materials and Methods for more
details. In this case the high-activity branch of the firing rate is a node, i.e. it no longer
shows damped oscillations in response to perturbations, see Fig (left). Furthermore,
the region of “clearance” has completely vanished in the phase diagram in Fig
(right), confirming that in the original network it was due to a resonance reflecting an
underlying spike synchrony mechanism.

Recall and Clearance occur due to forcing-induced bifurcations

Given the simplicity of the mean-field equations Eq [1| we can calculate the linear

response of the system analytically, without the need for extensive numerical simulations.

The response of the focus to weak sinusoidal inputs (linear response) already shows a
clear resonance for the high-activity state (Fig )7 where the resonant frequency is

1
fres = §\/2r0(27r2r0 — J7), (5)

see Materials and Methods. Furthermore, additional, sub-harmonic resonance peaks
occur when the forcing is sharply peaked, leading to a broadening of the resonance
spectrum (Fig , right); this effect is due to the presence of many sub-harmonics of
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Fig 2. Switching behavior at the macroscopic scale. A Bifurcation analysis
identifies a bistable regime where a stable focus and a stable node coexist. The different
dynamic regimes are shown here as a function of the amplitude A and the frequency f
of the forcing. Green: Recall; Grey: Maintenance; Red: Clearance. Orange: only one
globally stable limit cycle exists due to the system being entrained to the forcing. B
Example time traces from A, with initial conditions chosen to be the focus (red) or the
node (blue). C The heuristic firing-rate equations Eq. [4f with equivalent fixed point
structure do not show the same dynamic regimes, as the focus is reduced to a node and

therefore cannot be destabilised by nonlinear resonance. Parameters: 7 = 20ms,
n=-10,A=2,J=15VA, A=1.

PLOS


https://doi.org/10.1101/271973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/271973; this version posted February 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

@PLOS | susmission

under aCC-BY-NC-ND 4.0 International license.

the linear resonance in the forcing term itself. Conversely, the node does not show such
a resonance, indicating a qualitative difference in the response of the two stable fixed
points.

However, the switching behaviors seen in Fig|l]and Fig[2| and the corresponding
destabilization of network states cannot be attributed to this linear resonance alone —
nonlinear effects have to be taken into account. This can be seen by plotting the
bifurcation diagram for the response of the network to the forcing for several values of
the forcing. For relatively weak, but finite forcing, the network response consists of a
limit cycle in the vicinity of the corresponding unforced fixed-point, Fig (top). As
the forcing amplitude is increased the amplitude of the limit cycle inherited from the
high-activity state is selectively enhanced due to the resonance, eventually leading to
bistability of limit cycles over a range of frequencies, see Fig middle-right and
bottom-left.

At large enough amplitudes for the sharply-peaked, non-sinusoidal forcing two
additional bifurcations occur which are responsible for the “recall” and “clearance”
behaviors respectively, see Fig[3B (bottom-right) and Fig[3|C. Specifically, at low
frequencies the two limit cycle solutions which arise due to the periodic forcing of the
low-activity node (blue line) and saddle-point (green line) anhihilate in a saddle-node
bifurcation of limit cycles. Therefore at low frequencies the only stable solution is the
limit cycle in the vicinity of the high-activity focus (red line), see Fig . This explains

why low frequencies are effective in switching on the high-activity state, i.e. for “recall”.

On the other hand, in the range of frequencies over which the network response is
resonant, period-doubling bifurcations of the focus lead to a frequency band in which all
responses of the focus are unstable. Therefore, the limit-cycle solution in the vicinity of
the low-activity node is the only stable solution. Frequencies in this range are therefore
effective in switching off the high-activity state, i.e. for “clearance”. See also
Supporting Information (S1 Text). The “clearance” mechanism can be reproduced in a
a simplified model, see Supporting Information (S2 Text).

Higher-dimensional memory circuits

A single bistable network of neurons serves as a canonical illustration of a memory
circuit. However, such a network can only store a single bit of information; actual
memory circuits must be capable of storing more information. In terms of neuronal
architecture this can be achieved by having a network which is comprised of several or
many neuronal clusters |16}/17,/24]. We asked to what extent the frequency-selective
switching behavior seen in a single bistable network could also be found in a clustered
network. We look first at a simple, two-cluster network and then the more general case
of a higher-dimensional multi-clustered network.

Two competing neuronal populations

We set up a network of two identical populations with recurrent excitation and mutual
inhibition, in the presence of independent noise sources and oscillations, see Fig [dA.
This network of two competing neuronal populations may be regarded as the substrate
of a number of cognitive tasks, such as perceptual bistability (visual [25]26],

auditory [27], or olfactory [28]), or forced two-choice decision making [29}/30].

We choose parameters such that there is one stable fixed point at which both
populations are in the low firing regime, and two stable fixed points in which one
population is in the low firing regime and the other is in the high firing regime. The
latter two are symmetric with respect to a swap of population indices, i.e. reflection
symmetric, see the bifurcation diagram in Fig [B.
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Fig 3. Linear and nonlinear response. A Linear response of focus, saddle and node to sinusoidal and non-sinusoidal
inputs, with the focus showing a characteristic resonant response at approximately 40Hz. The response of the focus to
non-sinusoidal input shows additional sub-harmonic resonances. B Nonlinear response of the fixed points by means of
bifurcation analysis in the forcing frequency for different amplitudes. Non-sinusoidal forcing leads to a richer bifurcation
structure. C Bifurcation diagram in f for non-sinusoidal forcing with A = 1, and comparison with numerical results (bottom).
The bifurcation structure is governed by saddle-node bifurcations (SN) and period-doubling bifurcations (PD). Branches of
period-doubled solutions are omitted here. D A two-parameter bifurcations analysis of the focus reveals the loci of saddle-node
bifurcations (red) and period-doubling bifurcations (blue) in the (f, A)-plane. We compare these with the logarithmic mean
squared deviation (log MSD) from the fixed point (color scale), obtained by time simulations. Grey areas indicate regions
where the system leaves the basin of attraction of the focus. Parameters: 7 = 20ms, n = —10, J = 15v/A, A = 2.
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Fig 4. Switching in a network of two competing populations of neurons. A We consider two identical populations
with recurrent excitatory connections and mutual inhibition. B Bifurcation diagram of the fixed points of the system. The
system can be in a symmetric state (black) or asymmetric state (grey). We choose a point in the tri-stable regime (7 = —6,
vertical line), where either both populations are quiescent, or one population is active and the other quiescent. The insets
show the stable states (two asymmetric, one symmetric). C Applying global forcing with slow frequency (2Hz) does not lead
to the activation of either of the asymmetric patterns, due to the lack of symmetry breaking mechanisms. D Driving the
system with independent noise sources (zero-mean Ornstein-Uhlenbeck process) with small variance o does not lead to
reliable switching due to long residence times. E Combining noise with a protocol that generates oscillations of different
frequencies over different time intervals leads to the reliable (but random) activation of one of the two asymmetric patterns
and switching between these at 2Hz, and the clearing of a sustained pattern at 40Hz. Parameters: 7 = —6, A = 2,
Jo=—J; =15V/A, 7= 20ms, A =2, 0 = 0.05.

We furthermore choose an input which places the system near a sub-critical
pitchfork bifurcation, but such that the symmetric, low-activity state is stable. In this
state, global oscillatory forcing does not generate switching behavior at any frequency,
see Fig[4C. If the two populations are driven by weak, independent noise sources, we
also fail to observe any switching on relevant time scales, see Fig [AD. However,
combining global oscillatory drive with weak, independent noise sources now allows for
frequency-selective recall, switching, maintainance and clearance, as in the
single-population network, see Fig [@D. Specifically, low frequency drive switches the
network from a symmetric state to one in which one of the populations is active (2Hz
stimulation in Fig ); continued low-frequency forcing generates ongoing stochastic
switching between the two activated states. When this drive is released the currently
active configuration is stabilized (between 40 and 60 seconds in Fig ) Finally, an
intermediate range of frequencies is effective in clearing the currently held active state
(40Hz stimulation in Fig ) and stabilizing the symmetric, low-activity state. An
analysis of the bifurcation structure in this network as a function of forcing amplitude
and frequency reveals that bifurcations analogous to those responsible for recall and
clearance in the single-population model, i.e. Fig|3] also occur here (not shown).

A many-cluster network

Here we consider a network of 100 neuronal populations which interact via effective
interactions which may be excitatory or inhibitory. The connectivity is chosen so that
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Fig 5. Hopfield network with random, non-overlapping patterns. A A network of 100 neural populations is chosen
to encode ten patterns with five populations each. The patterns are non-overlapping. B The corresponding connectivity
matrix of the network. C We apply an activation/deactivation protocol. The encoded patterns are randomly activated in the
presence of slow oscillations (2Hz), sustained in the absence of oscillations (grey), and deactivated in the presence of fast
oscillations (40Hz). All populations have independent white noise sources with variance o2. Parameters: 77 = —15, A = 2,

J=8,7=20ms, A=8,0=2.

10 distinct, random but non-overlapping activity patterns are encoded; in each pattern
five neuronal populations are active, i.e. the coding sparseness is 5% . The patterns and
connectivity matrix are shown in Fig and B respectively. Simulations again reveal a
frequency-selective response of the network similar to the two-population model.
Namely, low frequency inputs in the presence of weak noise switch on the activated
state and allow for robust switching, while over a range of intermediate frequencies all
activated states are cleared, see Fig[5[C.

Generating burst-like oscillations

Thus far we have treated oscillations as an extrinsic effect, i.e. we are agnostic as to
their origin. To be effective for flexible control of memory states, the oscillatory forcing
we have considered here must fulfill two requirements: First, it must have a broad range
of possible frequencies, and secondly, it must have a burst-like shape. Here we show that
a simple circuit comprised of interacting excitatory and inhibitory populations can
satisfy both these requirements.

Specifically, we construct a network of QIF neurons consisting of an E-I circuit
which spontaneously oscillates, and drives a downstream population of E cells, which
itself is bistable, see Fig[6] Using the corresponding mean-field equations for the E-I
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circuit, we found a broad region of oscillatory states of the E-I network as a function of
the mean external drive to the E and I populations, 7, and 7, respectively, see the phase
diagram Fig[6]B. By adjusting the external drive to the E and I populations alone we
can tune the output frequency over an order of magnitude. This allows us to selectively
switch the downstream network on and off, as shown in Fig [C.

Gamma oscillations can generate memory states

Outside the region of bistability (or multistability in the case of clustered networks),
neuronal networks will relax to a single stationary state in the response to a transient
input. Here we show that this need not be the case if the network activity is subjected
to ongoing oscillatory modulation.

As an illustration we take a single population of excitatory neurons with strong
recurrent excitation, but insufficient tonic drive to place it in the region of bistability.
As a result, the response of the network to a transient excitatory stimulus decays to
baseline, as seen in Fig (top). However, in the presence of an oscillatory input in the
gamma range, which itself only very weakly modulates the network activity (Fig
middle), the transient input now switches the network to an activated state with
prominent gamma modulation Fig (bottom). Once the oscillations cease (green
arrow) the activated state vanishes.

This phenomenon depends crucially on the presence of the spike-synchrony
mechanism underlying the damped oscillatory response of the high-activity focus
discussed earlier. Specifically, for the parameter values used in Fig 7] the only
fixed-point solution which exists is the low-activity node. Nonetheless, oscillatory
forcing at sufficiently high firing rates can still recruit and resonate with the damped
oscillatory interaction between the mean firing rate and mean membrane potential in
the network. The resulting resonant frequency can no longer be associated with the
linear response of the focus as it is a fully nonlinear network property.

The phase diagram Fig [7B shows the regions of bistability given an oscillatory
forcing, for different forcing amplitudes. For zero amplitude the curve corresponds with
the saddle-node (SN) bifurcation of the unforced system (horizontal black line). Note
that only sufficiently high frequencies allow for bistability given tonic inputs which place
the network below the SN. Furthermore, there is a clear resonance in the range of
60 — 90Hz for these parameter values. As the forcing frequency f — oo the curves
converge to the SN line of the unforced system. This is because the forcing we use has
zero-mean and hence, given the low-pass filter property of neuronal networks, has no
effect on the network dynamics at high frequencies.

Discussion

In this article we study the role of oscillations in switching or maintaining specific brain
states. Specifically, we identified distinct frequency bands: delta, beta, and gamma with
specific functional roles. This finding is especially intriguing given that the networks we
study are relatively simple. Connectivity is all-to-all and neurons are exclusively
excitatory. For the multi-population networks, interactions between populations are
assumed to be mediated by fast inhibition, leading to a winner-take-all behavior.
Furthermore, synaptic transmission is considered to be instantaneous, with the only
relevant time scale being the membrane time constant (7 = 20ms). The susceptibility of
the networks to forcing of distinct frequencies therefore does not depend on the presence
of multiple time scales associated with instrinsic currents, synaptic kinetics or
sub-classes of inhibitory cells. Rather, the key dynamic factors are: bistability or
multistability due to recurrent excitatory reverberation, and transient spike synchrony
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Fig 6. Forced switching with oscillations from an E-I network. A The network
is built such that an excitatory population (E;) and an inhibitory population (I) form a
circuit that can generate oscillatory output via the excitatory population (E;), which is
fed into another excitatory populations (Es2). The latter is in the bistable regime. B
Bifurcation diagram of the E;-I-circuit in the parameters 7. and 7;. The organizing
bifurcations are a pair of saddle-node bifurcations (SN) of the fixed points, and a Hopf
branch (H) that connects to one of the saddle-node branches via a Bogdanov-Takens
codimension-two point (BT). (Limit cycles are found below the Hopf branch.) C Firing
rates and raster plots of the population outputs as a result of the parameter tuning.
Time traces of population Es are portrayed for both stable initial conditions (node and
focus). By choosing 71, and 7; accordingly, recall (n, = —4.4,n; = —18), clearance

(ne = —1,m; = —5.5) and maintenance (1, = 0,7; = —2) can be observed. Other
parameters: J, = —J; = 15vV/A, Jee = 3.5v/A, A = 2. Mean current of Eg: 7., = —10.
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Fig 7. Forcing-induced bistability. A Here we illustrate the interplay between high
frequency forcing and a transient stimulus. In the absence of oscillations, a 40ms long
stimulus with amplitude 6.8 (bar) does not produce sustained activity in the model
system, neither do oscillations on their own. However, the combination of oscillations
with the transient stimulus leads to sustained high activity, until the oscillations are
turned off (arrow). B Loci of the saddle-node bifurcation representing the lower limit of
the bistable area, as functions of 77 and the frequency of the forcing, for different
amplitudes of forcing. The choice of parameters in A is indicated by a triangle.
Parameters: 7 = —11.5, A =2, J = 15v/A, 7 = 20ms, A = 2, f = 80Hz.
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in response to external drive. Given this, we expect to see the same phenomenology in
more biophysically realistic networks as long as there is bistability and external noise
sources are not too strong.

In the region of bistability, low frequencies are effective in pushing the network into
a high-activity state; for not too large amplitudes the network remains in the activated
state on the downsweep of the input. The cut-off frequency for this "recall” signal is
determined by the escape time of the network from the vicinity of the saddle-node
bifurcation in the low-activity state, and here is a few Hertz, see Fig[2JA. In multi-stable
networks, this same mechanism allows for robust switching between distinct memory
states. On the other hand, frequencies in the beta range are effective in switching off
the high-activity state by resonantly driving bouts of spike synchrony. The precise
frequency range depends on network parameters, see In both cases the relevant
frequency ranges scale with the membrane time constant of the neurons. Therefore, e.g.
choosing a time constant 7 = 10ms will simply stretch the x-axis of the phase diagram
in Fig by a factor of two. Finally, we showed that forcing in the gamma range can
allow for robust working memory states which otherwise do not exist, i.e. the system
sits outside the region of bistability with oscillatory forcing. This mechanism once again
depends on resonantly recruiting spike synchrony.

We find that non-sinusoidal, burst-like drive is most effective in switching the
network state, see Fig and B. In fact, this is precisely the type of oscillation which
readily emerges in a simple E-I network. Furthermore, the oscillation frequency can be
modulated over a wide range through changes in the tonic drive to the E-I circuit alone,
see Fig[6] This means that the state of downstream memory networks can be flexibly
controlled via an E-I circuit through global changes in excitability alone.

We have proposed an E-I-circuit as a possible neuronal source of the oscillations
investigated here. However, oscillations might have non-neuronal origin, such as
external electric or magnetic fields during neuromodulation. Non-invasive methods
include repetitive transcranial magnetic stimulation [31] and transcranial alternating
current stimulation [32] which apply transient oscillatory signals. Despite the fact that
they affect large parts of the brain, and hence are a challenge to model mathematically,
we are confident that the methods developed here can help gain a deeper understanding
of the mechanisms involved, and the psychological and behavioral effects of
neuromodulation. In addition, the non-sinusoidal forcing that we introduce here might
also serve to approximate the pulse-like stimulation used in deep-brain stimulation to
treat Parkinson’s disease [33] and (pharmacologically) treatment-resistant
depression [34].

The model we use here describes networks of spiking neurons with instantaneous
synapses, i.e. the synaptic dynamics is considered fast in comparison to the membrane
time scale. Future studies could incorporate synaptic dynamics with appropriate time
scales for excitatory and inhibitory transmission, which can be influenced by drugs, or
(pathological) changes in neurotransmitters. If synaptic time constants are in the range
of the membrane time constant, we expect that the same dynamic phenomena observed
here still occur. If synaptic time constants are large, however, spike synchronization
may no longer occur [23]. The framework developed here may therefore serve as a tool
to study the cause of functional deficiencies in synapse-related conditions, so-called
'synaptopathies’ [35,[36]. In addition, one may envisage more detailed cortical network
architectures involving multiple neuronal populations [37H39]. In this article, we briefly
investigated the role of an E-I-circuit to generate oscillations which control the state of
another neural population. We are therefore optimistic that using realistic circuit
models in combination with the mean field description employed here will yield new and
interesting results.
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Materials and Methods

Mathematical Model

An important mathematical tool in understanding macroscopic neuronal dynamics,
away from the description of spiking neurons, is provided by neural mass and neural
field models. Classical models include the Wilson-Cowan model [40,/41] or the Amari
model [42,/43]. However, such macroscopic models of brain activity often pose a stark
simplification of the actual dynamics, and often miss important features from the
spiking dynamics, such as spike synchronization as shown in this article. Therefore,
there have been recent advances in linking the microscopic and macroscopic dynamics of
networks of spiking neurons [15}/44H53].

We consider a neural mass model that was recently derived from networks of
all-to-all coupled quadratic integrate-and-fire neurons in the thermodynamic limit [15],
see Eqs . To simplify the mathematical treatment, we divide ¢t by 7 which represents
the case of time being measured in units of 7, thus eliminating 7 from the equations:

r = — +2ur,
77
b o= VP Jr+n+I(t) -7t (6)

Here, r represents the ensemble average of the firing rate of neurons, and v represents
the ensemble average of the membrane potential. The parameters n and A represent the
mean and variance of the Lorentzian distribution of time-invariant input currents into
the neuronal ensemble, and J is the coupling constant between neurons. Time-varying
external inputs are given by I(¢). The original model can then be recovered by
t— 7t,r = r/7. As we set 7 = 20ms, r = 1 here corresponds to a firing rate of
r = 50Hz in the full model.

Here, we consider I(t) to be T-periodic, i.e. I(t+T) = I(t). We distinguish between
two types of input: sinusoidal input,

I(t) = Asin(2r ft), (7)

and non-sinusoidal input,
1(t) = A(ysin(mft)" — 1), (8)

where we take n = 20 for the simulations presented in this paper. The parameter A
represents the amplitude of the forcing. The constant ~ is chosen such that
fOT I(t)dt = 0. We choose this type of zero-mean forcing to avoid any changes in
network excitability which a tonic DC-offset might cause. In other words, the input
models a reorganization of afferent spikes into periodic volleys without adding any
additional spikes. In the non-sinusoidal case the spikes are more synchronized than in
the sinusoidal case.

We compare the full model equations with its equivalent heuristic firing rate

equation, which preserves the fixed point structure but reduces the dynamical behavior.

This is done by considering stationary solutions given by

A
0 = —+ 2o
7r
0 = v+ Jr+n—nr’ (9)

Solving these equations for r is equivalent to solving Eq[2l Thus, the reduced heuristic
firing rate equations can be expressed by

7= —r+d(r), (10)

where the f-I function ®(r) is given by Eq Straightforward stability analysis gives the
stability condition ®'(r) < 1.
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Linear Response

Ignoring transient dynamics, the response of the model equations to the external input
I(t) is T-periodic as well, at least in the limit of small amplitudes A (an exception are

period-doubled solutions, which are a nonlinear phenomenon only relevant at larger A).

In this case the corresponding Fourier spectra of the firing rate r(¢) and of the
membrane potential v(t) are discrete:

<

—~
~~

~—

ro + <r1ei“t +roe® @t 44 c.c.),
v(t) = v+ (vlei“t +vge?t 44 c.c.) (11)

For brevity of exposition we use here the angular frequency w = 27 f instead of the
ordinary frequency f. This approach describes the projection of solutions of r and v
from a continuous space R onto a discrete function space V', with orthogonal basis
functions €™t n € Z. The same Fourier decomposition applies to the input current
I(t):
Ity =1+ (Ileim + LWt 4o c.c.) (12)

To determine the linear response of the model equations, we first carry out Fourier

decomposition of the linearized system:

inwr, = 2vgr, + 2rovn,
inwv, = Jrn 4 I, + 2000, — 272701, (13)

Solving this set of linear equations, we obtain
T = 2rol, 00, v, = (inw — 200) 1,91, (14)
with
Q, = (200 — inw)? + i, (15)

where wy is the (angular) resonant frequency:
wi = —2ro(J — 27%ry). (16)

The resonant frequency is state-dependent and changes with model parameters.
Reintroducing the time scale 7, perturbations of the upper branch solution resonate at a
frequency

Wres = 2T0(27T2T0 - JT)7 (17)

where g is the value of the steady-state firing rate. This is true as long as the argument
of the square root is positive. Therefore as the firing rate decreases along the upper
branch, for decreasing external input, the frequency decreases to zero at which point the
focus becomes a node. This point occurs before the saddle-node is reached unless A =0
in which case it exactly coincides with the saddle-node.

The time-dependent linear response of the firing rate and the membrane potential is
now given by

Z2r01 Q tel™t 4 ¢ Z inw — 209)1,Q, el™ 4 c.c. (18)

n=1

From this, we can derive the amplitude of the linear response of the firing rate,

riin(w) = (mfuxr(t) mlnr( )) /2, (19)
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and analogously of the membrane potential. Alternatively, one can derive the
time-averaged linear response (“power”) of the system:

1 [T = _
Ro(w) = T/o r(t,w)?dt = 81§ Y |L[* 2,72, (20)
n=1
1 [T > _
Vo(w) = f/0 o(t,w)dt =2 3 (n2w? + 408) L[ 19272 (21)
n=1

Here we have made use of the orthogonality of the basis functions, and the fact that
T =27/w.

Numerical Continuation

In order to exhaustively and accurately trace the bifurcations that occur in the model
equations, we make use of AUTO 07p [54]. Since this software is designed to deal with
autonomous systems, we recast the (non-autonomous) model equations (1)) as a set of
autonomous equations:

r = — +2vr,
™

= V¥4 Jr+n+ Al(x(t)) — n%r?,
= ztwy— (@ +y°), (22)
= y-wr— (@ +y)y.

The last two equations create the periodic stimulus z(t) = sin(wt) in the model
equations. We distinguish the sinusoidal case,

I(z(t)) = (1), (23)

and the non-sinusoidal case
I(z(t)) = yx(t)* — 1. (24)

Continuation of the forced system is performed by starting from a known fixed point
(ro,v0) at A =0, and continuing solutions by increasing A up to the desired value. We
use the Ly-norm as a scalar measure to represent periodic solutions:

Lo(r) = 1/ = /O (1)t (25)

Where we perform this one-parameter continuation, we represent solution branches by
plotting the Lo-norm against the parameter that is being varied. Where we perform
two-parameter continuation, we plot the loci of bifurcations against the two parameters
being varied.

Memory Networks

A natural extension of the single-population model is to consider a network of neural
masses:

7;71 = —+ QUnTny
Y
N
b = VAT Y At +n+I(t) — 70k, (26)
m=1
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where the adjacency matrix A determines the connectivity structure between neural
masses. In this paper we consider two scenarios, the first of which is two neural
populations with recurrent excitation and mutual inhibition. The adjacency matrix of

such a network is given by
_ Je JZ
a(h 0, )
where J; < 0 < Je.

In the second scenario, we examine the dynamics within a Hopfield network. Rather

than creating the network through learning algorithms, we build the network as follows.

First, we choose the patterns that the network should encode and write them into an
array U. Each column of this array represents one pattern, where we put 1 for
populations that are active in this pattern, and 0 otherwise. As a result, the array U has
the size N X Npqt, where Npg¢ is the number of patterns encoded, and IV is the network

size. Bach pattern consists of IV, active populations, and patterns are non-overlapping.

The adjacency matrix of a network that encodes these patterns then reads

" N . T

Az(U—p)X(U—p) , (28)
with p = N,/N.

E-I circuit generating oscillations

To create a network that generates oscillations, we consider a network of an excitatory
population interacting with an inhibitory one:

Te = — + 207,
™
Ve = U? 4+ Jere + JiTi + e — 7T2T37 (29)
o= —+2ury,
T
O = v+ Jere + Jiri +m — w7
For simplicity, we choose J. = —J; = J. The two populations differ in terms of the

means of their tonic input currents, 7, and 7;. We vary these two parameters to identify
the regime where stable oscillations exists, and to change the frequency of these
oscillations.
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Supporting Information

S1 Text. Mechanisms underlying switching

Here we illustrate in greater detail the mechanisms underlying the ”switching on” of
activated network states (or simple switching between attractors in the case of a
multi-stable network) at low frequencies, and the ”switching off” of activated states at
frequencies in the beta range.

The effect of low frequencies can be understood by considering the quasi-stationary
response, namely how changes in the external drive alter the steady-state network
solution. [ST FigA-C show the steady-state bifurcation diagram for a single excitatory
population of QIF neurons as a function of the mean external drive 7.

Recall: quasi-stationary response
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S1 Fig Mechanisms of switching: Quasi-stationary response. A At
amplitudes below the critical range no switching occurs (A = 0.7). B Amplitude values
within the critical range lead to switching (A = 1). C At amplitudes above the critical
range the system undergoes periodic hysteretic switching (A = 1.3). D Bifurcation
diagram of stationary states with critical values for saddle-node bifurcations (7c1, 7c2)
and the choice of model parameter (79). E Normalized non-sinusoidal forcing over one
period (A = 1), with minimum and maximum values indicated. Parameters: 7 = —10,
J=15vVA, A =2, 7 = 20ms, f = 0.1Hz.

On top of these bifurcation diagrams we plot the firing rate of the forced system
against the z-axis, which is 77 4+ I(¢) as the forcing can be understood to be a
time-varying mean input current into the system. This is to illustrate that at low
frequencies the system remains close to the fixed points (except when it switches
between them), hence the term ’quasi-stationary’. Given a mean input which places the
system within the region of bistability, a small-amplitude, low-frequency forcing fails to
push the system past the low-activity saddle-node, see [ST FigA. In a range of forcing
amplitudes the network switches to the high-activity state and remains on the upper
solution branch, see [ST FigB, while for larger amplitudes the network activity becomes
slaved to the forcing, [ST FiglC. The range of suitable amplitudes depends on the model
parameter n, which is situated in the bistable regime. For clarity, we denote the chosen
parameter by 779. The bistable regime is delimited by two saddle-node bifurcations, that
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occur at 7.1 and 7.2, respectively. Thus we have 7.1 < 79 < 7.2. The range of
amplitudes also depends on the shape of the forcing representative of the case A =1. In
this case, the forcing is characterized by its minimum value I,,,;, and its maximum
value 1,4, We assume I, < 0 < I;;q,- The minimal amplitude required to push the
system from the node to the saddle is then given by

A = Ne2 — Mo (30)

Imaz

The maximum amplitude, up to which the system stays on the upper branch, is given by

i el — "0 (31)

Imin

If the system parameters are such that A, < Apmin, then there is no amplitude
regime at which Recall occurs, and increasing the amplitude leads to a transition from
Maintenance directly to hysteresis.

shows the details of the bifurcation structure of the periodically forced

network which leads to the ”switching off” or ”clearance” behavior.

Clearance: nonlinear resonance
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S2 Fig Mechanisms of switching: Nonlinear resonance. A Bifurcation
diagram of the focus with f as bifurcation parameter at A = 1. B Inset of A, with
period-doubling bifurcations (orange dots) and emerging branches of period-doubled
solutions shown. The period-doubling cascade gives rise to stable chaos (grey area),
which becomes unstable at lower frequencies. C Example time series from B around the
area where the chaotic attractor becomes unstable.
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Specifically, a series of period-doubling bifurcations, a so-called period-doubling
cascade, leads to the emergence of a chaotic orbit. This orbit is initially stable, but a
further decrease of the frequency leads to global instability of the chaotic orbit, and the
destabilization of the high-activity limit cycle solution, see [S2 Fig]A-B. The latter occurs
just below a forcing frequency of f = 32.5Hz, see[S2 FigB. In [S2 FiglC we show
representative time traces for forcing frequencies of f = 32.45Hz and f = 32.5Hz. In the
former case, the system leaves the forced focus in less than three seconds, whereas in
the latter case the chaotic orbit persists for the whole simulation period of 10 seconds.
We infer from this that the critical frequency at which the chaotic orbit loses stability
globally is within this frequency range.

S2 Text. A canonical model for nonlinear resonance in the
bistable regime.

In the network model, the high-activity branch of solution in the bistable regime
exhibits damped oscillations. Periodic external drive can resonate with these intrinsic
oscillations, leading to destabilizing period-doubling bifurcations as seen in the previous
section. Here we show that this mechanism is present in the simplest possible model
exhibiting a saddle-node bifurcation and for which the upper branch becomes a focus
beyond a critical value of the external drive:

=y, (32)
= p—x® —axy+ I(t). (33)

This model is a particular unfolding of the so-called Takens-Bogdanov normal form, for
which there is no Hopf bifurcation, which is the relevant case for our network model. It
is easily shown that a saddle-node bifurcation occurs in these equations at p = 0 and

that the fixed point solutions are o = 4-,/u and yo = 0 for p > 0, see|S3 FigA.
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S3 Fig The nonlinear resonance is captured in a canonical normal form
for a saddle-"focus”. A Bifurcation diagram of fixed points of this system, giving
rise to a stable focus and an unstable saddle. B Top: The bifurcation structure of
solutions resulting from non-sinusoidal forcing with f as bifurcation parameter (A = 1).
The area between vertical bars contains unstable period-doubled solutions (not shown),
which is evidence of the existence of a chaotic attractor. Bottom: Inverse of the time T
that z needs to reach an absolute value of 10, which is evidence that solutions diverge
due to an unstable chaotic attractor. C Comparison of the nonlinear response of the
reduced system (left) with the full system (right). Parameters: u = 2,a = 0.4.

Furthermore, the solution xg = —,/u is a saddle, and zy = /i is a stable focus for
which the frequency goes to zero smoothly as p — 0. shows that in the forced
system there is a range of frequencies for which there is no stable solution; in the
normal form equation the solution diverges while in the network model the system
settles to a limit cycle solution in the vicinity of the low-activity state. The instability is
due to a series of period-doubling bifurcations as in the full system. Furthermore,
comparison of the phase diagram of the normal form equation with that of the full
system shows they are qualitative similar, [S3 FiglC. This indicates that the nonlinear
resonance seen in the network of QIF neurons is a generic feature of any system with a

stable focus in the vicinity of a saddle-node bifurcation.
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S3 Text. How the resonant frequency changes with network
parameters

shows how the linear resonant frequency of the stable focus in the bistable
regime of a network of excitatory QIF neurons varies as a function of the mean external
input 77 and the strength of synaptic coupling J. Recall is not possible to the left of the
red curve given the nonlinear forcing used here. This line is determined by setting

Apin = Apaz, see Eq and Eq .
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S4 Fig. Change of resonant frequency with model parameters. We compute
the (linear) resonant frequency of the saddle for parameter values in the bistable regime
(delimited by black lines), specifically where Recall occurs using non-sinusoidal forcing
(delimited by red line). As Clearance is caused by nonlinear resonance of the focus, the
corresponding frequency band is found near the linear resonant frequency. At fixed
values of J the resonant frequency varies approximately by a factor of two across the
range of values of 7. Other parameters: A = 2, 7 = 20ms.
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