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Abstract

Oscillatory activity robustly correlates with task demands during many cognitive tasks.
However, not only are the network mechanisms underlying the generation of these
rhythms poorly understood, but it is also still unknown to what extent they may play a
functional role, as opposed to being a mere epiphenomenon. Here we study the
mechanisms underlying the influence of oscillatory drive on network dynamics related to
cognitive processing in simple working memory (WM), and memory recall tasks.
Specifically, we investigate how the frequency of oscillatory input interacts with the
intrinsic dynamics in networks of recurrently coupled spiking neurons to cause changes
of state: the neuronal correlates of the corresponding cognitive process. We find that
slow oscillations, in the delta and theta band, are effective in activating network states
associated with memory recall by virtue of the hysteresis in sweeping through a
saddle-node bifurcation. On the other hand, faster oscillations, in the beta range, can
serve to clear memory states by resonantly driving transient bouts of spike synchrony
which destabilize the activity. We leverage a recently derived set of exact mean-field
equations for networks of quadratic integrate-and-fire neurons to systematically study
the bifurcation structure in the periodically forced spiking network. Interestingly, we
find that the oscillatory signals which are most effective in allowing flexible switching
between network states are not smooth, pure sinusoids, but rather burst-like, with a
sharp onset. We show that such periodic bursts themselves readily arise spontaneously
in networks of excitatory and inhibitory neurons, and that the burst frequency can be
tuned via changes in tonic drive. Finally, we show that oscillations in the gamma range
can actually stabilize WM states which otherwise would not persist.

Author Summary

Oscillations are ubiquitous in the brain and often correlate with distinct cognitive tasks.
Nonetheless their role in shaping network dynamics, and hence in driving behavior
during such tasks is poorly understood. Here we provide a comprehensive study of the
effect of periodic drive on neuronal networks exhibiting multistability, which has been
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invoked as a possible circuit mechanism underlying the storage of memory states. We
find that oscillatory drive in low frequency bands leads to robust switching between
stored patterns in a Hopfield-like model, while oscillations in the beta band suppress
sustained activity altogether. Furthermore, inputs in the gamma band can lead to the
creation of working-memory states, which otherwise do not exist in the absence of
oscillatory drive.

Introduction 1

Oscillations are ubiquitous in neuronal systems and span temporal scales over several 2

orders of magnitude [1]. Some prominent rhythms, such as occipital alpha waves during 3

eye-closure [2] or slow-oscillations during non-REM sleep [3] are indicative of a 4

particular behavioral state. Other rhythms have been specifically shown to correlate 5

with memory demands during working memory tasks, including theta (4 - 8Hz) [4–7], 6

alpha/beta (8 - 30Hz) [8–10] and gamma (20 - 100Hz) [11–13]. Nonetheless, neither the 7

physiological origin nor the functional role of such oscillations are well understood. 8

Here we study how oscillatory signals in distinct frequency bands can serve to 9

robustly and flexibly switch between different dynamical states in cortical circuit models 10

of working memory and memory storage and recall. In doing so we characterize the 11

dynamical mechanisms responsible for some of the computational findings in an earlier 12

study [14]; we go beyond that work to include new results on oscillatory control of 13

network states. Specifically, we consider the response of multistable networks of 14

recurrently coupled spiking neurons to external oscillatory drive. We make use of recent 15

theoretical advances in mean-field theory to reduce the spiking networks to a 16

low-dimensional macroscopic description in terms of mean firing rate and membrane 17

potential, which is exact in the limit of large networks [15]. This allows us to perform a 18

systematic and detailed exploration of network states analytically or with numerical 19

bifurcation analysis, which informs us about suitable parameter sets for numerical 20

simulations. The latter serve to give representative examples of the dynamical 21

phenomena investigated here. As a result, we can completely characterize the dynamics 22

of the forced system. 23

Specifically, we consider networks which exhibit multistability in the absence of 24

forcing. Such attracting network states have been proposed as the neural correlate of 25

memory recall [16, 17], and as a possible mechanism for sustaining neuronal activity 26

during working memory tasks [18–20]. We find that an external oscillatory drive 27

interacts with such multistable networks in highly nontrivial ways. Low-frequency 28

oscillations are effective in switching on states of elevated activity in simple bistable 29

networks, while in higher dimensional multistable networks they allow for robust 30

switching between stored memory states. Higher frequencies, in the beta range, 31

destabilize WM states through a resonant interaction which recruits spike synchrony. 32

Such oscillatory signals can therefore be used to clear memory buffers. Finally, when 33

networks operate outside the region of multistability, e.g. due to reduced excitability, an 34

oscillatory signal in the gamma range can be used to recover robust memory recall. 35

Results 36

Oscillatory drive can selectively turn on or off WM states 37

Networks of recurrently coupled excitatory neurons can exhibit bistability given 38

sufficiently strong synaptic weights. Such networks act as binary switches: a transient 39

input can cause a transition from a baseline state to a state of elevated activity, or 40

vice-versa. We asked to what extent an oscillatory signal alone could also drive 41
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transitions between states in such a network. In particular we were interested in 42

knowing if the directionality of the transition, and hence the final state of the system, 43

could be controlled via the frequency of the oscillatory drive. 44

To investigate this we simulated a network of recurrently coupled excitatory 45

quadratic integrate-and-fire neurons, see Materials and Methods for details. Fig 1 shows 46

an illustration of the network dynamics as a function of the stimulus frequency and 47

initial state of the network. In particular, at low frequencies, the oscillations push the 48

system from the state of low activity into the state of high activity, which persists under 49

such forcing, see Fig 1A. As the frequency is increased past a critical value, it is no 50

longer effective in driving a transition, and the network remains in its initial state, see 51

Fig 1B. A further increase then shows the opposite effect: The state of high activity 52

becomes unstable under the forcing, whereas the state of low activity persists, Fig 1C. 53

At large enough frequencies we then observe again that no transitions occur and the 54

initial network state persists, Fig 1D. 55

The results from Fig 1 show that the frequency of an external oscillatory drive can 56

be used to selectively stabilize a given network state. For the parameter values used 57

here, oscillation frequencies in the delta range result in a WM state while frequencies in 58

the beta range force the system to the “ground” state, essentially clearing the WM 59

state, a result seen also in [14]. Oscillations outside these ranges are ineffective in 60

driving transitions. We seek to understand the mechanisms underlying these transitions, 61

and additionally to determine to what extent the precise frequency ranges are 62

influenced by the network parameters. To do this we will take advantage of recent work 63

in which the authors derived a set of simple equations for the mean firing rate and mean 64

membrane potential in a network of recurrently coupled quadratic integrate-and-fire 65

(QIF) neurons [15]. In the large-system limit these equations are exact. The exact 66

correspondence between the low-dimensional mean-field equations and the original 67

network allows us to use standard dynamical systems techniques to fully characterize 68

the range of dynamical states in the network. 69

Model equations and network analysis 70

The dynamics in networks of recurrently coupled QIF neurons can be described exactly 71

under the assumptions of all-to-all coupling and quenched neuronal variability, i.e. 72

static distributions in cellular or network properties. For the case of a single network of 73

excitatory cells in which the input currents to individual neurons are distributed, the 74

resulting mean-field equations are [15]: 75

τ2ṙ =
∆

π
+ 2τvr,

τ v̇ = v2 + Jτr + η + I(t)− π2τ2r2. (1)

Here, r is the network average of the firing rate and v is the network average of the 76

membrane potential, J is the strength of synaptic weights, η is the mean of the static 77

distribution of inputs, while ∆ is the width of the input distribution. External, 78

time-variant forcing is represented here by I(t). The time constant τ is the membrane 79

time constant of the individual neurons and is set to 20ms throughout. 80

This macroscopic model permits a straightforward investigation of the stationary 81

states in the full network. For sufficiently strong synaptic coupling two stable fixed 82

points co-exist over a range of mean external inputs, see Fig 2A (left). Linear stability 83

analysis further reveals that the stable high-activity fixed point is a focus for sufficiently 84

high rates, whereas the stable low-activity fixed point is a node, see Materials and 85

Methods. The network therefore shows a damped oscillatory response to external 86

perturbations in the high-activity state. This response reflects transient spike synchrony 87
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Fig 1. Frequency response of a network of QIF neurons. Here we show the
response of a network of 104 all-to-all coupled QIF neurons with distributed input
currents to periodic forcing. The model parameters are chosen such that the network is
bistable, see also Fig 2A. Each panel shows the network-averaged firing rate and raster
plot of the response for an initial condition in the low-activity state (top, r ≈ 6Hz) and
high-activity state (bottom, r ≈ 73Hz). A At low enough frequencies, the system is
pushed from the low- to the high-activity state. B At slightly higher frequencies, both
states persist under the forcing. C Driven with frequencies from an intermediate range
of frequencies, the state with high firing activity destabilizes in favor of the state with
low firing activity. D At high frequencies, both states persist under the forcing.
Parameters: τ = 20ms, η = −10, ∆ = 2, J = 15

√
∆, A = 1.
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which decays over time due to the heterogeneity; the characteristic time scale of the 88

desynchronization is in fact proportional to the width of the distribution of input 89

currents ∆. This type of spike synchrony is seen ubiquitously in networks of 90

heterogeneous and noise-drive spiking neurons [15,21,46] and is captured in Eq 1 by the 91

interplay between the mean sub-threshold membrane potential and mean firing rate [23]. 92

We use this macroscopic description to systematically investigate the network 93

response to periodic forcing with amplitude A and frequency f . Fig 2A (right) shows a 94

phase diagram of the network dynamics as a function of these two parameters. As in 95

Fig 1 we keep track of the final state of the network as a function of the initial state. 96

For sufficiently slow frequencies and over a range of amplitudes the network is always 97

driven to the high-activity state (green). This region therefore corresponds to recall of 98

the memory state, see Fig 2B (left). For an intermediate range of frequencies a 99

suffienctly strong forcing always drives the network to the low-activity state (red), 100

which corresponds to clearance, Fig 2B (right). The frequency band for clearance is 101

essentially set by the frequency of intrinsic oscillations of the high-activity state, i.e. it 102

is a resonant effect, see Fig 3. Weak forcing and forcing at very high frequencies fail to 103

drive any transitions, while strong forcing at low enough frequencies can enslave the 104

network dynamics entirely (orange). For the parameter values used here recall occurs 105

for frequencies below about 2Hz and clearance in the range between 10-30Hz. 106

In order to characterize the role of spike synchrony in determining the network 107

response, we derive a reduced firing rate equation with the identical fixed-point 108

structure as in the original, exact mean-field equations Eq 1, but without the 109

subthreshold dynamics. Specifically, the fixed-point value of the firing rate in Eq 1 can 110

be written as 111

r0 = Φ(Jτr0 + η), (2)

where Φ is the steady-state f-I curve, which in the case of Eqs (1) is 112

Φ(x) =
1√
2π

√
x+

√
x2 + ∆2. (3)

We use the steady-state f-I curve to construct a heuristic firing rate model given by 113

τ ṙ = −r + Φ(Jτr + η + I(t)), (4)

and investigate its response to periodic forcing I(t), see Materials and Methods for more 114

details. In this case the high-activity branch of the firing rate is a node, i.e. it no longer 115

shows damped oscillations in response to perturbations, see Fig 2C (left). Furthermore, 116

the region of “clearance” has completely vanished in the phase diagram in Fig 2C 117

(right), confirming that in the original network it was due to a resonance reflecting an 118

underlying spike synchrony mechanism. 119

Recall and Clearance occur due to forcing-induced bifurcations 120

Given the simplicity of the mean-field equations Eq 1 we can calculate the linear 121

response of the system analytically, without the need for extensive numerical simulations. 122

The response of the focus to weak sinusoidal inputs (linear response) already shows a 123

clear resonance for the high-activity state (Fig 3A), where the resonant frequency is 124

fres =
1

2π

√
2r0(2π2r0 − Jτ), (5)

see Materials and Methods. Furthermore, additional, sub-harmonic resonance peaks 125

occur when the forcing is sharply peaked, leading to a broadening of the resonance 126

spectrum (Fig 3A, right); this effect is due to the presence of many sub-harmonics of 127
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Fig 2. Switching behavior at the macroscopic scale. A Bifurcation analysis
identifies a bistable regime where a stable focus and a stable node coexist. The different
dynamic regimes are shown here as a function of the amplitude A and the frequency f
of the forcing. Green: Recall; Grey: Maintenance; Red: Clearance. Orange: only one
globally stable limit cycle exists due to the system being entrained to the forcing. B
Example time traces from A, with initial conditions chosen to be the focus (red) or the
node (blue). C The heuristic firing-rate equations Eq. 4 with equivalent fixed point
structure do not show the same dynamic regimes, as the focus is reduced to a node and
therefore cannot be destabilised by nonlinear resonance. Parameters: τ = 20ms,
η = −10, ∆ = 2, J = 15

√
∆, A = 1.
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the linear resonance in the forcing term itself. Conversely, the node does not show such 128

a resonance, indicating a qualitative difference in the response of the two stable fixed 129

points. 130

However, the switching behaviors seen in Fig 1 and Fig 2 and the corresponding 131

destabilization of network states cannot be attributed to this linear resonance alone – 132

nonlinear effects have to be taken into account. This can be seen by plotting the 133

bifurcation diagram for the response of the network to the forcing for several values of 134

the forcing. For relatively weak, but finite forcing, the network response consists of a 135

limit cycle in the vicinity of the corresponding unforced fixed-point, Fig 3B (top). As 136

the forcing amplitude is increased the amplitude of the limit cycle inherited from the 137

high-activity state is selectively enhanced due to the resonance, eventually leading to 138

bistability of limit cycles over a range of frequencies, see Fig 3B middle-right and 139

bottom-left. 140

At large enough amplitudes for the sharply-peaked, non-sinusoidal forcing two 141

additional bifurcations occur which are responsible for the “recall” and “clearance” 142

behaviors respectively, see Fig 3B (bottom-right) and Fig 3C. Specifically, at low 143

frequencies the two limit cycle solutions which arise due to the periodic forcing of the 144

low-activity node (blue line) and saddle-point (green line) anhihilate in a saddle-node 145

bifurcation of limit cycles. Therefore at low frequencies the only stable solution is the 146

limit cycle in the vicinity of the high-activity focus (red line), see Fig 3C. This explains 147

why low frequencies are effective in switching on the high-activity state, i.e. for “recall”. 148

On the other hand, in the range of frequencies over which the network response is 149

resonant, period-doubling bifurcations of the focus lead to a frequency band in which all 150

responses of the focus are unstable. Therefore, the limit-cycle solution in the vicinity of 151

the low-activity node is the only stable solution. Frequencies in this range are therefore 152

effective in switching off the high-activity state, i.e. for “clearance”. See also 153

Supporting Information (S1 Text). The “clearance” mechanism can be reproduced in a 154

a simplified model, see Supporting Information (S2 Text). 155

Higher-dimensional memory circuits 156

A single bistable network of neurons serves as a canonical illustration of a memory 157

circuit. However, such a network can only store a single bit of information; actual 158

memory circuits must be capable of storing more information. In terms of neuronal 159

architecture this can be achieved by having a network which is comprised of several or 160

many neuronal clusters [16,17,24]. We asked to what extent the frequency-selective 161

switching behavior seen in a single bistable network could also be found in a clustered 162

network. We look first at a simple, two-cluster network and then the more general case 163

of a higher-dimensional multi-clustered network. 164

Two competing neuronal populations 165

We set up a network of two identical populations with recurrent excitation and mutual 166

inhibition, in the presence of independent noise sources and oscillations, see Fig 4A. 167

This network of two competing neuronal populations may be regarded as the substrate 168

of a number of cognitive tasks, such as perceptual bistability (visual [25,26], 169

auditory [27], or olfactory [28]), or forced two-choice decision making [29,30]. 170

We choose parameters such that there is one stable fixed point at which both 171

populations are in the low firing regime, and two stable fixed points in which one 172

population is in the low firing regime and the other is in the high firing regime. The 173

latter two are symmetric with respect to a swap of population indices, i.e. reflection 174

symmetric, see the bifurcation diagram in Fig 4B. 175
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We furthermore choose an input which places the system near a sub-critical 176

pitchfork bifurcation, but such that the symmetric, low-activity state is stable. In this 177

state, global oscillatory forcing does not generate switching behavior at any frequency, 178

see Fig 4C. If the two populations are driven by weak, independent noise sources, we 179

also fail to observe any switching on relevant time scales, see Fig 4D. However, 180

combining global oscillatory drive with weak, independent noise sources now allows for 181

frequency-selective recall, switching, maintainance and clearance, as in the 182

single-population network, see Fig 4D. Specifically, low frequency drive switches the 183

network from a symmetric state to one in which one of the populations is active (2Hz 184

stimulation in Fig 4E); continued low-frequency forcing generates ongoing stochastic 185

switching between the two activated states. When this drive is released the currently 186

active configuration is stabilized (between 40 and 60 seconds in Fig 4E). Finally, an 187

intermediate range of frequencies is effective in clearing the currently held active state 188

(40Hz stimulation in Fig 4E) and stabilizing the symmetric, low-activity state. An 189

analysis of the bifurcation structure in this network as a function of forcing amplitude 190

and frequency reveals that bifurcations analogous to those responsible for recall and 191

clearance in the single-population model, i.e. Fig 3, also occur here (not shown). 192

A many-cluster network 193

Here we consider a network of 100 neuronal populations which interact via effective 194

interactions which may be excitatory or inhibitory. The connectivity is chosen so that 195
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Fig 5. Hopfield network with random, non-overlapping patterns. A A network of 100 neural populations is chosen
to encode ten patterns with five populations each. The patterns are non-overlapping. B The corresponding connectivity
matrix of the network. C We apply an activation/deactivation protocol. The encoded patterns are randomly activated in the
presence of slow oscillations (2Hz), sustained in the absence of oscillations (grey), and deactivated in the presence of fast
oscillations (40Hz). All populations have independent white noise sources with variance σ2. Parameters: η̄ = −15, ∆ = 2,
J = 8, τ = 20ms, A = 8, σ = 2.

10 distinct, random but non-overlapping activity patterns are encoded; in each pattern 196

five neuronal populations are active, i.e. the coding sparseness is 5% . The patterns and 197

connectivity matrix are shown in Fig 5A and B respectively. Simulations again reveal a 198

frequency-selective response of the network similar to the two-population model. 199

Namely, low frequency inputs in the presence of weak noise switch on the activated 200

state and allow for robust switching, while over a range of intermediate frequencies all 201

activated states are cleared, see Fig 5C. 202

Generating burst-like oscillations 203

Thus far we have treated oscillations as an extrinsic effect, i.e. we are agnostic as to 204

their origin. To be effective for flexible control of memory states, the oscillatory forcing 205

we have considered here must fulfill two requirements: First, it must have a broad range 206

of possible frequencies, and secondly, it must have a burst-like shape. Here we show that 207

a simple circuit comprised of interacting excitatory and inhibitory populations can 208

satisfy both these requirements. 209

Specifically, we construct a network of QIF neurons consisting of an E-I circuit 210

which spontaneously oscillates, and drives a downstream population of E cells, which 211

itself is bistable, see Fig 6. Using the corresponding mean-field equations for the E-I 212

PLOS 10/26

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/271973doi: bioRxiv preprint 

https://doi.org/10.1101/271973
http://creativecommons.org/licenses/by-nc-nd/4.0/


circuit, we found a broad region of oscillatory states of the E-I network as a function of 213

the mean external drive to the E and I populations, ηe and ηi respectively, see the phase 214

diagram Fig 6B. By adjusting the external drive to the E and I populations alone we 215

can tune the output frequency over an order of magnitude. This allows us to selectively 216

switch the downstream network on and off, as shown in Fig 6C. 217

Gamma oscillations can generate memory states 218

Outside the region of bistability (or multistability in the case of clustered networks), 219

neuronal networks will relax to a single stationary state in the response to a transient 220

input. Here we show that this need not be the case if the network activity is subjected 221

to ongoing oscillatory modulation. 222

As an illustration we take a single population of excitatory neurons with strong 223

recurrent excitation, but insufficient tonic drive to place it in the region of bistability. 224

As a result, the response of the network to a transient excitatory stimulus decays to 225

baseline, as seen in Fig 7A (top). However, in the presence of an oscillatory input in the 226

gamma range, which itself only very weakly modulates the network activity (Fig 7A 227

middle), the transient input now switches the network to an activated state with 228

prominent gamma modulation Fig 7A (bottom). Once the oscillations cease (green 229

arrow) the activated state vanishes. 230

This phenomenon depends crucially on the presence of the spike-synchrony 231

mechanism underlying the damped oscillatory response of the high-activity focus 232

discussed earlier. Specifically, for the parameter values used in Fig 7 the only 233

fixed-point solution which exists is the low-activity node. Nonetheless, oscillatory 234

forcing at sufficiently high firing rates can still recruit and resonate with the damped 235

oscillatory interaction between the mean firing rate and mean membrane potential in 236

the network. The resulting resonant frequency can no longer be associated with the 237

linear response of the focus as it is a fully nonlinear network property. 238

The phase diagram Fig 7B shows the regions of bistability given an oscillatory 239

forcing, for different forcing amplitudes. For zero amplitude the curve corresponds with 240

the saddle-node (SN) bifurcation of the unforced system (horizontal black line). Note 241

that only sufficiently high frequencies allow for bistability given tonic inputs which place 242

the network below the SN. Furthermore, there is a clear resonance in the range of 243

60− 90Hz for these parameter values. As the forcing frequency f →∞ the curves 244

converge to the SN line of the unforced system. This is because the forcing we use has 245

zero-mean and hence, given the low-pass filter property of neuronal networks, has no 246

effect on the network dynamics at high frequencies. 247

Discussion 248

In this article we study the role of oscillations in switching or maintaining specific brain 249

states. Specifically, we identified distinct frequency bands: delta, beta, and gamma with 250

specific functional roles. This finding is especially intriguing given that the networks we 251

study are relatively simple. Connectivity is all-to-all and neurons are exclusively 252

excitatory. For the multi-population networks, interactions between populations are 253

assumed to be mediated by fast inhibition, leading to a winner-take-all behavior. 254

Furthermore, synaptic transmission is considered to be instantaneous, with the only 255

relevant time scale being the membrane time constant (τ = 20ms). The susceptibility of 256

the networks to forcing of distinct frequencies therefore does not depend on the presence 257

of multiple time scales associated with instrinsic currents, synaptic kinetics or 258

sub-classes of inhibitory cells. Rather, the key dynamic factors are: bistability or 259

multistability due to recurrent excitatory reverberation, and transient spike synchrony 260
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Fig 6. Forced switching with oscillations from an E-I network. A The network
is built such that an excitatory population (E1) and an inhibitory population (I) form a
circuit that can generate oscillatory output via the excitatory population (E1), which is
fed into another excitatory populations (E2). The latter is in the bistable regime. B
Bifurcation diagram of the E1-I-circuit in the parameters η̄e and η̄i. The organizing
bifurcations are a pair of saddle-node bifurcations (SN) of the fixed points, and a Hopf
branch (H) that connects to one of the saddle-node branches via a Bogdanov-Takens
codimension-two point (BT). (Limit cycles are found below the Hopf branch.) C Firing
rates and raster plots of the population outputs as a result of the parameter tuning.
Time traces of population E2 are portrayed for both stable initial conditions (node and
focus). By choosing ηe and ηi accordingly, recall (ηe = −4.4, ηi = −18), clearance
(ηe = −1, ηi = −5.5) and maintenance (ηe = 0, ηi = −2) can be observed. Other
parameters: Je = −Ji = 15

√
∆, Jee = 3.5

√
∆, ∆ = 2. Mean current of E2: ηee = −10.
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in response to external drive. Given this, we expect to see the same phenomenology in 261

more biophysically realistic networks as long as there is bistability and external noise 262

sources are not too strong. 263

In the region of bistability, low frequencies are effective in pushing the network into 264

a high-activity state; for not too large amplitudes the network remains in the activated 265

state on the downsweep of the input. The cut-off frequency for this ”recall” signal is 266

determined by the escape time of the network from the vicinity of the saddle-node 267

bifurcation in the low-activity state, and here is a few Hertz, see Fig 2A. In multi-stable 268

networks, this same mechanism allows for robust switching between distinct memory 269

states. On the other hand, frequencies in the beta range are effective in switching off 270

the high-activity state by resonantly driving bouts of spike synchrony. The precise 271

frequency range depends on network parameters, see S4 Fig. In both cases the relevant 272

frequency ranges scale with the membrane time constant of the neurons. Therefore, e.g. 273

choosing a time constant τ = 10ms will simply stretch the x-axis of the phase diagram 274

in Fig 2A by a factor of two. Finally, we showed that forcing in the gamma range can 275

allow for robust working memory states which otherwise do not exist, i.e. the system 276

sits outside the region of bistability with oscillatory forcing. This mechanism once again 277

depends on resonantly recruiting spike synchrony. 278

We find that non-sinusoidal, burst-like drive is most effective in switching the 279

network state, see Fig 3A and B. In fact, this is precisely the type of oscillation which 280

readily emerges in a simple E-I network. Furthermore, the oscillation frequency can be 281

modulated over a wide range through changes in the tonic drive to the E-I circuit alone, 282

see Fig 6. This means that the state of downstream memory networks can be flexibly 283

controlled via an E-I circuit through global changes in excitability alone. 284

We have proposed an E-I-circuit as a possible neuronal source of the oscillations 285

investigated here. However, oscillations might have non-neuronal origin, such as 286

external electric or magnetic fields during neuromodulation. Non-invasive methods 287

include repetitive transcranial magnetic stimulation [31] and transcranial alternating 288

current stimulation [32] which apply transient oscillatory signals. Despite the fact that 289

they affect large parts of the brain, and hence are a challenge to model mathematically, 290

we are confident that the methods developed here can help gain a deeper understanding 291

of the mechanisms involved, and the psychological and behavioral effects of 292

neuromodulation. In addition, the non-sinusoidal forcing that we introduce here might 293

also serve to approximate the pulse-like stimulation used in deep-brain stimulation to 294

treat Parkinson’s disease [33] and (pharmacologically) treatment-resistant 295

depression [34]. 296

The model we use here describes networks of spiking neurons with instantaneous 297

synapses, i.e. the synaptic dynamics is considered fast in comparison to the membrane 298

time scale. Future studies could incorporate synaptic dynamics with appropriate time 299

scales for excitatory and inhibitory transmission, which can be influenced by drugs, or 300

(pathological) changes in neurotransmitters. If synaptic time constants are in the range 301

of the membrane time constant, we expect that the same dynamic phenomena observed 302

here still occur. If synaptic time constants are large, however, spike synchronization 303

may no longer occur [23]. The framework developed here may therefore serve as a tool 304

to study the cause of functional deficiencies in synapse-related conditions, so-called 305

’synaptopathies’ [35, 36]. In addition, one may envisage more detailed cortical network 306

architectures involving multiple neuronal populations [37–39]. In this article, we briefly 307

investigated the role of an E-I-circuit to generate oscillations which control the state of 308

another neural population. We are therefore optimistic that using realistic circuit 309

models in combination with the mean field description employed here will yield new and 310

interesting results. 311
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Materials and Methods 312

Mathematical Model 313

An important mathematical tool in understanding macroscopic neuronal dynamics, 314

away from the description of spiking neurons, is provided by neural mass and neural 315

field models. Classical models include the Wilson-Cowan model [40,41] or the Amari 316

model [42,43]. However, such macroscopic models of brain activity often pose a stark 317

simplification of the actual dynamics, and often miss important features from the 318

spiking dynamics, such as spike synchronization as shown in this article. Therefore, 319

there have been recent advances in linking the microscopic and macroscopic dynamics of 320

networks of spiking neurons [15,44–53]. 321

We consider a neural mass model that was recently derived from networks of 322

all-to-all coupled quadratic integrate-and-fire neurons in the thermodynamic limit [15], 323

see Eqs (1). To simplify the mathematical treatment, we divide t by τ which represents 324

the case of time being measured in units of τ , thus eliminating τ from the equations: 325

ṙ =
∆

π
+ 2vr,

v̇ = v2 + Jr + η + I(t)− π2r2. (6)

Here, r represents the ensemble average of the firing rate of neurons, and v represents 326

the ensemble average of the membrane potential. The parameters η and ∆ represent the 327

mean and variance of the Lorentzian distribution of time-invariant input currents into 328

the neuronal ensemble, and J is the coupling constant between neurons. Time-varying 329

external inputs are given by I(t). The original model (1) can then be recovered by 330

t→ τt, r → r/τ . As we set τ = 20ms, r = 1 here corresponds to a firing rate of 331

r = 50Hz in the full model. 332

Here, we consider I(t) to be T -periodic, i.e. I(t+ T ) = I(t). We distinguish between 333

two types of input: sinusoidal input, 334

I(t) = A sin(2πft), (7)

and non-sinusoidal input, 335

I(t) = A (γ sin(πft)n − 1) , (8)

where we take n = 20 for the simulations presented in this paper. The parameter A 336

represents the amplitude of the forcing. The constant γ is chosen such that 337∫ T

0
I(t)dt = 0. We choose this type of zero-mean forcing to avoid any changes in 338

network excitability which a tonic DC-offset might cause. In other words, the input 339

models a reorganization of afferent spikes into periodic volleys without adding any 340

additional spikes. In the non-sinusoidal case the spikes are more synchronized than in 341

the sinusoidal case. 342

We compare the full model equations with its equivalent heuristic firing rate 343

equation, which preserves the fixed point structure but reduces the dynamical behavior. 344

This is done by considering stationary solutions given by 345

0 =
∆

π
+ 2vr,

0 = v2 + Jr + η − π2r2. (9)

Solving these equations for r is equivalent to solving Eq 2. Thus, the reduced heuristic 346

firing rate equations can be expressed by 347

ṙ = −r + Φ(r), (10)

where the f-I function Φ(r) is given by Eq 3. Straightforward stability analysis gives the 348

stability condition Φ′(r) < 1. 349
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Linear Response 350

Ignoring transient dynamics, the response of the model equations to the external input 351

I(t) is T -periodic as well, at least in the limit of small amplitudes A (an exception are 352

period-doubled solutions, which are a nonlinear phenomenon only relevant at larger A). 353

In this case the corresponding Fourier spectra of the firing rate r(t) and of the 354

membrane potential v(t) are discrete: 355

r(t) = r0 +
(
r1eiωt + r2e2iωt + . . .+ c.c.

)
,

v(t) = v0 +
(
v1eiωt + v2e2iωt + . . .+ c.c.

)
(11)

For brevity of exposition we use here the angular frequency ω = 2πf instead of the 356

ordinary frequency f . This approach describes the projection of solutions of r and v 357

from a continuous space R onto a discrete function space V , with orthogonal basis 358

functions einωt, n ∈ Z. The same Fourier decomposition applies to the input current 359

I(t): 360

I(t) = I0 +
(
I1eiωt + I2e2iωt + · · ·+ c.c.

)
(12)

To determine the linear response of the model equations, we first carry out Fourier 361

decomposition of the linearized system: 362

inωrn = 2v0rn + 2r0vn,

inωvn = Jrn + In + 2v0vn − 2π2r0rn. (13)

Solving this set of linear equations, we obtain 363

rn = 2r0InΩ−1n , vn = (inω − 2v0)InΩ−1n , (14)

with 364

Ωn = (2v0 − inω)2 + ω2
0 , (15)

where ω0 is the (angular) resonant frequency: 365

ω2
0 = −2r0(J − 2π2r0). (16)

The resonant frequency is state-dependent and changes with model parameters. 366

Reintroducing the time scale τ , perturbations of the upper branch solution resonate at a 367

frequency 368

ωres =
√

2r0(2π2r0 − Jτ), (17)

where r0 is the value of the steady-state firing rate. This is true as long as the argument 369

of the square root is positive. Therefore as the firing rate decreases along the upper 370

branch, for decreasing external input, the frequency decreases to zero at which point the 371

focus becomes a node. This point occurs before the saddle-node is reached unless ∆ = 0 372

in which case it exactly coincides with the saddle-node. 373

The time-dependent linear response of the firing rate and the membrane potential is 374

now given by 375

r(t) =
∞∑

n=1

2r0InΩ−1n einωt + c.c., v(t) =
∞∑

n=1

(inω − 2v0)InΩ−1n einωt + c.c. (18)

From this, we can derive the amplitude of the linear response of the firing rate, 376

rlin(ω) =
(

max
t
r(t)−min

t
r(t)

)
/2, (19)
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and analogously of the membrane potential. Alternatively, one can derive the 377

time-averaged linear response (“power”) of the system: 378

R2(ω) =
1

T

∫ T

0

r(t, ω)2dt = 8r20

∞∑
n=1

|In|2 |Ωn|−2 , (20)

V2(ω) =
1

T

∫ T

0

v(t, ω)2dt = 2
∞∑

n=1

(
n2ω2 + 4v20

)
|In|2 |Ωn|−2 . (21)

Here we have made use of the orthogonality of the basis functions, and the fact that 379

T = 2π/ω. 380

Numerical Continuation 381

In order to exhaustively and accurately trace the bifurcations that occur in the model 382

equations, we make use of AUTO 07p [54]. Since this software is designed to deal with 383

autonomous systems, we recast the (non-autonomous) model equations (1) as a set of 384

autonomous equations: 385

ṙ =
∆

π
+ 2vr,

v̇ = v2 + Jr + η +AI(x(t))− π2r2,

ẋ = x+ ωy − (x2 + y2)x, (22)

ẏ = y − ωx− (x2 + y2)y.

The last two equations create the periodic stimulus x(t) = sin(ωt) in the model 386

equations. We distinguish the sinusoidal case, 387

I(x(t)) = x(t), (23)

and the non-sinusoidal case 388

I(x(t)) = γx(t)20 − 1. (24)

Continuation of the forced system is performed by starting from a known fixed point 389

(r0, v0) at A = 0, and continuing solutions by increasing A up to the desired value. We 390

use the L2-norm as a scalar measure to represent periodic solutions: 391

L2(r) =

√
1

T

∫ T

0

r(t)2dt. (25)

Where we perform this one-parameter continuation, we represent solution branches by 392

plotting the L2-norm against the parameter that is being varied. Where we perform 393

two-parameter continuation, we plot the loci of bifurcations against the two parameters 394

being varied. 395

Memory Networks 396

A natural extension of the single-population model is to consider a network of neural 397

masses: 398

ṙn =
∆

π
+ 2vnrn,

v̇n = v2n + J
N∑

m=1

Anmrm + η + I(t)− π2r2n, (26)
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where the adjacency matrix A determines the connectivity structure between neural 399

masses. In this paper we consider two scenarios, the first of which is two neural 400

populations with recurrent excitation and mutual inhibition. The adjacency matrix of 401

such a network is given by 402

A =

(
Je Ji
Ji Je

)
, (27)

where Ji < 0 < Je. 403

In the second scenario, we examine the dynamics within a Hopfield network. Rather 404

than creating the network through learning algorithms, we build the network as follows. 405

First, we choose the patterns that the network should encode and write them into an 406

array Û . Each column of this array represents one pattern, where we put 1 for 407

populations that are active in this pattern, and 0 otherwise. As a result, the array Û has 408

the size N ×Npat, where Npat is the number of patterns encoded, and N is the network 409

size. Each pattern consists of Np active populations, and patterns are non-overlapping. 410

The adjacency matrix of a network that encodes these patterns then reads 411

Â =
(
Û − p

)
×
(
Û − p

)T
, (28)

with p = Np/N . 412

E-I circuit generating oscillations 413

To create a network that generates oscillations, we consider a network of an excitatory 414

population interacting with an inhibitory one: 415

ṙe =
∆

π
+ 2vere,

v̇e = v2e + Jere + Jiri + ηe − π2r2e , (29)

ṙi =
∆

π
+ 2viri,

v̇i = v2i + Jere + Jiri + ηi − π2r2i .

For simplicity, we choose Je = −Ji = J . The two populations differ in terms of the 416

means of their tonic input currents, ηe and ηi. We vary these two parameters to identify 417

the regime where stable oscillations exists, and to change the frequency of these 418

oscillations. 419

– 420
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Supporting Information

S1 Text. Mechanisms underlying switching

Here we illustrate in greater detail the mechanisms underlying the ”switching on” of
activated network states (or simple switching between attractors in the case of a
multi-stable network) at low frequencies, and the ”switching off” of activated states at
frequencies in the beta range.

The effect of low frequencies can be understood by considering the quasi-stationary
response, namely how changes in the external drive alter the steady-state network
solution. S1 FigA-C show the steady-state bifurcation diagram for a single excitatory
population of QIF neurons as a function of the mean external drive η.

Imax

0
Imin

t

Maintain:

A < Ac1

η

r0

Hysteresis:

A > Ac2

η

r0

Recall:

Ac1 < A < Ac2

η
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ηc1 η0 ηc2 η

r0

Recall: quasi-stationary response

A B C

D E

S1 Fig Mechanisms of switching: Quasi-stationary response. A At
amplitudes below the critical range no switching occurs (A = 0.7). B Amplitude values
within the critical range lead to switching (A = 1). C At amplitudes above the critical
range the system undergoes periodic hysteretic switching (A = 1.3). D Bifurcation
diagram of stationary states with critical values for saddle-node bifurcations (ηc1, ηc2)
and the choice of model parameter (η0). E Normalized non-sinusoidal forcing over one
period (A = 1), with minimum and maximum values indicated. Parameters: η̄ = −10,
J = 15

√
∆, ∆ = 2, τ = 20ms, f = 0.1Hz.

On top of these bifurcation diagrams we plot the firing rate of the forced system
against the x-axis, which is η̄ + I(t) as the forcing can be understood to be a
time-varying mean input current into the system. This is to illustrate that at low
frequencies the system remains close to the fixed points (except when it switches
between them), hence the term ’quasi-stationary’. Given a mean input which places the
system within the region of bistability, a small-amplitude, low-frequency forcing fails to
push the system past the low-activity saddle-node, see S1 FigA. In a range of forcing
amplitudes the network switches to the high-activity state and remains on the upper
solution branch, see S1 FigB, while for larger amplitudes the network activity becomes
slaved to the forcing, S1 FigC. The range of suitable amplitudes depends on the model
parameter η, which is situated in the bistable regime. For clarity, we denote the chosen
parameter by η̄0. The bistable regime is delimited by two saddle-node bifurcations, that
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occur at η̄c1 and η̄c2, respectively. Thus we have η̄c1 < η̄0 < η̄c2. The range of
amplitudes also depends on the shape of the forcing representative of the case A = 1. In
this case, the forcing is characterized by its minimum value Imin and its maximum
value Imax. We assume Imin < 0 < Imax. The minimal amplitude required to push the
system from the node to the saddle is then given by

Amin =
η̄c2 − η̄0
Imax

. (30)

The maximum amplitude, up to which the system stays on the upper branch, is given by

Amax =
η̄c1 − η̄0
Imin

. (31)

If the system parameters are such that Amax ≤ Amin, then there is no amplitude
regime at which Recall occurs, and increasing the amplitude leads to a transition from
Maintenance directly to hysteresis.

S2 Fig shows the details of the bifurcation structure of the periodically forced
network which leads to the ”switching off” or ”clearance” behavior.

Clearance: nonlinear resonance
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S2 Fig Mechanisms of switching: Nonlinear resonance. A Bifurcation
diagram of the focus with f as bifurcation parameter at A = 1. B Inset of A, with
period-doubling bifurcations (orange dots) and emerging branches of period-doubled
solutions shown. The period-doubling cascade gives rise to stable chaos (grey area),
which becomes unstable at lower frequencies. C Example time series from B around the
area where the chaotic attractor becomes unstable.
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Specifically, a series of period-doubling bifurcations, a so-called period-doubling
cascade, leads to the emergence of a chaotic orbit. This orbit is initially stable, but a
further decrease of the frequency leads to global instability of the chaotic orbit, and the
destabilization of the high-activity limit cycle solution, see S2 FigA-B. The latter occurs
just below a forcing frequency of f = 32.5Hz, see S2 FigB. In S2 FigC we show
representative time traces for forcing frequencies of f = 32.45Hz and f = 32.5Hz. In the
former case, the system leaves the forced focus in less than three seconds, whereas in
the latter case the chaotic orbit persists for the whole simulation period of 103 seconds.
We infer from this that the critical frequency at which the chaotic orbit loses stability
globally is within this frequency range.

S2 Text. A canonical model for nonlinear resonance in the
bistable regime.

In the network model, the high-activity branch of solution in the bistable regime
exhibits damped oscillations. Periodic external drive can resonate with these intrinsic
oscillations, leading to destabilizing period-doubling bifurcations as seen in the previous
section. Here we show that this mechanism is present in the simplest possible model
exhibiting a saddle-node bifurcation and for which the upper branch becomes a focus
beyond a critical value of the external drive:

ẋ = y, (32)

ẏ = µ− x2 − axy + I(t). (33)

This model is a particular unfolding of the so-called Takens-Bogdanov normal form, for
which there is no Hopf bifurcation, which is the relevant case for our network model. It
is easily shown that a saddle-node bifurcation occurs in these equations at µ = 0 and
that the fixed point solutions are x0 = ±√µ and y0 = 0 for µ > 0, see S3 FigA.
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S3 Fig The nonlinear resonance is captured in a canonical normal form
for a saddle-”focus”. A Bifurcation diagram of fixed points of this system, giving
rise to a stable focus and an unstable saddle. B Top: The bifurcation structure of
solutions resulting from non-sinusoidal forcing with f as bifurcation parameter (A = 1).
The area between vertical bars contains unstable period-doubled solutions (not shown),
which is evidence of the existence of a chaotic attractor. Bottom: Inverse of the time T
that x needs to reach an absolute value of 106, which is evidence that solutions diverge
due to an unstable chaotic attractor. C Comparison of the nonlinear response of the
reduced system (left) with the full system (right). Parameters: µ = 2, a = 0.4.

Furthermore, the solution x0 = −√µ is a saddle, and x0 =
√
µ is a stable focus for

which the frequency goes to zero smoothly as µ→ 0. S3 FigB shows that in the forced
system there is a range of frequencies for which there is no stable solution; in the
normal form equation the solution diverges while in the network model the system
settles to a limit cycle solution in the vicinity of the low-activity state. The instability is
due to a series of period-doubling bifurcations as in the full system. Furthermore,
comparison of the phase diagram of the normal form equation with that of the full
system shows they are qualitative similar, S3 FigC. This indicates that the nonlinear
resonance seen in the network of QIF neurons is a generic feature of any system with a
stable focus in the vicinity of a saddle-node bifurcation.
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S3 Text. How the resonant frequency changes with network
parameters

S4 Fig shows how the linear resonant frequency of the stable focus in the bistable
regime of a network of excitatory QIF neurons varies as a function of the mean external
input η̄ and the strength of synaptic coupling J . Recall is not possible to the left of the
red curve given the nonlinear forcing used here. This line is determined by setting
Amin = Amax, see Eq (30) and Eq (31).
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S4 Fig. Change of resonant frequency with model parameters. We compute
the (linear) resonant frequency of the saddle for parameter values in the bistable regime
(delimited by black lines), specifically where Recall occurs using non-sinusoidal forcing
(delimited by red line). As Clearance is caused by nonlinear resonance of the focus, the
corresponding frequency band is found near the linear resonant frequency. At fixed
values of J the resonant frequency varies approximately by a factor of two across the
range of values of η̄. Other parameters: ∆ = 2, τ = 20ms.
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