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Abstract

Different environmental factors, including diet, physical activity, or external conditions can
contribute to genotype-environment interactions (GXE). Although high-dimensional
environmental data are increasingly available, and multiple environments have been
implicated with GXE at the same loci, multi-environment tests for GXE are not established.
Such joint analyses can increase power to detect GXE and improve the interpretation of
these effects. Here, we propose the structured linear mixed model (StructLMM), a
computationally efficient method to test for and characterize loci that interact with multiple
environments. After validating our model using simulations, we apply StructLMM to body
mass index in UK Biobank, where our method detects previously known and novel GXE
signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that

StructLMM can be used to study interactions with hundreds of environmental variables.

Introduction

Increasingly large population cohorts that combine genetic profiling with deep phenotyping

and environmental information, including diet, physical activity and other lifestyle covariates,
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have fostered interest to study genotype-environment interactions (GxE). Already, such
analyses have identified GXE for human phenotypes, including disease risk!2, and molecular

traits3.

Established methods to detect GXE implement tests that evaluate the effect of a single
environmental variable on individual genetic variants®. Recent multivariate extensions enable
assessing GxE across sets of genetic variants, either using genetic risk scores® or variance

component tests’™.

Whilst there is evidence to suggest that multiple environments can interact with a single
genetic locus to influence phenotypes, for example FTO interacts with a number of
environments to alter BMI risk, including physical activity'®13, diet'21®> and smoking?*?, there
exist no robust methods for the joint GXE analysis of multiple environmental variables. Such
joint tests may increase the power to detect GxE, in particular when GXxE effects are
simultaneously driven by multiple environments, while at the same time reducing the multiple
testing burden. Additionally, joint models of multiple environmental variables can improve the
interpretation of GXE effects, allowing to assess the relevance of individual environments. As
increasingly high-dimensional environmental data are available in population cohorts, there

is a growing need for multi-environment GXE tests.

Here, we present a robust multi-environment GxE test based on linear mixed models
(LMMs), using a random effect component to jointly model the effect of multiple
environmental variables. The method generalises previous GXE tests to enable the joint
analysis of hundreds of environmental variables and can be applied to large cohorts of

hundreds of thousands of individuals.

Results

Usually, LMMs test for persistent genetic associations of individual variants, that means
constant genetic effect sizes across the population. Covariates and additional random effect
components are included to account for population structure, environment, and other
additive (confounding) factors. StructLMM extends the LMM framework by modelling

heterogeneity in effect sizes due to GxE

y= Xb +x08+ e +

covariates genetics environment noise

1)
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Here, B is a vector of per-individual effect sizes and follows a multivariate normal distribution

B~ N(0,05((1 = p)lyxn + pX))
—_— =~

2) persistent GXE
The first covariance term corresponds to a persistent genetic effect whereas the second
covariance term accounts for heterogeneous effect sizes parameterised by an
environmental covariance X, where the parameter p defines the fraction of genetic variance
due to GXE. Depending on the functional form of X, this model can be used to account for
different types of GxXE, for example hierarchies of discrete environmental groups, or as
considered here, GXE effects based on a set of continuous and discrete environmental
covariates (Fig. 1b-c). The environmental covariance is also used to account for additive
(i.e. non-genetic) environmental effects, e ~ N(0,2). The model is technically related to

existing random effect tests for rare variants'® and epistasis!’ (Methods).
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Figure 1 | Overview of the StructLMM model. (a) Basic genotype-environment interaction,
with a group-specific genetic effect (blue and orange lines correspond to the average
phenotypes observed within two environmental groups for two alleles). (b) Interaction with
multiple environmental groups or bins of continuous environmental states (average
phenotypes for groups exerting increasing GXE effects from blue to orange for two alleles).
(c) StructLMM accounts for heterogeneity in effect sizes due to GXE using a multivariate
normal prior, where alternative choices of the environmental covariance X can capture
discrete (two groups, group hierarchy; see a,b) or in the limit continuous substructure
(multiple envs) of environmental exposures in the population. (d,e) Different example
analyses using StructLMM. (d) Prediction of per-individual genetic effects in the population
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at individual loci. The violin plot displays the estimated density of individuals in a cohort that
exert a genetic effect of a particular size given the distribution of the environmental factors
within the population. Median and the top and bottom 5% quantiles of the effect size
distribution are indicated by the red and green bars, respectively. (e) Evidence for the
different environmental variables contributing to GXE effects.

Using the multi-environment model defined above (Eq. (1)), we propose score tests for two
types of hypotheses: (i) an association test that accounts for heterogeneous effect sizes due
to GXE and (ii) an interaction test to identify loci with significant GXE effects. StructLMM is
computationally efficient, enabling genome-wide analyses using hundreds of environmental
variables on cohorts of hundreds of thousands of individuals. The model facilitates different
analyses to characterise GxE effects, including estimation of the fraction of genetic variance
explained by GXE (p, Eq. (2)), and predicting per-individual genetic effect sizes based on
environmental profiles in the population (Fig. 1d). Finally, the model can be used to assess
the relevance of individual environmental variables for GXE (Fig. 1e). The full derivation of

our method can be found in Methods.

Model validation using simulated data

Initially, we considered simulated data using genotypes from the 1000 Genomes project*® to
assess the statistical calibration and power of StructLMM. To mimic environmental
distributions as observed in real settings, we simulated GXE based on 60 environmental
covariates from UK Biobank, including physical activity, diet, and other lifestyle factors
(Methods). We varied the sample size of the simulated population, the extent of GXE, the

number of driving environments and other parameters (Supp. Table 1).

First, we confirmed the statistical calibration of StructLMM, considering phenotypes
simulated without any genetic effects (i.e. the null model) (Fig. 2a, Supp. Fig. 1a) or
simulated from a persistent effect model without interactions (Supp. Fig. 1b). Next, we
simulated phenotypes with variable fractions of the genetic effects driven by GXE (p, Eg.
(2)), and assessed power of the StructLMM association test (Fig. 2b). For comparison, we
also considered a conventional LMM that ignores GXxE, as well as a two-degrees-of-freedom
(2-df) fixed effect model to jointly test for persistent associations and interactions using
single environments (similar to the 2-df test in Kraft et al.®>; Bonferroni adjusted for the overall
number of environments, Methods). To facilitate direct comparisons, all considered models

account for additive environmental effects using the same random effect term (Eq. (1)).
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The power of the association tests decreased for larger GXE effects, demonstrating that
strong GxE (large p) leads to reduced power for detecting associations (Fig. 2b). We also
assessed power of StructLMM and single-environment fixed effect tests (one degree of
freedom, e.g. Gauderman et al.'®) for detecting GxE interactions based on the same data,
where power increased for larger proportions of genetic variance due to GXE (Fig. 2¢).
Notably, both the StructLMM association and interaction tests were substantially better
powered than existing methods, indicating that the model is broadly applicable to account for
GXE. As a second parameter, we simulated phenotypes with increasing number of
environments contributing to GXE effects, but tested for GXE effects using all 60
environmental variables. The results of this analysis show that StructLMM increasingly
outperforms the corresponding single environment GXE model as the number of
environments with non-zero GXE increases (Fig. 2d, e), in particular when testing for

interaction effects (Fig. 2e).

a . StuctLMM p biogr on d o
7t , ; I
> * StructLMM-int 08} 0.8}
26+
3 5} g 0.6 E 0.6
o 4r € 0.4 €04
23
25l . A=1.00 02l 02l
=]
(o] 1 = A=1.01 0.0 0.0
N A L “ 700 03 05 07 08 09 10 T2 10 20 0 40 60
012 3 456 7 Fraction of genetic variance explained by GxE Number of active environments
Expected -log,pv C 10, e 10,
0.8 0.8+
I StructLMM 5 06] s 06)
[ single-env-LMM z z
T LMM 404t o 04l
. SFruclLMM-|nt - 0.2 0.2
[ Single-env-LMM-int
0.0 0.0
0.0 0.3 0.5 0.7 0.8 0.9 1.0 2 10 20 30 40 60
Fraction of genetic variance explained by GxE Number of active environments

Figure 2 | Assessment of statistical calibration and power using simulated data. (a)
QQ plots of negative log P values from the StructLMM association test (blue, StructLMM)
and interaction test (green, StructLMM-int) using synthetic data simulated from the null (no
genetic effect). (b) Comparison of power for detecting genetic associations for increasing
fractions of genetic variance explained by GxE (p). Included in this comparison were
StructLMM, a 2-df fixed effect tests that jointly tests for persistent associations and
interactions with a single environment (Single-env-LMM), as well as a conventional LMM to
test for persistent effects (LMM). (c) Assessment of alternative methods for detecting
simulated GXxE effects using the same data and settings as in b. Compared were the
StructLMM interaction test (StructLMM-int) and a single-environment interaction test (Single-
env-LMM-int). (d, e) Analogous power analysis for detecting associations and interactions
respectively, when simulating GXE using increasing numbers of environments with non-zero
GXE effects (out of 60 environments total, considered in all tests). Models were assessed in
terms of power (FWER<1%) for detecting simulated causal variants (Methods). Stars
denote default values of genetic parameters, which were retained when varying other
parameters (Supp. Table 1).
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We considered a number of additional settings, including varying the total number of
observed environments, the fraction of phenotypic variance explained by additive
environmental effects and additional forms of model mismatch, where phenotypes are
simulated with interaction effects from environments that are not included at the testing
stage. Across settings, StructLMM produced calibrated P values (Supp. Fig. 2) and had
consistent power advantages over alternative methods (Supp. Fig. 3). Finally, we note that
multi-environment GXE tests can in principle also be implemented based on fixed effect tests
with as many degrees of freedoms as environments. However, we observed that such tests
were not always calibrated and had lower power in some settings (Supp. Fig. 4),

demonstrating the advantages of the random effect approach taken in StructLMM.

Taken together, these results show increased power and robustness of StructLMM
compared to existing methods, in particular when large numbers of environments drive the

GXxE interaction effects.

Application to data from UK Biobank

We tested for associations between low-frequency and common variants (imputed variants,
MAF>1%, 7,515,856 variants in total) and BMI, considering 64 lifestyle covariates similar to
those used in Young et al.'® (12 diet-related factors, three factors linked to physical activity
and six lifestyle factors, modelled as gender-specific and age-adjusted, Methods, Supp.
Fig. 5, Supp. Fig. 6) to account for GXE. A set of 252,188 unrelated individuals of European
ancestry, for which all 64 environmental covariates, and the BMI phenotype were available

in the full release of UK Biobank?® were taken forward for all analyses.

Initially, we applied a conventional LMM and StructLMM to test for associations, using an
environmental covariance estimated using the 64 lifestyle factors to account for additive
environmental effects in both methods and heterogeneity of genetic effects due to GXE in
StructLMM. StructLMM and LMM identified slightly different sets of loci (323 and 327 loci
were found by StructLMM and LMM, respectively), with 13 and 17 loci identified exclusively
by StructLMM and LMM respectively (Fig. 3a, Supp. Table 2). As expected, the LMM had

better detection power for loci with little or no GXE (Supp. Fig. 12). However, the distribution

of p suggests substantial heterogeneity in genetic effect sizes for significant loci (Supp. Fig.

12), in particular for the 13 loci that were exclusively detected by StructLMM (Supp. Table 2,
Supp. Fig. 8-11) (0.23<p<0.94). Additionally, StructLMM yielded lower P values for


https://doi.org/10.1101/270611
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/270611; this version posted February 25, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

associations recovered by both models (Fig. 3a, e.g. P=1.57x108% vs P=1.84x10%° for the

well-documented FTO locus rs1421085), while retaining statistical calibration (Supp. Fig. 7).

Several of the additional loci identified by StructLMM have been previously associated to
BMI or BMI-related traits. These included a variant (rs11259931) in ADAMTSL3, which
codes for a glycoprotein?t. The same variant and variants in LD (r?>>0.53) have previously
been linked to BMI-related traits, including lean body mass??, waist circumference?3, hip
circumference adjusted for BMI?* and height®®. A second example is rs11880064 in PEPD,
which encodes for a protein involved in the final stage of degradation of endogenous and
dietary proteins. Several additional PEPD genetic variants have been associated with
adiponectin?®?’, fasting insulin adjusted for BMI?8, HDL cholesterol?®, triglycerides?®:2°, type 2
diabetes®!, waist circumference adjusted for body mass?* and waist to hip ratio®*. A third
association (rs473428) was identified upstream of ONECUT1 and downstream of WDR72.
ONECUTL1 stimulates the production of liver expressed genes and can inhibit glucocorticoid-
stimulated gene transcription®? and genetic association with BMI®3, cholesterol HDL®, lipids*
and triglycerides® were reported in early GWAS results but have not reached genome-wide
significance in more recent meta-analyses®*, which may be due to GxE effects varying
across the different aggregated cohorts or due to differences in trait transformation. Variants

in WDR72 are also associated to a large of number of relevant traits®°-3,
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Figure 3 | Applications to model GXE on body mass index (BMI) in UK Biobank. (a)
Scatter plot of genome-wide negative log P values from a standard LMM (x-axis) versus the
StructLMM association test (y-axis). Dashed lines indicate genome-wide significance at

P<5x10® and colour denotes the estimated extent of heterogeneity (fitted parameter p),

where yellow/red denotes variants with low/high GXE component. The inset displays a
zoom-in view of variants close to genome-wide significance. (b) Scatter plot of negative log
P values from GxE interaction tests at 97 GIANT variants®*, considering a single-
environment fixed effect GxE tests (x-axis, P values Bonferroni adjusted for the number of
tested environments) versus the StructLMM interaction test (y-axis). Dashed lines
correspond to alpha<0.05, Bonferroni adjusted for the number of tests. (c) Local Manhattan
plots of an interaction identified by StructLMM at MC4R. From top to bottom: LMM
association test, StructLMM interaction test, single-environment LMM interaction test for the
environment with the strongest GxE effect at the GIANT SNP (vigorous physical activity x
age). The red vertical line and diamond symbol indicates the GIANT SNP as in b.

Next, we applied StructLMM to test for GXE interactions. To reduce the number of tests, we
tested for interactions at 97 GIANT variants (corresponding genes as annotated by GIANT?*)
that have previously been linked to BMI using independent data®*. For comparison, we also
applied a one degree of freedom fixed effect GXE test using individual environments (Fig.
3b, Supp. Fig. 7, Supp. Fig. 14, Supp. Table 3). Notably, StructLMM identified four
significant GXE effects (a<0.05, Bonferroni adjusted), two of which were missed by the

single-environment fixed effect test. Among the loci identified was the FTO locus

(rs1241085,pp =0.14, Supp. Fig. 14a), which has previously been implicated with GXE for

multiple environments!®!214 MC4R (Fig. 3c) for which an interaction with physical activity in
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females aged 20-40yrs has been previously suggested (P-adj=0.025)*?, SEC16B (Supp.
Fig. 14b), for which secondary analyses provided some evidence for an interaction
(P=0.025) with physical activity in Europeans'! and in a separate study in Hispanics®® and
PARK2 (Supp. Fig. 14c), a gene that has been linked to time-dependent variation in BMI
suggested to be due to changes of environmental exposures®. StructLMM also enhanced
the significance of test for interactions identified by both models, with significance levels for
FTO and SEC16B dropping from P=4.23x10° to P-adj=6.76x10° and P=1.15x10" to P-
adj=4.48x10* respectively, when considering a single-environment test. Larger differences
in the number of discoveries were observed for more lenient threshold, e.g. 11 versus six
loci with GXE at 5% FDR (Benjamini-Hochberg adjusted, Supp. Table 3). Finally, we
compared to a multi-environment GXE test based on fixed effects, which although calibrated

on this large dataset, was underpowered (Sup. Fig. 15).

StructLMM can be used for the interpretation of GXE interactions, and in particular to predict
per-individual genetic effects based on environmental profiles (Fig. 4a). We assessed the
consistency of these estimates using hold-out validation, confirming that StructLMM can be
used to explain and predict inter-individual variations in genetic effects due to GXE (Supp.
Fig. 16). To identify environmental variables that drive the GXE signal, we used backward
elimination, calculating Bayes factors between the full model and models with increasing
numbers of environments removed. This analysis identified approximately 21 environmental
factors that contribute to the GxE effect at MC4R, including all three physical activity
measures for females, in agreement with!?, but also identified a number of additional
environments (some of which were more relevant) (Fig. 4c), underlining the benefits of

multivariate modelling of GXE using sets of environments.

For other loci, we consistently observed that multiple environments contribute to GXE but
there are large differences in the GXE architecture, with FTO driven by the largest number of
environments (approximately 35) whilst SEC16B and PARK2 were driven by a much smaller
number of environments (approximately 9 and 10 respectively) (Supp. Fig. 14d-f). We also
note that many of the environmental effects were gender specific for MC4R and PARK2 and
age dependent at SEC16B, with substantial overlap between the sets of interacting
environments for three of the four loci, PARK2 being the exception. Differences in the
environments that drive these GXxE effects were also apparent when correlating effect size
predictions across loci, which identified groups of variants with similar GXE profiles (Supp.
Fig. 17).
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Figure 4 | Analysis of environmental factors that drive GXE for BMI. (a) Violin plots
showing distributions of estimated genetic effects on log BMI for the four GIANT variants
with GxE (alpha<0.05, Fig. 3b). Estimated persistent genetic effects are shown by the red
bar and the green bars indicate top and bottom 5% quantiles of variation in effect sizes due
to GXE. (b) Cumulative evidence of environmental variables for GXE in order of relevance at
MCA4R, showing Bayes factors between the full model and models with increasing numbers
of environmental variables removed using backward elimination. For comparison, shown is
the total evidence of all environmental variables. ‘Alcohol frequency female’, is identified as
the most important environmental factor, followed by ‘Alcohol frequency x age’ and so on.

Identification of eQTL interactions with cellular state

As a second application, we considered a gene expression dataset and used StructLMM to
identify regulatory variants with genetic effects that depend on cellular contexts, such as cell
type®” or external stimuli*. The identification of such context-dependent genetic effects can
help elucidate the regulatory mechanisms of disease loci by identifying relevant cell types

and molecular pathways38-4°,

We reanalyzed the large whole-blood expression dataset comprising of over 2,000
genotyped samples profiled with RNA-seq*' (Methods) and investigated cell-context
interactions of cis expression quantitative trait loci (eQTL). Following*!, we considered gene
expression levels both as phenotypes but also as proxy variables to capture inter-sample
variation due to changes in blood cell composition and other factors. Specifically, we
considered a set of 443 highly variable genes as environmental factors in our analysis
(Methods).

Initially, we applied a standard LMM to map cis expression quantitative trait loci (eQTL, plus

or minus 250 kb from the centre of the gene, Methods). Next, we applied StructLMM to test
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for cell-context interactions at lead variants for 23,277 genes with an eQTL (FDR<5%,
Methods). This identified 3,483 eQTL with a cell-context interaction (FDR<5%, Supp. Table
4), where StructLMM vyielded calibrated P values despite the large number of environments
(Supp. Fig. 18). Although overall, interactions with cell-context tended to explain only a
small proportion of the cis genetic effect on gene expression variance (p < 0.2, for 68.0% of
eQTL with a cell-context interaction, Fig. 5a), our analysis identified 532 genes (15.3% of
eQTL with cell-context interaction) for which heterogeneity explained a larger proportion of
the cis genetic variance than persistent effects (p> 0.5, Fig. 5a). As alternative method to
detect cell-context interactions, we also considered multi-environment interaction tests
based on fixed effects (Methods), which were less robust and identified fewer interaction
eQTL than StructLMM (Supp. Fig. 18). Finally, we compared our interaction results to the
findings of the primary analysis of the data*!, where a step-wise procedure was employed to
identify interaction eQTL (Methods). For 17,952 genes that were analysed in both studies,
StructLMM identified 3,372 interaction eQTL compared to 1,841 interaction eQTL in the
primary analysis (overlap 1,071, FDR<5%, Supp. Fig. 18).
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Figure 5 | Analysis of gene-context interactions in a large blood gene expression
cohort. (a) Cumulative fraction (top) and density (bottom) of eQTL with significant
interactions as a function of the estimated degrees of heterogeneity (p). (b) Example of an
interaction eQTL for CTSW, which is in LD with a risk variant for Crohn's disease rs568617
(r>=1, Supp. Fig. 20). (b,c) expression level of CTSW for different eQTL genotype groups in
the 10% stratum of samples with the lowest (b) and highest (c) predicted genetic effect;
analogous figure for the 10% strata. (d) CTSW expression level versus estimated per-
individual genetic effects, stratified by the eQTL genotype. Analogous analyses for all 64
interaction eQTL with evidence for colocalisation with disease loci are provided in Supp.
Dataset 2.

Next, we overlapped eQTL with cell-context interactions and risk variants from the NHGRI-
EBI GWAS catalog V1.0.1%2, which identified 64 instances of putative colocalisation (r>>0.8
of lead eQTL and GWAS variants, Methods), including GWAS variants for autoimmune
diseases, infectious diseases and blood cell traits (Supp. Table 5, Supp. Dataset 1).

Notably, 46 of these eQTL with interactions were not reported in the primary analysis*!. One
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of these is an interaction eQTL for CTSW expression (Fig. 5¢, P=2.2x10%%, p=0.12), which is
in LD with a risk variant for Crohn's disease rs568617 (r>=1.00, Supp. Fig. 19). To
investigate the molecular pathways that drive this interaction eQTL, we stratified the
population into groups with increased/decreased genetic effects predicted using StructLMM,
and tested for enriched pathways among genes that were differentially expressed between
these groups (Methods). This identified positive T cell selection (GO:0046632) and positive
regulation of interleukin-17 secretion (GO:0032740) as cell-context environments that
underlie the interaction eQTL (See Supp. Table 5 for genome-wide enrichment results).
Consistent with this, IL-17 producing CD4" T cells are known to play a key role in the

pathogenesis of inflammatory bowel disease, including Crohn’s disease®.

Taken together, the analysis of context-specific QTL using molecular traits demonstrates

how StructLMM can be used to identify genetic effects on molecular traits that depend on
the cellular context, where the model again outperformed existing methods. These results
demonstrate the broad applicability of the model, including settings with large numbers of

environmental factors.

Discussion

We proposed a method based on LMMs to flexibly model GXE using sets of environments,
thereby enabling the analysis of genotype-environment interactions with multiple
environments. Conceptually, our approach is related to set tests for groups of variants, and

offers power advantages when multiple environmental factors contribute to GXE (Fig. 2).

We applied StructLMM to data from UK Biobank, where the model detected association
signals that were missed by an LMM, in particular when a substantial fraction of the genetic
variance was explained by GxE. This demonstrates that accounting for heterogeneity in
effect sizes (GXE) is not only of interest for mechanistic characterization of known genetic
effects across environments, but can in some instances also increase the power to detect

new genetic effects, which is similar to previous uses of 2-df fixed effect tests®.

When assessing GxE at 97 GIANT variants associated with BMI, we confirm established
GXE effects for FTO, and we identified, for the first time, three additional GXE signals at
stringent thresholds, some of which confirm prior evidence!!1214153538 EDR-based
significance, as frequently employed for GXE analyses®!?, would increase the number of
discoveries further, yielding up to 11 GIANT variants with evidence for GXE on BMI (Supp.

Table 2). In addition to offering power advantages, StructLMM yields per-individual
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predictions of variation in genetic effects due to GXE. We have shown that this allows for
important downstream analyses, including the identification of individuals with increased or
decreased genetic effects at different loci based on their own environmental exposure, and

the identification of environmental factors that drive GxE.

As a second use case, we applied StructLMM to test for cell-context interactions in a large
blood eQTL study. The same modelling principles enabled the identification of context-
specific eQTL. Several of these interaction eQTL colocalised with GWAS variants and the
marker genes of the cellular environment that underlie these GxE effects could be
connected to plausible biological processes. This analysis also confirms that StructLMM can

be robustly applied to analyse interaction effects driven by large numbers of environments.

Although we found that StructLMM is a robust alternative to conventional linear interaction
tests, the model is not free of limitations. First, while the computational complexity of the
model scales linearly with the number of individuals, thereby enabling genome-wide
analyses of large cohorts, its application remains computationally more demanding than
conventional LMMs. A second area for future developments is the selection of variants for
GXE tests. To mitigate the cost of multiple testing, we have considered variants that have
been associated with the phenotype in other studies. However, the fact that our association
tests identifies novel loci if applied genome-wide suggests that this filter is not optimal.
Finally, while StructLMM can in principle be used in conjunction with any environmental
covariance, we have here limited the application to linear covariances. The model could be
extended to account for non-linear interactions, for example using polynomial covariance
functions. Such developments are a future area of work, in particular as increasingly large

cohorts allow for detecting such higher order interaction effects.

Availability of code and data. StructLMM is available from https://github.com/limix/struct-

Imm and is supported within the LIMIX framework at https:/github.com/limix/limix. For

tutorials and illustrations on how to use the model, see http://struct-Imm.readthedocs.io. The

BIOS RNA data can be obtained from the European Genome-phenome Archive (EGA;
accession/EGAS00001001077). Genotype data are available from the respective biobanks.
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