

1

2

3

4 **Parentage assignment with genotyping-by-sequencing data**

5 Andrew Whalen*, Gregor Gorjanc, and John M Hickey

6

7 The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh,

8 Midlothian, Scotland, UK

9 *Corresponding author

10

11 Email addresses:

12 AW: awhalen@roslin.ed.ac.uk

13 GG: gregor.gorjanc@roslin.ed.ac.uk

14 JMH: john.hickey@roslin.ed.ac.uk

15

16 **Abstract**

17 In this paper we evaluate using genotype-by-sequencing (GBS) data to perform parentage
18 assignment in lieu of traditional array data. The use of GBS data raises two issues: First, for low-
19 coverage GBS data, it may not be possible to call the genotype at many loci, a critical first step for
20 detecting opposing homozygous markers. Second, the amount of sequencing coverage may vary
21 across individuals, making it challenging to directly compare the likelihood scores between
22 putative parents. To address these issues we extend the probabilistic framework of Huisman (2017)
23 and evaluate putative parents by comparing their (potentially noisy) genotypes to a series of
24 proposal distributions. These distributions describe the expected genotype probabilities for the
25 relatives of an individual. We assign putative parents as a parent if they are classified as a parent
26 (as opposed to e.g., an unrelated individual), and if the assignment score passes a threshold. We
27 evaluated this method on simulated data and found that (1) high-coverage GBS data performs
28 similarly to array data and requires only a small number of markers to correctly assign parents and
29 (2) low-coverage GBS data (as low as 0.1x) can also be used, provided that it is obtained across a
30 large number of markers. When analysing the low-coverage GBS data, we also found a high
31 number of false positives if the true parent is not contained within the list of candidate parents, but
32 that this false positive rate can be greatly reduced by hand tuning the assignment threshold. We
33 provide this parentage assignment method as a standalone program called AlphaAssign.

34

35 **Introduction**

36 In this paper we evaluate the performance of using genotype-by-sequence (GBS) data to
37 perform parentage assignment in commercial plant and animal breeding settings. Having accurate
38 parentage information is important for many routine breeding applications, such as reducing the
39 cost of genotyping through pedigree-based imputation (Huang et al., 2012), reducing the bias of
40 genomic estimates of breeding values (Solberg et al., 2009), and combining genotyped and non-
41 genotyped individuals into a joint analysis (Legarra et al., 2009). When the parents of an individual
42 are not recorded, parentage assignment algorithms can use genetic data to reconstruct parent-child
43 relationships. Much of the previous work on parentage assignment has focused on the case where
44 the genetic data was generated from microsatellite markers or more recently from SNP arrays
45 (Rohrer et al., 2007; Fisher et al., 2009; Riester et al., 2009; Tokarska et al., 2009). In the case of
46 SNP arrays between 50 and 700 markers are required to accurately assign parents and rule out
47 false assignments (Rohrer et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al.,
48 2017). GBS is a flexible alternative to arrays, particularly for species that may not have a well-
49 established reference genome, or where a suitable array has not been developed. However, the
50 performance of using GBS data for parentage assignment – to our knowledge – is not well
51 understood.

52 The primary challenge for using GBS data is the potentially high uncertainty in the true
53 genotype of an individual based on the observed genetic data. In a GBS platform, a restriction
54 enzyme is used to cut DNA into fragments that are then sequenced (Baird et al., 2008; Davey et
55 al., 2011; Elshire et al., 2011). This means that unlike arrays, which produce called genotypes,
56 GBS produces read counts for the reference and alternative alleles. For high-coverage GBS data
57 the underlying genotype can easily be called from the read counts. For low-coverage GBS data

58 calling genotypes is more difficult, particularly on loci which only receive a few reads.
59 Distinguishing between heterozygous and homozygous loci is particularly challenging. If GBS
60 produces two reads for the reference allele and zero reads for the alternative allele, this could
61 indicate that the individual is homozygous for the reference allele, or the individual could be
62 heterozygous and their reference allele was sequenced twice. The difficulty in calling homozygous
63 loci makes parentage assignment particularly difficult because many parentage assignment
64 algorithms, either explicitly or implicitly, rely on finding opposing homozygous loci to filter out
65 putative parents. In addition, the lack of opposing homozygous loci may increase false positive
66 rate of parentage assignment if the true parent is not in the list of putative parents, since full sibs
67 or half sibs of the true parent may appear to be more related to the individual than expected by
68 chance (Meagher and Thompson, 1986).

69 Likelihood based methods (e.g., Kalinowski et al., 2007; Riester et al., 2009) are one
70 solution to handle genetic data with high uncertainty. In a likelihood based method, parentage
71 assignment is based on the likelihood of an individual's genotype conditioned on the putative
72 parent's genotype. If the genotypes of either the individual or the putative parent cannot be
73 assessed accurately, this likelihood score can be calculated by marginalizing over possible
74 genotypes. Likelihood methods work well in cases where all individuals have the same amount of
75 genetic data (e.g., same number of markers or sequencing coverage), but may break down when
76 individuals are genotyped at a different number of markers or at different coverage levels. An
77 example of this could be two putative parents with array data. Suppose the first putative parent
78 was genotyped at 50 markers that overlap with the child, and the second was genotyped at 1,000
79 markers that overlap with the child. If both parents were heterozygous at all loci and we assume
80 that the loci are not linked, then the likelihood value for the first parent would be $.5^{50}$ (each allele

81 having a 50% chance of being transmitted), whereas the likelihood value for the second parent
82 would be $.5^{1000}$. These likelihood values are hard to compare against each other because they are
83 calculated on different sets of markers. This problem can be solved by selecting a subset of markers
84 that are genotyped in all putative parents (which may drastically reduce the amount of information
85 available), or using the population allele frequency for the genotype at missing markers (which
86 disadvantages individuals with missing values).

87 A third option, that may be more appealing for GBS data, is to instead change the parentage
88 assignment problem into a relationship classification problem. With this framing, the goal of the
89 algorithm is to classify the relationship between each putative parent and the focal individual (e.g.,
90 parent, grandparent, sibling, child). A putative parent is then assigned as the parent, if they are
91 classified as a parent, pass an assignment threshold, and are the highest scoring parent out of the
92 list of putative parents (Huisman, 2017; Riester et al., 2009). One of the main advantages of this
93 approach is that the classification task (which is able to filter out most putative parents) only relies
94 on the genetic information available for an individual and a putative parent and does not require
95 direct comparison to other putative parents. This property is particularly appealing for GBS data
96 where the amount of information on each individual may differ depending on the genotyping
97 resources spent and the allele frequency of the loci with sequence reads.

98 In this paper we extend the parentage assignment method of Huisman (2017) to explicitly
99 handle GBS data. We then evaluated its performance in a simulated animal breeding population.
100 We found that, similar to array data, it is possible to obtain accurate parent assignment with a fairly
101 small number of sequence reads (e.g., 0.1x coverage), but that ruling out false positives is harder,
102 and that a sizeable number of false positives could occur for medium coverage (0.5-2x) GBS data
103 on a large number of linked markers.

104 **Materials and Methods**

105 Here we describe our approach for parentage assignment with GBS data. This work builds
106 closely on the probabilistic framework of Huisman (2017), but we present the full model for
107 completeness. To assign parents we first construct a series of proposal distributions for each
108 putative parent based on the genotypes of a focal individual and its known relatives. These
109 proposal distributions describe the expected genotypes for a relative as a function of their
110 relationship with the focal individual (e.g., parent, full sib of the parent, unrelated). We then
111 classify each putative parent into one of these relationships, and if it is classified as a parent, and
112 the assignment score passes a threshold, we assign it as the parent. If there are multiple possible
113 parents, the highest scoring individual is assigned. Although this algorithm was originally designed
114 in the context of animals, it also works for diploid and allopolyploid plants.

115 To simplify the language, we assume that we are attempting to assign the father of a focal
116 individual. For a given focal individual i and its mother m we calculate the probability that the
117 putative parent f is the true father by:

$$118 \quad p(h = \text{father} | g_f, g_i, g_m) = \frac{p(g_f | g_i, g_m, h = \text{father})p(h = \text{father})}{\sum_{h'} p(g_f | g_i, g_m, h')p(h')}, \quad (1)$$

119 where g_x is the genotype of individual x , h is the relationship between the focal individual i and
120 the putative parent f , and the denominator is enumerated over the set of possible relationships h' .
121 In the case where the genotypes of the mother are unknown we assume that her genotype
122 probabilities are derived from Hardy-Weinberg Equilibrium.

123 In this paper we consider four possible relationships: that the putative parent is the true
124 father, a full sib of the true father, a half sib of the true father, or unrelated. The conditional
125 probability distributions for alternative relationships can be constructed via the generative
126 framework we provide below. To simplify calculations, we assume that $p(h')$ is uniform over all

127 possible relationships. In addition, we assume all markers segregate independently allowing
128 $p(g_f|g_i, g_m, h)$ to be calculated as the product of the probability of the putative parent's genotype
129 at each marker k :

130
$$p(g_f|g_i, g_m, h) = \prod_k p(g_{f,k}|g_{i,k}, g_{m,k}, h). \quad (2)$$

131 In the case of array data, and particularly GBS data, our assessment of the true genotypes,
132 g_f , g_i , and g_m may be noisy. To account for this noise we marginalize across possible genotypes
133 based on observed genetic data $\mathbf{d} = (d_i, d_f, d_m)$:

134
$$p(d_{f,k}|d_{i,k}, d_{m,k}, h) = \sum_{g_{f,k}} \sum_{g_{m,k}} \sum_{g_{i,k}} p(g_{f,k}|g_{i,k}, g_{m,k}, h) p(g_{f,k}|d_{f,k}) p(g_{m,k}|d_{m,k}) p(g_{i,k}|d_{i,k}). \quad (3)$$

135 This model requires the calculation of two terms: (1) the genotype probabilities conditional
136 on the observed data $p(g_{x,k}|d_{x,k})$ and (2) the proposal distribution for an individual's genotype
137 based on their relationship with the focal individual $p(g_{f,k}|g_{i,k}, g_{m,k}, h)$. We outline how to
138 calculate both terms below.

139

140 **Evaluating genotype probabilities conditional on the observed data**

141 In this model we assume that each marker is biallelic and has four possible phased
142 genotypes, aa, aA, Aa, AA. With observed array data for marker k , $d_{x,k}$, the conditional
143 probabilities for each genotype $g_{x,k}$ are:

144
$$p(g_{x,k}|d_{x,k}) = \begin{cases} 1 - \frac{3e}{4} & \text{if } g_{x,k} = aa \text{ and } d_{x,k} = 0 \\ 1 - \frac{3e}{4} & \text{if } g_{x,k} = AA \text{ and } d_{x,k} = 2 \\ .5 - \frac{e}{4} & \text{if } g_{x,k} = aA \text{ or } Aa \text{ and } d_{x,k} = 1 \\ \frac{e}{4} & \text{otherwise,} \end{cases} \quad (4)$$

145 where e is the assumed genotyping error rate. This evaluation of individual genotype probabilities
146 differs from Huisman (2017), where it is assumed that errors can only occur between homozygous
147 and heterozygous states (and not between opposing homozygote states) and distinction is not made
148 between two heterozygous genotypes. The genotype probabilities above correspond more closely
149 to those commonly used in peeling (e.g., Whalen et al., 2017) and allow inferences to be made
150 even when the genotyping error rate is high.

151 With observed GBS data for marker k , $d_{x,k}$, the conditional genotype probabilities are:

$$152 \quad p(g_{x,k}|d_{x,k}) \propto \begin{cases} (1 - e)^{n_{ref}} e^{n_{alt}} & \text{if } g_{x,k} = aa \\ \frac{.5^{n_{ref}+n_{alt}}}{2} & \text{if } g_{x,k} = aA \text{ or } Aa \\ (1 - e)^{n_{alt}} e^{n_{ref}} & \text{if } g_{x,k} = AA, \end{cases} \quad (5)$$

153 where e is the sequencing error rate, n_{ref} is the number of sequence reads supporting the reference
154 allele and n_{alt} is the number of sequence reads supporting the alternative allele. The genotype
155 probabilities in Equation 5 do not sum to one, and so the probabilities need to be normalized for
156 each allele. Equation 4 is consistent with previous work on parentage assignment with array data
157 (Kalinowski et al., 2007; Huisman, 2017), while Equation 5 is consistent with previous work on
158 imputation with GBS-like data (Li et al., 2010; VanRaden et al., 2015; Whalen et al., 2017).

159

160 Generating proposal distributions via single locus peeling

161 We generate proposal distributions $p(g_{f,k}|g_{i,k}, g_{m,k}, h)$ for the genotype probabilities of
162 each relationship via single locus peeling (Elston and Stewart, 1971). Single locus peeling provides
163 a rich generative model for estimating the genotype probabilities of un-genotyped relatives based
164 on the genotypes of an individual and a known parent. Although our presentation differs from
165 Huisman (2017) it results in the same distributions. Under this framework, we calculate the
166 genotype probabilities for three relatives: the father, a full-sib of the father, and a half-sib of the

167 father. These probabilities are calculated by first estimating the genotype probabilities for the
168 father, peeling up to the paternal grandparents, and finally peeling down to the full sib and the half
169 sib of the father (Figure 1).

170 Given genetic data on the focal individual d_i and a mother d_m , we can construct a proposal
171 distribution for the father via:

172
$$p(g_f|d_m, d_i) \propto \sum_{g_m} \sum_{g_i} T(g_i|g_f, g_m) p(g_i|d_i) p(g_f|d_f), \quad (6)$$

173 where $p(g_i|d_i)$ is given by Equation 4 or 5 above, and $T(g_i|g_f, g_m)$ is the probability that the
174 individual inherited genotype g_i conditional on their parents having genotypes g_f and g_m , e.g.,
175 $T(g_i = aA|g_f = aA, g_m = AA) = 0.5$ (Marshall et al., 2003).

176 Using Equation 6, we can peel up to construct a joint distribution for the genotypes of the
177 paternal grandparents (g_f, g_m):

178
$$p(g_{gf}, g_{gm}|d_i, d_f) \propto \sum_{g_f} T(g_f|g_{gf}, g_{gm}) p(g_f|d_i, d_f), \quad (7)$$

179 where $p(g_f|d_i, d_f)$ is given in Equation 6, above. We can then peel down to generate the proposal
180 distributions for a full sib and a half sib of the father. The proposal distributions differs in whether
181 the full joint distribution of both grandparents is used (full sib, fs), or if only one of the grandparents
182 is used and the other parent assumed to have genotypes based on Hardy Weinberg Equilibrium
183 (half sib, hs):

184
$$p(g_{fs}|g_{gf}, g_{gm}, d_i, d_f) = \sum_{g_f} T(g_{fs}|g_{gf}, g_{gm}) p(g_{gf}, g_{gm}|d_i, d_f), \quad (8)$$

185
$$p(g_{hs}|g_{gf}, g_{gm}, d_i, d_f) = \sum_{g_{null}} \sum_{g_{gd}} T(g_{hs}|g_{gf}, g_{null}) p(g_{gf}, g_{gm}|d_i, d_f) p(g_{null}), \quad (9)$$

186 where $p(g_{null})$ represents the probability of having a genotype if that genotype was drawn at
187 random from the population.

188 The proposal distribution for an unrelated individual simply assumes that their genotypes
189 are drawn at random from the population according to Hardy Weinberg Equilibrium:

$$p(g_{unrelated}) = p(g_{null}). \quad (9)$$

191 To assign a parent we calculated an assignment score for each putative parent:

$$score = -\log(1 - p(h = father | d_f, d_i, d_m)). \quad (10)$$

193 The score will be close to 0 if the individual is unlikely to be the father, and tends towards positive
194 infinity with increasing evidence that the individual is the father. A putative parent was assigned
195 as the true parent if its assignment score was the highest of the putative parents considered, and
196 was higher than a pre-defined threshold.

197 Although the described process may seem computationally intensive, there are two features
198 which simplify calculations. First, because the proposal distributions depend only on the focal
199 individual and its known parent, the proposal distributions only need to be calculated once and can
200 be re-used for all putative parents of the focal individual. Second, peeling can be performed
201 efficiently as a series of tensor operations on the genotypes of focal individual and its known
202 parent, filtered through the inheritance matrix T , which allows us to take advantage of linear
203 algebra libraries.

204 Simulated data

205 The simulated data modelled a livestock population. We initially sampled a set of genomes
206 with 20 chromosomes using the Markovian coalescent simulator MaCS (Chen et al., 2009). For
207 this we assumed that each chromosome is 10^8 bp long, a per site mutation rate is 2.5×10^{-8} , a per
208 site recombination rate is 1.0×10^{-8} , and that effective population size changed over time. Based
209 on estimates for the Holstein cattle population (Villa-Angulo et al., 2009), we set the effective
210 population size to 100 in the final generation of the coalescent simulation and to 1,256, 4,350, and

211 43,500 at respectively 1000, 10,000, and 100,000 generations ago, with linear changes in between.
212 We then used the sampled chromosomes to initiate a population of 1,000 animals with equal sex
213 proportions. We bred this population for 5 generations. In each generation, we selected 10 males
214 and mated them at random to 100 females. Each potential focal individual therefore had 1 true
215 father, 4 male full sibs of the father, and 45 male half sibs of the father. All individuals were
216 genotyped at 50,000 markers. Subsets of these markers were used in different simulations as
217 described below. Array data were simulated without any errors, due to the low error rate for
218 modern SNP genotyping arrays (<1%; e.g., Kalinowski et al., 2007). In addition to array data, we
219 generated low-coverage GBS data for the last two generations of individuals. We assumed that the
220 GBS method targeted the same loci as the genotyping array and was performed at coverage levels
221 between 0.1x to 10x. For each coverage level, the number of sequence reads at a given marker was
222 generated via a Poisson distribution with mean equal to the coverage level. Each read randomly
223 sampled one of the two alleles at a marker. The read sampling process also included a small
224 sequencing error rate of 0.1%. We generated the simulated data using the R package AlphaSimR
225 (Gaynor et al.), which is available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR.

226 Scenarios

227 We evaluated the accuracy of parent assignment for the last generation of 1,000 individuals
228 across 4 different scenarios. In the first scenario (a) we analysed the accuracy of performing parent
229 assignment when:

230 • the mother was known and genotyped,
231 • all of the male full- and half-sibs along with 50 other individuals (total of 100 potential
232 parents) were putative parents,

233 • and either both the parents and progeny had array data, the parents had array data and the
234 progeny had GBS data, or both the parents and the progeny had GBS data.

235 These sub-scenarios span a spectrum of possible practical settings. The sub-scenario where the
236 parents had array data but the progeny had GBS data may represent either the case where the
237 progeny are initially genotyped with a low-cost GBS platform and any selected parents are re-
238 genotyped with an array, or it may represent the case where pedigree information was used to
239 impute and accurately call parental genotypes. In the remaining scenarios we focused on the case
240 where both parents and progeny had GBS data and analysed (b) the impact of knowing and
241 genotyping the known alternative parent, (c) the impact of restricting the pool of putative parents
242 to either 100 unrelated individuals, 45 half sibs, or the 4 full sibs, and (d) examined how the false
243 positive rate changed depending on the threshold used for assignment (see below).

244 In each scenario we performed three evaluations. To evaluate the overall accuracy, we
245 assumed the true parent was included in the list of putative parents, and evaluated accuracy by the
246 number of times the top parent was the true parent. To evaluate the true positive rate we included
247 the true parent in the list of putative parents, but assigned the top scoring parent only if it passed
248 an assignment threshold. To evaluate the false positive rate, we excluded the true parent from the
249 list of putative parents and counted the number of times the top scoring parent passed the
250 assignment threshold. The first evaluation represented a case where we know the true parent is
251 included in the list of putative parents (e.g., groups of females cohabitating with multiple males or
252 artificial insemination using polyspermic matings). The second and third evaluations were
253 designed to assess performance when we are not sure whether or not the true parent is included in
254 the list of potential parents (e.g., natural service sires or wild populations).

255 **Software**

256 Parentage assignment was performed using AlphaAssign
257 (<http://www.alphagenes.roslin.ed.ac.uk/alphasuite-softwares/alphaassign/>) which, implements the
258 described algorithm. AlphaAssign has three run-time parameters: (i) an assumed genotyping error
259 rate for array data, (ii) an assumed sequencing error rate for GBS data, and (iii) an assignment
260 threshold to determine the required score to assign a putative parent as a parent. Throughout this
261 paper we assumed a 1% genotyping error rate, a 0.1% sequencing error rate, an assignment
262 threshold of 10 (determined via pilot simulations) although we varied the assignment threshold in
263 the last set of simulations.

264

265 **Results**

266 **Parent assignment with array and GBS data**

267 First we examined the number of markers required for accurate parentage assignment when both
268 parents and progeny were genotyped with array data. If the true parent was included in the list of
269 putative parents (and an assignment threshold was used), 100 markers were required to obtain
270 100% parentage assignment accuracy. If the true parent was excluded from the list of putative
271 parents, the false positive rate was less than 0.1% if there were between 50 to 350 markers, and
272 there were no false positives when there were more than 500 markers.

273 Unlike array data where the number of markers can be more easily varied, for GBS data
274 the number of markers is usually determined by the choice of restriction enzymes while the amount
275 of coverage obtained on each individual can be varied. Because of this we focused on the required
276 coverage level to accurately assign parents based on a fixed number of markers. Figure 2 shows
277 the accuracy and false positive rates based on the amount of coverage allocated to each progeny,
278 stratified by the number of markers that this coverage is spread over. Because performance with

279 array data was nearly identical to that with 10x GBS data we did not include array data in Figure
280 2.

281 We evaluated the performance of parentage assignment when the parents were genotyped
282 with array data and the progeny were genotyped with GBS data. If the true parent was included in
283 the list of putative parents, a coverage of 0.4x was required to obtain 100% accuracy when there
284 were 50,000 GBS markers. The required coverage increased to 1x for 5,000 markers, and to 2x for
285 1,000 markers. If the true parent was excluded from the list of putative parents, we found that the
286 false positive rate was less than 0.2% in all cases.

287 The accuracy of parentage assignment decreased when both the parents and progeny had
288 GBS data. If the true parent was included in the list of putative parents, a coverage of 0.4x was
289 required to obtain 100% accuracy when there were 50,000 GBS markers. The required coverage
290 increased to 2x for 5,000 markers, and to 5x for 1,000 markers. If the true parent was excluded
291 from the list of putative parents, we found that the false positive rate was as high as a 60%. These
292 false positives were clustered on low to medium coverage GBS data (0.1 - 3x) with a large number
293 of markers (>1000).

294 **False positive assignments by relationship**

295 Figure 3 stratifies the false positive rate based on whether unrelated individuals, half-sibs
296 of the true parent, or full-sibs of the true parent were included in the list of putative parents. In line
297 with expectations we found a high false positive rate (as high as 60% in some conditions) when
298 only the full-sibs of the true parent were included as putative parents. This decreased to at most
299 35% when only the half-sibs of the true parent were included and to under 20% when only
300 unrelated individuals were included. As seen previously, most of the false positives were occurred
301 when there were a large number of markers and low to medium coverage GBS data.

302 **Parent assignment when neither parent is known**

303 Figure 4 compares the performance of parentage assignment when one of the parents is
304 known and genotyped compared to when neither parent is known or genotyped. We found that
305 having one parent known and genotyped increased the accuracy of parentage assignment and
306 decreased the number of false positives in all cases. The benefit was largest when both the progeny
307 and parents had high-coverage GBS data.

308 **Controlling false assignments by modifying the threshold**

309 Figure 5 shows the true positive rates and false positive rates for when sequencing
310 resources were spread over 50,000 markers, as a function of the threshold used to assign a putative
311 parent as the parent. We found that, compared to the results in Figures 2 and 3, it was possible to
312 substantially reduce the false positive rate by increasing the assignment threshold, but that the ideal
313 threshold depends on the total coverage. The relationship between the false positive and true
314 positive rate is given as a receiver operating characteristic in Figure 5(c).

315 **Timing**

316 The algorithm took 3 minutes and 54 seconds to assign parents for 1000 progeny, each
317 with 100 putative parents. The progeny and their parents were genotyped using GBS data across
318 5,000 markers. The algorithm scales linearly with the number of markers and the number of
319 putative parents per individual.

320

321 **Discussion**

322 In this paper we extended the parentage assignment method of Huisman (2017) to account
323 for low-coverage sequence data and analysed the performance of parentage assignment when
324 genotyping is performed via sequencing instead of the traditional genome-wide arrays. We found

325 that high-coverage GBS data (i.e., 10x or higher) has the same performance as array data. We also
326 found that low-coverage GBS data (as low as 0.1x) can be used to perform parentage assignment
327 as long as it is obtained on a sufficiently large number of markers, but that there may be a large
328 number of false assignments if the true parent is not included in the list of putative parents. The
329 number of false positives could be reduced by modifying the threshold used to call assignments.
330 In light of these results, we will discuss (1) the accuracy of parentage assignment, (2) potential
331 extensions to control the false positive rate, and (3) the use of peeling to construct the proposal
332 distributions in more detail.

333 **Parentage assignment accuracy with GBS data**

334 A goal of this work was to quantify the amount of GBS data required to accurately perform
335 parentage assignment. We found that, similar to array data, the total amount of data required is
336 relatively low. For example, when using high-coverage GBS data between 100 to 200 markers are
337 required to accurately assign parents. This is in line with previous estimates for array data (Rohrer
338 et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al., 2017), where between 50-
339 700 markers were required. The differences in the exact number of markers required (100-200
340 compared to 50-700) is likely due to the structure of the underlying genetic data (i.e., number of
341 chromosomes, minor allele frequency of the markers), and the assumption in this study that one of
342 the parents was already known and genotyped.

343 In addition to being able to use high-coverage GBS data to perform parentage assignment,
344 we found that low-coverage GBS data could also be used, provided it was spread across a larger
345 number of markers. The increase in required number of markers is due to the lower information
346 content at an individual loci for low-coverage GBS data, requiring the data to be pooled across a
347 larger number of markers to achieve the same level of accuracy.

348 The results of this study suggest that GBS data – either high-coverage data on a small
349 number of markers, or low-coverage data on a large number of markers – is an effective alternative
350 to array data for performing parentage assignment. This result is particularly important given the
351 emerging importance of GBS as an alternative for SNP array data, both in species where SNP
352 arrays are available (e.g., De Donato et al., 2013; Brouard et al., 2017) and in those where SNP
353 arrays have not been constructed (e.g., Robledo et al., 2017; Palaiokostas et al., 2018).

354 **Controlling the false positive rate**

355 During our analysis of low-coverage data, we found an inflation of false positives when
356 both the parents and the progeny had GBS data. These false positives were likely due to the fact
357 that with between 1-3x coverage GBS data we were able to determine that two animals are
358 genetically similar, but were not able to obtain a sufficient number of loci with precisely inferred
359 genotyped to find opposing homozygous loci.

360 Consistent with previous work, we found that using a hand-tuned assignment threshold
361 could reduce the number of false positives (Huisman, 2017; Riester et al., 2009). An alternative
362 approach would be to adaptively determine the assignment threshold via introspection of the
363 underlying data (Grashei et al., 2018). In the majority of the simulations, a fixed threshold of 10
364 was used based on pilot simulations with array data. As we demonstrate in Figure 5, substantially
365 raising the threshold for assignment could reduce the false-positive rate even for 50,000 markers
366 and low-coverage sequence data, although at the cost of a decreased true-positive rate. The optimal
367 threshold value for assignment depends on the overall sequencing coverage, making it challenging
368 to use a fixed threshold in cases where individuals are sequenced at different coverages. We believe
369 that automating this process is an area for future research, and may depend on the exact breeding

370 program structure, the exact GBS system deployed (e.g., Baird et al., 2008; Davey et al., 2011;
371 Elshire et al., 2011), and reason that parentage information is required.

372 Furthermore, we believe that the issue of false parent-assignments may be less of an issue
373 in the context of commercial agricultural populations compared to wild populations for two
374 reasons. First, most of the false assignments that we observed were cases where the true parent
375 was not included in the pedigree and a full- or half-sib of the true parent was included and wrongly
376 assigned as a parent. In the context of many animal breeding programs, the routine use of pairs of
377 sibs as parents may not commonly arise because of explicit efforts to manage diversity and
378 inbreeding (e.g., Woolliams et al., 2015). Second, due to the genetic similarity between the full-
379 sib of the true parent and the true parent, using the full-sib of the true parent as a “proxy” parent
380 for the progeny may have limited impact on downstream applications such as estimation of
381 breeding values. Further research is required to quantify the impact of such false positives in
382 downstream applications.

383

384 **Constructing proposal distributions via peeling**

385 In this paper, we closely followed the approach of Huisman (2017) for performing
386 parentage assignment, with two differences. First, we modified the genotype probability function
387 to handle sequence data. Second, we recast the construction of proposal distributions for relatives
388 as a series of peeling operations on artificial pedigrees. We believe the later development is of
389 more interest. Peeling provides a rich and computationally efficient framework for estimating the
390 genotypes of a relative based on the genotypes of individuals in an existing pedigree. In this paper
391 we focused on a small number of possible relationships, but this framework can be easily extended
392 to consider a wider and potentially complex class of relatives (e.g., siblings of the focal individual,

393 cousins of the parent, or grandparents), or could be altered to assess alternative relationships (e.g.,
394 performing grandparent assignment instead of parentage assignment). Use of these additional
395 relationship classes may depend on the purpose of a particular application.

396

397 **Conclusion**

398 In conclusion, we extended the algorithm of Huisman (2017) to perform parentage
399 assignment with sequence data, and evaluated the performance of using low-coverage GBS data
400 for parentage assignment. We found that low-coverage GBS data could be used for accurate
401 parentage assignment, but that there may be concerns with false positives if the true parent is not
402 included on the list of putative parents. Such false positives might be mitigated on a case-by-case
403 basis by tuning the assignment criteria used. These results suggest that GBS data can be used as
404 an alternative to array data for parentage assignment.

405

406 **Conflicts of interest**

407 The authors declare they have no competing interests.

408

409 **Acknowledgements**

410 The authors acknowledge the financial support from the BBSRC ISPG to The Roslin
411 Institute BB/J004235/1, from Genus PLC and from Grant Nos. BB/M009254/1, BB/L020726/1,
412 BB/N004736/1, BB/N004728/1, BB/L020467/1, BB/N006178/1 and Medical Research Council
413 (MRC) Grant No. MR/M000370/1. This work has made use of the resources provided by the
414 Edinburgh Compute and Data Facility (ECDF) (<http://www.ecdf.ed.ac.uk>).

415 **References**

416 Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker,
417 E.U., Cresko, W.A., and Johnson, E.A. (2008). Rapid SNP discovery and genetic mapping using
418 sequenced RAD markers. *PLoS ONE* 3, e3376.

419 Brouard, J.-S., Boyle, B., Ibeagha-Awemu, E.M., and Bissonnette, N. (2017). Low-depth
420 genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of
421 high quality genotypes and the accuracy of imputation. *BMC Genet.* 18, 32.

422 Chen, G.K., Marjoram, P., and Wall, J.D. (2009). Fast and flexible simulation of DNA
423 sequence data. *Genome Res.* 19, 136–142.

424 Davey, J.W., Hohenlohe, P.A., Etter, P.D., Boone, J.Q., Catchen, J.M., and Blaxter, M.L.
425 (2011). Genome-wide genetic marker discovery and genotyping using next-generation
426 sequencing. *Nat. Rev. Genet.* 12, 499–510.

427 De Donato, M., Peters, S.O., Mitchell, S.E., Hussain, T., and Imumorin, I.G. (2013).
428 Genotyping-by-sequencing (GBS): A novel, efficient and cost-effective genotyping method for
429 cattle using next-generation sequencing. *PLoS One* 8, e62137.

430 Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., and
431 Mitchell, S.E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high
432 diversity species. *PLoS One* 6, e19379.

433 Elston, R.C., and Stewart, J. (1971). A general model for the genetic analysis of pedigree
434 data. *Hum. Hered.* 21, 523–542.

435 Fisher, P.J., Malthus, B., Walker, M.C., Corbett, G., and Spelman, R.J. (2009). The
436 number of single nucleotide polymorphisms and on-farm data required for whole-herd parentage
437 testing in dairy cattle herds. *J. Dairy Sci.* *92*, 369–374.

438 Gaynor, R.C., Gorjanc, G., Wilson, D.L., Money, D., and Hickey, J.M. AlphaSimR: An
439 R Package for Breeding Program Simulations. *Manuscr. Prep.*

440 Grashei, K.E., Ødegård, J., and Meuwissen, T.H.E. (2018). Using genomic relationship
441 likelihood for parentage assignment. *Genet. Sel. Evol.* *50*, 26.

442 Huang, Y., Hickey, J.M., Cleveland, M.A., and Maltecca, C. (2012). Assessment of
443 alternative genotyping strategies to maximize imputation accuracy at minimal cost. *Genet. Sel.*
444 *Evol.* *44*, 25.

445 Huisman, J. (2017). Pedigree reconstruction from SNP data: parentage assignment,
446 sibship clustering and beyond. *Mol. Ecol. Resour.* *17*, 1009–1024.

447 Kalinowski, S.T., Taper, M.L., and Marshall, T.C. (2007). Revising how the computer
448 program cervus accommodates genotyping error increases success in paternity assignment. *Mol.*
449 *Ecol.* *16*, 1099–1106.

450 Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including full
451 pedigree and genomic information. *J. Dairy Sci.* *92*, 4656–4663.

452 Li, Y., Willer, C.J., Ding, J., Scheet, P., and Abecasis, G.R. (2010). MaCH: using
453 sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet.*
454 *Epidemiol.* *34*, 816–834.

455 Marshall T. C., Slate J., Kruuk L. E. B., and Pemberton J. M. (2003). Statistical
456 confidence for likelihood-based paternity inference in natural populations. *Mol. Ecol.* *7*, 639–
457 655.

458 Meagher, T.R., and Thompson, E. (1986). The relationship between single parent and
459 parent pair genetic likelihoods in genealogy reconstruction. *Theor. Popul. Biol.* *29*, 87–106.

460 Palaiokostas, C., Cariou, S., Bestin, A., Bruant, J.-S., Haffray, P., Morin, T., Cabon, J.,
461 Allal, F., Vandeputte, M., and Houston, R.D. (2018). Genome-wide association and genomic
462 prediction of resistance to viral nervous necrosis in European sea bass (*Dicentrarchus labrax*)
463 using RAD sequencing. *Genet. Sel. Evol.* *50*, 30.

464 Riester, M., Stadler, P.F., and Klemm, K. (2009). FRANz: reconstruction of wild multi-
465 generation pedigrees. *Bioinformatics* *25*, 2134–2139.

466 Robledo, D., Palaiokostas, C., Bargelloni, L., Martínez, P., and Houston, R. (2017).
467 Applications of genotyping by sequencing in aquaculture breeding and genetics. *Rev. Aquac.* *10*,
468 670–682.

469 Rohrer, G.A., Freking, B.A., and Nonneman, D. (2007). Single nucleotide
470 polymorphisms for pig identification and parentage exclusion. *Anim. Genet.* *38*, 253–258.

471 Solberg, T.R., Sonesson, A.K., Woolliams, J.A., Ødegård, J., and Meuwissen, T.H.
472 (2009). Persistence of accuracy of genome-wide breeding values over generations when
473 including a polygenic effect. *Genet. Sel. Evol.* *41*, 53.

474 Strucken, E.M., Lee, S.H., Lee, H.K., Song, K.D., Gibson, J.P., and Gondro, C. (2016).

475 How many markers are enough? Factors influencing parentage testing in different livestock

476 populations. *J. Anim. Breed. Genet.* *133*, 13–23.

477 Tokarska, M., Marshall, T., Kowalczyk, R., Wójcik, J.M., Pertoldi, C., Kristensen, T.N.,

478 Loeschke, V., Gregersen, V.R., and Bendixen, C. (2009). Effectiveness of microsatellite and

479 SNP markers for parentage and identity analysis in species with low genetic diversity: the case of

480 European bison. *Heredity* *103*, 326.

481 Tortereau, F., Moreno, C.R., Tosser-Klopp, G., Servin, B., and Raoul, J. (2017).

482 Development of a SNP panel dedicated to parentage assignment in French sheep populations.

483 *BMC Genet.* *18*, 50.

484 VanRaden, P.M., Sun, C., and O'Connell, J.R. (2015). Fast imputation using medium or

485 low-coverage sequence data. *BMC Genet.* *16*, 82.

486 Villa-Angulo, R., Matukumalli, L.K., Gill, C.A., Choi, J., Tassell, C.P.V., and

487 Grefenstette, J.J. (2009). High-resolution haplotype block structure in the cattle genome. *BMC*

488 *Genet.* *10*, 19.

489 Whalen, A., Ros-Freixedes, R., Wilson, D.L., Gorjanc, G., and Hickey, J.M. (2017).

490 Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any

491 coverage in pedigrees. *BioRxiv*.

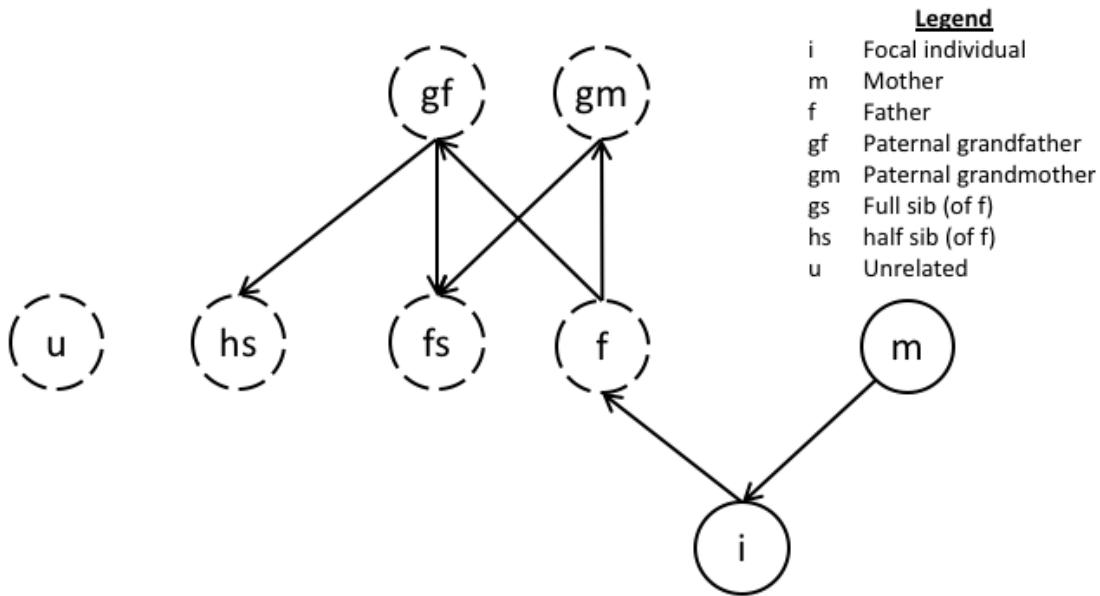
492 Woolliams, J.A., Berg, P., Dagnachew, B.S., and Meuwissen, T.H.E. (2015). Genetic

493 contributions and their optimization. *J. Anim. Breed. Genet.* *132*, 89–99.

495

Figures

496



497

498 Figure 1. A graphical representation of the peeling order for the proposal distributions. The arrows
499 represent the direction in which the peeling operations should be performed. Hardy-Weinberg
500 equilibrium is used to generate the genotype distributions for the unrelated individual, the mother
501 of the half sib, and if unknown, the mother's genotype. Although this graphic assumes the mother
502 is known and the father unknown, a symmetric picture could be constructed when the mother is
503 unknown and father known.

504

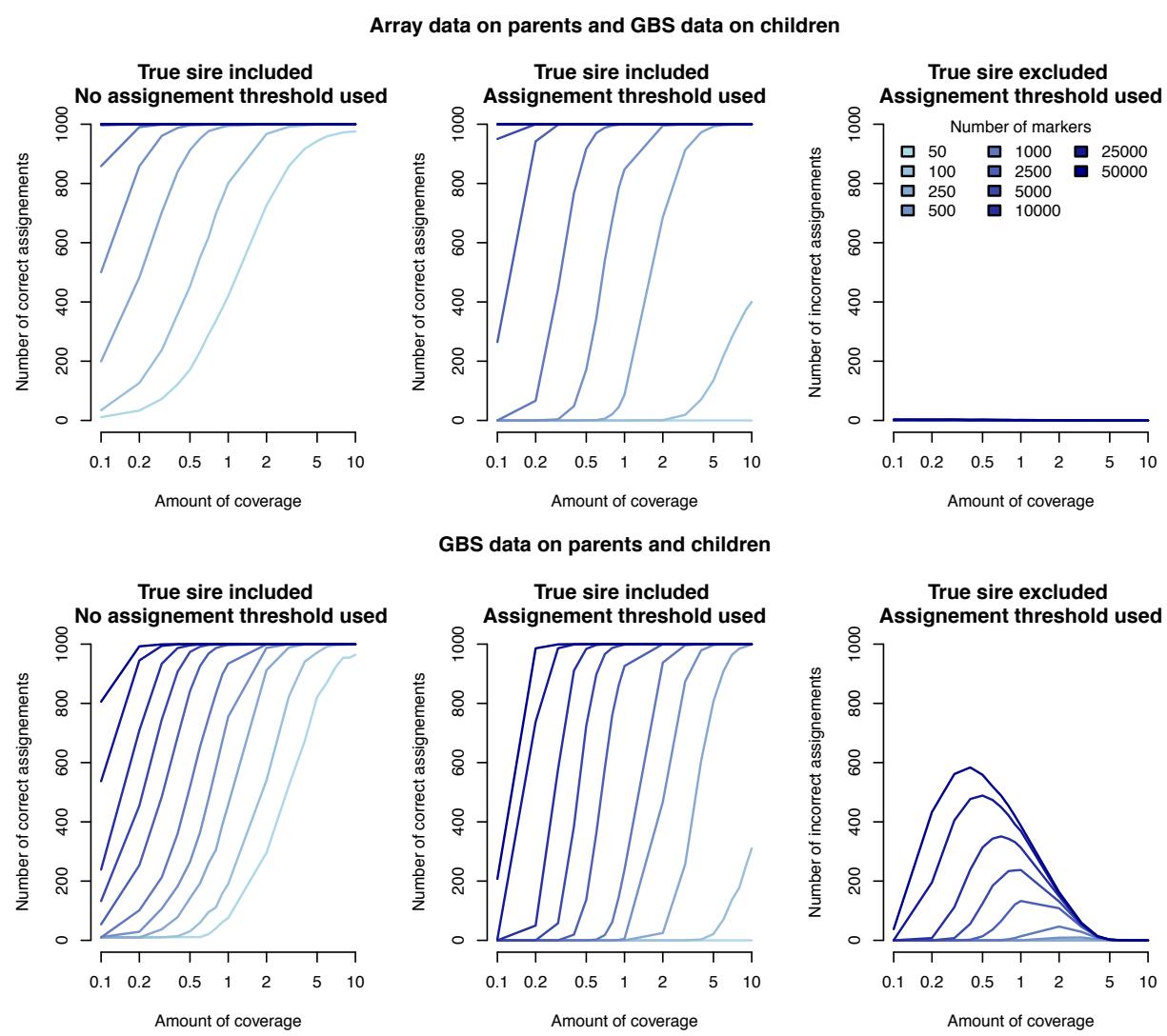
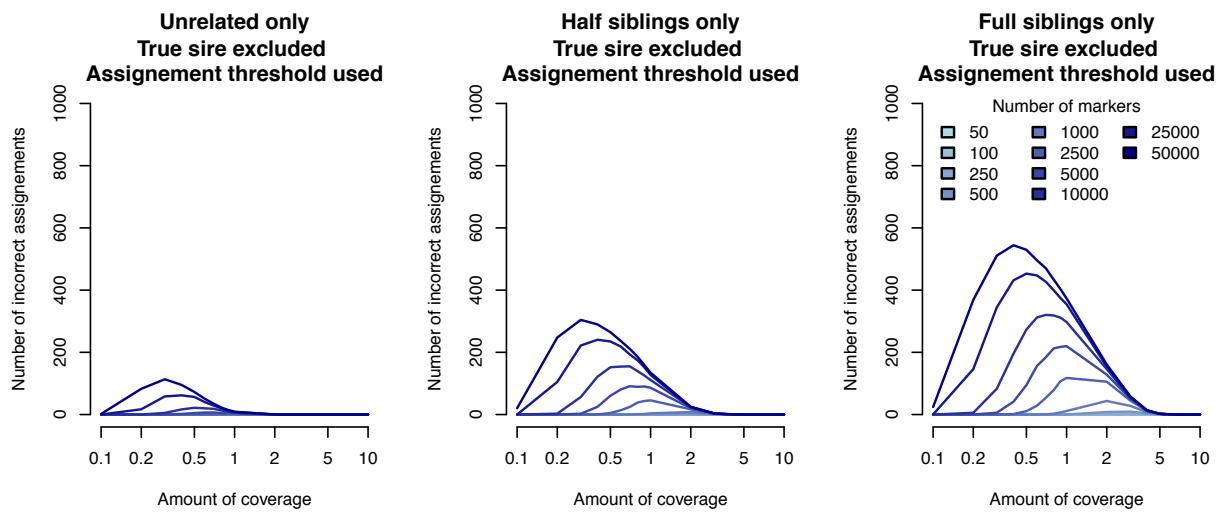


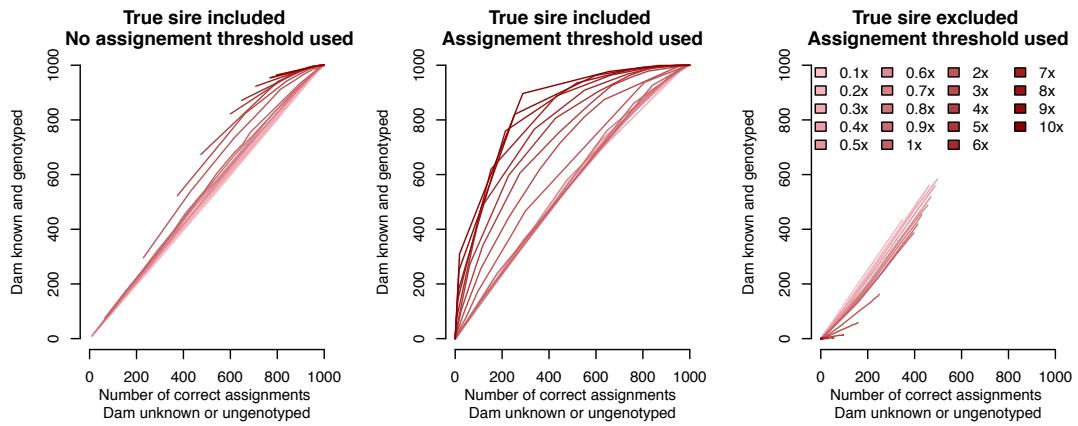
Figure 2. Parentage assignment performance when array or GBS data was available for the parents and GBS data was available for the progeny. The left panels give the number of correct assignments (for 1000 progeny) when the true parent was on the list of putative parents and no assignment threshold was used – the top scoring parent was assigned. The middle panels give the number of correct assignments when the true parent was on the list of putative parents and assignment threshold was used. The right panels give the number of incorrect assignments when the true parent was excluded from the list of putative parents.



514

515 Figure 3. Number of false positive parentage assignments (for 1000 progeny) when GBS data was
516 available for parents and progeny, the parent was excluded from the list of putative parents,
517 assignment threshold was used, and the list of putative parents contained either 100 unrelated
518 individuals (left panel), 45 half sibs of the true parent (middle panel), or 4 full sibs of the true
519 parent (right panel).

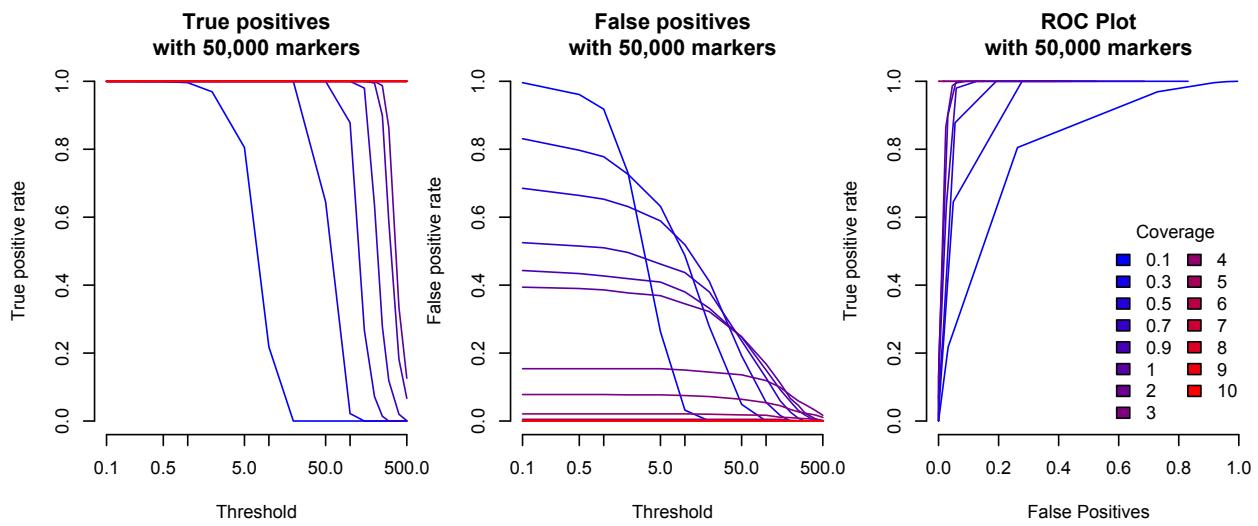
520



521

522 Figure 4. A comparison between the parentage assignment performance with one parent known
523 and genotyped and no parent known at different GBS coverage levels (left and middle panes
524 compare true positives while the right pane compares false positives).

525



526

527 Figure 5. The rate of true positives, false positives, and the relationship between them when varying
528 the total amount of coverage and the calling threshold.