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Abstract
In this paper we evaluate using genotype-by-sequencing (GBS) data to perform parentage
assignment in lieu of traditional array data. The use of GBS data raises two issues: First, for low-
coverage GBS data, it may not be possible to call the genotype at many loci, a critical first step for
detecting opposing homozygous markers. Second, the amount of sequencing coverage may vary
across individuals, making it challenging to directly compare the likelihood scores between
putative parents. To address these issues we extend the probabilistic framework of Huisman (2017)
and evaluate putative parents by comparing their (potentially noisy) genotypes to a series of
proposal distributions. These distributions describe the expected genotype probabilities for the
relatives of an individual. We assign putative parents as a parent if they are classified as a parent
(as opposed to e.g., an unrelated individual), and if the assignment score passes a threshold. We
evaluated this method on simulated data and found that (1) high-coverage GBS data performs
similarly to array data and requires only a small number of markers to correctly assign parents and
(2) low-coverage GBS data (as low as 0.1x) can also be used, provided that it is obtained across a
large number of markers. When analysing the low-coverage GBS data, we also found a high
number of false positives if the true parent is not contained within the list of candidate parents, but
that this false positive rate can be greatly reduced by hand tuning the assignment threshold. We

provide this parentage assignment method as a standalone program called AlphaAssign.
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Parentage assignment with GBS data 3
Introduction

In this paper we evaluate the performance of using genotype-by-sequence (GBS) data to
perform parentage assignment in commercial plant and animal breeding settings. Having accurate
parentage information is important for many routine breeding applications, such as reducing the
cost of genotyping through pedigree-based imputation (Huang et al., 2012), reducing the bias of
genomic estimates of breeding values (Solberg et al., 2009), and combining genotyped and non-
genotyped individuals into a joint analysis (Legarra et al., 2009). When the parents of an individual
are not recorded, parentage assignment algorithms can use genetic data to reconstruct parent-child
relationships. Much of the previous work on parentage assignment has focused on the case where
the genetic data was generated from microsatellite markers or more recently from SNP arrays
(Rohrer et al., 2007; Fisher et al., 2009; Riester et al., 2009; Tokarska et al., 2009). In the case of
SNP arrays between 50 and 700 markers are required to accurately assign parents and rule out
false assignments (Rohrer et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al.,
2017). GBS is a flexible alternative to arrays, particularly for species that may not have a well-
established reference genome, or where a suitable array has not been developed. However, the
performance of using GBS data for parentage assignment — to our knowledge — is not well
understood.

The primary challenge for using GBS data is the potentially high uncertainty in the true
genotype of an individual based on the observed genetic data. In a GBS platform, a restriction
enzyme is used to cut DNA into fragments that are then sequenced (Baird et al., 2008; Davey et
al., 2011; Elshire et al., 2011). This means that unlike arrays, which produce called genotypes,
GBS produces read counts for the reference and alternative alleles. For high-coverage GBS data

the underlying genotype can easily be called from the read counts. For low-coverage GBS data
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Parentage assignment with GBS data 4

calling genotypes is more difficult, particularly on loci which only receive a few reads.
Distinguishing between heterozygous and homozygous loci is particularly challenging. If GBS
produces two reads for the reference alleles and zero reads for the alternative allele, this could
indicate that the individual is homozygous for the reference allele, or the individual could be
heterozygous and their reference allele was sequenced twice. The difficulty in calling homozygous
loci makes parentage assignment particularly difficult because many parentage assignment
algorithms, either explicitly or implicitly, rely on finding opposing homozygous loci to filter out
putative parents. In addition, the lack of opposing homozygous loci may increase false positive
rate of parentage assignment if the true parent is not in the list of putative parents, since full sibs
or half sibs of the true parent may appear to be more related to the individual than expected by
chance (Meagher and Thompson, 1986).

Likelihood based methods (e.g., Kalinowski et al., 2007; Riester et al., 2009) are one
solution to handle genetic data with high uncertainty. In a likelihood based method, parentage
assignment is based on the likelihood of an individual’s genotype conditioned on the putative
parent’s genotype. If the genotypes of either the individual or the putative parent cannot be
assessed accurately, this likelihood score can be calculated by marginalizing over possible
genotypes. Likelihood methods work well in cases where all individuals have the same amount of
genetic data (e.g., same number of markers or sequencing coverage), but may break down when
individuals are genotyped at a different number of markers or at different coverage levels. An
example of this could be two putative parents with array data. Suppose the first putative parent
was genotyped at 50 markers that overlap with the child, and the second was genotyped at 1,000
markers that overlap with the child. If both parents were heterozygous at all loci and we assume

that the loci are not linked, then the likelihood value for the first parent would be .5°° (each allele


https://doi.org/10.1101/270561
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/270561; this version posted September 25, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Parentage assignment with GBS data 5
81  having a 50% chance of being transmitted), whereas the likelihood value for the second parent
82  would be .5'%%°, These likelihood values are hard to compare against each other because they are
83  calculated on different sets of markers. This problem can be solved by selecting a subset of markers
84  that are genotyped in all putative parents (which may drastically reduce the amount of information
85 available), or using the population allele frequency for the genotype at missing markers (which
86  disadvantages individuals with missing values).
87 A third option, that may be more appealing for GBS data, is to instead change the parentage
88  assignment problem into a relationship classification problem. With this framing, the goal of the
89  algorithm is to classify the relationship between each putative parent and the focal individual (e.g.,
90  parent, grandparent, sibling, child). A putative parent is then assigned as the parent, if they are
91 classified as a parent, pass an assignment threshold, and are the highest scoring parent out of the
92  list of putative parents (Huisman, 2017; Riester et al., 2009). One of the main advantages of this
93  approach is that the classification task (which is able to filter out most putative parents) only relies
94  on the genetic information available for an individual and a putative parent and does not require
95  direct comparison to other putative parents. This property is particularly appealing for GBS data
96  where the amount of information on each individual may differ depending on the genotyping
97  resources spent and the allele frequency of the loci with sequence reads.
98 In this paper we extend the parentage assignment method of Huisman (2017) to explicitly
99  handle GBS data. We then evaluated its performance in a simulated animal breeding population.
100  We found that, similar to array data, it is possible to obtain accurate parent assignment with a fairly
101  small number of sequence reads (e.g., 0.1x coverage), but that ruling out false positives is harder,
102  and that a sizeable number of false positives could occur for medium coverage (0.5-2x) GBS data

103 on a large number of linked markers.
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104  Materials and Methods
105 Here we describe our approach for parentage assignment with GBS data. This work builds
106  closely on the probabilistic framework of Huisman (2017), but we present the full model for
107  completeness. To assign parents we first construct a series of proposal distributions for each
108  putative parent based on the genotypes of a focal individual and it’s known relatives. These
109  proposal distributions describe the expected genotypes for a relative as a function of their
110  relationship with the focal individual (e.g., parent, full sib of the parent, unrelated). We then
111 classify each putative parent into one of these relationships, and if it is classified as a parent, and
112 the assignment score passes a threshold, we assign it as the parent. If there are multiple possible
113 parents, the highest scoring individual is assigned. Although this algorithm was originally designed
114  in the context of animals, it also works for diploid and allopolyploid plants.
115 To simplify the language, we assume that we are attempting to assign the father of a focal
116  individual. For a given focal individual i and its mother m we calculate the probability that the
117  putative parent fis the true father by:

p(grlgi» Gm, h = father)p(h = father)
Yn P(9rlgi Gm, R (')

118 p(h = father|gs, i, Gm) = , (D)

119  where g, is the genotype of individual x, % is the relationship between the focal individual i and
120  the putative parent £, and the denominator is enumerated over the set of possible relationships h'.
121  In the case where the genotypes of the mother are unknown we assume that her genotype
122 probabilities are derived from Hardy-Weinberg Equilibrium.

123 In this paper we consider four possible relationships: that the putative parent is the true
124 father, a full sib of the true father, a half sib of the true father, or unrelated. The conditional
125  probability distributions for alternative relationships can be constructed via the generative

126  framework we provide below. To simplify calculations, we assume that p(%’) is uniform over all
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127  possible relationships. In addition, we assume all markers segregate independently allowing
128 p(grlgi, Gm, h) to be calculated as the product of the probability of the putative parent’s genotype

129  at each marker £:
130 (9|9 Gm,h) = np(gf,klgi,k: Gmr ). (2)
k

131 In the case of array data, and particularly GBS data, our assessment of the true genotypes,
132 gy, gi, and g» may be noisy. To account for this noise we marginalize across possible genotypes

133 based on observed genetic data d = (d;, dy;, dn):

134 Pl i) = D D (01l 10 Gonio WPl s P Gl P (Giil i) 3)
9fk Imk Jik
135 This model requires the calculation of two terms: (1) the genotype probabilities conditional

136  on the observed data p(gx,k|dx,k) and (2) the proposal distribution for an individual’s genotype
137  based on their relationship with the focal individual p(gf,k| itk I h). We outline how to

138  calculate both terms below.

139

140  Evaluating genotype probabilities conditional on the observed data

141 In this model we assume that each marker is biallelic and has four possible phased
142 genotypes, aa, aA, Aa, AA. With observed array data for marker k d,,, the conditional

143 probabilities for each genotype g, , are:

3e
1—7 if gxx =aaand d,, =0
-3¢ Adand d,,, = 2
— 7 U IGxk = ana Gy =
144 p(gx,kldx,k) = 46 (4)
'S_Z if gxx = aAorAaandd,, =1

otherwise,
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145  where e is the assumed genotyping error rate. This evaluation of individual genotype probabilities
146  differs from Huisman (2017), where it is assumed that errors can only occur between homozygous
147  and heterozygous states (and not between opposing homozygote states) and distinction is not made
148  between two heterozygous genotypes. The genotype probabilities above correspond more closely
149  to those commonly used in peeling (e.g., Whalen et al., 2017) and allow inferences to be made
150  even when the genotyping error rate is high.

151 With observed GBS data for marker &, d, ;, the conditional genotype probabilities are:

(1—e)™reremat if g, = aa

. 5”ref+nalt

5 if gux = ador Aa (5)
(1 —e)taue™ef if g, , = AA,

152 P(Gok|drs)

153  where e is the sequencing error rate, n.r1s the number of sequence reads supporting the reference
154 allele and na; 1s the number of sequence reads supporting the alternative allele. The genotype
155  probabilities in Equation 5 do not sum to one, and so the probabilities need to be normalized for
156  each allele. Equation 4 is consistent with previous work on parentage assignment with array data
157  (Kalinowski et al., 2007; Huisman, 2017), while Equation 5 is consistent with previous work on
158  imputation with GBS-like data (Li et al., 2010; VanRaden et al., 2015; Whalen et al., 2017).

159

160  Generating proposal distributions via single locus peeling

161 We generate proposal distributions p(gf,k| ik Imi h) for the genotype probabilities of

162  eachrelationship via single locus peeling (Elston and Stewart, 1971). Single locus peeling provides
163  arich generative model for estimating the genotype probabilities of un-genotyped relatives based
164  on the genotypes of an individual and a known parent. Although our presentation differs from
165  Huisman (2017) it results in the same distributions. Under this framework, we calculate the

166  genotype probabilities for three relatives: the father, a full-sib of the father, and a half-sib of the
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167  father. These probabilities are calculated by first estimating the genotype probabilities for the
168  father, peeling up to the paternal grandparents, and finally peeling down to the full sib and the half
169  sib of the father (Figure 1).

170 Given genetic data on the focal individual d; and a mother d,,,, we can construct a proposal

171 distribution for the father via:
172 p(gsldm, d;) Z Z T(9:l95, 9m)p(aild)p(gs|ds), (6)
Im gi

173 where p(g;|d;) is given by Equation 4 or 5 above, and T(gl-| 9s gm) is the probability that the
174  individual inherited genotype g: conditional on their parents having genotypes gr and gu, €.g.,
175 T(g; = adlg; = aA, g, = AA) = 0.5 (Marshall et al., 2003).

176 Using Equation 6, we can peel up to construct a joint distribution for the genotypes of the

177  paternal grandparents (gf, gm):
178 P(9grggmldi dr) o Z T(9r19gs. 9gm)P(grldi. df), (7)
95

179  where p(g F | d;, df) is given in Equation 6, above. We can then peel down to generate the proposal
180  distributions for a full sib and a half sib of the father. The proposal distributions differs in whether
181  the full joint distribution of both grandparents is used (full sib, f5), or if only one of the grandparents
182  is used and the other parent assumed to have genotypes based on Hardy Weinberg Equilibrium

183 (half sib, hs):

184 p(gfs,lggf:ggm: d;, df) = Z T(gfslggflggm)p(ggf:ggmldil df): (8)
95

185 p(ghs,lggflggm: di: df) = Z Z T(ghslggf: gnull)p(ggf: ggmldi: df)p(gnull): (9)
Inull 9gd

186  where p(gn,u) represents the probability of having a genotype if that genotype was drawn at

187  random from the population.
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188 The proposal distribution for an unrelated individual simply assumes that their genotypes

189  are drawn at random from the population according to Hardy Weinberg Equilibrium:

190 P(Gunretatea) = P(Gnunr)- 9)
191 To assign a parent we calculated an assignment score for each putative parent:
192 score = —log (1 — p(h = father|ds, d;, d,,)). (10)

193  The score will be close to 0 if the individual is unlikely to be the father, and tends towards positive
194  infinity with increasing evidence that the individual is the father. A putative parent was assigned
195 as the true parent if its assignment score was the highest of the putative parents considered, and
196  was higher than a pre-defined threshold.

197 Although the described process may seem computationally intensive, there are two features
198  which simplify calculations. First, because the proposal distributions depend only on the focal
199  individual and its known parent, the proposal distributions only need to be calculated once and can
200  be re-used for all putative parents of the focal individual. Second, peeling can be performed
201  efficiently as a series of tensor operations on the genotypes of focal individual and its known
202  parent, filtered through the inheritance matrix 7, which allows us to take advantage of linear
203  algebra libraries.

204  Simulated data

205 The simulated data modelled a livestock population. We initially sampled a set of genomes
206  with 20 chromosomes using the Markovian coalescent simulator MaCS (Chen et al., 2009). For
207  this we assumed that each chromosome is 10® bp long, a per site mutation rate is 2.5 x 1078, a per
208  site recombination rate is 1.0 x 1073, and that effective population size changed over time. Based
209  on estimates for the Holstein cattle population (Villa-Angulo et al., 2009), we set the effective

210  population size to 100 in the final generation of the coalescent simulation and to 1,256, 4,350, and
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211 43,500 at respectively 1000, 10,000, and 100,000 generations ago, with linear changes in between.
212 We then used the sampled chromosomes to initiate a population of 1,000 animals with equal sex
213 proportions. We bred this population for 5 generations. In each generation, we selected 10 males
214  and mated them at random to 100 females. Each potential focal individual therefore had 1 true
215  father, 4 male full sibs of the father, and 45 male half sibs of the father. All individuals were
216  genotyped at 50,000 markers. Subsets of these markers were used in different simulations as
217  described below. Array data were simulated without any errors, due to the low error rate for
218  modern SNP genotyping arrays (<1%:; e.g., Kalinowski et al., 2007). In addition to array data, we
219  generated low-coverage GBS data for the last two generations of individuals. We assumed that the
220 GBS method targeted the same loci as the genotyping array and was performed at coverage levels
221  between 0.1x to 10x. For each coverage level, the number of sequence reads at a given marker was
222 generated via a Poisson distribution with mean equal to the coverage level. Each read randomly
223 sampled one of the two alleles at a marker. The read sampling process also included a small
224 sequencing error rate of 0.1%. We generated the simulated data using the R package AlphaSimR

225  (Gaynor et al.), which is available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR.

226  Scenarios

227 We evaluated the accuracy of parent assignment for the last generation of 1,000 individuals
228  across 4 different scenarios. In the first scenario (a) we analysed the accuracy of performing parent
229  assignment when:

230 e the mother was known and genotyped,

231 e all of the male full- and half-sibs along with 50 other individuals (total of 100 potential

232 parents) were putative parents,
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233 e and either both the parents and progeny had array data, the parents had array data and the
234 progeny had GBS data, or both the parents and the progeny had GBS data.

235  These sub-scenarios span a spectrum of possible practical settings. The sub-scenario where the
236  parents had array data but the progeny had GBS data may represent either the case where the
237  progeny are initially genotyped with a low-cost GBS platform and any selected parents are re-
238  genotyped with an array, or it may represent the case where pedigree information was used to
239  impute and accurately call parental genotypes. In the remaining scenarios we focused on the case
240  where both parents and progeny had GBS data and analysed (b) the impact of knowing and
241  genotyping the known alternative parent, (¢) the impact of restricting the pool of putative parents
242 to either 100 unrelated individuals, 45 half sibs, or the 4 full sibs, and (d) examined how the false
243 positive rate changed depending on the threshold used for assignment (see below).

244 In each scenario we performed three evaluations. To evaluate the overall accuracy, we
245  assumed the true parent was included in the list of putative parents, and evaluated accuracy by the
246  number of times the top parent was the true parent. To evaluate the true positive rate we included
247  the true parent in the list of putative parents, but assigned the top scoring parent only if it passed
248  an assignment threshold. To evaluate the false positive rate, we excluded the true parent from the
249  list of putative parents and counted the number of times the top scoring parent passed the
250  assignment threshold. The first evaluation represented a case where we know the true parent is
251  included in the list of putative parents (e.g., groups of females cohabitating with multiple males or
252 artificial insemination using polyspermic matings). The second and third evaluations were
253  designed to assess performance when we are not sure whether or not the true parent is included in
254 the list of potential parents (e.g., natural service sires or wild populations).

255 Software
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256 Parentage assignment was performed using AlphaAssign
257  (http://www.alphagenes.roslin.ed.ac.uk/alphasuite-softwares/alphaassign/) which, implements the
258  described algorithm. AlphaAssign has three run-time parameters: (i) an assumed genotyping error
259  rate for array data, (ii) an assumed sequencing error rate for GBS data, and (iii) an assignment
260  threshold to determine the required score to assign a putative parent as a parent. Throughout this
261  paper we assumed a 1% genotyping error rate, a 0.1% sequencing error rate, an assignment
262  threshold of 10 (determined via pilot simulations) although we varied the assignment threshold in
263  the last set of simulations.
264
265  Results
266  Parent assignment with array and GBS data
267  First we examined the number of markers required for accurate parentage assignment when both
268  parents and progeny were genotyped with array data. If the true parent was included in the list of
269  putative parents (and an assignment threshold was used), 100 markers were required to obtain
270  100% parentage assignment accuracy. If the true parent was excluded from the list of putative
271  parents, the false positive rate was less than 0.1% if there were between 50 to 350 markers, and
272 there were no false positives when there were more than 500 markers.
273 Unlike array data where the number of markers can be more easily varied, for GBS data
274  the number of markers is usually determined by the choice of restriction enzymes while the amount
275  of coverage obtained on each individual can be varied. Because of this we focused on the required
276  coverage level to accurately assign parents based on a fixed number of markers. Figure 2 shows
277  the accuracy and false positive rates based on the amount of coverage allocated to each progeny,

278  stratified by the number of markers that this coverage is spread over. Because performance with
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279  array data was nearly identical to that with 10x GBS data we did not include array data in Figure
280 2.
281 We evaluated the performance of parentage assignment when the parents were genotyped
282  with array data and the progeny were genotyped with GBS data. If the true parent was included in
283  the list of putative parents, a coverage of 0.4x was required to obtain 100% accuracy when there
284  were 50,000 GBS markers. The required coverage increased to 1x for 5,000 markers, and to 2x for
285 1,000 markers. If the true parent was excluded from the list of putative parents, we found that the
286  false positive rate was less than 0.2% in all cases.
287 The accuracy of parentage assignment decreased when both the parents and progeny had
288 GBS data. If the true parent was included in the list of putative parents, a coverage of 0.4x was
289  required to obtain 100% accuracy when there were 50,000 GBS markers. The required coverage
290  increased to 2x for 5,000 markers, and to 5x for 1,000 markers. If the true parent was excluded
291  from the list of putative parents, we found that the false positive rate was as high as a 60%. These
292 false positives were clustered on low to medium coverage GBS data (0.1 - 3x) with a large number
293 of markers (>1000).
294  False positive assignments by relationship
295 Figure 3 stratifies the false positive rate based on whether unrelated individuals, half-sibs
296  of the true parent, or full-sibs of the true parent were included in the list of putative parents. In line
297  with expectations we found a high false positive rate (as high as 60% in some conditions) when
298  only the full-sibs of the true parent were included as putative parents. This decreased to at most
299  35% when only the half-sibs of the true parent were included and to under 20% when only
300 unrelated individuals were included. As seen previously, most of the false positives were occurred

301  when there were a large number of markers and low to medium coverage GBS data.
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302  Parent assignment when neither parent is known
303 Figure 4 compares the performance of parentage assignment when one of the parents is
304  known and genotyped compared to when neither parent is known or genotyped. We found that
305 having one parent known and genotyped increased the accuracy of parentage assignment and
306  decreased the number of false positives in all cases. The benefit was largest when both the progeny
307  and parents had high-coverage GBS data.
308  Controlling false assignments by modifying the threshold
309 Figure 5 shows the true positive rates and false positive rates for when sequencing
310  resources were spread over 50,000 markers, as a function of the threshold used to assign a putative
311  parent as the parent. We found that, compared to the results in Figures 2 and 3, it was possible to
312 substantially reduce the false positive rate by increasing the assignment threshold, but that the ideal
313  threshold depends on the total coverage. The relationship between the false positive and true
314  positive rate is given as a receiver operating characteristic in Figure 5(c).
315 Timing
316 The algorithm took 3 minutes and 54 seconds to assign parents for 1000 progeny, each
317  with 100 putative parents. The progeny and their parents were genotyped using GBS data across
318 5,000 markers. The algorithm scales linearly with the number of markers and the number of
319  putative parents per individual.
320
321  Discussion
322 In this paper we extended the parentage assignment method of Huisman (2017) to account
323  for low-coverage sequence data and analysed the performance of parentage assignment when

324  genotyping is performed via sequencing instead of the traditional genome-wide arrays. We found
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325  that high-coverage GBS data (i.e., 10x or higher) has the same performance as array data. We also
326  found that low-coverage GBS data (as low as 0.1x) can be used to perform parentage assignment
327 aslong as it is obtained on a sufficiently large number of markers, but that there may be a large
328  number of false assignments if the true parent is not included in the list of putative parents. The
329  number of false positives could be reduced by modifying the threshold used to call assignments.
330 In light of these results, we will discuss (1) the accuracy of parentage assignment, (2) potential
331 extensions to control the false positive rate, and (3) the use of peeling to construct the proposal
332 distributions in more detail.
333  Parentage assignment accuracy with GBS data
334 A goal of this work was to quantify the amount of GBS data required to accurately perform
335  parentage assignment. We found that, similar to array data, the total amount of data required is
336 relatively low. For example, when using high-coverage GBS data between 100 to 200 markers are
337  required to accurately assign parents. This is in line with previous estimates for array data (Rohrer
338 et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al., 2017), where between 50-
339 700 markers were required. The differences in the exact number of markers required (100-200
340  compared to 50-700) is likely due to the structure of the underlying genetic data (i.e., number of
341  chromosomes, minor allele frequency of the markers), and the assumption in this study that one of
342 the parents was already known and genotyped.
343 In addition to being able to use high-coverage GBS data to perform parentage assignment,
344  we found that low-coverage GBS data could also be used, provided it was spread across a larger
345  number of markers. The increase in required number of markers is due to the lower information
346  content at an individual loci for low-coverage GBS data, requiring the data to be pooled across a

347  larger number of markers to achieve the same level of accuracy.
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348 The results of this study suggest that GBS data — either high-coverage data on a small
349  number of markers, or low-coverage data on a large number of markers —is an effective alternative
350  to array data for performing parentage assignment. This result is particularly important given the
351 emerging importance of GBS as an alternative for SNP array data, both in species where SNP
352 arrays are available (e.g., De Donato et al., 2013; Brouard et al., 2017) and in those where SNP
353 arrays have not been constructed (e.g., Robledo et al., 2017; Palaiokostas et al., 2018).
354  Controlling the false positive rate
355 During our analysis of low-coverage data, we found an inflation of false positives when
356  both the parents and the progeny had GBS data. These false positives were likely due to the fact
357  that with between 1-3x coverage GBS data we were able to determine that two animals are
358  genetically similar, but were not able to obtain a sufficient number of loci with precisely inferred
359  genotyped to find opposing homozygous loci.
360 Consistent with previous work, we found that using a hand-tuned assignment threshold
361  could reduce the number of false positives (Huisman, 2017; Riester et al., 2009). An alternative
362 approach would be to adaptively determine the assignment threshold via introspection of the
363  underlying data (Grashei et al., 2018). In the majority of the simulations, a fixed threshold of 10
364  was used based on pilot simulations with array data. As we demonstrate in Figure 5, substantially
365 raising the threshold for assignment could reduce the false-positive rate even for 50,000 markers
366  and low-coverage sequence data, although at the cost of a decreased true-positive rate. The optimal
367  threshold value for assignment depends on the overall sequencing coverage, making it challenging
368  touse a fixed threshold in cases where individuals are sequenced at different coverages. We believe

369  that automating this process is an area for future research, and may depend on the exact breeding
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370  program structure, the exact GBS system deployed (e.g., Baird et al., 2008; Davey et al., 2011;
371  Elshire et al., 2011), and reason that parentage information is required.
372 Furthermore, we believe that the issue of false parent-assignments may be less of an issue
373  in the context of commercial agricultural populations compared to wild populations for two
374  reasons. First, most of the false assignments that we observed were cases where the true parent
375  wasnot included in the pedigree and a full- or half-sib of the true parent was included and wrongly
376  assigned as a parent. In the context of many animal breeding programs, the routine use of pairs of
377  sibs as parents may not commonly arise because of explicit efforts to manage diversity and
378  inbreeding (e.g., Woolliams et al., 2015). Second, due to the genetic similarity between the full-
379  sib of the true parent and the true parent, using the full-sib of the true parent as a “proxy” parent
380  for the progeny may have limited impact on downstream applications such as estimation of
381  breeding values. Further research is required to quantify the impact of such false positives in
382  downstream applications.
383
384  Constructing proposal distributions via peeling
385 In this paper, we closely followed the approach of Huisman (2017) for performing
386  parentage assignment, with two differences. First, we modified the genotype probability function
387  to handle sequence data. Second, we recast the construction of proposal distributions for relatives
388 as a series of peeling operations on artificial pedigrees. We believe the later development is of
389  more interest. Peeling provides a rich and computationally efficient framework for estimating the
390  genotypes of a relative based on the genotypes of individuals in an existing pedigree. In this paper
391  we focused on a small number of possible relationships, but this framework can be easily extended

392  to consider a wider and potentially complex class of relatives (e.g., siblings of the focal individual,
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393  cousins of the parent, or grandparents), or could be altered to assess alternative relationships (e.g.,
394  performing grandparent assignment instead of parentage assignment). Use of these additional
395  relationship classes may depend on the purpose of a particular application.
396
397  Conclusion
398 In conclusion, we extended the algorithm of Huisman (2017) to perform parentage
399  assignment with sequence data, and evaluated the performance of using low-coverage GBS data
400  for parentage assignment. We found that low-coverage GBS data could be used for accurate
401  parentage assignment, but that there may be concerns with false positives if the true parent is not
402  included on the list of putative parents. Such false positives might be mitigated on a case-by-case
403  basis by tuning the assignment criteria used. These results suggest that GBS data can be used as
404  an alternative to array data for parentage assignment.
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498  Figure 1. A graphical representation of the peeling order for the proposal distributions. The arrows
499  represent the direction in which the peeling operations should be performed. Hardy-Weinberg
500  equilibrium is used to generate the genotype distributions for the unrelated individual, the mother
501  of the half sib, and if unknown, the mother’s genotype. Although this graphic assumes the mother
502  is known and the father unknown, a symmetric picture could be constructed when the mother is
503  unknown and father known.
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505
506  Figure 2. Parentage assignment performance when array or GBS data was available for the parents
507 and GBS data was available for the progeny. The left panels give the number of correct
508 assignments (for 1000 progeny) when the true parent was on the list of putative parents and no
509  assignment threshold was used — the top scoring parent was assigned. The middle panels give the
510 number of correct assignments when the true parent was on the list of putative parents and
511  assignment threshold was used. The right panels give the number of incorrect assignments when
512 the true parent was excluded from the list of putative parents.
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514

515  Figure 3. Number of false positive parentage assignments (for 1000 progeny) when GBS data was
516 available for parents and progeny, the parent was excluded from the list of putative parents,
517  assignment threshold was used, and the list of putative parents contained either 100 unrelated
518 individuals (left panel), 45 half sibs of the true parent (middle panel), or 4 full sibs of the true
519  parent (right panel).
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Figure 4. A comparison between the parentage assignment performance with one parent known
and genotyped and no parent known at different GBS coverage levels (left and middle panes

compare true positives while the right pane compares false positives).
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526

527  Figure 5. The rate of true positives, false positives, and the relationship between then when varying

528  the total amount of coverage and the calling threshold.
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