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Abstract 16 

In this paper we evaluate using genotype-by-sequencing (GBS) data to perform parentage 17 

assignment in lieu of traditional array data. The use of GBS data raises two issues: First, for low-18 

coverage GBS data, it may not be possible to call the genotype at many loci, a critical first step for 19 

detecting opposing homozygous markers. Second, the amount of sequencing coverage may vary 20 

across individuals, making it challenging to directly compare the likelihood scores between 21 

putative parents. To address these issues we extend the probabilistic framework of Huisman (2017) 22 

and evaluate putative parents by comparing their (potentially noisy) genotypes to a series of 23 

proposal distributions. These distributions describe the expected genotype probabilities for the 24 

relatives of an individual. We assign putative parents as a parent if they are classified as a parent 25 

(as opposed to e.g., an unrelated individual), and if the assignment score passes a threshold. We 26 

evaluated this method on simulated data and found that (1) high-coverage GBS data performs 27 

similarly to array data and requires only a small number of markers to correctly assign parents and 28 

(2) low-coverage GBS data (as low as 0.1x) can also be used, provided that it is obtained across a 29 

large number of markers. When analysing the low-coverage GBS data, we also found a high 30 

number of false positives if the true parent is not contained within the list of candidate parents, but 31 

that this false positive rate can be greatly reduced by hand tuning the assignment threshold. We 32 

provide this parentage assignment method as a standalone program called AlphaAssign. 33 

34 
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Introduction 35 

In this paper we evaluate the performance of using genotype-by-sequence (GBS) data to 36 

perform parentage assignment in commercial plant and animal breeding settings. Having accurate 37 

parentage information is important for many routine breeding applications, such as reducing the 38 

cost of genotyping through pedigree-based imputation (Huang et al., 2012), reducing the bias of 39 

genomic estimates of breeding values (Solberg et al., 2009), and combining genotyped and non-40 

genotyped individuals into a joint analysis (Legarra et al., 2009). When the parents of an individual 41 

are not recorded, parentage assignment algorithms can use genetic data to reconstruct parent-child 42 

relationships. Much of the previous work on parentage assignment has focused on the case where 43 

the genetic data was generated from microsatellite markers or more recently from SNP arrays 44 

(Rohrer et al., 2007; Fisher et al., 2009; Riester et al., 2009; Tokarska et al., 2009). In the case of 45 

SNP arrays between 50 and 700 markers are required to accurately assign parents and rule out 46 

false assignments (Rohrer et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al., 47 

2017). GBS is a flexible alternative to arrays, particularly for species that may not have a well-48 

established reference genome, or where a suitable array has not been developed. However, the 49 

performance of using GBS data for parentage assignment – to our knowledge – is not well 50 

understood. 51 

The primary challenge for using GBS data is the potentially high uncertainty in the true 52 

genotype of an individual based on the observed genetic data. In a GBS platform, a restriction 53 

enzyme is used to cut DNA into fragments that are then sequenced (Baird et al., 2008; Davey et 54 

al., 2011; Elshire et al., 2011). This means that unlike arrays, which produce called genotypes, 55 

GBS produces read counts for the reference and alternative alleles. For high-coverage GBS data 56 

the underlying genotype can easily be called from the read counts. For low-coverage GBS data 57 
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calling genotypes is more difficult, particularly on loci which only receive a few reads. 58 

Distinguishing between heterozygous and homozygous loci is particularly challenging. If GBS 59 

produces two reads for the reference alleles and zero reads for the alternative allele, this could 60 

indicate that the individual is homozygous for the reference allele, or the individual could be 61 

heterozygous and their reference allele was sequenced twice. The difficulty in calling homozygous 62 

loci makes parentage assignment particularly difficult because many parentage assignment 63 

algorithms, either explicitly or implicitly, rely on finding opposing homozygous loci to filter out 64 

putative parents. In addition, the lack of opposing homozygous loci may increase false positive 65 

rate of parentage assignment if the true parent is not in the list of putative parents, since full sibs 66 

or half sibs of the true parent may appear to be more related to the individual than expected by 67 

chance (Meagher and Thompson, 1986). 68 

Likelihood based methods (e.g., Kalinowski et al., 2007; Riester et al., 2009) are one 69 

solution to handle genetic data with high uncertainty. In a likelihood based method, parentage 70 

assignment is based on the likelihood of an individual’s genotype conditioned on the putative 71 

parent’s genotype. If the genotypes of either the individual or the putative parent cannot be 72 

assessed accurately, this likelihood score can be calculated by marginalizing over possible 73 

genotypes. Likelihood methods work well in cases where all individuals have the same amount of 74 

genetic data (e.g., same number of markers or sequencing coverage), but may break down when 75 

individuals are genotyped at a different number of markers or at different coverage levels. An 76 

example of this could be two putative parents with array data. Suppose the first putative parent 77 

was genotyped at 50 markers that overlap with the child, and the second was genotyped at 1,000 78 

markers that overlap with the child. If both parents were heterozygous at all loci and we assume 79 

that the loci are not linked, then the likelihood value for the first parent would be .550 (each allele 80 
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having a 50% chance of being transmitted), whereas the likelihood value for the second parent 81 

would be .51000. These likelihood values are hard to compare against each other because they are 82 

calculated on different sets of markers. This problem can be solved by selecting a subset of markers 83 

that are genotyped in all putative parents (which may drastically reduce the amount of information 84 

available), or using the population allele frequency for the genotype at missing markers (which 85 

disadvantages individuals with missing values).  86 

A third option, that may be more appealing for GBS data, is to instead change the parentage 87 

assignment problem into a relationship classification problem. With this framing, the goal of the 88 

algorithm is to classify the relationship between each putative parent and the focal individual (e.g., 89 

parent, grandparent, sibling, child). A putative parent is then assigned as the parent, if they are 90 

classified as a parent, pass an assignment threshold, and are the highest scoring parent out of the 91 

list of putative parents (Huisman, 2017; Riester et al., 2009). One of the main advantages of this 92 

approach is that the classification task (which is able to filter out most putative parents) only relies 93 

on the genetic information available for an individual and a putative parent and does not require 94 

direct comparison to other putative parents. This property is particularly appealing for GBS data 95 

where the amount of information on each individual may differ depending on the genotyping 96 

resources spent and the allele frequency of the loci with sequence reads. 97 

In this paper we extend the parentage assignment method of Huisman (2017) to explicitly 98 

handle GBS data. We then evaluated its performance in a simulated animal breeding population. 99 

We found that, similar to array data, it is possible to obtain accurate parent assignment with a fairly 100 

small number of sequence reads (e.g., 0.1x coverage), but that ruling out false positives is harder, 101 

and that a sizeable number of false positives could occur for medium coverage (0.5-2x) GBS data 102 

on a large number of linked markers. 103 
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Materials and Methods 104 

Here we describe our approach for parentage assignment with GBS data. This work builds 105 

closely on the probabilistic framework of Huisman (2017), but we present the full model for 106 

completeness. To assign parents we first construct a series of proposal distributions for each 107 

putative parent based on the genotypes of a focal individual and it’s known relatives. These 108 

proposal distributions describe the expected genotypes for a relative as a function of their 109 

relationship with the focal individual (e.g., parent, full sib of the parent, unrelated). We then 110 

classify each putative parent into one of these relationships, and if it is classified as a parent, and 111 

the assignment score passes a threshold, we assign it as the parent. If there are multiple possible 112 

parents, the highest scoring individual is assigned. Although this algorithm was originally designed 113 

in the context of animals, it also works for diploid and allopolyploid plants. 114 

To simplify the language, we assume that we are attempting to assign the father of a focal 115 

individual. For a given focal individual i and its mother m we calculate the probability that the 116 

putative parent f is the true father by: 117 

𝑝(ℎ = 𝑓𝑎𝑡ℎ𝑒𝑟|𝑔,, 𝑔., 𝑔/) =
𝑝(𝑔,|𝑔., 𝑔/, ℎ = 𝑓𝑎𝑡ℎ𝑒𝑟)𝑝(ℎ = 𝑓𝑎𝑡ℎ𝑒𝑟)

∑ 𝑝(𝑔,|𝑔., 𝑔/, ℎ2)𝑝(ℎ2)34
, (1) 118 

where 𝑔6 is the genotype of individual 𝑥, h is the relationship between the focal individual i and 119 

the putative parent f, and the denominator is enumerated over the set of possible relationships ℎ′. 120 

In the case where the genotypes of the mother are unknown we assume that her genotype 121 

probabilities are derived from Hardy-Weinberg Equilibrium. 122 

In this paper we consider four possible relationships: that the putative parent is the true 123 

father, a full sib of the true father, a half sib of the true father, or unrelated. The conditional 124 

probability distributions for alternative relationships can be constructed via the generative 125 

framework we provide below. To simplify calculations, we assume that p(h’) is uniform over all 126 
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possible relationships. In addition, we assume all markers segregate independently allowing 127 

𝑝(𝑔,|𝑔., 𝑔/, ℎ) to be calculated as the product of the probability of the putative parent’s genotype 128 

at each marker k: 129 

𝑝9𝑔,:𝑔., 𝑔/, ℎ; =<𝑝9𝑔,,=:𝑔.,=, 𝑔/,=, ℎ;
=

. (2) 130 

In the case of array data, and particularly GBS data, our assessment of the true genotypes, 131 

gf, gi, and gm may be noisy. To account for this noise we marginalize across possible genotypes 132 

based on observed genetic data d = (di, df, dm): 133 

𝑝(𝑑,,=:𝑑.,= , 𝑑/,=, ℎ; =AAA𝑝(𝑔,,=:𝑔.,= , 𝑔/,=, ℎ;𝑝(𝑔,,=|𝑑,,=)𝑝(𝑔/,=|𝑑/,=)𝑝(𝑔.,=|𝑑.,=)
BC,DBE,DBF,D

. (3) 134 

This model requires the calculation of two terms: (1) the genotype probabilities conditional 135 

on the observed data 𝑝9𝑔6,=:𝑑6,=; and (2) the proposal distribution for an individual’s genotype 136 

based on their relationship with the focal individual 𝑝(𝑔,,=:𝑔.,=, 𝑔/,=, ℎ;. We outline how to 137 

calculate both terms below. 138 

 139 

Evaluating genotype probabilities conditional on the observed data 140 

In this model we assume that each marker is biallelic and has four possible phased 141 

genotypes, aa, aA, Aa, AA. With observed array data for marker k, 𝑑6,=, the conditional 142 

probabilities for each genotype 𝑔6,=  are: 143 

𝑝9𝑔6,=:𝑑6,=; =

1 −
3𝑒
4 𝑖𝑓	𝑔6,= = 𝑎𝑎	𝑎𝑛𝑑	𝑑6,= = 0

1 −
3𝑒
4 𝑖𝑓	𝑔6,= = 𝐴𝐴	𝑎𝑛𝑑	𝑑6,= = 2

. 5 −
𝑒
4 𝑖𝑓	𝑔6,= = 𝑎𝐴	𝑜𝑟	𝐴𝑎	𝑎𝑛𝑑	𝑑6,= = 1

𝑒
4 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(4) 144 
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where e is the assumed genotyping error rate. This evaluation of individual genotype probabilities 145 

differs from Huisman (2017), where it is assumed that errors can only occur between homozygous 146 

and heterozygous states (and not between opposing homozygote states) and distinction is not made 147 

between two heterozygous genotypes. The genotype probabilities above correspond more closely 148 

to those commonly used in peeling (e.g., Whalen et al., 2017) and allow inferences to be made 149 

even when the genotyping error rate is high. 150 

With observed GBS data for marker k, 𝑑6,= , the conditional genotype probabilities are: 151 

𝑝9𝑔6,=:𝑑6,=; ∝

(1 − 𝑒)TUVF𝑒TWXY 𝑖𝑓	𝑔6,= = 𝑎𝑎
. 5TUVFZTWXY

2 			 𝑖𝑓	𝑔6,= = 𝑎𝐴	𝑜𝑟	𝐴𝑎

(1 − 𝑒)TWXY𝑒TUVF 𝑖𝑓	𝑔6,= = 𝐴𝐴,

	 (5) 152 

where e is the sequencing error rate, nref is the number of sequence reads supporting the reference 153 

allele and nalt is the number of sequence reads supporting the alternative allele. The genotype 154 

probabilities in Equation 5 do not sum to one, and so the probabilities need to be normalized for 155 

each allele. Equation 4 is consistent with previous work on parentage assignment with array data 156 

(Kalinowski et al., 2007; Huisman, 2017), while Equation 5 is consistent with previous work on 157 

imputation with GBS-like data (Li et al., 2010; VanRaden et al., 2015; Whalen et al., 2017). 158 

 159 

Generating proposal distributions via single locus peeling 160 

 We generate proposal distributions 𝑝(𝑔,,=:𝑔.,=, 𝑔/,=, ℎ; for the genotype probabilities of 161 

each relationship via single locus peeling (Elston and Stewart, 1971). Single locus peeling provides 162 

a rich generative model for estimating the genotype probabilities of un-genotyped relatives based 163 

on the genotypes of an individual and a known parent.  Although our presentation differs from 164 

Huisman (2017) it results in the same distributions. Under this framework, we calculate the 165 

genotype probabilities for three relatives: the father, a full-sib of the father, and a half-sib of the 166 
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father. These probabilities are calculated by first estimating the genotype probabilities for the 167 

father, peeling up to the paternal grandparents, and finally peeling down to the full sib and the half 168 

sib of the father (Figure 1). 169 

 Given genetic data on the focal individual 𝑑. and a mother 𝑑/, we can construct a proposal 170 

distribution for the father via: 171 

𝑝9𝑔,|𝑑/, 𝑑.; ∝A A 𝑇9𝑔.:𝑔,, 𝑔/;𝑝(𝑔.|𝑑.)𝑝9𝑔,:𝑑,;
BCBE

, (6) 172 

where 𝑝(𝑔.|𝑑.) is given by Equation 4 or 5 above, and 𝑇9𝑔.:𝑔,, 𝑔/; is the probability that the 173 

individual inherited genotype gi conditional on their parents having genotypes gf and gm, e.g., 174 

𝑇9𝑔. = 𝑎𝐴:𝑔, = 𝑎𝐴, 𝑔/ = 𝐴𝐴; = 0.5 (Marshall et al., 2003). 175 

 Using Equation 6, we can peel up to construct a joint distribution for the genotypes of the 176 

paternal grandparents (gf, gm): 177 

𝑝9𝑔B,,𝑔B/|𝑑., 𝑑,; ∝A 𝑇9𝑔,:𝑔B,, 𝑔B/;𝑝9𝑔,:𝑑., 𝑑,;
BF

, (7) 178 

where 𝑝9𝑔,:𝑑., 𝑑,; is given in Equation 6, above. We can then peel down to generate the proposal 179 

distributions for a full sib and a half sib of the father. The proposal distributions differs in whether 180 

the full joint distribution of both grandparents is used (full sib, fs), or if only one of the grandparents 181 

is used and the other parent assumed to have genotypes based on Hardy Weinberg Equilibrium 182 

(half sib, hs): 183 

𝑝9𝑔,^,|𝑔B,, 𝑔B/, 𝑑., 𝑑,; =A 𝑇9𝑔,^:𝑔B,, 𝑔B/;𝑝9𝑔B,, 𝑔B/:𝑑., 𝑑,;
BF

, (8) 184 

𝑝9𝑔3^,|𝑔B,, 𝑔B/, 𝑑., 𝑑,; =A A 𝑇9𝑔3^:𝑔B,, 𝑔T`aa;𝑝9𝑔B,, 𝑔B/:𝑑., 𝑑,;𝑝(𝑔T`aa)
BbcBdeXX

, (9) 185 

where 𝑝(𝑔T`aa) represents the probability of having a genotype if that genotype was drawn at 186 

random from the population. 187 
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 The proposal distribution for an unrelated individual simply assumes that their genotypes 188 

are drawn at random from the population according to Hardy Weinberg Equilibrium: 189 

𝑝(𝑔`Tghaijhk) = 𝑝(𝑔T`aa). (9) 190 

To assign a  parent we calculated an assignment score for each putative parent: 191 

𝑠𝑐𝑜𝑟𝑒 = −log	(1 − 𝑝(ℎ = 𝑓𝑎𝑡ℎ𝑒𝑟|𝑑,, 𝑑., 𝑑/)). (10) 192 

The score will be close to 0 if the individual is unlikely to be the father, and tends towards positive 193 

infinity with increasing evidence that the individual is the father. A putative parent was assigned 194 

as the true parent if its assignment score was the highest of the putative parents considered, and 195 

was higher than a pre-defined threshold.  196 

Although the described process may seem computationally intensive, there are two features 197 

which simplify calculations. First, because the proposal distributions depend only on the focal 198 

individual and its known parent, the proposal distributions only need to be calculated once and can 199 

be re-used for all putative parents of the focal individual. Second, peeling can be performed 200 

efficiently as a series of tensor operations on the genotypes of focal individual and its known 201 

parent, filtered through the inheritance matrix T, which allows us to take advantage of linear 202 

algebra libraries. 203 

Simulated data 204 

The simulated data modelled a livestock population. We initially sampled a set of genomes 205 

with 20 chromosomes using the Markovian coalescent simulator MaCS (Chen et al., 2009). For 206 

this we assumed that each chromosome is 108 bp long, a per site mutation rate is 2.5 × 10−8, a per 207 

site recombination rate is 1.0 × 10−8, and that effective population size changed over time. Based 208 

on estimates for the Holstein cattle population (Villa-Angulo et al., 2009), we set the effective 209 

population size to 100 in the final generation of the coalescent simulation and to 1,256, 4,350, and 210 
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43,500 at respectively 1000, 10,000, and 100,000 generations ago, with linear changes in between. 211 

We then used the sampled chromosomes to initiate a population of 1,000 animals with equal sex 212 

proportions. We bred this population for 5 generations. In each generation, we selected 10 males 213 

and mated them at random to 100 females. Each potential focal individual therefore had 1 true 214 

father, 4 male full sibs of the father, and 45 male half sibs of the father. All individuals were 215 

genotyped at 50,000 markers. Subsets of these markers were used in different simulations as 216 

described below. Array data were simulated without any errors, due to the low error rate for 217 

modern SNP genotyping arrays (<1%; e.g., Kalinowski et al., 2007). In addition to array data, we 218 

generated low-coverage GBS data for the last two generations of individuals. We assumed that the 219 

GBS method targeted the same loci as the genotyping array and was performed at coverage levels 220 

between 0.1x to 10x. For each coverage level, the number of sequence reads at a given marker was 221 

generated via a Poisson distribution with mean equal to the coverage level. Each read randomly 222 

sampled one of the two alleles at a marker. The read sampling process also included a small 223 

sequencing error rate of 0.1%. We generated the simulated data using the R package AlphaSimR 224 

(Gaynor et al.), which is available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR. 225 

Scenarios 226 

We evaluated the accuracy of parent assignment for the last generation of 1,000 individuals 227 

across 4 different scenarios. In the first scenario (a) we analysed the accuracy of performing parent 228 

assignment when:  229 

• the mother was known and genotyped,  230 

• all of the male full- and half-sibs along with 50 other individuals (total of 100 potential 231 

parents) were putative parents,  232 
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• and either both the parents and progeny had array data, the parents had array data and the 233 

progeny had GBS data, or both the parents and the progeny had GBS data. 234 

These sub-scenarios span a spectrum of possible practical settings. The sub-scenario where the 235 

parents had array data but the progeny had GBS data may represent either the case where the 236 

progeny are initially genotyped with a low-cost GBS platform and any selected parents are re-237 

genotyped with an array, or it may represent the case where pedigree information was used to 238 

impute and accurately call parental genotypes. In the remaining scenarios we focused on the case 239 

where both parents and progeny had GBS data and analysed (b) the impact of knowing and 240 

genotyping the known alternative parent, (c) the impact of restricting the pool of putative parents 241 

to either 100 unrelated individuals, 45 half sibs, or the 4 full sibs, and (d) examined how the false 242 

positive rate changed depending on the threshold used for assignment (see below). 243 

In each scenario we performed three evaluations. To evaluate the overall accuracy, we 244 

assumed the true parent was included in the list of putative parents, and evaluated accuracy by the 245 

number of times the top parent was the true parent. To evaluate the true positive rate we included 246 

the true parent in the list of putative parents, but assigned the top scoring parent only if it passed 247 

an assignment threshold. To evaluate the false positive rate, we excluded the true parent from the 248 

list of putative parents and counted the number of times the top scoring parent passed the 249 

assignment threshold. The first evaluation represented a case where we know the true parent is 250 

included in the list of putative parents (e.g., groups of females cohabitating with multiple males or 251 

artificial insemination using polyspermic matings). The second and third evaluations were 252 

designed to assess performance when we are not sure whether or not the true parent is included in 253 

the list of potential parents (e.g., natural service sires or wild populations). 254 

Software  255 
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 Parentage assignment was performed using AlphaAssign 256 

(http://www.alphagenes.roslin.ed.ac.uk/alphasuite-softwares/alphaassign/) which, implements the 257 

described algorithm. AlphaAssign has three run-time parameters: (i) an assumed genotyping error 258 

rate for array data, (ii) an assumed sequencing error rate for GBS data, and (iii) an assignment 259 

threshold to determine the required score to assign a putative parent as a parent. Throughout this 260 

paper we assumed a 1% genotyping error rate, a 0.1% sequencing error rate, an assignment 261 

threshold of 10 (determined via pilot simulations) although we varied the assignment threshold in 262 

the last set of simulations. 263 

 264 

Results 265 

Parent assignment with array and GBS data 266 

First we examined the number of markers required for accurate parentage assignment when both 267 

parents and progeny were genotyped with array data. If the true parent was included in the list of 268 

putative parents (and an assignment threshold was used), 100 markers were required to obtain 269 

100% parentage assignment accuracy. If the true parent was excluded from the list of putative 270 

parents, the false positive rate was less than 0.1% if there were between 50 to 350 markers, and 271 

there were no false positives when there were more than 500 markers. 272 

Unlike array data where the number of markers can be more easily varied, for GBS data 273 

the number of markers is usually determined by the choice of restriction enzymes while the amount 274 

of coverage obtained on each individual can be varied. Because of this we focused on the required 275 

coverage level to accurately assign parents based on a fixed number of markers. Figure 2 shows 276 

the accuracy and false positive rates based on the amount of coverage allocated to each progeny, 277 

stratified by the number of markers that this coverage is spread over. Because performance with 278 
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array data was nearly identical to that with 10x GBS data we did not include array data in Figure 279 

2. 280 

We evaluated the performance of parentage assignment when the parents were genotyped 281 

with array data and the progeny were genotyped with GBS data. If the true parent was included in 282 

the list of putative parents, a coverage of 0.4x was required to obtain 100% accuracy when there 283 

were 50,000 GBS markers. The required coverage increased to 1x for 5,000 markers, and to 2x for 284 

1,000 markers. If the true parent was excluded from the list of putative parents, we found that the 285 

false positive rate was less than 0.2% in all cases. 286 

The accuracy of parentage assignment decreased when both the parents and progeny had 287 

GBS data. If the true parent was included in the list of putative parents, a coverage of 0.4x was 288 

required to obtain 100% accuracy when there were 50,000 GBS markers. The required coverage 289 

increased to 2x for 5,000 markers, and to 5x for 1,000 markers. If the true parent was excluded 290 

from the list of putative parents, we found that the false positive rate was as high as a 60%. These 291 

false positives were clustered on low to medium coverage GBS data (0.1 - 3x) with a large number 292 

of markers (>1000). 293 

False positive assignments by relationship 294 

Figure 3 stratifies the false positive rate based on whether unrelated individuals, half-sibs 295 

of the true parent, or full-sibs of the true parent were included in the list of putative parents. In line 296 

with expectations we found a high false positive rate (as high as 60% in some conditions) when 297 

only the full-sibs of the true parent were included as putative parents. This decreased to at most 298 

35% when only the half-sibs of the true parent were included and to under 20% when only 299 

unrelated individuals were included. As seen previously, most of the false positives were occurred 300 

when there were a large number of markers and low to medium coverage GBS data.  301 
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Parent assignment when neither parent is known 302 

Figure 4 compares the performance of parentage assignment when one of the parents is 303 

known and genotyped compared to when neither parent is known or genotyped. We found that 304 

having one parent known and genotyped increased the accuracy of parentage assignment and 305 

decreased the number of false positives in all cases. The benefit was largest when both the progeny 306 

and parents had high-coverage GBS data. 307 

Controlling false assignments by modifying the threshold 308 

 Figure 5 shows the true positive rates and false positive rates for when sequencing 309 

resources were spread over 50,000 markers, as a function of the threshold used to assign a putative 310 

parent as the parent. We found that, compared to the results in Figures 2 and 3, it was possible to 311 

substantially reduce the false positive rate by increasing the assignment threshold, but that the ideal 312 

threshold depends on the total coverage. The relationship between the false positive and true 313 

positive rate is given as a receiver operating characteristic in Figure 5(c). 314 

Timing 315 

 The algorithm took 3 minutes and 54 seconds to assign parents for 1000 progeny, each 316 

with 100 putative parents. The progeny and their parents were genotyped using GBS data across 317 

5,000 markers. The algorithm scales linearly with the number of markers and the number of 318 

putative parents per individual. 319 

 320 

Discussion 321 

 In this paper we extended the parentage assignment method of Huisman (2017) to account 322 

for low-coverage sequence data and analysed the performance of parentage assignment when 323 

genotyping is performed via sequencing instead of the traditional genome-wide arrays. We found 324 
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that high-coverage GBS data (i.e., 10x or higher) has the same performance as array data. We also 325 

found that low-coverage GBS data (as low as 0.1x) can be used to perform parentage assignment 326 

as long as it is obtained on a sufficiently large number of markers, but that there may be a large 327 

number of false assignments if the true parent is not included in the list of putative parents. The 328 

number of false positives could be reduced by modifying the threshold used to call assignments. 329 

In light of these results, we will discuss (1) the accuracy of parentage assignment, (2) potential 330 

extensions to control the false positive rate, and (3) the use of peeling to construct the proposal 331 

distributions in more detail. 332 

Parentage assignment accuracy with GBS data 333 

 A goal of this work was to quantify the amount of GBS data required to accurately perform 334 

parentage assignment. We found that, similar to array data, the total amount of data required is 335 

relatively low. For example, when using high-coverage GBS data between 100 to 200 markers are 336 

required to accurately assign parents. This is in line with previous estimates for array data (Rohrer 337 

et al., 2007; Strucken et al., 2016; Fisher et al., 2009; Tortereau et al., 2017), where between 50-338 

700 markers were required. The differences in the exact number of markers required  (100-200 339 

compared to 50-700) is likely due to the structure of the underlying genetic data (i.e., number of 340 

chromosomes, minor allele frequency of the markers), and the assumption in this study that one of 341 

the parents was already known and genotyped. 342 

In addition to being able to use high-coverage GBS data to perform parentage assignment, 343 

we found that low-coverage GBS data could also be used, provided it was spread across a larger 344 

number of markers. The increase in required number of markers is due to the lower information 345 

content at an individual loci for low-coverage GBS data, requiring the data to be pooled across a 346 

larger number of markers to achieve the same level of accuracy. 347 
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 The results of this study suggest that GBS data – either high-coverage data on a small 348 

number of markers, or low-coverage data on a large number of markers – is an effective alternative 349 

to array data for performing parentage assignment. This result is particularly important given the 350 

emerging importance of GBS as an alternative for SNP array data, both in species where SNP 351 

arrays are available (e.g., De Donato et al., 2013; Brouard et al., 2017) and in those where SNP 352 

arrays have not been constructed (e.g., Robledo et al., 2017; Palaiokostas et al., 2018). 353 

Controlling the false positive rate 354 

During our analysis of low-coverage data, we found an inflation of false positives when 355 

both the parents and the progeny had GBS data. These false positives were likely due to the fact 356 

that with between 1-3x coverage GBS data we were able to determine that two animals are 357 

genetically similar, but were not able to obtain a sufficient number of loci with precisely inferred 358 

genotyped to find opposing homozygous loci. 359 

Consistent with previous work, we found that using a hand-tuned assignment threshold 360 

could reduce the number of false positives (Huisman, 2017; Riester et al., 2009). An alternative 361 

approach would be to adaptively determine the assignment threshold via introspection of the 362 

underlying data (Grashei et al., 2018). In the majority of the simulations, a fixed threshold of 10 363 

was used based on pilot simulations with array data. As we demonstrate in Figure 5, substantially 364 

raising the threshold for assignment could reduce the false-positive rate even for 50,000 markers 365 

and low-coverage sequence data, although at the cost of a decreased true-positive rate. The optimal 366 

threshold value for assignment depends on the overall sequencing coverage, making it challenging 367 

to use a fixed threshold in cases where individuals are sequenced at different coverages. We believe 368 

that automating this process is an area for future research, and may depend on the exact breeding 369 
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program structure, the exact GBS system deployed (e.g., Baird et al., 2008; Davey et al., 2011; 370 

Elshire et al., 2011), and reason that parentage information is required. 371 

 Furthermore, we believe that the issue of false parent-assignments may be less of an issue 372 

in the context of commercial agricultural populations compared to wild populations for two 373 

reasons. First, most of the false assignments that we observed were cases where the true parent 374 

was not included in the pedigree and a full- or half-sib of the true parent was included and wrongly 375 

assigned as a parent. In the context of many animal breeding programs, the routine use of pairs of 376 

sibs as parents may not commonly arise because of explicit efforts to manage diversity and 377 

inbreeding (e.g., Woolliams et al., 2015). Second, due to the genetic similarity between the full-378 

sib of the true parent and the true parent, using the full-sib of the true parent as a “proxy” parent 379 

for the progeny may have limited impact on downstream applications such as estimation of 380 

breeding values. Further research is required to quantify the impact of such false positives in 381 

downstream applications. 382 

 383 

Constructing proposal distributions via peeling 384 

 In this paper, we closely followed the approach of Huisman (2017) for performing 385 

parentage assignment, with two differences. First, we modified the genotype probability function 386 

to handle sequence data. Second, we recast the construction of proposal distributions for relatives 387 

as a series of peeling operations on artificial pedigrees. We believe the later development is of 388 

more interest. Peeling provides a rich and computationally efficient framework for estimating the 389 

genotypes of a relative based on the genotypes of individuals in an existing pedigree. In this paper 390 

we focused on a small number of possible relationships, but this framework can be easily extended 391 

to consider a wider and potentially complex class of relatives (e.g., siblings of the focal individual, 392 
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cousins of the parent, or grandparents), or could be altered to assess alternative relationships (e.g., 393 

performing grandparent assignment instead of parentage assignment). Use of these additional 394 

relationship classes may depend on the purpose of a particular application. 395 

 396 

Conclusion 397 

 In conclusion, we extended the algorithm of Huisman (2017) to perform parentage 398 

assignment with sequence data, and evaluated the performance of using low-coverage GBS data 399 

for parentage assignment. We found that low-coverage GBS data could be used for accurate 400 

parentage assignment, but that there may be concerns with false positives if the true parent is not 401 

included on the list of putative parents. Such false positives might be mitigated on a case-by-case 402 

basis by tuning the assignment criteria used. These results suggest that GBS data can be used as 403 

an alternative to array data for parentage assignment. 404 
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Figures 495 

  496 

 497 

Figure 1. A graphical representation of the peeling order for the proposal distributions. The arrows 498 

represent the direction in which the peeling operations should be performed. Hardy-Weinberg 499 

equilibrium is used to generate the genotype distributions for the unrelated individual, the mother 500 

of the half sib, and if unknown, the mother’s genotype. Although this graphic assumes the mother 501 

is known and the father unknown, a symmetric picture could be constructed when the mother is 502 

unknown and father known. 503 

  504 
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 505 

Figure 2. Parentage assignment performance when array or GBS data was available for the parents 506 

and GBS data was available for the progeny. The left panels give the number of correct 507 

assignments (for 1000 progeny) when the true parent was on the list of putative parents and no 508 

assignment threshold was used – the top scoring parent was assigned. The middle panels give the 509 

number of correct assignments when the true parent was on the list of putative parents and 510 

assignment threshold was used. The right panels give the number of incorrect assignments when 511 

the true parent was excluded from the list of putative parents. 512 
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 514 

Figure 3. Number of false positive parentage assignments (for 1000 progeny) when GBS data was 515 

available for parents and progeny, the parent was excluded from the list of putative parents, 516 

assignment threshold was used, and the list of putative parents contained either 100 unrelated 517 

individuals (left panel), 45 half sibs of the true parent (middle panel), or 4 full sibs of the true 518 

parent (right panel). 519 

  520 

0
20

0
40

0
60

0
80

0
10

00

Amount of coverage

N
um

be
r o

f i
nc

or
re

ct
 a

ss
ig

ne
m

en
ts

True sire excluded 
Assignement threshold used

0.1 0.2 0.5 1 2 5 10

Unrelated only

0
20

0
40

0
60

0
80

0
10

00

Amount of coverage

N
um

be
r o

f i
nc

or
re

ct
 a

ss
ig

ne
m

en
ts

True sire excluded 
Assignement threshold used

0.1 0.2 0.5 1 2 5 10

Half siblings only

0
20

0
40

0
60

0
80

0
10

00

Amount of coverage

N
um

be
r o

f i
nc

or
re

ct
 a

ss
ig

ne
m

en
ts

True sire excluded 
Assignement threshold used

0.1 0.2 0.5 1 2 5 10

Number of markers
50
100
250
500

1000
2500
5000
10000

25000
50000

Full siblings only

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/270561doi: bioRxiv preprint 

https://doi.org/10.1101/270561
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parentage assignment with GBS data  28 

 521 

Figure 4. A comparison between the parentage assignment performance with one parent known 522 

and genotyped and no parent known at different GBS coverage levels (left and middle panes 523 

compare true positives while the right pane compares false positives). 524 
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 526 

Figure 5. The rate of true positives, false positives, and the relationship between then when varying 527 

the total amount of coverage and the calling threshold.  528 
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