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Abstract. Hundreds of thousands of human whole genome sequencing (WGS) datasets will be
generated over the next few years to interrogate a broad range of traits, across diverse populations.
These data are more valuable in aggregate: joint analysis of genomes from many sources increases
sample size and statistical power for trait mapping, and will enable studies of genome biology,
population genetics and genome function at unprecedented scale. A central challenge for joint analysis
is that different WGS data processing and analysis pipelines cause substantial batch effects in
combined datasets, necessitating computationally expensive reprocessing and harmonization prior to
variant calling. This approach is no longer tenable given the scale of current studies and data volumes.
Here, in a collaboration across multiple genome centers and NIH programs, we define WGS data
processing standards that allow different groups to produce "functionally equivalent" (FE) results
suitable for joint variant calling with minimal batch effects. Our approach promotes broad harmonization
of upstream data processing steps, while allowing for diverse variant callers. Importantly, it allows each
group to continue innovating on data processing pipelines, as long as results remain compatible. We
present initial FE pipelines developed at five genome centers and show that they yield similar variant
calling results — including single nucleotide (SNV), insertion/deletion (indel) and structural variation (SV)
— and produce significantly less variability than sequencing replicates. Residual inter-pipeline variability
is concentrated at low quality sites and repetitive genomic regions prone to stochastic effects. This work
alleviates a key technical bottleneck for genome aggregation and helps lay the foundation for broad

data sharing and community-wide "big-data" human genetics studies.

Main text

Over the past few years, a wave of large-scale WGS-based human genetics studies have been
launched by various institutes and funding programs worldwide, aimed at elucidating the genetic basis
of a variety of human traits. These projects will generate hundreds of thousands of publicly available
deep (>20x) WGS datasets from diverse human populations. Indeed, at the time of writing, >150,000
human genomes have already been sequenced by three NIH programs: NHGRI Centers for Common
Disease Genomics' (CCDG), NHLBI Trans-Omics for Precision Medicine? (TOPMed), and NIMH Whole
Genome Sequencing in Psychiatric Disorders® (WGSPD). Systematic aggregation and co-analysis of
these (and other) genomic datasets will enable increasingly well-powered studies of human traits,
population history and genome evolution, and will provide population-scale reference databases that
expand upon the groundbreaking efforts of the 1000 Genomes Project*®, Haplotype Reference

Consortium®, EXAC’ and GnomAD?.

Our ability as a field to harness these collective data to their full analytic potential depends on
the availability of high quality variant calls from large populations of individuals. Accurate population-

scale variant calling in turn requires joint analysis of all constituent raw data, where different batches
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have been aligned and processed systematically using compatible methods. Genome aggregation
efforts are stymied by the distributed nature of human genetics research, where different groups
routinely employ different alignment, data processing and variant calling methods. These methods often
have comparable overall quality, but exhibit trivial incompatibilities that produce batch effects, limiting
the utility of combined datasets. Prior exome/genome aggregation efforts have therefore been forced to
obtain raw sequence data and re-perform upstream read alignment and data processing steps prior to
joint variant calling”®. These upstream steps are computationally expensive — representing as much as
~80% of the overall cost of WGS data analysis — and having to rerun them is inefficient. This

computational burden will be increasingly difficult to bear as data volumes grow over coming years.

To help alleviate this burden and enable future genome aggregation efforts, we have forged a
collaboration of major U.S. genome sequencing centers and NIH programs, and collaboratively defined
data processing and file format standards to guide ongoing and future sequencing studies. Our
approach focuses on the harmonization of upstream steps prior to variant calling, thus reducing trivial
variability in core pipeline components while promoting the application of diverse and complementary
variant calling methods — an area of much ongoing innovation. The guiding principle is the concept of
"functional equivalence" (FE). We define FE to be a shared property of two pipelines that can be run
independently on the same raw WGS data to produce two output files that, upon analysis by the same
variant caller(s), produce virtually indistinguishable genome variation maps. A key question, of course,
is where to draw the FE threshold. There is no one answer; at minimum, we advise that data
processing pipelines should introduce much less variability in a single DNA sample than independent

WGS replicates of DNA from the same individual.

Towards this goal, we defined a set of required and optional data processing steps and file
format standards (Fig. 1; see GitHub page® for details). We focus here on WGS data analysis, but

these guidelines are equally suitable for exome sequencing. These standards are founded in extensive

5,11-17 11,18

prior work in the area of read alignment'®, sequence data analysis and compression~—", and more
broadly in WGS analysis best practices employed at our collective institutes, and worldwide. Notable
features of the data processing standard include alignment with BWA-MEM®®, adoption of a standard

GRCh38 reference genome with alternate loci****

, and improved duplicate marking. File format
standards include a 4-bin base quality scheme, CRAM compression®® and restricted tag usage, which
in combination reduced file size >3-fold (from 54 to 17 Gb for a 30X WGS and from 38 to 12 Gb for a
20X WGS). This in turn reduces data storage costs and increases transfer speeds, facilitating data

access and sharing.
We implemented initial versions of these pipelines at each of the five participating centers,

including the four CCDGs as well as the TOPMed Informatics Resource Core, and serially tested and

modified them based on alignment statistics (Supplementary Table 1) and variant calling results from
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a 14-genome test set, using GATK* for single nucleotide variants (SNVs) and small insertion/deletion
(indel) variants, and LUMPY? for structural variants (SVs), with data contributed from each center (see
Methods). These 14 datasets have diverse ancestry and are composed of well-studied samples from
the 1000 Genomes Project?, including 4 independently-sequenced replicates of NA12878 (CEPH) and
2 replicates of NA19238 (Yoruban). We tested pairwise variability in SNV, indel and SV callsets
generated separately from each of the five pipelines, before and after harmonization, as compared to
variability between WGS data replicates (Fig. 2). As expected, pipelines used by centers prior to
harmonization effort exhibit strong levels of variability, especially among SV callsets. Most importantly,
variability between harmonized pipelines (mean 0.4%, 1.8%, and 1.1% discordant for SNVs, indels, and
SVs, respectively) is an order of magnitude lower than between replicate WGS datasets (mean 7.1%,
24.0%, and 39.9% discordant). Note that absolute levels of discordance are somewhat high in this
analysis because we performed per-sample variant calling and included all genomic regions, with
minimal variant filtering. All pipelines show similar levels of sensitivity and accuracy based on Genome
in a Bottle (GiaB) calls for NA12878% (Supplementary Fig. 1).

We next applied the final pipeline versions to an independent set of 100 genomes comprising 8
trios from the 1000 Genomes Project*® and 19 quads from the Simons Simplex Collection?*, and
generated separate 100-genome GATK and LUMPY callsets using data from each of the five pipelines.
Considering all five callsets in aggregate, the vast majority of GATK variants (97.2%) are identified in
data from all five pipelines, with only 1.74% unique to a single pipeline and 1.02% in various minor
subsets. Mean pairwise SNV concordance rates are in the range of 99.0-99.9% over all sites and
comparisons, and Mendelian error rates are ~0.3% at concordant sites, and ~22-24% at discordant
sites (Fig. 3). Indel and SV concordance rates are lower — as expected given that these variants are
more difficult to map and genotype precisely. Pairwise SNV concordance rates are substantially higher
in GiaB high confidence genomic regions comprised predominantly of unique sequence (SNV
concordance: 99.7-99.9%; 72% of genome) than in difficult-to-assess regions laden with segmental
duplications and high copy repeats (SNV concordance: 92-99%; 8.5% of genome; see Methods).
Indeed, 58% of discordant SNV calls are found in the 8.5% most difficult to analyze subset of the
genome. Furthermore, the mean quality score of discordant SNV sites are only 0.5% as high as the
mean score of concordant SNV sites (16.4% for indels and 90.0% for SVs) (Supplementary Fig. 2).
This suggests that many discordant sites are either false positive calls or represent sites that are
difficult to measure robustly with current methods. Differences between pipelines are roughly
symmetric, with all pipelines achieving similarly low levels of performance at discordant sites, as based
on pairwise discordance rates and Mendelian error rates (Supplementary Fig. 3), further suggesting
that most discordant calls are due to stochastic effects at sites with borderline levels of evidence. We
note that there are some center-specific sources of variability due to residual differences in BQSR

models and alignment filtering methods, but that these affect only a trivial fraction of variant calls.
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Here, we have described a simple yet effective approach for harmonizing data processing
pipelines through the concept of "functional equivalence". This work resolves a key source of batch
effects in sequencing data from different genome centers, and thus alleviates a bottleneck for data
sharing and collaborative analysis within and among large-scale human genetics studies. Our approach
also facilitates accurate comparison to variant databases; researchers that want to analyze their
sample(s) against major datasets such as gnomAD, TOPMed, or CCDG should adopt these standards
in order to avoid artifacts caused by non-FE sample processing. Of course, other challenges remain,
such as batch effects from library preparation and sequencing, and persistent regulatory hurdles.
Nevertheless, we envision that it will be possible to robustly generate increasingly large genome
variation maps and shared annotation resources from these and other programs over the next few
years, from diverse groups and analysis methods. Ultimately, we hope that international efforts such as
Global Alliance for Genomics & Health (GA4GH) will adopt and extend these guidelines to help

integrate research and medical genomes worldwide.
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Figure 1. We defined a series of required and allowed processing steps that provide flexibility in
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pipeline implementation while keeping variation between pipelines at a minimum. Reads must be
aligned to a specific reference genome using a minimum version of the BWA-MEM aligner. Algorithms
for marking duplicates and recalibrating base quality scores are more flexible and vary somewhat
between centers. Compression of quality scores into four bins saves storage and file transfer costs,

while maintaining acceptable accuracy and sensitivity.
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Figure 2. Pairwise variant discordance rates were calculated between pipelines from each of five
centers (pre-harmonization and post-harmonization) as well as between independent sequencing
replicates of the same individuals processed by the same pipeline (data replicates). From left, single
nucleotide (SNV) and small insertion/deletion (indel) variants were detected with GATK, and structural
variants (SV) with LUMPY. The pre- and post-harmonization comparisons include 14 independently
sequenced samples. The data replicate comparisons include four replicates of NA12878 and two
replicates of NA19238. Note that the extremely high levels of discordance for SVs pre-harmonization
are largely due to variable use of “decoy” sequences in the reference genomes used by the different

centers.
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Figure 3. Variant concordance and Mendelian error (ME) rates for different variant classes and
genomic regions using 100 samples, including 8 trios from the 1000 Genomes Project and 19 quads
from the Simons Simplex Collection. (a) Variant concordance rates were calculated from pairwise
comparisons across five pipelines for 100 samples. (b) Mendelian error rates were calculated using
informative sites in 44 parent-offspring trios, for variants classified as concordant and discordant in

pairwise comparisons between five pipelines.
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Supplementary Figure 1. Sensitivity and precision to the GiaB gold standard variants were very

similar across pipelines for all four NA12878 replicates.
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Supplementary Figure 2. The median variant quality score (QUAL field from the GATK VCF; MSQ
INFO field from the LUMPY SV VCF) was calculated for each sample, with variants partitioned by their

status in each pairwise pipeline comparison.
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Supplementary Figure 3. The rate of Mendelian error for each of 44 parent-offspring trios was

calculated for variants shared between two pipelines as well as variants unique to one pipeline. The

error rate was determined using informative sites only. In most variant types and genomic regions,

variants unique to each pipeline show similar error rates, indicating that no pipeline is introducing

variant calling errors or improvements in a biased way. The exception is SVs, where unique variants

from one pipeline have a higher error rate than other pipelines; but, note that this is caused by a tiny

number of discordant calls.
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Supplementary Table 1. Select alignment statistics for NA19431, post-harmonization.

Center

## Alignment Statistics
Yield_Reads
Unmapped_Reads
Duplicate_Reads PCT
Q20_Bases_PCT
Mismatched_Bases PCT
Median_lInsert_Size
Percent Bases >20x
Average Coverage

Chimeric_Rate

Center 1

841,563,833
14,505,992
6.02

96.24

0.72

492

98.02

39.56

251

Center 2

841,496,939
12,605,618
6.02

96.22

0.73

492

98.04

39.61

2.6

Center 3

841,496,939
12,605,618
6.02

96.22

0.73

492

98.04

39.61

2.6

Center 4

841,496,939
12,605,618
6.02

96.39

0.73

492

98.04

39.61

2.6

Center 5

841,496,939
12,605,618
6.02

96.22

0.73

492

98.04

39.61

2.6


https://doi.org/10.1101/269316
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/269316; this version posted April 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Methods

Dataset selection

For initial testing, we selected 14 whole genome sequencing datasets based on the following criteria:
(1) they include samples of diverse ancestry, including CEPH (NA12878, NA12891, NA12892),
Yoruban (NA19238), Luhya (NA19431), and Mexican (NA19648); (2) they were sequenced at multiple
different genome centers to deep coverage (>20X) using lllumina HiSeq X technology; (3) they include
replicates of multiple samples, including 2 of NA19238 (Yoruban) and 4 of NA12878 (CEPH); (4) they
include the extremely well-studied NA12878 genome, for which much ancillary data exists, and (5) they
were open access, readily accessible and shareable among the consortium sites. For subsequent
characterization of the finalized pipelines, we selected an independent set of 100 samples composed of
8 open-access trios of diverse ancestry from the 1000 Genomes project — including CEPH (NA12878,
NA12891, NA12892), Yoruban (NA19238, NA19239, NA19240), Southern Han Chinese (HG00512,
HGO00513, HG00514), Puerto Rican (HG00731, HG00732, HG00733), Colombian (HG01350,
HGO01351, HG01352), Vietnamese (HG02059, HG02060, HG02061), Gambian (HG02816, HG02817,
HG02818), and Caucasian (NA24143, NA24149, NA24385) — and 19 quads from the Simons Simplex

Collection®.

Downsampling data replicates

To eliminate coverage differences as a contributor to variation between sequencing replicates of the
same sample (4 replicates of NA12878 and 2 replicates of NA19238), the data replicates were
downsampled to match the lowest coverage sample. To obtain initial coverage, all replicates were
aligned to a build 37 reference using speedseq™ (v 0.1.0). Mean coverage for each BAM file was
calculated using the Picard CollectWgsMetrics tool (v2.4.1)". For each sample, a downsampling ratio
was calculated using the lowest coverage as the numerator and the sample’s coverage as the
denominator. This ratio was used as the PROBABILITY parameter for the Picard DownsampleSam
tool, along with RANDOM_SEED=1 and STRATEGY=ConstantMemory. The resulting BAM was
converted to FASTQ using the script bamtofastq.py from the speedseq repository.

Alignment and data processing pipelines - WashU, pre- and post-harmonization
The pre-harmonization pipeline aligns reads to the GRCh37-lite reference using speedseq (v0.1.0)*.
This includes alignment using bwa (v0.7.10-r789)"°, duplicate marking using samblaster (v0.1.22)"*,

and sorting using sambamba (v0.5.4)"°.
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The post-harmonization pipeline aligns each read group separately to the GRCh38 reference
using bwa-mem (v0.7.15-r1140) with the parameters "-K 100000000 -p -Y". MC and MQ tags are added
using samblaster (v0.1.24) with the parameters "-a --addMateTags . Read group BAM files are merged
together with “'samtools merge™ (v1.3.1-2). The resulting file is name-sorted with 'sambamba sort -n’
(v0.6.4). Duplicates are marked using Picard MarkDuplicates (v2.4.1) with the parameter
"ASSUME_SORT_ORDER=queryname’, then the results are coordinate sorted using “'sambamba
sort’. A base quality recalibration table is generated using GATK BaseRecalibrator (v3.6) with
knownSites files (dbSNP138, Mills and 1kg indels, and known indels) from the GATK resource bundle
(https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0) and
parameters “--preserve_gscores_less_than 6 -dfrac .1 -nct 4 -L chrl -L chr2 -L chr3 -L chr4 -L chr5 -L
chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chrll -L chrl2 -L chrl3 -L chrl4 -L chrl5 -L chrl6 -L chrl7 -L
chrl8 -L chrl9 -L chr20 -L chr21 -L chr22’. The base recalibration table is applied using GATK
PrintReads with the parameters "-preserveQ 6 -BQSR "${bgsrt}" -SQQ 10 -SQQ 20 -SQQ 30 --

disable_indel_quals’. Finally, the output is converted to CRAM using “samtools view'.

Alignment and data processing pipelines — Broad, pre- and post-harmonization
Pre harmonization:
-Align with bwa-mem v0.7.7-r441: bwa mem -M -t 10 -p GRCh37.fasta

-Merge aligned bam with the original unaligned bam and sort with Picard 2.8.3: MergeBamAlignment
ADD MATE_CIGAR=true ALIGNER_PROPER_PAIR=false UNMAP_CONTAMINANT READS=false
SORT_ORDER=coordinate

- Mark duplicates with Picard 2.8.3: MarkDuplicates

- Find target indels to fix with GATK 3.4-g3¢c929b0: CreateRealignerTargets -known
dbSnp.138.vcf —-known mills.vcf -known 1000genome.vcf

-Fix indel alignments with GATK 3.4-g3c929b0: -known dbSnp.138.vcf -known mills.vcf -known
1000genome.vctf

- Create recalibration table using GATK 3.4-g3c929b0: RecalibrateBaseQuality -knownSites
dbSnp.138.vcf using -known dbSnp.138.vcf -known mills.vcf —-known 1000genome.vcf

- Apply base recalibration using GATK 3.4-g3c929b0: PrintReads -disable_indel_quals -

emit_original_quals

Post harmonization:

- Align with bwa-mem 0.7.15.r1140: bwa mem -K 100000000 -p -v 3 -t 16 -Y GRCh38.fasta
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- Merge aligned bam with the original unaligned bam with Picard 2.16.0: MergeBamAlignment
EXPECTED ORIENTATIONS=FR ATTRIBUTES TO RETAIN=XO ATTRIBUTES_ TO_REMOVE=NM
ATTRIBUTES_TO_REMOVE=MD REFERENCE_SEQUENCE=${ref fasta} PAIRED RUN=true
SORT_ORDER="unsorted CLIP_ADAPTERS=false MAX_INSERTIONS OR DELETIONS=-1
PRIMARY_ALIGNMENT_ STRATEGY=MostDistant UNMAPPED READ STRATEGY=COPY_TO_TAG
ALIGNER_PROPER_PAIR FLAGS=true UNMAP_CONTAMINANT_ READS=true
ADD_PG_TAG_TO_READS=false

- Mark duplicates with Picard 2.16.0: MarkDuplicates ASSUME_SORT_ORDER="queryname"

- Sort with Picard 2.16.0: SortSam SortOrder=coordinate

- Create BQSR table using GATK 4.beta.5: BaseRecalibrator
-knownSites dbSnp.138.vcf using —-known dbSnp.138.vcf —-known mills.vcf —known

1000genome.vct

- Apply recalibration using GATK 4.beta.5:

ApplyBQSR -SQQ 10 -SQQ 20 -SQQ 30
- Convert output to cram with SamTools v 1.3.1: samtools view -C -T GRCh38.fasta

Alignment and data processing pipelines — Baylor, pre & post harmonization

In the HGSC pre-harmonized WGS protocol (https://github.com/HGSC-
NGSI/HgV_Protocol_Descriptions/blob/master/hgv_resequencing.md), reads are mapped to the
GRCh37d reference with bwa-mem (v0.7.12), samtools (v1.3) fixmate, sorting and duplicate marking
with sambamba (v0.5.9), base recalibration and realignment with GATK (v3.4.0), and the quality scores
are binned and tags removed with bamuUtil squeeze (v1.0.13). Multiplexed samples follow the same
steps up through sorting and duplicate marking, resulting in sequencing-event BAMs. The BAMs are
merged and duplicates marked using sambamba (v0.5.9), followed by the recalibration, realignment
and binning described above.

The HGSC harmonized WGS protocol (https://github.com/HGSC-
NGSI/HgV_Protocol_Descriptions/blob/master/hgv_ccdg_resequencing.md) aligns each read group to
the GRCh38 reference using bwa-mem (0.7.15) with the parameters "-K 100000000 -Y". MC and MQ
tags are added using samblaster (v0.1.24) with the parameters "-a --addMateTags . The resulting file is
name-sorted with “'sambamba sort -n" (v0.6.4). Duplicates are marked using Picard MarkDuplicates
(v2.4.1) with the parameter 'ASSUME_SORT_ORDER=queryname’, then the results are coordinate-
sorted using “'sambamba sort’. For multiplexed samples, these sequence-event BAMs are then merged
with sambamba (v0.6.4) merge, name sorted, duplicate marked and coordinate-sorted with the same
tools as above. A base quality recalibration table is generated using GATK BaseRecalibrator (v3.6) with
knownSites files (dbSNP138, Mills and 1kg indels, and known indels) from the GATK resource bundle
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(https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0) and
parameters “--preserve_gscores_less_than 6 -dfrac .1 -nct 4 -L chrl -L chr2 -L chr3 -L chr4 -L chr5 -L
chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chrll -L chrl2 -L chrl3 -L chrl4 -L chrl5 -L chrl6 -L chrl? -L
chrl8 -L chrl9 -L chr20 -L chr21 -L chr22’. The base recalibration table is applied using GATK
PrintReads with the parameters “-preserveQ 6 -BQSR "${bgsrt}" -SQQ 10 -SQQ 20 -SQQ 30 --

disable_indel_quals’. Finally, the output is converted to CRAM using “samtools view'.

Alignment and data processing pipelines — NYGC, pre- and post-harmonization

CCDG Pipline NYGC b37 Pipeline
Reference GRCh38_full analysis_set_plus_dec |Reference human_glk_v37.fasta
oy_hla.fa
Program Version Options Program Version Options Diffs and Comments
bwa 0.7.15 mem -Y -K 100000000 bwa 0.7.8 mem -M CCDG pipeline adds options to remove secondary
alignments and fix chunk size for alignments (for
reproducibility)
picard 2.4.1 FixMateInformation FixMatelnformation added in CCDG pipeline for SV
ADD_MATE_CIGAR=True callers
picard 2.4.1 MergeSamFiles picard 1.83 MergeSamFiles.jar CCDG pipeline sorts in query order to meet duplicate
SORT_ORDER=queryname marking requirements
picard . 241 MarkDuplicates picard . 1.83 MarkDuplicates.jar CCDG pipline marks first instance as Unique and all
supplementary alignments the same as the primary.
Build 37 pipeline marks highest quality read/pair as
unique but does not mark supplementary alignments.
picard 24.1 SortSam CCDG pipeline does coordinate sort after duplicate
SORT_ORDER=coordinate marking

GATK 3.4-0 RealignerTargetCreator [CCDG pipeline does not realign around indels. This step
is now inherent in Haplotype Caller but does not modify

GATK 3.4-0 IndelRealigner the BAM alignments.

GATK 3.5 BaseRecalibrator -- GATK 3.4-0 BaseRecalibrator The known sites files differ with the build, with the
preserve_gscores_less_than CCDG pipeline using the FE standards as shown in main
6 -L Fig. 1. CCDG pipeline also only uses autosomes to build
grch38_autosomes.intervals the recalibration model (but recalibrates on all

sequences).

GATK 35 PrintReads -- GATK 3.4-0 PrintReads CCDG pipeline bins all recalibrated quality scores above
preserve_gscores_less_than 6 by rounding to the nearest multiple of 10 (max 30) in
6 -SQQ 10 -SQQ 20 -SQQ 30 error probability space.

samtools 1.3.1 view -C CCDG pipeline uses samtools to convert BAM to CRAM.

Alignment and data processing pipelines — Michigan, pre- and post-harmonization

The pre-harmonization pipeline aligns reads using default options in the GotCloud alignment pipeline®®

available at https://github.com/statgen/gotcloud. It aligns the sequence reads to GRCh37 reference with

decoy sequences used in 1000 Genomes. The raw sequence was aligned using bwa mem (v0.7.13-
r1126)'°, and sorted by samtools (v1.3.1). The duplicate marking and base quality recalibration were

performed jointly using bamuUtil dedup [ref — same as GotCloud] (v1.0.14).

The post-harmonization pipeline procedure (described in https://github.com/statgen/docker-

alignment) first aligns each read group to the GRCh38 reference using bwa-mem (v0.7.15-r1140) with
the parameters "-K 100000000 -Y -R [read_group_id]". To add MC and MQ tags, samblaster (v0.1.24)
was used with the parameters "-a --addMateTags". Each BAM file corresponding to a read group is
sorted by genomic coordinate using ‘samtools sort™ (v1.3.1), and merged together using “samtools
merge” (v1.3.1). Duplicate marking and base quality recalibration were performed jointly using bamuUltil
dedup_lowmem (v1.0.14). with and parameters "--allReadNames —binCustom —binQualS
0:2,3:3,4:4,5:5,6:6,7:10,13:20,23:30,33:40 --recab --refFile [reference_fasta file] --dbsnp
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[dbsnp_b142 vcf file] --in [input_bam] —out -.ubam’ and the piped output (in uncompressed BAM

format) is convered into s a CRAM file using samtools view.

Calculation of Alignment Statistics

A total of 184 alignment statistics were generated for all standardized CRAM files from each center with
AlignStats software. Results include metrics for both the entire CRAM file and for the subset of read-
pairs with at least one read mapping to the autosome or sex chromosomes. We examined all metrics
across the five CRAMs for each of the 15 samples to ensure that any differences were consistent with
the various options allowed in the functional equivalence specification. Supplementary Table 1 provides
examples of these metrics, and full description of all metrics can be found online

(https://github.com/jfarek/alignstats).

Variant calling for the 14-sample analysis
SNPs and indels were called for each center's CRAM/BAM files using GATK?* version 3.5-0-g36282e4
HaplotypeCaller with the following parameters:
-rf BadCigar
--genotyping_mode DISCOVERY
--standard_min_confidence_threshold_for_calling 30
--standard_min_confidence_threshold_for_emitting O
For the pre-standardization files, the 1000 genomes phase 3 reference sequence from the GATK
reference bundle
ftp://ftp.broadinstitute.org/pub/svtoolkit/reference_metadata_bundles/1000G_phase3_25Jan2015.tar.gz

was used. For the post-standardization files, the 1000 Genomes Project version of GRCh38DH

(http://ftp.1000genomes.ebi.ac.uk/voll/itp/technical/reference/GRCh38_reference_genome/) was used.

Structural variants (SVs) were called for each center's CRAM/BAM files using lumpy?? and

svtools (https://github.com/hall-lab/svtools). First, split reads and reads with discordant insert sizes or

orientations were extracted from the CRAM/BAM files using extract-sv-reads in the docker image
halllab/extract-sv-
reads@sha256:192090f72afaeaaafal04d50890b2fc23935c8dc98988a9b5c80ddf4ec50f70c using the
following parameters:

--input-threads 4 -e —r

Next, SV calls were made using lumpyexpress (https://github.com/arg5x/lumpy-sv) from the

docker image
halllab/lumpy@sha256:59ce7551307a54087e57d5cec89b17511d910d1fe9fa3651c12357f0594dcb07
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with the -P parameter as well as -x to exclude regions contained in the BED file
exclude.cnvnator_100bp.GRCh38.20170403.bed (exclude.cnvnator_100bp.112015.bed for pre-
standardization samples). Both exclude files are available in https://github.com/hall-

lab/speedseq/tree/master/annotations

Finally, the SV calls were genotyped using svtyper [https://github.com/hall-
lab/svtools/tree/master/svtools/bin/svtyper] from the docker image
halllab/svtyper@sha256:21d757e77dfc52fddeab94acd66b09a561771a7803f9581b8cca3467ab7ff94a

Defining "easy", "medium" and "hard" genomic regions

The reference genome sequence is not uniformly amenable to analysis — some regions with high
amounts of repetitive sequence are difficult to align and prone to misleading analyses, while other
regions comprised of mostly unique sequence can be more confidently interpreted. To gain a better
understanding of how pipeline concordance differs by region, we divided the reference sequence into
three broad categories. The “easy” genomic regions consist of the GiaB gold standard high confidence
regions, lifted over to build 38. The “hard” regions consist of centromeres
(https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/38/Modeled_regions_for GR
Ch38.tsv), microsatellite repeats (satellite entries from
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.out.gz), low complexity regions
(https://github.com/Ih3/varcmp/raw/master/scripts/LCR-hs38.bed.gz), and windows determined to have
high copy number (more than 12 copies per genome across 409 samples). Any regions overlapping
GiaB high confidence regions are removed from the set of hard regions. All remaining regions are

classified as “medium”.

Cross-center variant comparisons for the 14-sample analysis

The VCF files produced by GATK for both the pre- and post-standardization experiments were
compared using hap.py[https://github.com/lllumina/hap.py] from the docker image

pkrusche/hap.py:v0.3.9 using the --preprocess-truth parameter.

The four data replicates of NA12878 were compared to the NA12878 gold standards (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HG001/
NISTv2.19/NISTIntegratedCalls l4datasets 131103 allcall UGHapMerge HetHomVarPASS VQS
Rv2.19 2mindatasets_5minYesNoRatio all nouncert excludesimplerep excludesegdups_excl
udedecoy excludeRepSegSTRs noCNVs.vcf.gz in the regions defined by ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HG001l/
NISTv2.19/unionl3callableMQonlymerged addcert nouncert excludesimplerep excludesegdu

ps_excludedecoy excludeRepSeqgSTRs noCNVs v2.19 2mindatasets SminYesNoRatio.bed.gz) to

obtain sensitivity and precision measurements. The post-standardization VCFs were first lifted over to
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GRCh37 using the Picard LiftoverVcf tool (v2.9.0) and the chain files hg38ToHg19.over.chain.gz and
hgl9ToGRCh37.over.chain.gz downloaded from here:

http://crossmap.sourceforge.net/#ichain-file. To reduce artifacts from the liftover that

negatively impacted sensitivity, the gold standard files were lifted over to the build 38 reference and

back to build 37, excluding any variants that didn't lift over in both directions.

Values for sensitivity (METRIC.Recall) and precision (METRIC.Precision) were parsed out of
the *.summary.csv file produced by hap.py for each comparison, using only variants with the PASS

filter value set.

The downsampled data replicates of NA12878 and NA19238 aligned by the same center were
compared to each other in a pairwise fashion. Pairwise comparisons between centers were performed
for each non-downsampled aligned file. The variant discordance rates between pairs were calculated
using the true positive, true negative, and false positive counts from the *.extended.csv output file from
hap.py (TRUTH.FN + QUERY.FP)/(TRUTH.TP + TRUTH.FN + QUERY.FP). The rates reported are

only for PASS variants but across the whole genome.

The VCF files of SVs produced by lumpy and svtyper were converted to BEDPE using the
command “svtools vcftobedpe™ from the docker container
halllab/svtools@sha256:f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45
The coordinates are padded with 1 bp on each side to be compatible with bedtools pairtopair. The
pairwise comparisons are performed using the bedtools pairtopair command (version 2.23.0), then
summarized using a python script (compare_single_sample_based_on_strand.py in
https://github.com/CCDG/Pipeline-Standardization). The variant discordance rates between pairs are
calculated with the following formula: (discordant + 0-only + 1-only +
discordant_discordant_type)/(match + discordant + match_discordant_type +

discordant_discordant_type + 0-only + 1-only).

Variant calling for 100-sample analysis

SNPs and indels were called using the GATK best practices pipeline, including per-sample

variant discovery using HaplotypeCaller with the following parameters:

-ERC GVCF -GQB 5 -GQB 20 -GQB 60 -variant_index_type LINEAR -variant_index_parameter
128000°. Next, GVCFs from all 100 samples were merged with GATK CombineGVCFs. Genotypes
were refined with GATK GenotypeGVCFs with the following parameters: “-stand_call_conf 30 -
stand_emit_conf 0°. Variants with no genotyped allele in any sample are removed with the GATK
command SelectVariants and the parameter “--removeUnusedAlternates’, and variant lines where the

only remaining allele is a symbolic deletion (*:DEL) are also removed using grep.
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SVs were called using the svtools best practices pipeline (https://github.com/hall-
lab/svtools/blob/master/Tutorial.md). First, per-sample SV calls were generated with extract-sv-reads,
lumpyexpress, and svtyper using the same versions and parameters as the 14 sample analysis. Next,
the calls were merged into 100-sample callsets for each pipeline using the following sequence of

commands and parameters from the docker container

halllab/svtools@sha256:£2f3f9¢c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8
d4s

“svtools lsort”

“svtools lmerge -f 20°

‘create coordinates’

The merged calls were then re-genotyped for each sample using the previous svtyper command. Copy
number histograms were generated for each sample using the command cnvnator_wrapper.py with
window size 100 (-w 100) in the docker container
halllab/cnvnator@sha256:c41e9ce51183fc388ef39484chb218f7ec2351876e5edal8b709d82b7e8af3a2
. Each SV call was annotated with its copy number from the histogram file using the command “svtools
copynumber’ in that same docker container with the parameters “-w 100 -c coordinates’. Finally, the
per-sample genotyped and annotated VCFs were merged back together and refined with the following
sequence of commands in the svtools docker container :

svtools vcfpaste

svtools afreq

svtools vcftobedpe

svtools bedpesort

svtools prune -s -d 100 -e "AF"

svtools bedpetovct

svtools classify -a
repeatMasker.recent.1t200millidiv.LINE SINE SVA.GRCh38.sorted.bed.gz -m large sample

Cross-center variant comparisons for the 100-sample analysis

The VCF of SNPs and indels was split into per-sample VCFs using the command “bcftools view®
with the following parameters: "-a -c 1:nref’. Additionally, any remaining variant lines with only the
symbolic allele (*) remaining were removed. Pairwise comparisons between the same sample
processed by different pipelines were performed using hap.py using the same commands as the 14
sample analysis. Variant concordance rates per sample were calculated using results from the
extended.csv output file produced by hap.py the following formula: TRUTH.TP/(TRUTH.TP +
TRUTH.FN + QUERY.FP). The reported statistics were calculated using all variants genome-wide
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except those that were marked LowQual by GATK. No VQSR-based filtering was used. Fig 3a reports

the mean rates across all 100 samples for each pairwise comparison of pipelines.

The per-pipeline SV VCFs were converted to BEDPE using the command “svtools vcftobedpe®
in the docker container
halllab/svtools@sha256:f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45.
The variants were compared using bedtools pairtopair as in the 14 sample analysis. Next they were
classified into “hard”, “medium”, and “easy” genomic regions by intersecting each breakpoint with BED
files describing the regions using “bedtools pairtobed’. Variants were classified by the most difficult
region that either of their breakpoints overlapped (see compare_round3_by region.sh in
https://github.com/CCDG/Pipeline-Standardization). Then, the variants were extracted and annotated in
per-sample BEDPE files with the script compare_based_on_strand_output_bedpe.py (in
https://github.com/CCDG/Pipeline-Standardization). The BEDPE files were converted to VCF using
“svtools bedpetovcf and sorted using “svtools vcfsort™. The number of shared and pipeline-unique
variants were counted using “bcftools query” (version 1.6) to extract the genomic region and
concordance status of each variant, then summarized with “bedtools groupby™ (v2.23.0). The rates of
shared variants per sample were calculated using the output of this file with the following formula:

match/(match + 0-only + 1-only).

Mendelian error (ME) rate calculation

SNPs and indels that were classified by hap.py into categories (shared between pipelines, or unique to
one pipeline) were further characterized by looking at the ME rate for each of the offspring in the
trios/quads. For each offspring in the sample set, the parents and offspring sample VCFs output by
hap.py were merged together using “bcftools merge --force-samples™ (v1.3), and the genotypes from
the first pipeline in the pair were extracted. Any variants with missing genotypes or uniformly
homozygous genotypes were excluded using “bcftools view -g “miss” and “bcftools view -g het™. A
custom python script (classify_mie.py in https://github.com/CCDG/Pipeline-Standardization) was used
to classify each variant as uninformative, informative with no Mendelian error, or informative with
Mendelian error. Total informative error and non-error sites in each genomic region were counted for
shared sites and unique sites separately, and ME rate was calculated by dividing the number of ME
sites by the total number of informative sites. A similar calculation was performed for the per-sample SV
VCFs produced by the SV concordance calculations. Figs 3b and S3 report the mean ME rate across

44 offspring-parent trios for each pairwise pipeline comparison.

Variant quality evaluation
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To evaluate possible causes of remaining differences between pipelines, we extracted variant quality
scores for each variant type and summarized them by concordance status in each pairwise pipeline
comparison across 100 samples. For SNPs and indels, the QUAL field was extracted along with the
concordance annotation from the per-sample hap.py comparison VCFs using “bcftools query™ (version
1.6). The median QUAL score for each category was reported using “bedtools groupby’. For SVs, MSQ

(mean sample quality) is a more informative measure of variant quality, so this field was extracted and
summarized in a similar way.
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